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ABSTRACT

We introduce G-CUT3R, a novel feed-forward approach for guided 3D scene re-
construction that enhances the CUT3R model by integrating prior information.
Unlike existing feed-forward methods that rely solely on input images, our method
leverages auxiliary data, such as depth, camera calibrations, or camera positions,
commonly available in real-world scenarios. We propose a lightweight modifi-
cation to CUT3R, incorporating a dedicated encoder for each modality to extract
features, which are fused with RGB image tokens via zero convolution. This flex-
ible design enables seamless integration of any combination of prior information
during inference. Evaluated across multiple benchmarks, including 3D recon-
struction and other multi-view tasks, our approach demonstrates significant per-
formance improvements, showing its ability to effectively utilize available priors
while maintaining compatibility with varying input modalities.

1 INTRODUCTION

The pursuit of robust 3D scene reconstruction, as well as the development of versatile models capa-
ble of unifying diverse 3D perception tasks, including depth estimation, feature matching, dense re-
construction, and camera localization, is a complex and long-standing challenge in computer vision
and computer graphics. Traditional approaches, such as Structure-from-Motion (SfM) and Multi-
View Stereo (MVS) Yao et al. (2018), rely on per-scene optimization, which is computationally
expensive, slow to converge, and dependent on precisely calibrated datasets, limiting their practi-
cality in real-world scenarios. This has led to the development of feed-forward methods Fan et al.
(2017); Wu et al. (2016); Wang et al. (2024b) as a promising alternative. These models leverage
large-scale training data and learned priors to achieve orders-of-magnitude faster inference and im-
proved generalization, making them ideal for time-sensitive and scalable applications like real-time
robotic perception and interactive 3D asset creation.

Recent advances in feed-forward 3D reconstruction have placed these methods as compelling al-
ternatives to traditional SfM techniques such as COLMAP Schonberger & Frahm (2016), offering
enhanced efficiency and robustness in generating 3D scene representations. In particular, DUSt3R
Wang et al. (2024b) has pioneered this paradigm by leveraging pairs of RGB images to simul-
taneously predict point clouds and camera poses, achieving impressive results with minimal input.
Building upon this foundation, subsequent works Leroy et al. (2024); Wang et al. (2025b;a) have sig-
nificantly extended the capabilities of feed-forward approaches. For example, MASt3R Leroy et al.
(2024) improves the robustness of 3D reconstruction by grounding predictions in geometric and se-
mantic constraints, improving accuracy in complex scenes. CUT3R Wang et al. (2025b) introduces a
recurrent processing mechanism that sequentially refines reconstructions of image sequences, allow-
ing better handling of temporal and spatial coherence in dynamic environments. Meanwhile, VGGT
Wang et al. (2025a) advances DUSt3R’s framework by adopting a fully multi-view approach, con-
currently utilizing all available images to produce more comprehensive and consistent 3D models.

Despite the significant advancements achieved by DUSt3R (Wang et al., 2024b) and its derivatives,
feed-forward 3D reconstruction methods typically rely exclusively on RGB images, neglecting ad-
ditional data sources such as calibrated camera intrinsics, poses, and depth maps from RGB-D or
LiDAR sensors, which are commonly available in real-world applications. Effectively incorporating
these diverse modalities to enhance the quality of 3D reconstructions remains a critical challenge
in computer vision. Recently, Pow3R (Jang et al., 2025) has been proposed to integrate prior infor-
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G-CUT3R (Depth Guidance) CUT3R (No Guidance) Spann3R

Figure 1: Comparison of methods. Visual results across three different approaches: our G-CUT3R
with depth guidance, original CUT3R without any guidance, and Spann3R. Our method produces
cleaner and more complete 3D reconstruction.

mation into the DUSt3R framework. However, achieving competitive performance requires training
the entire model from scratch, which requires substantial computational resources. Furthermore,
Pow3R processes only pairs of images and relies on computationally expensive global alignment to
produce the final reconstruction, resulting in a runtime of less than 1 FPS. This limitation makes
Pow3R impractical for real-time applications.

We propose G-CUT3R, a lightweight and modality-agnostic extension to the CUT3R frame-
work (Wang et al., 2025b) that seamlessly integrates geometric priors through a streamlined encod-
ing process and carefully designed fusion techniques in the decoder stage. Using ray-based encoding
for camera parameters and depthmaps, alongside zero-initialized convolutional layers for stable fea-
ture integration, G-CUT3R outperforms Pow3R and other state-of-the-art methods. Our approach
bridges the gap between traditional SfM techniques and modern feed-forward pipelines, enabling
more reliable 3D reconstructions for complex real-time applications. Our carefully designed archi-
tecture and training strategy enable G-CUT3R to effectively incorporate any combination of prior
information while maintaining robust performance on RGB images alone. Additionally, the recur-
sively updated state eliminates the need for computationally expensive global optimization, making
G-CUT3R well-suited for real-time applications. Furthermore, training is performed using only a
subset of the original model’s parameters and a reduced portion of its training dataset, enhancing
efficiency without compromising performance.

Our primary contributions are as follows:

• G-CUT3R, a novel real-time feed-forward method for guided 3D scene reconstruction that
utilizes prior information, e.g., camera intrinsics, poses, and depths alongside RGB images.

• Comprehensive experiments demonstrating a significant performance improvement,
achieving state-of-the-art results across multiple benchmark datasets and tasks.

2 RELATED WORK

Structure from Motion. Joint estimation of 3D scene geometry and camera poses from a set of 2D
images is a fundamental problem in computer vision Hartley & Zisserman (2003); Crandall et al.
(2012); Jiang et al. (2013). Traditional SfM pipelines, such as COLMAP Schonberger & Frahm
(2016), rely on a sequence of well-established steps: detecting and matching keypoints across im-
ages, estimating initial camera poses and 3D points, and refining these estimates through bundle
adjustment. Keypoint matching typically uses hand-crafted features such as SIFT Lowe (1999) or,
more recently, learned features such as DIFT Tang et al. (2023). Recent advances have integrated
machine learning to enhance various components of the SfM pipeline. Methods like D2-Net Dus-
manu et al. (2019), LIFT Yi et al. (2016), and others Chen et al. (2021) employ trained models to
improve keypoint detection, descriptor matching, and correspondence estimation, achieving robust
performance under challenging conditions. In particular, VGGSfM Wang et al. (2024a) introduced a
fully differentiable SfM framework, enabling end-to-end optimization of the reconstruction process.
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Although machine learning approaches have significantly improved accuracy and robustness, the
core principles of SfM remain rooted in geometric optimization and correspondence-based recon-
struction.

Deep Learning Approaches. Recent advancements in deep learning have introduced novel alter-
natives to traditional SfM methods. DUSt3R Wang et al. (2024b) represents a significant devia-
tion from conventional SfM pipelines by predicting point clouds from image pairs without rely-
ing on geometric constraints or inductive biases. Unlike traditional SfM, which depends on key-
point matching and geometric optimization, DUSt3R generates predictions in a shared coordinate
frame, enabling robust reconstruction across diverse scenes. This approach addresses several chal-
lenges inherent in classical methods, such as sensitivity to initialization and sparse correspondences.
Building on this paradigm, several works have proposed variations with distinct architectural inno-
vations. MASt3R Leroy et al. (2024) improves the estimation of the pixel-wise correspondence be-
tween image pairs, strengthening the efficacy of unconstrained feed-forward models for SfM tasks.
CUT3R Wang et al. (2025b) introduces a recurrent formulation of DUSt3R, achieving computa-
tional efficiency at the expense of marginal accuracy degradation. More recently, VGGT Wang et al.
(2025a) proposes a multi-view architecture that processes multiple images simultaneously, moving
beyond pairwise processing to improve reconstruction consistency and robustness.

Guidance through Prior Information. While feed-forward deep learning methods, such as
DUSt3R, achieve superior results in unconstrained 3D geometry prediction, integrating prior in-
formation remains a significant challenge. In many applications, incomplete or noisy geometric
priors (such as those derived from LiDAR or similar sensors) are available and can enhance recon-
struction accuracy and consistency. Unlike traditional SfM pipelines, which naturally incorporate
priors through geometric constraints, fully feed-forward approaches struggle to leverage such in-
formation effectively. To address the challenge of integrating prior information, Pow3R Jang et al.
(2025) extends the DUSt3R framework by incorporating optional depth and camera pose priors as
additional inputs, providing guidance to improve reconstruction quality while maintaining the flex-
ibility of feed-forward models. We extend the CUT3R model with a prior-guided regularization.
CUT3R’s continuous formulation naturally accommodates informative priors, and its known con-
sistency issues create a clear opportunity for improvement. Our lightweight regularizer boosts both
efficiency and accuracy without incurring the memory costs of larger alternatives such as VGGT
Wang et al. (2025a).

3 METHOD

Overview. We introduce G-CUT3R, a novel method that takes as input a set of {Ii}Ni=1 RGB
images Ii ∈ R3×H×W with the corresponding auxiliary information Φ ⊆ {K,P,D} as guidance to
reconstruct the 3D scene. We denote K ∈ R3×3 as camera intrinsics, P = [R | t] ∈ R4×4 as camera
pose, and D ∈ RH×W as depth map with corresponding mask M ∈ {0, 1}H×W for sparse depth.
The views are passed sequentially to the network G and produce 3D pointmaps and camera poses
simultaneously, retrieving and updating the state S that encodes the understanding of the 3D scene.

3.1 RECAP OF CUT3R

We follow the recently proposed CUT3R method Wang et al. (2025b) that enables efficient process-
ing of a large number of images in a recurrent, memory-constrained manner. CUT3R is presented
as a framework that takes a set of images (i.e., either ordered or unordered) as input and outputs
corresponding point maps. The process begins with each image I being passed through a Vision
Transformer (ViT) encoder, denoted as EI , to extract features F I , defined as F I = EI(I). This
step leverages the strengths of ViT, which is known for capturing global dependencies in images
through self-attention. To maintain context, CUT3R introduces state tokens sj . These tokens in-
teract with the image features via cross-attention in the decoder stage, allowing for mutual updates.
The interaction is formalized as: [z′j , F

′I
j ], sj = Decoders([zj , F I

j ], sj−1). Here, zj represents the
learnable ”pose token” and [z′j , F

′I
j ] denotes the updated features enriched with state information,

while sj is the updated state token. This recursive mechanism ensures that the features of each
image are informed by the context of previous images, enhancing the model’s ability to understand
complex scenes and temporal dynamics.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Encoder 

block

+

Ze
ro

C
on

v

Ze
ro

C
on

v+

Ze
ro

C
on

v

Decoder 

block

Encoder 

block

Encoder 

block

Encoder 

block

Encoder 

block

Decoder 

block

Decoder 

block

Decoder 

blockState

Image

Depth

K

Pose

+

Encoder 

block

Ze
ro

C
on

v

Decoder 

block

Decoder 

block

Decoder 

block State

Image

Encoder 

block

+

Ze
ro

C
on

v

Ze
ro

C
on

v

Decoder 

block

Encoder 

block

Encoder 

block

Encoder 

block

Encoder 

block

Decoder 

block

Decoder 

block

Decoder 

block

+ +

Encoder 

block

+

Ze
ro

C
on

v

Ze
ro

C
on

v

Decoder 

block

Decoder 

block

Decoder 

block

Decoder 

block

Decoder 

blocks

Decoder 

blocks

Pointmaps

Cross-attention

Camera Poses

Figure 2: Overview of the G-CUT3R architecture. Our method processes a set of RGB images from
videos or collections of images, together with a variable set of auxiliary inputs, including depth maps
(Depth), camera intrinsics (K), and camera poses (Pose). These inputs are sequentially fed into the
network, which employs modality-specific convolutional layers and ViT encoders to extract and fuse
features. These features are fused with RGB image features via zero-initialized convolutional layers
within the decoder stage, enabling the model to generate accurate 3D pointmaps and camera poses
while updating a state token to maintain scene context across sequential inputs.

3.2 INCORPORATING PRIOR INFORMATION

The baseline feed-forward 3D reconstruction pipeline in CUT3R lacks the capability to leverage ad-
ditional prior information, including camera poses or depth maps, to enhance scene reconstruction
accuracy. To address this limitation, we propose a lightweight and modality-agnostic extension to
the CUT3R framework, by modifying only the decoder stage to seamlessly integrate additional input
modalities, including noisy depth maps and both intrinsic and extrinsic camera parameters, as illus-
trated in Fig. 2. This approach ensures compatibility with diverse data sources while preserving the
integrity of the pre-trained model, making it suitable for advanced tasks such as 3D reconstruction
and scene understanding. The flexible design of this extension also holds potential for application
to other feed-forward reconstruction pipelines.

Modality Encoding. We encode camera intrinsics K and poses P as ray images, representing
each pixel (m,n) in an image of resolution H × W as a normalized 3D direction. This yields
XK ∈ R3×H×W and XP ∈ R3×H×W , computed as follows:

XK =
P [K−1[m,n, 1]T ; 1]

∥P [K−1[m,n, 1]T ; 1]∥
, XP = t (1)

Here, XK represents the normalized ray directions derived from camera intrinsics transformed by
the pose P , and XP encodes the translational component t of the pose. The homogeneous coordinate
[m,n, 1]T is transformed by the inverse intrinsic matrix K−1, projected via P , and normalized to
ensure the resulting ray directions have unit length.

In cases where only camera intrinsics are available, encoding is performed in the local camera coor-
dinate system:

XK =
K−1[m,n, 1]T

∥K−1[m,n, 1]T ∥
(2)

This produces XK ∈ R3×H×W , representing ray directions in the camera’s local frame.

Depth maps D ∈ RH×W are normalized in the range of [0, 1] and paired with the corresponding
binary masks M ∈ RH×W to form a composite representation, concatenated channel-wise:
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XD = [D;M ] (3)

The resulting XD ∈ R2×H×W encapsulates depth values and their validity masks, enabling robust
handling of sparse or incomplete depth data prevalent in real-world sensor outputs.

To prepare modalities for fusion, each is processed through a dedicated convolutional layer to extract
initial feature maps, aligning their representations within a shared feature space:

FD = ConvD(XD),

FK = ConvK(XK),

FP = ConvP (X
P ),

(4)

where ConvD, ConvK , and ConvP are modality-specific convolutional layers tailored to the input
dimensions and characteristics of XD, XK , and XP , respectively. These layers produce feature
maps FD, FK , FP ∈ RC×H×W , where C denotes the number of output channels.

Modality Fusion. We perform fusion five times within the CUT3R decoder, with the first fusion
occurring before the initial decoder layer and subsequent fusions following each of the first four
decoder layers. The features FD, FK , and FP are processed by dedicated ViT encoders, each
comprising four layers, to extract intermediate representations tailored to the geometric and semantic
properties of each modality. These encoders are not shared between modalities to preserve the
unique characteristics of each modality.

To integrate the features from additional modalities FD, FK , and FP with the RGB image features
F I , we compute a guidance feature G by summing the modality-specific features:

G = FD + FK + FP (5)

The guidance feature G is combined with the RGB image features F I using a ZeroConv layer Zhang
et al. (2023), a 1× 1 convolution layer initialized with zero weights:

F fused = F I + ZeroConv(G) (6)

The zero-initialized weights ensure that, at the very beginning of the training process, the additional
modalities do not disrupt the pre-trained behavior of the CUT3R decoder. During fine-tuning, the
model gradually learns to incorporate the guidance features. This allows the model to improve
performance without destabilizing existing weights. This approach ensures a stable and effective
integration of multimodal inputs, enhancing the robustness and adaptability of the model in complex
vision tasks.

3.3 TRAINING OBJECTIVE

Our model predicts pointmaps X̂ ∈ R3×H×W , the corresponding confidences Ĉ ∈ RH×W , and
camera poses P̂ . Following the CUT3R framework (Wang et al., 2025b), the training objective
comprises two primary components: a pointmap prediction loss Lpoint and a camera pose predic-
tion loss Lpose. The pose loss separately evaluates orientation error (via quaternion difference) and
translation error, ensuring precise alignment of the predicted and the ground truth poses.

The loss functions are defined as follows:

Lpoint =
∑
I

(
Ĉ∥X̂ −X∥ − α log Ĉ

)
,

Lpose =
∑
I

(
∥q̂ − q∥+ ∥t̂− t∥

)
,

(7)
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where X and X̂ represent the ground truth and predicted pointmaps, respectively, Ĉ denotes the
predicted confidences, and α is a hyperparameter controlling the weight of the confidence regular-
ization term. For pose loss, q̂ and q are the predicted and the ground truth quaternions, respectively,
and t̂ and t are the predicted and ground truth translations. This composite loss ensures accurate
point map reconstruction and robust pose estimation, which are critical for tasks such as 3D scene
understanding and camera localization.

3.4 TRAINING STRATEGY

Our training strategy builds upon the CUT3R framework, utilizing short sequences of four images
to ensure both computational efficiency and scalability. Unlike approaches that train separate mod-
els for each input modality (e.g., depth priors or camera parameters), we adopt a unified training
paradigm. A single model is trained to handle arbitrary combinations of modalities, enhancing
its versatility in real-world scenarios. During training, the model is exposed to random subsets of
available modalities, simulating diverse input conditions. While modality-specific models may ex-
hibit faster initial convergence, our unified model achieves comparable performance with sufficient
training iterations, offering superior flexibility and practical deployment benefits.

Datasets. The model is trained on a diverse set of indoor and outdoor datasets, and the correspond-
ing tables are provided in Supplementary Material. These include the Waymo Open Dataset (Sun
et al., 2020), Co3Dv2 (Reizenstein et al., 2021), ScanNet (Dai et al., 2017), ARKitScenes (Baruch
et al., 2021), DL3DV (Ling et al., 2024), WildRGBD (Xia et al., 2024), MegaDepth (Li & Snavely,
2018), ScanNet++ (Yeshwanth et al., 2023), MapFree (Arnold et al., 2022), TartanAir (Wang et al.,
2020), BlendedMVS (Yao et al., 2020) and HyperSim (Roberts et al., 2021). Dataset preparation fol-
lows the same protocol as CUT3R to ensure consistency. To balance representation across datasets,
we sample equal subsets of 10,000 examples from each, creating a comprehensive and diverse train-
ing corpus that supports robust generalization across indoor and outdoor scenes.

Implementation details. We employ a ViT-Large model (Dosovitskiy et al., 2021) as the image
encoder and ViT-Base for all decoders. Each modality encoder consists of four transformer blocks
with 12 attention heads and an embedding dimension of 768, striking a balance between feature
richness and computational efficiency. Architectural parameters, such as a 16 × 16 patch size and
embedding dimension, are aligned with those of the CUT3R RGB encoder to ensure compatibil-
ity. Linear layers serve as output heads to predict pointmaps, confidences, and camera poses. The
model parameters are initialized using pre-trained CUT3R weights for images of size 512. We train
the model using the Adam-W optimizer with a learning rate of 10−5, which incorporates a linear
warmup and cosine weight decay schedule. The model is trained on four NVIDIA A100 GPUs for
ten days, ensuring robust convergence and scalability.

4 EXPERIMENTS

We evaluate G-CUT3R across three tasks: scene-level 3D reconstruction, video depth estimation,
and relative pose estimation, supported by thorough ablation studies and efficiency analyses. For all
evaluations, we assess the impact of guidance using all possible combinations of auxiliary inputs,
including camera intrinsics K, camera pose R | t, and depthmaps D. Also, we present results for
two image resolutions, 224 and 512, demonstrating substantial performance improvements at both
resolutions. Bold indicates the best performance, and underlined indicates the second best in the
tables. Additionally, G-CUT3R demonstrates strong robustness to noisy priors, with detailed results
for varying noise levels reported in Supplementary Material.

4.1 BENCHMARK SUITES

We evaluate our method on diverse datasets: 7-Scenes (Shotton et al., 2013) and NRGBD (Azinović
et al., 2022) for indoor static scenes with 3–5 views per scene following the low-overlap protocol
of Wang et al. (2025b), Bonn (Palazzolo et al., 2019) for indoor dynamic scenes with handheld RGB-
D sequences and highly dynamic objects involving human activities, and Waymo (Sun et al., 2020)
for outdoor dynamic scenarios with moving agents and LiDAR depth data. Training, validation, and
test splits adhere to the official splits provided by each dataset.
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Input Video CUT3R G-CUT3R Ground Truth

Figure 3: Qualitative results on video sequences from the 7-scenes and ScanNet datasets. We com-
pare our G-CUT3R method with CUT3R, demonstrating superior visual quality and reconstruction
accuracy.

Table 1: 3D reconstruction comparison on 7-scenes and NRGBD datasets.
7-scenes NRGBD

Acc ↓ Comp ↓ NC ↑ Acc ↓ Comp ↓ NC ↑
Method Resolution FPS K R, t D Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Spann3R 224 16.3 - - - 0.298 0.226 0.205 0.112 0.650 0.730 0.416 0.323 0.417 0.285 0.684 0.789
CUT3R 224 33 - - - 0.298 0.203 0.254 0.110 0.649 0.728 0.422 0.213 0.252 0.163 0.713 0.835
CUT3R 512 20 - - - 0.126 0.047 0.154 0.031 0.727 0.834 0.099 0.031 0.076 0.026 0.837 0.971

DUSt3R-GA 512 0.9 - - - 0.146 0.077 0.181 0.067 0.736 0.839 0.144 0.019 0.154 0.018 0.870 0.982
MASt3R-GA 512 0.37 - - - 0.185 0.081 0.180 0.069 0.701 0.792 0.085 0.033 0.063 0.028 0.794 0.928

Pow3R 512 0.3 - - - 0.198 0.126 0.198 0.115 0.677 0.748 0.335 0.226 0.356 0.213 0.729 0.819
Pow3R 512 0.3 + - - 0.181 0.110 0.174 0.092 0.700 0.778 0.336 0.224 0.355 0.211 0.731 0.821
Pow3R 512 0.3 - + - 0.131 0.098 0.150 0.108 0.710 0.799 0.338 0.255 0.326 0.252 0.732 0.801
Pow3R 512 0.3 - - + 0.231 0.166 0.240 0.155 0.662 0.732 0.383 0.255 0.406 0.262 0.686 0.743
Pow3R 512 0.3 + + - 0.157 0.119 0.178 0.140 0.709 0.789 0.339 0.258 0.319 0.244 0.735 0.802
Pow3R 512 0.3 + - + 0.248 0.178 0.271 0.185 0.666 0.737 0.353 0.216 0.368 0.223 0.733 0.793
Pow3R 512 0.3 - + + 0.141 0.107 0.189 0.147 0.706 0.786 0.356 0.252 0.339 0.259 0.698 0.747
Pow3R 512 0.3 + + + 0.112 0.088 0.149 0.120 0.739 0.823 0.334 0.236 0.313 0.243 0.737 0.779

G-CUT3R 224 24 - - - 0.326 0.262 0.207 0.171 0.663 0.742 0.246 0.145 0.195 0.097 0.708 0.829
G-CUT3R 224 22.3 + - - 0.347 0.277 0.220 0.191 0.662 0.738 0.191 0.116 0.173 0.081 0.714 0.840
G-CUT3R 224 23.5 - + - 0.236 0.184 0.167 0.104 0.667 0.751 0.178 0.084 0.146 0.071 0.741 0.878
G-CUT3R 224 23.3 - - + 0.313 0.246 0.195 0.166 0.690 0.778 0.249 0.089 0.148 0.055 0.746 0.889
G-CUT3R 224 22.9 + + - 0.151 0.101 0.115 0.055 0.675 0.761 0.172 0.074 0.149 0.062 0.745 0.886
G-CUT3R 224 21.7 + - + 0.317 0.244 0.199 0.168 0.693 0.781 0.228 0.099 0.142 0.053 0.731 0.857
G-CUT3R 224 23.0 - + + 0.238 0.168 0.143 0.100 0.694 0.785 0.157 0.054 0.114 0.037 0.769 0.913
G-CUT3R 224 22.1 + + + 0.144 0.085 0.091 0.050 0.695 0.787 0.167 0.052 0.130 0.037 0.767 0.913

G-CUT3R 512 18 - - - 0.098 0.050 0.106 0.046 0.726 0.832 0.089 0.031 0.073 0.025 0.827 0.962
G-CUT3R 512 16.3 + - - 0.105 0.049 0.143 0.039 0.722 0.825 0.091 0.033 0.074 0.025 0.827 0.962
G-CUT3R 512 17.5 - + - 0.061 0.038 0.075 0.034 0.736 0.845 0.085 0.031 0.069 0.026 0.827 0.965
G-CUT3R 512 18 - - + 0.085 0.047 0.080 0.037 0.733 0.842 0.104 0.030 0.065 0.024 0.825 0.963
G-CUT3R 512 13.6 + + - 0.052 0.032 0.064 0.028 0.741 0.853 0.087 0.031 0.070 0.025 0.828 0.965
G-CUT3R 512 13.8 + - + 0.097 0.048 0.098 0.035 0.733 0.841 0.106 0.031 0.066 0.023 0.825 0.963
G-CUT3R 512 15.2 - + + 0.061 0.038 0.068 0.033 0.738 0.846 0.099 0.031 0.060 0.025 0.827 0.966
G-CUT3R 512 14.7 + + + 0.048 0.029 0.056 0.025 0.746 0.860 0.101 0.031 0.061 0.025 0.828 0.966

4.2 BASELINES

We evaluate our G-CUT3R method against leading dense 3D reconstruction approaches, including
two-view and global optimization methods like DUSt3R (Wang et al., 2024b), which pioneered
pointmap regression, MASt3R (Leroy et al., 2024), its successor with an added matching term,
and Pow3R (Jang et al., 2025), our main competitor built on DUSt3R. We also compare against
sequential reconstruction methods, including Spann3R (Wang & Agapito, 2024), featuring spatial
memory, and CUT3R (Wang et al., 2025b), our primary backbone. Metrics are reported at 512
resolution for all methods except Spann3R, with CUT3R and G-CUT3R evaluated at both 224 and
512 resolutions.

4.3 3D RECONSTRUCTION

We evaluate scene-level 3D reconstruction on the 7-scenes and NRGBD datasets using standard
metrics: Accuracy (Acc), Completeness (Comp), and Normal Consistency (NC), as reported in
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Table 2: Video depth evaluation on Bonn and ScanNet.
Bonn ScanNet

Method Resolution FPS K R, t Abs. rel ↓ δ <1.25 ↑ Abs. rel ↓ δ <1.25 ↑

Spann3R 224 16.3 - - 0.144 81.3 0.051 96.7
CUT3R 224 33 - - 0.109 88.8 0.039 98.6
CUT3R 512 20 - - 0.069 97.1 0.029 99.3

Pow3R 512 0.3 - - 0.148 67.1 0.028 99.0
Pow3R 512 0.3 + - 0.132 75.2 0.038 99.2
Pow3R 512 0.3 - + 0.152 67.0 0.028 99.0
Pow3R 512 0.3 + + 0.128 77.0 0.035 99.2

G-CUT3R 224 24 - - 0.126 89.9 0.04 98.5
G-CUT3R 224 22.3 + - 0.125 85.8 0.04 98.5
G-CUT3R 224 23.5 - + 0.105 89.1 0.04 98.6
G-CUT3R 224 22.9 + + 0.104 88.4 0.04 98.7

G-CUT3R 512 18 - - 0.062 97.5 0.031 99.2
G-CUT3R 512 16.3 + - 0.063 97.5 0.031 99.2
G-CUT3R 512 17.5 - + 0.063 97.4 0.029 99.2
G-CUT3R 512 13.6 + + 0.063 97.4 0.030 99.2

Tab. 1. Following prior works (Leroy et al., 2024; Wang et al., 2025b), these metrics assess the
quality of 3D scene reconstruction.

Consistent with CUT3R (Wang et al., 2025b), we assess performance under low-overlap conditions,
where each scene comprises only 3–5 images, simulating challenging real-world scenarios with
sparse viewpoints. The reported FPS was measured on NVIDIA A40 on 348×512 image resolution.

A discrepancy exists between the original CUT3R checkpoint and our unguided G-CUT3R variant
due to differences in training data. Specifically, G-CUT3R is initialized from CUT3R checkpoints
but fine-tuned on a smaller subset of the original training datasets, constrained by data availabil-
ity. Consequently, a direct comparison with the original CUT3R would be biased, as its superior
performance may result from exposure to a larger training corpus. To isolate the effect of guid-
ance, we train a G-CUT3R variant without guidance on the same subset, ensuring a fair baseline for
comparison.

As shown in Tab. 1, incorporating guidance consistently improves performance across both datasets
and on both input resolutions. Camera poses contribute the most to enhancements in Accuracy
and Completeness, while depth fusion significantly improves Normal Consistency. The fusion of
multiple modalities outperforms single-modality configurations.

G-CUT3R offers the best accuracy–speed trade-off among all compared methods. It achieves the
highest scores on 7-scenes and remains competitive on NRGBD. In contrast to slow optimization-
based approaches such as DUSt3R-GA and MASt3R-GA, G-CUT3R runs at 13–18 FPS. Most no-
tably, it substantially outperforms the closest competitor, Pow3R, in both reconstruction quality and
speed.

4.4 VIDEO DEPTH ESTIMATION

We evaluate depth quality and consistency in video depth estimation on Bonn and ScanNet datasets
for data sequences of length 10 using Absolute Relative Error (Abs. Rel) and the percentage of
inlier points (δ < 1.25), following established methods (Wang et al., 2025b; Zhang et al., 2024).
For CUT3R and G-CUT3R, metrics are computed without scale alignment, because they estimate
metric depth. Whereas for all other methods scale alignment is applied. Results are reported in
Tab. 2. By integrating pose priors, our G-CUT3R method achieves improved Abs. Rel metric on the
Bonn dataset across both image resolutions and beats all other methods. On the ScanNet dataset,
G-CUT3R performs similarly to the best performing alternative approaches.

4.5 CAMERA POSE ESTIMATION

Impact of priors. Incorporating pose guidance significantly reduces ATE by 61% on Sintel (from
0.077 to 0.030), 23% on TUM RGB-D (from 0.013 to 0.010), and 29% on ScanNet (from 0.007
to 0.005) compared to the no-guidance variant. Depth or intrinsic priors alone provide marginal
improvements, but when combined with pose guidance, they further decrease RRE by 8–12% across
all datasets, enhancing local pose accuracy.
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4.6 ABLATION STUDY

Table 3: 3D reconstruction comparison of our method, both with and without zero convolutions,
alongside an adaptation incorporating prior information in CUT3R inspired by Pow3R. Evaluations
are performed on Waymo and ScanNet++ datasets, using the L2 ↓ metric to assess reconstruction
quality for four consecutive views.

Waymo ScanNet++
Method K R, t D L2/1 L2/2 L2/3 L2/4 L2/1 L2/2 L2/3 L2/4

Pow3R† - - - 1.194 1.216 1.312 1.458 0.050 0.071 0.077 0.087
Pow3R† + - - 1.196 1.192 1.262 1.342 0.051 0.079 0.085 0.092
Pow3R† - + - 1.235 1.350 1.411 1.611 0.051 0.074 0.076 0.086
Pow3R† - - + 1.190 1.201 1.244 1.326 0.049 0.073 0.080 0.085
Pow3R† + + - 1.232 1.301 1.385 1.553 0.050 0.072 0.085 0.091
Pow3R† + - + 1.197 1.189 1.225 1.350 0.050 0.082 0.089 0.092
Pow3R† - + + 1.233 1.344 1.442 1.554 0.050 0.089 0.093 0.097
Pow3R† + + + 1.237 1.291 1.404 1.543 0.050 0.074 0.081 0.084

Ours (w/o ZeroConv) - - - 1.796 1.723 1.756 1.766 0.055 0.088 0.092 0.100
Ours (w/o ZeroConv) + - - 1.796 1.736 1.761 1.772 0.056 0.086 0.092 0.100
Ours (w/o ZeroConv) - + - 1.798 1.721 1.803 2.006 0.056 0.072 0.083 0.081
Ours (w/o ZeroConv) - - + 1.723 1.667 1.776 1.814 0.053 0.087 0.091 0.099
Ours (w/o ZeroConv) + + - 1.797 1.723 1.802 2.002 0.056 0.073 0.081 0.080
Ours (w/o ZeroConv) + - + 1.722 1.672 1.800 1.816 0.053 0.087 0.091 0.097
Ours (w/o ZeroConv) - + + 1.734 1.667 1.776 1.965 0.053 0.072 0.082 0.079
Ours (w/o ZeroConv) + + + 1.730 1.665 1.773 1.959 0.053 0.072 0.079 0.078

Ours (w/ ZeroConv) - - - 1.235 1.259 1.300 1.327 0.049 0.074 0.075 0.086
Ours (w/ ZeroConv) + - - 1.236 1.259 1.297 1.322 0.049 0.074 0.075 0.086
Ours (w/ ZeroConv) - + - 1.235 1.215 1.248 1.305 0.049 0.066 0.067 0.070
Ours (w/ ZeroConv) - - + 1.042 1.095 1.145 1.181 0.042 0.060 0.061 0.063
Ours (w/ ZeroConv) + + - 1.235 1.215 1.246 1.301 0.049 0.067 0.067 0.070
Ours (w/ ZeroConv) + - + 1.042 1.097 1.142 1.176 0.042 0.068 0.069 0.080
Ours (w/ ZeroConv) - + + 1.042 1.054 1.091 1.159 0.042 0.060 0.061 0.063
Ours (w/ ZeroConv) + + + 1.042 1.055 1.089 1.155 0.042 0.061 0.061 0.064

The original Pow3R implementation (Jang et al., 2025) is designed specifically for the DUSt3R
architecture. To evaluate the effectiveness of our design choices, we adapted Pow3R (denoted as
Pow3R†) to incorporate prior information into the CUT3R framework and conducted a direct com-
parison with our G-CUT3R method.

To ensure a fair comparison, both our method—with and without zero convolutions—and the Pow3R
adaptation (Jang et al., 2025) are trained on the same dataset subset, comprising Waymo (Sun et al.,
2020) and ScanNet++ (Yeshwanth et al., 2023), for an equal number of epochs. We evaluate the L2

distance between ground truth and reconstructed pointmaps. Unlike standard Accuracy and Com-
pleteness metrics, which measure distances to the nearest points, the L2 metric computes distances
between points corresponding to identical pixel coordinates, offering a complementary perspective
on reconstruction quality. The results are presented in Tab. 3.

Our ablation study demonstrates two key findings. First, the use of zero convolution layers sig-
nificantly enhances reconstruction performance across metrics. Second, our approach to integrating
prior information outperforms the Pow3R adaptation, attributed to its modality-agnostic fusion strat-
egy and effective utilization of diverse input modalities.

Additionally, we ablate the choice of separate vs. shared encoders per modality and report results in
Supplementary Material.

5 CONCLUSION

In this work, we present G-CUT3R, a lightweight and modality-agnostic extension to the CUT3R
framework that enhances 3D scene reconstruction by integrating geometric priors such as camera
calibrations, poses, and depth data. Our method employs straightforward encoding and carefully
designed fusion during decoding. When tested on various datasets, G-CUT3R shows clear im-
provements over the existing state-of-the-art methods, producing more accurate and detailed 3D
reconstructions. Our experiments further confirm that our fusion approach and design choices lead
to better performance compared to other methods, making G-CUT3R a versatile and robust solution
for 3D vision tasks.
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A APPENDIX

This supplementary material provides additional details to support the main findings of our G-
CUT3R model. We include comprehensive information on our training dataset, data preprocessing
and camera pose estimation evaluation, along with the source code provided for G-CUT3R.

B TRAINING DATASET

Our training dataset consists of 12 datasets, including indoor/outdoor, real/synthetic, and dy-
namic/static variability. The complete list, together with pose and depth sources is provided in
the Tab. 4

Table 4: Datasets for fine-tuning.
Dataset Name Scene Type Dynamic? Depth Source Pose Source

ScanNet Indoor Static RGBD (Microsoft Kinect v1) SLAM
ScanNet++ Indoor Static RGBD (Faro scanner + iPhone LiDAR) SLAM
ARKitScenes Indoor Static RGBD (iPhone/iPad LiDAR) SLAM
Waymo Outdoor Dynamic 64-beam LiDAR SLAM
MegaDepth Outdoor Static Multi-View Stereo (MVS) SLAM
DL3DV Mixed Static Multi-View Stereo (MVS) SLAM
Co3Dv2 Object-centric Static Multi-View Stereo (MVS) SLAM
WildRGBD Object-centric Static RGBD (iPhone/iPad LiDAR) SLAM
MapFree Outdoor Static Multi-View Stereo (MVS) SLAM
TartanAir Mixed (Synthetic) Dynamic Rendering GT
BlendedMVS Mixed (Synthetic) Static Multi-View Stereo (MVS) SLAM
HyperSim Indoor (Synthetic) Static Rendering GT
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C TRAINING DATASET PREPROCESSING

Our training dataset is derived from a subset of the CUT3R dataset (Wang et al., 2025b), comprising
both ordered and unordered image sequences. For ordered sequences, we sample frames at random
intervals ranging from 1 to k, where k varies by dataset. For unordered images, we select samples
based on their visual overlap. For the DL3DV dataset (Ling et al., 2024), we utilize the depth maps
provided by the CUT3R authors. The preprocessing pipeline follows the methodology outlined in
CUT3R (Wang et al., 2025b), and we refer readers to the original paper for further details.

D CAMERA POSE ESTIMATION

Following the evaluation protocol of Zhao et al. (2022); Wang et al. (2025b), we align each predicted
trajectory to the ground truth using a seven-degree-of-freedom similarity transform and report the
following metrics: Absolute Translation Error (ATE) – global drift of the entire trajectory; Relative
Translation Error (RTE) – average translational drift between consecutive frames; Relative Rotation
Error (RRE) – average rotational drift between consecutive frames. Experiments are conducted on
the Sintel (Butler et al., 2012), TUM dynamics (Sturm et al., 2012), and ScanNet (Dai et al., 2017)
datasets.

Table 5: Evaluation on camera pose estimation on Sintel, TUM dynamics and ScanNet datasets.
Sintel TUM dynamics ScanNet

Method Resolution FPS K D ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓
Spann3R 224 16.3 - - 0.329 0.110 4.471 0.056 0.021 0.591 0.096 0.023 0.661
CUT3R 224 33 - - 0.090 0.172 0.746 0.011 0.013 0.597 0.020 0.020 0.514
CUT3R 512 20 - - 0.086 0.156 0.433 0.009 0.011 0.499 0.008 0.012 0.327

Pow3R 512 0.3 - - 0.578 0.651 1.877 0.027 0.021 1.625 0.019 0.022 0.988
Pow3R 512 0.3 + - 0.457 0.665 2.681 0.023 0.022 1.643 0.021 0.023 0.986
Pow3R 512 0.3 - + 0.412 0.621 1.519 0.018 0.020 1.439 0.016 0.022 0.959
Pow3R 512 0.3 + + 0.426 0.610 0.974 0.013 0.018 1.425 0.019 0.022 0.957

G-CUT3R 224 24 - - 0.077 0.177 0.919 0.013 0.017 0.634 0.007 0.008 1.351
G-CUT3R 224 22.3 + - 0.080 0.180 0.925 0.012 0.017 0.618 0.007 0.008 1.336
G-CUT3R 224 23.3 - + 0.097 0.171 0.867 0.013 0.015 0.635 0.007 0.008 1.340
G-CUT3R 224 21.7 + + 0.099 0.172 0.866 0.013 0.016 0.619 0.007 0.008 1.324

G-CUT3R 512 18 - - 0.063 0.162 0.526 0.010 0.011 0.437 0.008 0.011 0.320
G-CUT3R 512 16.3 + - 0.063 0.162 0.517 0.010 0.011 0.437 0.008 0.011 0.319
G-CUT3R 512 18 - + 0.055 0.160 0.509 0.009 0.010 0.433 0.008 0.011 0.321
G-CUT3R 512 13.8 + + 0.054 0.159 0.498 0.009 0.010 0.431 0.008 0.011 0.319

We evaluate relative pose estimation of our G-CUT3R method against Spann3R (Wang & Agapito,
2024), CUT3R (Wang et al., 2025b) and Pow3R (Jang et al., 2025) on the Sintel (Butler et al.,
2012), TUM dynamics (Sturm et al., 2012), and ScanNet (Dai et al., 2017) datasets, employing
Absolute Translation Error (ATE), Relative Translation Error (RPE trans), and Relative Rotation
Error (RPE rot) as metrics, with trajectories aligned to ground truth following the protocol of Wang
et al. (2025b). The results are presented in Tab. 5. Both - depth and intrinsics priors improve metrics
on Sintel and TUM dynamics. On ScanNet the base model already demonstrates good results and
performance improvement from depth and intrinsics priors is negligible.

Table 6: 3D reconstruction comparison on 7-scenes and NRGBD datasets.
7-scenes NRGBD

Acc ↓ Comp ↓ NC ↑ Acc ↓ Comp ↓ NC ↑
Noise, % Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

G-CUT3R (Pose-guided)
0 0.065 0.040 0.067 0.034 0.720 0.828 0.091 0.037 0.064 0.028 0.826 0.967
5 0.066 0.039 0.067 0.034 0.720 0.829 0.095 0.040 0.067 0.030 0.821 0.965
10 0.063 0.036 0.063 0.031 0.723 0.833 0.106 0.048 0.073 0.034 0.818 0.961
20 0.067 0.040 0.065 0.033 0.721 0.830 0.096 0.043 0.066 0.029 0.817 0.965
30 0.082 0.048 0.075 0.038 0.718 0.825 0.111 0.056 0.080 0.039 0.808 0.956
40 0.082 0.051 0.072 0.035 0.718 0.825 0.115 0.082 0.106 0.064 0.787 0.918
50 0.112 0.054 0.095 0.036 0.714 0.822 0.118 0.078 0.100 0.060 0.786 0.934

G-CUT3R (Depth-guided)
0 0.092 0.047 0.071 0.033 0.720 0.828 0.102 0.038 0.062 0.027 0.824 0.964
5 0.091 0.048 0.070 0.033 0.719 0.827 0.098 0.037 0.063 0.026 0.825 0.965
10 0.091 0.047 0.071 0.033 0.719 0.826 0.091 0.036 0.064 0.026 0.826 0.965
20 0.091 0.049 0.070 0.034 0.715 0.822 0.088 0.036 0.065 0.026 0.826 0.965
30 0.119 0.053 0.132 0.034 0.698 0.798 0.090 0.038 0.068 0.027 0.824 0.964
40 0.117 0.052 0.134 0.035 0.701 0.800 0.091 0.039 0.070 0.028 0.823 0.964
50 0.122 0.054 0.133 0.034 0.702 0.803 0.091 0.039 0.071 0.028 0.822 0.964
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E NOISE ROBUSTNESS ANALYSIS

We have evaluated the robustness of our method by injecting Gaussian noise directly into the addi-
tional prior modalities. The noise was sampled from a normal distribution with mean = 0 and std
ranging from 5% to 50% of the ground truth data.

The results in Tab. 6 show that G-CUT3R consistently outperforms the non-guided baseline even
at a noise level of up to 20%, and it degrades more significantly at higher noise. This confirms the
robustness of our guided fusion mechanism to realistic sensor noise.

F ADDITIONAL ABLATIONS

We have compared two types of encoders (training and testing on the combined ScanNet++ and
Waymo):

• one version with a shared VIT encoder for all guidance modalities
• one version with separate modality-specific encoders

Results in Tab. 7 show that the shared encoder performs very well on ScanNet++ but is clearly
outperformed by separate encoders on the more challenging Waymo dataset (outdoor scenes, large
scale, dynamic objects). On easier / indoor scenes the shared encoder remains competitive. This
supports our design choice of separate encoders for the full method while indicating that a shared
encoder can be a reasonable lighter alternative in simpler settings.

Table 7: Ablation results on ScanNet++ and Waymo datasets for different combinations of camera
intrinsics (K), pose (R, t) and depth (D).

ScanNet++ Waymo
Acc ↓ Comp ↓ NC ↑ Acc ↓ Comp ↓ NC ↑

Encoder K R, t D Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Separate - - - 0.142 0.104 0.090 0.052 0.707 0.805 0.753 0.482 1.154 0.463 0.709 0.822
Separate + - - 0.143 0.107 0.092 0.055 0.706 0.803 0.754 0.476 1.152 0.461 0.709 0.822
Separate - + - 0.136 0.099 0.087 0.050 0.704 0.800 0.704 0.456 1.095 0.431 0.704 0.817
Separate - - + 0.130 0.090 0.075 0.037 0.717 0.816 0.709 0.472 0.870 0.416 0.712 0.825
Separate + + - 0.128 0.091 0.082 0.044 0.705 0.802 0.712 0.466 1.103 0.443 0.704 0.816
Separate + - + 0.129 0.094 0.077 0.041 0.715 0.812 0.732 0.501 0.891 0.444 0.711 0.825
Separate - + + 0.121 0.079 0.081 0.039 0.722 0.825 0.701 0.462 0.847 0.403 0.710 0.825
Separate + + + 0.113 0.072 0.077 0.031 0.723 0.826 0.682 0.444 0.832 0.389 0.711 0.825

Shared - - - 0.146 0.105 0.090 0.056 0.708 0.810 0.760 0.508 1.210 0.485 0.705 0.818
Shared + - - 0.147 0.105 0.090 0.055 0.708 0.810 0.757 0.504 1.207 0.480 0.705 0.818
Shared - + - 0.133 0.089 0.091 0.047 0.710 0.814 0.725 0.456 1.135 0.441 0.707 0.818
Shared - - + 0.132 0.098 0.077 0.046 0.711 0.811 0.831 0.602 1.004 0.553 0.706 0.821
Shared + + - 0.130 0.088 0.092 0.045 0.711 0.814 0.725 0.459 1.141 0.446 0.708 0.819
Shared + - + 0.133 0.099 0.077 0.047 0.713 0.813 0.796 0.569 0.976 0.522 0.707 0.822
Shared - + + 0.123 0.078 0.080 0.036 0.719 0.822 0.711 0.465 0.874 0.406 0.709 0.822
Shared + + + 0.118 0.077 0.081 0.035 0.720 0.824 0.736 0.498 0.900 0.447 0.708 0.821
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