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ABSTRACT

Contrastive loss has been successfully exploited in the latest visual unsupervised
representation learning methods. Contrastive loss is based on a lower-bound es-
timation of mutual information where its known limitations include batch size
dependency expressed as O(log(n)). It is also commonly known as a negative
sampling size problem. To cope with the limitation, non-contrastive methods have
been proposed and they have been shown to achieve outstanding performance. The
non-contrastive methods, however, are limited in that their designs are typically
based on heuristics and their learning dynamics can be unstable. In this work,
we propose a derive a principled non-contrastive method where the loss design
begins from a formulation of mutual information as a difference of entropies such
that there is no need for a negative sampling. With our best knowledge, this is
the first successful implementation of difference of entropies for visual unsuper-
vised representation learning. Our method performs on par with or better than
the state-of-the-art contrastive and non-contrastive methods. The main idea of our
approach is to extend Shannon entropy H(Z) to von Neumann entropy S(Z). The
von Neumann entropy can be has been shown to be a lower bound of Shannon
entropy and the corresponding loss enables a stable learning with a small sample
size. Additionally, we prove show that the conditional entropy term H(Z1|Z2) is
upper bounded by the negative cosine similarity for the case of weak Gaussian
noise augmentation. Even though the derivation is limited to a special case of
augmentation, it provides a justification of the commonly used cosine similarity as
the measure between positive samples.
Updates in response to multiple reviewers are highlighted in yellow; Reviewer 1
(7tZk); Reviewer 2 (heVY); Reviewer 3 (g1dt); Reviewer 4 (6s5e)

1 INTRODUCTION

Visual unsupervised representation learning focuses on learning useful representations from unan-
notated visual examples, and recent works have achieved remarkable performance on par with
supervised learning (Chen et al., 2020; Grill et al., 2020; Chen & He, 2020; He et al., 2020; Caron
et al., 2020; Zbontar et al., 2021). Many of the works are based on contrastive loss (Oord et al., 2018;
Henaff et al., 2020), where minimizing contrastive loss is equivalent to maximizing a lower bound
estimation of Mutual Information (MI). The bound is known as InfoNCE, and the popular contrastive
loss is simply a variational implementation of InfoNCE where positive samples and negative samples
are exploited for the MI estimation. It is worthwhile to note that the need for negative samples
in contrastive learning is directly related to the need for approximating marginal distributions of
mutual information. In this sense, the negative samples may be explained without any relation to
noise-contrastive estimation (Gutmann & Hyvärinen, 2010) because they are naturally required for
marginal calculation. The use of negative samples, instead of random noise samples, is also more
consistent with the view point of marginal approximation.

InfoNCE estimation is known to be vulnerable to two problems. The first problem is the formal
limitation articulated in McAllester & Stratos (2020). Specifically, it was shown that any distribution-
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free high-confidence lower bound on mutual information estimated from n samples cannot be larger
than O(log(n)). Often, this limitation is considered to be the reason why many negative samples
are needed or why mini-batch size needs to be very large for contrastive learning. The second
problem is the high variance of mutual information estimation when a variational estimator, such as
InfoNCE estimator, is used. While techniques for trading or reducing the high variance have been
proposed (Poole et al., 2019; Song & Ermon, 2019), it is largely an unsolved or perhaps unsolvable
problem (McAllester & Stratos, 2020). The exact effect of the high variance to contrastive learning is
unclear, but it might be reasonable to assume a negative effect on the learning dynamics. Overall,
InfoNCE estimator has turned out to be extremely effective for learning, but finding a better way of
estimating mutual information is an important and still open problem.

While many of the visual unsupervised representation learning works are based on the contrastive
loss, more recent developments are frequently based on a non-contrastive loss, where the benefits in
terms of a superior performance or a simplified training are argued. The non-contrastive methods,
however, are typically more challenging to analyze because they tend to be based on heuristics (Grill
et al., 2020; Chen & He, 2020), clustering (Caron et al., 2020), neuroscience (Zbontar et al., 2021), or
statistical motivation (Bardes et al., 2021). In contrast, contrastive learning is based on a theoretically
profound and historically influential concept, mutual information.

In our work, we adhere to the mutual information estimator as the loss as the starting point of loss
design, because it is theoretically principled, and develop a non-contrastive mutual information
estimator learning method to alleviate the O(log(n)) and high variance problems. As shown in Figure
1, we follow the recent self-supervised learning works where the learning is based on an invariant
mapping. Our method starts from the mutual information formulation as a Difference of Entropies
(DoE) as suggested by McAllester & Stratos (2020).

I(Z1;Z2) = H(Z1)−H(Z1|Z2)

Unlike McAllester & Stratos (2020), however, we adopt von Neumann entropy (Nielsen & Chuang,
2002; Wilde, 2013) to estimate as a lower bound of H(Z1) and empirically show that it allows a
stable learning without a need for a large batch size. For the conditional entropy term H(Z1|Z2),
we adopt cosine similarity its quantum generalization requires an evaluation of the joint system that
is computationally disadvantageous. Instead, we recognize that H(Z1|Z2) can be bounded by the
well-known cosine similarity over positive pairs for a special case of augmentation, and apply the
bound even for other general augmentations. While not being a rigorous approach, the choice will be
empirically shown to provide promising results.

A possible interpretation of von Neumann entropy S(Z) is that it is an extension of Shannon entropy
H(Z). This interpretation is based on the fact that H(Z) is a special case of S(Z), and further
explanations will be provided in later sections. In fact, S(Z) can be shown to be a lower bound of
H(Z) and our derivation is based on the inequality our loss design is based on the bound. While the
theory of quantum information theory, the background that is needed for fully understanding von
Neumann entropy, is not straightforward, the calculation of S(Z) turns out to be quite simple. For a
given mini-batch of n samples, the normalized representations can be stacked into a matrix form as

U = [z1, z2, ...,zn]
T ,

where zi ∈ Rd, ||zi||2 = 1, and d is the size of the representation vector. Then, von Neu-
mann entropy is calculated as Shannon entropy over the eigenvalues of UTU/n, where
UTU/n = 1/n

∑n
i=1 zizi

T and tr(UTU/n) = 1. Note that the n samples are used to estimate
each element of the representation covariance matrix UTU/n. Therefore, the estimation of von
Neumann entropy does not suffer from O(log(n)) problem. We will also empirically show that von
Neumann entropy is a numerically stable loss.

Cosine similarity has been a popular loss for positive pairs. In SimCLR (Chen et al., 2020), it was
empirically shown that maximizing cosine similarity (i.e. normalized dot product) performs better
than maximizing the un-normalized dot product. In SimSiam (Chen & He, 2020), it was empirically
shown that maximizing cosine similarity performs better than minimizing cross-entropy. In our work,
the choice of cosine similarity as the estimation of H(Z1|Z2) can be formally justified for the case
of weak Gaussian noise as the augmentation where we prove that H(Z1|Z2) is upper bounded by
negative cosine similarity. Even though the proof is for a special case, we adopt the cosine similarity
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Figure 1: Structure of unsupervised representation learning by maximizing mutual information as a
difference of entropies. H1 and H2 are the representations used for downstream tasks. Z1 and Z2 are
normalized representations on a unit hypersphere.

as the estimation surrogate loss of H(Z1|Z2) because its calculation is quite stable and it has been
empirically shown to be effective in the previous works.

Our main contribution is in deriving a principled mutual information estimation method that is not
contrastive and utilizes difference of entropies formulation proposing a new non-contrastive loss
that can be related to a basic mutual information formulation as a difference of entropies. We also
provide empirical results of visual unsupervised representation learning where our proposed method
performs on par with the state-of-the-art methods despite the use of a small batch size. In particular,
our method is able to achieve the best results so far for COCO transfer learning tasks. The entire
formulation of our method is based on pure mutual information estimation, and no other trick is used.

2 RELATED WORKS

Quantum theory in deep representation learning: The quantum theory provides a mathematical
framework for representing and manipulating probabilistic distributions of quantum states in a Hilbert
space H (Nielsen & Chuang, 2002; Wilde, 2013). Compared to the representation of deep learning,
the quantum state is theoretically well defined and understood. Interestingly, some of the fundamental
concepts in quantum theory, such as superposition and entanglement, can be related to popular
methods in deep learning. Superposition in quantum theory states that any linear combination of two
states forms a superposition state. Some of the deep learning methods (e.g. sum fusion (Feichtenhofer
et al., 2016), model superposition (Cheung et al., 2019), and mixup (Zhang et al., 2017)) also utilize
linear combination as a basic operator of representations. Entanglement in quantum theory refers to
the strong correlation that can be formed between two or more quantum particles. In deep learning,
each element of a representation cannot be described separately in general (Szegedy et al., 2013) and
only partial disentanglements have been achieved with a variety of training methods (e.g. (Chen et al.,
2016; Higgins et al., 2016)). Among the existing studies, some have considered topics relevant to
quantum theory. In language modeling, several works have incorporated quantum theory as a general
probabilistic framework to model semantic information (Sordoni et al., 2013; Zhang et al., 2018)
where the main goal is to address words with multiple meanings using superposition.

Mutual information motivated methods: While measuring mutual information in a high di-
mensional vector space is a notoriously difficult problem, variational bounds implemented with
deep neural network based critics have been studied for estimating and optimizing mutual informa-
tion (Hjelm et al., 2018; Poole et al., 2019). After a popular Shannon MI estimator InfoNCE was
used as a principled loss of unsupervised representation learning by Oord et al. (2018) and Henaff
et al. (2020), the later works largely focused on developing variants of the InfoNCE loss so as to
improve the downstream task performance (Chen et al., 2020; He et al., 2020).

Non-contrastive methods: While variational mutual information bounds including InfoNCE suffer
from the inherent statistical limitations that are addressed in (McAllester & Stratos, 2020), some of
the recent non-contrastive methods have successfully resolved such limitations by designing learning
methods that do not need negative pairs. A variety of strategies had to be adopted to prevent the
representation collapse that results in a constant output to all inputs, and the prevention of such a
representation collapse is often considered as the main challenge. In clustering based methods (Caron
et al., 2020; Asano et al., 2019), collapse prevention is achieved by balancing the number of elements
in each cluster. Other works utilize stop-gradient. The stop-gradient in Siamese network freezes
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one side of the network and was empirically shown to be capable of preventing representation
collapse (Grill et al., 2020; Chen & He, 2020). Stop-gradient was theoretically studied by Tian
et al. (2021). Barlow twins (Zbontar et al., 2021) avoids representation collapse by regularizing the
cross-correlation. VICReg (Bardes et al., 2021) adopts variance-invariance-covariance regularization
as in an earlier work on covariance and variance regularization (Choi & Rhee, 2019). Besides the
existing non-contrastive works, it might to possible to develop new unsupervised learning methods by
adopting recently developed mutual information estimation methods such as MIND (Samo, 2021).

3 PRELIMINARIES OF QUANTUM INFORMATION THEORY

While quantum theory encompasses a broad scope of subjects, quantum information theory or
quantum Shannon theory is a sub-field that focuses on the quantum equivalent of Shannon information
theory (Wilde, 2013). A brief introduction is provided in Appendix A. Among the extensive results, we
utilize only the basic concepts of von Neumann entropy, conditional entropy, and mutual information
in this work.

While Shannon entropy is calculated for a classical probability distribution, von Neumann entropy
(also called quantum entropy) is calculated for a density operator ρ (Nielsen & Chuang, 2002), a
positive semidefinite hermitian matrix in a Hilbert space H with the trace value of one. More details
can be found in Appendix A. Similar to Shannon information theory, it measures the uncertainty
associated with a quantum system.
Definition 3.1 (von Neumann entropy (Nielsen & Chuang, 2002)). The von Neumann entropy
(quantum entropy) of a quantum state with density operator ρ is defined as below.

S(ρ) ≡ −tr(ρ log ρ) = −
∑
x

λx log λx, where λx are the eigenvalues of ρ.

In case some of the singular values are zero, we exclude the corresponding dimensions with
0 · log(0) = 0. S(ρ) ranges from zero (when ρ is a pure state) to log d (when ρ is uniformly mixed),
where ρ is in a d-dimensional space. The von Neumann entropy agrees with the Shannon entropy if
and only if the states |ψi⟩ are orthogonal (Nielsen & Chuang, 2002).

When we have two quantum systems A and B, their composite system is called AB. The correspond-
ing density operators are denoted as ρA, ρB , and ρAB , respectively. Then, conditional entropy and
mutual information are defined as below, where the quantum system name instead of the density
operator is used as the argument’s notation.
Definition 3.2 (Conditional entropy and mutual information (Nielsen & Chuang, 2002)). The quantum
conditional entropy and mutual information of a composite system AB with components A and B
are defined as below.

S(A|B) ≡ S(AB)− S(B).

S(A;B) ≡ S(A)− S(A|B).

The value of conditional entropy S(A|B) is reduced as the two systems become entangled. In fact, it
can be even negative (Cerf & Adami, 1997). In general, measuring quantum entanglement is compu-
tationally challenging (Huang, 2014). The quantum mutual information S(A;B) can be understood
in a similar way as in Shannon information theory, and it is a measure of shared information between
the two systems.

4 DERIVATION OF ENTROPY BOUND AND CONDITIONAL ENTROPY BOUND

In this section, we provide the derivation of von Neumann entropy lower bound for H(Z) and derive
the negative cosine similarity upper bound for H(Z1|Z2). In Section 5, the two bounds are combined
to form a new lower bound of mutual information. non-contrastive loss for unsupervised learning.

4.1 VON NEUMANN ENTROPY S(Z) AS A LOWER BOUND OF SHANNON ENTROPY H(Z)

As discussed in Section 3, von Neumann entropy is defined for a quantum state that lies on a unit
hypersphere in a Hilbert space H. In our work, the state vector |ψ⟩ corresponds to the representation
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vector z (i.e. |ψ⟩ ≡ z). Von Neumann entropy of a random variable Z, that is on a unit hypersphere in
Rd, has been shown to be a lower bound of Shannon entropy (Nielsen & Chuang, 2002; Wilde, 2013).
We merely apply an estimation with samples to obtain the desired result as shown in Theorem 4.1.
Theorem 4.1. Let zi ∈ Z be a unit column vector with probability p(i). For ρ ≡

∑
i p(i)zi(zi)

T ≈∑n
i=1

1
nzi(zi)

T = 1
nU

TU = ρ̃, where U = [z1, z2, ...,zn]
T ,

H(Z) ≥ S(ρ) ≈ S(ρ̃) = −
∑
j

λj log λj , where λj denote the eigenvalues of UTU/n.

Proof. By the quantum data-processing inequality, H(Z) ≥ S(ρ) holds for the Shannon entropy
H(Z) and the von Neumann entropy S(ρ) (Nielsen & Chuang, 2002; Wilde, 2013). For sufficiently
large n, the density operator ρ can be approximated as the empirical density operator ρ̃ that sat-
isfies ρ̃ ≥ 0 and tr(ρ̃) = 1. Then, S(ρ̃) can be evaluated with the eigenvalues of ρ̃ following the
Definition 3.1.

With a slight abuse of notation, we use both S(Z) and S(ρ) to refer von Neumann entropy.

4.2 NEGATIVE COSINE SIMILARITY AS AN UPPER BOUND OF CONDITIONAL ENTROPY
H(Z1|Z2)

Consider two random variables Z1 and Z2, where Z2 is assumed to be on a unit hypersphere in Rd.
If Z1 is an augmented version of Z2 with a weak Gaussian perturbation, the two random variables
are related as Z1 ∼ N (Z2,Σ). For this special augmentation, the main result of Theorem 4.4 can
be proved. For the two lemmas, it is assumed that Σ is a symmetric positive definite matrix whose
eigendecomposition is Σ = QΛQT , Λ = diag(λ1, ..., λd), and 0 < λd ≤ ... ≤ λ1 ≪ 1. Also, note
that ||z1||2 ≈ ||z2||2 = 1 and z1 · z2 ≈ zT

1 z2

||z1||·||z2|| = cos (z1, z2) > 0 due to the weak Gaussian
noise perturbation condition.
Lemma 4.2. − 1

2 (z1 − z2)
TΣ-1(z1 − z2) ≥ −1/λd + z1 · z2/λ1.

Proof. It suffices to prove that (z1 − z2)
TΣ-1(z1 − z2) ≤ 2(1/λd − z1 · z2/λ1).

(z1 − z2)
TΣ-1(z1 − z2) = (zT

1 Σ
-1z1 + zT

2 Σ
-1z2)− (zT

1 Σ
-1z2 + zT

2 Σ
-1z1)

= (zT
1 QΛ-1QTz1 + zT

2 QΛ-1QTz2)− (zT
1 QΛ-1QTz2 + zT

2 QΛ-1QTz1)

≤ 1/λd(z1 · z1 + z2 · z2)− 1/λ1(z1 · z2 + z2 · z1) = 2(1/λd − z1 · z2/λ1)

Lemma 4.3. − log p(z1|z2) ≤ d
2 log 2πλ1 +

1
λd

− 1
λ1
z1 · z2.

Proof. It suffices to prove that p(z1|z2) ≥ (2πλ1)
− d

2 exp{−1/λd + z1 · z2/λ1}.

p(z1|z2) =
1

(2π)d/2
1

det(Σ)
1/2

exp

{
−1

2
(z1 − z2)

TΣ-1(z1 − z2)

}
≥ 1

(2π)d/2
1

λ
d/2
1

exp{−1/λd + z1 · z2/λ1}.

Where the inequality follows from det(Σ) = Πd
i=1λi ≤ λd1 and by Lemma 4.2.

Theorem 4.4. H(Z1|Z2) ≤ d
2 log 2πλ1 +

1
λd

− 1
λ1
E[cos (Z1,Z2)].

Proof.

H(Z1|Z2) = −
∫
z1,z2

p(z1, z2) log p(z1|z2)dz1dz2

≤ d

2
log 2πλ1 +

1

λd
− 1

λ1

∫
z1,z2

p(z1, z2)(z1 · z2)dz1dz2 (by Lemma 4.3)

=
d

2
log 2πλ1 +

1

λd
− 1

λ1
E[Z1 · Z2] =

d

2
log 2πλ1 +

1

λd
− 1

λ1
E[cos (Z1,Z2)].
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5 NON-CONTRASTIVE MUTUAL INFORMATION LOSS FOR UNSUPERVISED
REPRESENTATION LEARNING

We have derived two bounds in Section 4. In this section, we utilize the two bounds to develop an
unsupervised learning method that can be used with the standard diagram shown in Figure 1. As usual,
representation learning is accomplished as a byproduct of mutual information maximization. Our
method differs from the previous works only in that the mutual information loss is non-contrastive
and in that the mutual information loss is implemented as a difference of entropies.

5.1 MAXIMIZING ENTROPY H(Z)

A direct application of Theorem 4.1 is used, and the following von Neumann entropy is maximized.

S(ρ̃1) = −
∑
j

λj log λj , λj denote the eigenvalues of UT
1 U1/n. (1)

From equation 1, we obtain the desired empirical loss −S(ρ̃1) =
∑

j λj log λj , and it is used to learn
(θenc,θproj) that maximizes the entropy H(Z1) for the given input data distribution X1. Computing
a more accurate density operator requires a larger batch size of n. However, a large batch size is
not really needed as long as the empirical density operator is sufficiently accurate for training the
network. Our experiments in Figure 3 show that the default batch size of 128 is sufficient. In fact,
even smaller values of 32 and 64 are effective as well.

5.2 MINIMIZING CONDITIONAL ENTROPY H(Z1|Z2)

The Theorem 5.1 was derived for random variables Z1 and Z2. For unsupervised representation
learning, however, augmentation is applied to input random variables X1 and X2. Therefore, we
assume the commonly used ReLU as the activation vector and utilize its piecewise linearity to prove
the following theorem.

Theorem 5.1. Let X2 be an input distribution and X1(= {x1|x1 = x2 +N (0, c · I),x2 ∈ X2})
be a Gaussian noise perturbation of X2 with c → 0. For a deep feedforward neural network with
piecewise linear activations f(·) whose output vectors are L2-normalized, we have

∃ α,∃ β > 0, H(Z1|Z2) ≤ α− β E[cos (Z1,Z2)],

where Z1 = f(X1), Z2 = f(X2).

Proof. A deep feedforward neural network with piecewise linear activations is piecewise lin-
ear (Montúfar et al., 2014). Thus, for each x2 ∈ X2, ∃ there exists ϵ > 0, A, and b such
that f(·) is equivalent to a linear transformation l(x) : x → z = Ax + b on Bϵ(x2) =
{x1 ∈ X1| ||x1 − x2|| < ϵ}. Hence we have z1 ∼ N (z2,Σ) where a symmetric matrix
Σ = E[(z1 − z2)(z1 − z2)

T ] = AE[(x1 −x2)(x1 −x2)
T ]AT = cAAT and ||Σ|| ≪ 1 for c→ 0.

By Theorem 4.4, H(Z1|Z2) ≤ d
2 log 2πλ1 +

1
λd

− 1
λ1
E[cos (Z1,Z2)] where 0 < λd ≤ ... ≤ λ1 are

the eigenvalues of Σ.

As explained a few times, Theorem 5.1 holds only for weak Gaussian noise perturbation. Nonetheless,
we use the cosine similarity loss for all the experiments.

6 EXPERIMENTS

Main algorithm: Our method is described in Algorithm 1. It is a straightforward implementation
of designed by considering mutual information maximization as a difference of entropies, where the
von Neumann entropy term is maximized and the conditional entropy term is minimized. The training
and evaluation details are described in Appendix C.
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Variance analysis: In Section 1, the high variance problem of variational mutual information
estimators was explained. To see if our method suffers less from such a high variance problem, we
have investigated three different learning methods. The first is contrastive learning (SimCLR), the
second is a difference of entropies implementation where the entropy is calculated as InfoNCE self-
information (INCE(Z1;Z1) is estimated as the Shannon entropy) and the conditional entropy term is
calculated as the cosine similarity, and the third is a difference of entropies implementation where
the entropy is calculated as von Neumann entropy and the conditional entropy term is calculated as
the cosine similarity. The results are shown in Figure 2. For the contrastive loss in (a), the mutual
information estimate steadily increases as the learning progresses. The estimated mutual information
shows a considerable amount of variation. We have used batch size of 128 for the InfoNCE estimation
of mutual information (INCE(Z1;Z2)). In this case, the log(n) bound is equal to 7 bits, and the
mutual information estimate did not hit the 7 bit bound. For the DoE loss with Shannon entropy in (b),
the entropy estimation shows a considerable amount of variance. The entropy estimation also hits the
7 bit bound around epoch 80. Actually, the Shannon DoE loss fails to learn effective representations,
and the linear evaluation fails with the Top-1 accuracy result of only 26.6%. For our method of DoE
loss with von Neumann entropy in (c), the entropy estimation does not show any visible variance
problem. The entropy steadily increases as the learning progresses. The von Neumann entropy is not
limited by the 7 bit bound, but it happened to stay below 7 bits in our experiment. Similar results for
the loss itself can be found in Appendix B.

Sensitivity to batch size: Figure 3 shows the trends of linear evaluation performance of our method
for batch sizes between 8 and 128. In most of the cases, the performance improvement saturates
around the batch size of 32. Batch size of 128 looks sufficiently large for the approximation of the
empirical density operator for training while marginal improvement can be observed for larger batch
sizes. Although a sufficiently large batch size is required for batch normalization due to inaccurate
batch statistics estimation at small batch sizes (Wu & He, 2018), the von Neumann entropy loss
works quite well for the small batch sizes.

Downstream task performance: Table 1a compares linear evaluation Top-1 accuracies between
SimCLR, SimSiam, and ours for early epochs, small batch sizes, and a variety of datasets. When
reproducing the results of SimCLR and SimSiam, we have followed all the details described in their
works. As shown, our method consistently outperforms the other contrastive and non-contrastive
methods. Table 1b compares linear evaluation Top-1 accuracies with ImageNet. The results for Sim-
CLR and SimSiam are from (Chen et al., 2020) and (Chen & He, 2020), respectively. Our method
certainly outperforms the contrastive method (SimCLR) and shows comparable results for the non-
contrastive method (SimSiam). Due to the limited computation resource, we were able to train our
model only upto 200 epochs and batch size upto 128. Transfer learning results are shown in Table 2,
and we achieve the best performance for the half of the benchmark tasks in there (COCO tasks).

Algorithm 1: Main algorithm, PyTorch-like
Inputs: encoder f, projector g, Aug
Hyperparameters: batch size n, coefficient β
for X in loader do

zerograd(f, g)
aug1 ∼ Aug; aug2 ∼ Aug
X1, X2 = aug1(X), aug2(X)
H1, H2 = f(X1), f(X2)
U1, U2 = normalize(g(H1), dim=1), normalize(g(H2), dim=1)
eig val = symeig(matmul(U1.T,U1)/n)[0][-n:]
Loss1 = (eig val*log(eig val)).sum() # maximization of the von Neumann entropy
Loss2 = −cosine similarity(U1, U2).mean() # minimization of the conditional entropy
Loss = Loss1 + β*Loss2 # maximization of the mutual information
Loss.backward()
update(f, g)

end for
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(a) SimCLR (b) DoE (Shannon) (c) DoE (von Neumann)

Figure 2: Comparison of SimCLR (contrastive learning), Shannon DoE (learning with Shannon
entropy and cosine similarity), and von Neumann DoE (learning with von Neumann entropy and
cosine similarity). As the training is carried out, the loss function’s information theoretic part is
assessed. (a) For SimCLR, the mutual information is estimated with InfoNCE. (b) For Shannon DoE,
the Shannon entropy part is estimated with InfoNCE self-information (INCE(Z1;Z1)). (c) For von
Neumann DoE, the von Neumann entropy part is directly evaluated. (a), (b), and (c) achieved 85.0%,
26.6%, and 88.3% of Top-1 linear evaluation accuracy for CIFAR-10, respectively.

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-10 (d) ImageNet-100

Figure 3: Analysis on the effect of batch sizes for empirical density operator for optimization

COCO dataset is more complex than VOC (×4 more categories, ×7 more training samples, ×3 more
sample boxes per images), and it turns out that our loss works better than any other benchmark meth-
ods for the complex dataset. This is an evidence that the principled approach can our von Neumann
entropy loss has the ability to outperform other existing non-contrastive methods. Considering that
we did not try to improve the results at the cost of tuning, we believe our method certainly provides
advantages over the existing methods. All the training details are described in Appendix C.

7 DISCUSSION

Beyond mutual information: There are different views on self supervised learning beyond the
InfoMax principle (Linsker, 1988). In Shannon information theory, MI is invariant under invertible
transformation. Hence, MI alone does not guarantee learning of a useful structure of representation.
Tschannen et al. (2019) provides empirical evidences that indicate the success of various self-
supervised learning methods can be attributed not only to the maximization of mutual information but
also to an effective geometry learned for the representation. Following the work, Wang & Isola (2020)
explains contrastive learning as alignment (comparing positive pairs) and uniformity (comparing
negative pairs). In our work, the von Neumann entropy takes linear correlations of representation
into account. While one can think of its linearity as a limitation, we believe that minimization of
negative von Neumann entropy S(Z) and negative cosine similarity effectively guides the geometric
characteristics of the learned representations. This can be another benefit of our method when
compared to the original contrastive learning.

Limitation of log(d): The von Neumann loss successfully removes InfoNCE’s limitation of
O(log(n)) and enables a learning with a small batch size. Instead, another limitation of O(log(d))
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Table 1: Linear evaluation Top-1 accuracies (%). All are based on ResNet-50 pre-trained models.

(a) CIFAR-10/100 and ImageNet-10/100
CIFAR-10 CIFAR-100 ImageNet-10 ImageNet-100

Epoch Batch size 16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128

25 SimCLR 73.6 73.8 73.5 68.7 43.2 44.4 40.3 39.3 65.4 63.4 63.6 65.4 63.1 64.7 66.7 65.9
Simsiam 49.6 49.9 63.4 63.1 12.8 25.3 27.5 34.1 43.0 49.0 49.2 53.2 37.1 49.5 50.7 56.5
Ours 76.1 76.3 75.2 74.6 48.1 51.1 49.7 49.1 65.4 70.4 69.6 69.0 64.6 67.8 69.6 70.4

50 SimCLR 78.1 79.7 79.0 79.7 47.7 49.5 49.1 50.1 70.8 70.0 70.0 69.0 68.3 71.1 72.1 72.8
Simsiam 52.4 62.8 74.4 74.2 24.5 33.9 38.2 35.7 52.8 51.4 56.2 56.4 26.9 31.4 44.4 65.0
Ours 80.4 81.9 82.1 81.7 53.3 56.7 58.1 57.7 73.2 72.8 75.2 74.4 69.0 74.2 76.0 76.1

100 SimCLR 81.8 82.8 83.6 85.0 52.2 55.8 57.2 59.3 77.4 77.6 77.4 78.4 68.6 77.6 77.9 78.4
Simsiam 63.8 69.4 79.3 80.7 30.4 32.8 40.4 47.2 59.8 63.2 62.0 66.0 24.7 29.7 54.5 68.1
Ours 84.2 87.2 88.2 88.3 56.2 61.9 62.0 63.3 77.6 80.8 81.0 82.2 70.3 79.9 81.2 82.0

(b) ImageNet
Epoch Top-1 acc Batch size

100 SimCLR 62.8 256

SimSiam 67.3 128
68.1 256

Ours 64.4 64
67.1 128

200 SimCLR 64.3 256

SimSiam 70.0 256
Ours 69.1 128

Table 2: Transfer learning. All are based on ResNet-50 models pre-trained for 200-epoch in ImageNet.
VOC 07 detection VOC 07+12 detection COCO detection COCO instance seg.

Pretrain AP50 AP AP75 AP50 AP AP75 AP50 AP AP75 APmask
50 APmask APmask

75

Scratch (repro. in (Chen & He, 2020)) 35.9 16.8 13.0 60.2 33.8 33.1 44.0 26.4 27.8 46.9 29.3 30.8
Supervised (repro. in (Chen & He, 2020)) 74.4 42.4 42.7 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2

SimCLR (repro. in (Chen & He, 2020)) 75.9 46.8 50.1 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3
MoCo v2 (repro. in (Chen & He, 2020)) 77.1 48.5 52.5 82.3 57.0 63.3 58.8 39.2 42.5 55.5 34.3 36.6
BYOL (repro. in (Chen & He, 2020)) 77.1 47.0 49.9 81.4 55.3 61.1 57.8 37.9 40.9 54.3 33.2 35.0
SwAV (repro. in (Chen & He, 2020)) 75.5 46.5 49.6 81.5 55.4 61.4 57.6 37.6 40.3 54.2 33.1 35.1
SimSiam (from (Chen & He, 2020)) 77.3 48.5 52.5 82.4 57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7

Ours 76.4 45.6 47.7 80.9 52.6 57.7 60.1 40.3 43.3 56.5 34.9 37.0

becomes relevant because the von Neumann entropy in Definition 3.1 is limited in that its maximum
value is log(d), where d is the size of the representation vector Z. Increasing d, however, does not
incur a significant increase in computation and memory requirements when compared to increasing
the mini-batch size n. The experiment results also support that our choice of d = 256 or d = 512
does not prevent a successful learning.

Quantum representation: Consider a coin flip. Shannon entropy is a measure of the expected
surprise upon obtaining an observation where the observation can be either a tail or a head, but
nothing else. The surprise is larger when a lower probability event occurs. Quantum entropy is also a
measure of information but it is more complex in the sense that it is defined over the state where a
state can be a tail ([1, 0]T in vector representation), a head ([0, 1]T ), or any probabilistic representation
of the two (e.g., [

√
0.7,

√
0.3]T which represents a state of 70% chance of tail and 30% chance of

head).1 In quantum theory, a probability distribution itself is considered as a state and therefore
quantum theory inherently has an additional level of uncertainty built in its representation and theory.
Considering that the representation in deep learning is very difficult to understand analytically and
that the ideas of many practical deep learning techniques stem from the concepts of superposition
and entanglement, it might be helpful if we can train a neural network to have its representations
follow the rules of quantum information theory. Ideally, it would be enlightening to be able to learn
such a quantum representation, but our loss is limited in that the tightness of the H(Z) bound is
not guaranteed to be achievable and in that the conditional entropy H(Z1|Z2) is not transformed
into a quantum conditional entropy. Furthermore, the tightness of the cosine similarity bound is not
guaranteed to be achievable, either. Nonetheless, quantum theory turned out to be quite useful and
effective for handling practical problems such as O(log(n)) limitation and for improving learning
stability in unsupervised representation learning.

1In quantum physics, an observation becomes available only after a measurement is made. Quantum in-
formation theory is defined over states, not observations, and it can be considered as a generalization of the
Shannon information theory.
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8 CONCLUSION

We proposed a principled approach that uses difference of entropies as a mutual information bound.
non-contrastive loss based on a difference of entropies with a von Neumann entropy bound. We
employed a mathematical framework of quantum information theory as an extension of Shannon
information theory. The von Neumann entropy provides a tractable lower bound of Shannon entropy
in the high dimensional vector space of Rd. Additionally, negative cosine similarity was proven to be
an upper bound for the conditional entropy. The proof of cosine similarity maximization is limited
because it is derived for weak Gaussian noise augmentation only. By combining the two entropy
losses, we have obtained the first successful proposed a non-contrastive mutual information loss for
visual unsupervised representation learning. Our method is principled, simple, and it performs well
even for a single-device training due to the small because it does not require a large batch size.

NOTE: length of this work will be shortened later by removing strikethrough lines.

Ethics Statement Our work proposes fundamental theories on deep representation learning. Hence,
we do not expect any ethical issue. Depending on the applications, however, improved representation
learning methods may or may not cause potential ethical problems including inappropriate use of
deep fake.

Reproducibility Statement We have included concrete proofs for the theorems in Section 4
and Section 5, PyTorch-like pseudo codes for the algorithms in Section 6, and detailed learning
hyperparameters in Appendix C. Fully reproducible code will be made available in github.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
arXiv preprint arXiv:1610.01644, 2016.

Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous
clustering and representation learning. arXiv preprint arXiv:1911.05371, 2019.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33, 2020.

Nicolas J Cerf and Chris Adami. Negative entropy and information in quantum mechanics. Physical
Review Letters, 79(26):5194, 1997.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. arXiv
preprint arXiv:1606.03657, 2016.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint
arXiv:2011.10566, 2020.

Brian Cheung, Alex Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Superposition of
many models into one. arXiv preprint arXiv:1902.05522, 2019.

Daeyoung Choi and Wonjong Rhee. Utilizing class information for deep network representation
shaping. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3396–
3403, 2019.

Paul Adrien Maurice Dirac. A new notation for quantum mechanics. In Mathematical Proceedings of
the Cambridge Philosophical Society, volume 35, pp. 416–418. Cambridge University Press, 1939.

10



Under review as a conference paper at ICLR 2022

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network
fusion for video action recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1933–1941, 2016.

Andrew M Gleason. Measures on the closed subspaces of a hilbert space. Journal of mathematics
and mechanics, pp. 885–893, 1957.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
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A A BRIEF INTRODUCTION TO QUANTUM THEORY

A classic bit can be either 0 or 1. In quantum theory (Nielsen & Chuang, 2002; Wilde, 2013), a qubit
is a quantum extension of the classic bit, and it can be in state |0⟩, state |1⟩, or any linear combination
(superposition state) of the two as |ψ⟩ = a |0⟩ + b |1⟩, where |a|2 + |b|2 = 1. Even though deep
learning is not directly related to quantum physics, theories based on this extension can be a useful
tool for handling deep representations.

Dirac notation and basic concepts Dirac notation is used in quantum theory (Dirac, 1939). It is
also called the bra-ket notation because of the use of bracket (bra-c-ket) symbols < and >. For a state
|ψ⟩, ψ should be understood as the name or label of the state. Because linear algebra provides the
mathematical foundation of quantum theory, vector notation is adopted. For instance, in the simple
example of |ψ⟩ = a |0⟩+ b |1⟩, |ψ⟩ can be expressed as |ψ⟩ = [a, b]T where the interpretation should
be state |ψ⟩ can be 0 with probability |a|2 and 1 with probability |b|2 (therefore |a|2 + |b|2 = 1).
Here, the ket vector |ψ⟩ is the Dirac notation for a column vector in a Hilbert space H. To represent a
row vector, the bra vector ⟨ψ| is used, as in ⟨ψ| = [a, b]. An inner product or braket is represented as
⟨ψ|ϕ⟩ and an outer product or ketbra is represented as |ψ⟩⟨ϕ|.
A state can be either pure or mixed. In the simple example, |0⟩ = [1, 0]T and |1⟩ = [0, 1]T form the
computational basis states, and they are pure states. Any superposition of the two, |ψ⟩ = a |0⟩+ b |1⟩,
is also a pure state because it corresponds to a single vector with a probabilistic distribution over
the basis states. By contrast, a mixed state is a probabilistic mixture of a set of pure states. Note
that a pure state already has a probabilistic interpretation over the basis states and a mixed state
has an additional level of probabilistic interpretation over a set of such pure states. In this case, we
are considering a state that is not completely known but is an ensemble of pure states {|ψi⟩} with
respective probabilities {pi}. The full information of a mixed state cannot be represented as a vector,
and the notion of the density operator (also called density matrix) is required.
Definition A.1 (Density operator (Nielsen & Chuang, 2002)). A density operator is defined as below.

ρ ≡
∑
i

pi |ψi⟩⟨ψi| .

Density operator ρ satisfies ρ ≥ 0 and tr(ρ) = 1. In addition, ρ = ρ2 and rank(ρ) = 1 are
satisfied for pure states and tr(ρ2) < 1 is satisfied for mixed states. The density operator provides a
convenient way to describe the uncertainty or probability distribution of a quantum system. According
to Gleason’s theorem (Gleason, 1957), the probability of a state |ψi⟩ in the system with ρ is given by
tr(ρ |ψi⟩⟨ψi|).
A composite quantum state of n qubits can be represented as a vector of size 2n (e.g., a single-qubit
state is represented as a vector of size two). For example, a quantum state of two separable single-qubit
states can be represented as

|ψ⟩ ⊗ |ϕ⟩ = |ψ⟩ |ϕ⟩ = |ψϕ⟩ = [a, b]T ⊗ [c, d]T = [ac, ad, bc, bd]T

in which |ac|2, |ad|2, |bc|2, and |bd|2 represent the probability of |ψϕ⟩ being |00⟩ , |01⟩ , |10⟩, and
|11⟩, respectively. In d-dimensional quantum system, a quantum state is on the unit hypersphere in a
Hilbert space H. Note that the hypersphere constraint on representation plays an important role for
connecting cosine similarity and positive pair loss part of contrastive learning.

An entangled state is a state that cannot be represented as a product of two independent states. For
example,

|ψϕ⟩ = 1√
2
|00⟩+ 1√

2
|11⟩ = 1√

2
[1, 0, 0, 1]T

cannot be represented as a product of two single-qubit states; therefore it is an entangled state. In
this example, note that |ψ⟩ is always equal to |ϕ⟩ (with 50% chance, |ψ⟩ = |ϕ⟩ = |0⟩ and with 50%
chance, |ψ⟩ = |ϕ⟩ = |1⟩). However,

|ψϕ⟩ = 1√
2
|00⟩+ 1√

2
|01⟩ = 1√

2
[1, 1, 0, 0]T = |0⟩ ⊗ 1√

2
(|0⟩+ |1⟩)

is not an entangled state. For an entangled state, each qubit’s state cannot be described independently.
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B LOSS CURVE COMPARISONS

Similar to Figure 2, we have plotted the progress of loss values for the three learning methods. As in
Figure 2, the loss is stably decreased by our method.

(a) SimCLR (b) DoE (Shannon) (c) DoE (von Neumann)

Figure 4: Comparison of SimCLR (contrastive learning), Shannon DoE (learning with Shannon
entropy and cosine similarity), and von Neumann DoE (learning with von Neumann entropy and
cosine similarity). As the training is carried out, the loss value is plotted for the three types of learning.

C TRAINING AND EVALUATION DETAILS

Encoder pre-training We pre-train the encoding network, ResNet-50 (He et al., 2016), using
ImageNet (Russakovsky et al., 2015) training set without labels. The representation is the output
of the second last layer (i.e. the global average pooling layer of 2048 dimensions). The projection
network has three fully connected linear layers, two hidden layers of dimension 2048 and an output
layer of dimension 512, with batch normalization (Ioffe & Szegedy, 2015). The default optimizer is
SGD with momentum and global weight decay excluding biases and batch normalization parameters.
The learning rate is linearly scaled with batch size (lr = base learning rate × batch size /256) and is
scheduled by cosine learning rate decay with 10-epoch warm-up and without restarts (Loshchilov
& Hutter, 2016; Goyal et al., 2017). Table 3 summarizes the details of hyperparameters. Here, we
have adopted the hyperparameter settings from the previous works. For batch size and learning rate,
we have used the same learning rate setting that is used for reproducing 100-epoch BYOL results
in (Chen & He, 2020). For the momentum coefficient, we have used 0.9 because it is commonly
adopted for imageNet training (Goyal et al., 2017). Because empirical loss for the von Neumann
entropy quickly saturates while cosine similarity loss does not, we linearly increased β from 1 to 10
during training. When pre-training with tiny images (CIFAR-10 and CIFAR-100) (Krizhevsky et al.,
2009), we made a few modifications to the encoding network and data augmentation, as described in
Table 4.

Table 3: Hyperparameters.

ImageNet CIFAR-10

100 ep 200 ep 100 ep 800 ep

Batch size 64 128 64 128
Weight decay 5.0e-06 7.5e-06 2.5e-06 5.0e-06 5.0e-05 1.0e-04
Base learning rate 0.45 0.45 0.45 0.45 0.5 0.25

Learning rate base learning rate × batch size / 256
Scheduling 10-epoch warm-up & cosine decay
Momentum coefficient 0.9
β Linear scaling from 1 to 10

As a key component of the invariant mapping, random data augmentation must inject sufficient
randomness while guaranteeing that all distortions from one image share the same semantic content,
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Table 4: Hyperparameters for CIFAR-10 and CIFAR-100 (modified from the hyperparameters of
ImageNet).

ImageNet CIFAR-10,CIFAR-100

Data augmentation Chenet al. (2020) RandomResizedCrop 224x224 32x32
ColorJitter p=0.8,b=0.8,c=0.8,s=0.8,h=0.2 p=0.8,b=0.4,c=0.4,s=0.4,h=0.1
GaussianBlur p=0.5 p=0

Encoding network Chenet al. (2020) First Layer 7x7 Conv of stride 2 3x3 Conv of stride 1
Second Layer Maxpool Identity

Projection network # of hidden layers 2 1
Dimension of output layer 512 256

which is supposed to be retained in the representation. Various combinations of image augmentations
in visual self-supervised learning have been studied in (Chen et al., 2020; Grill et al., 2020). Following
the works, we use similar data augmentation schemes as summarized in Table 5. Ours follows the
same ones as in SimCLR, and it works consistently well with the other data augmentation sets as
well.

Table 5: Summary of data augmentation policies (for ImageNet).

Ours, SimCLR SimSiam BYOL

RandomResizedCrop Probability 1.0 1.0 1.0

RandomHorizontalFlip Probability 0.5 0.5 0.5

ColorJitter Probability 0.8 0.8 0.8
Brightness 0.8 0.4 0.4
Contrast 0.8 0.4 0.4
Saturation 0.8 0.4 0.2
Hue 0.2 0.1 0.1

RandomGrayscale Probability 0.2 0.2 0.2

GaussianBlur Probability 0.5 0.5 1.0 / 0.1
Kernel size 23 23 23
Sigma range 0.1, 2.0 0.1, 2.0 0.1, 2.0

Solarization Probability 0.0 0.0 0.0 / 0.2

Because Ours works for small batch sizes, special optimizers such as LARS (You et al., 2017) and
multi-GPU data parallelisms for large batch training are not necessary. A single RTX 3090 GPU was
used as the default device for pre-training the encoding network as it can handle a batch size of 128
in ImageNet. An 100-epoch pre-training takes a week, and can be accelerated by multiple GPUs.

Linear evaluation A linear classifier probe (Alain & Bengio, 2016) is a general method for
measuring the quality of representation by training an independent linear classifier with labels on top
of the frozen model’s representations. We freeze the pre-trained encoding network and train a linear
classifier with the labeled training set using the SGD optimizer with a learning rate of 0.3, weight
decay of 1e-6, momentum of 0.995, and batch size of 256. The learning rate is scheduled for 100
epochs by cosine learning rate decay without warm-up and restarts. Performance is measured using
the validation set Top-1 accuracy (%).

In Table 1a in Section 6, All the encoding networks are pre-trained in each training set with a
base learning rate of 0.25, cosine learning rate decay with 10-epoch warm-up. ImageNet-10 and
ImageNet-100 are randomly chosen subsets of 10 classes of ImageNet and 100 classes of ImageNet,
respectively. The class names of ImageNet-10/100 are summarized in Table 6.

Transfer learning We also evaluate our method by transferring the model to various tasks. We
use the detectron2 (Wu et al., 2019) released under the Apache 2.0 license and follow the MoCo’s
public codes (He et al., 2020) under the CC-BY-NC 4.0 license, which fine-tunes the pre-trained
model to VOC object detection (Everingham et al., 2010) and COCO object detection and instance
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Table 6: List of ImageNet-10/100 classes

ImageNet-10

n02002556 n02168699 n02526121 n02930766 n03814639 n03843555 n04179913 n04591713 n07615774 n07717410

ImageNet-100

n01484850 n01494475 n01532829 n01560419 n01632458 n01667114 n01689811 n01698640 n01770393 n01796340
n01828970 n01843383 n01855032 n01873310 n01978455 n01981276 n01990800 n02007558 n02086910 n02088238
n02090721 n02093647 n02096051 n02096294 n02098286 n02111500 n02111889 n02117135 n02123597 n02138441
n02167151 n02219486 n02321529 n02363005 n02483708 n02486261 n02492660 n02494079 n02500267 n02783161
n02787622 n02802426 n02814860 n02817516 n02883205 n02906734 n02917067 n02978881 n02992529 n03014705
n03063599 n03127747 n03255030 n03259280 n03344393 n03404251 n03417042 n03478589 n03482405 n03529860
n03642806 n03676483 n03706229 n03761084 n03769881 n03792782 n03803284 n03804744 n03873416 n03982430
n03992509 n04044716 n04070727 n04086273 n04141975 n04146614 n04153751 n04162706 n04179913 n04204238
n04252225 n04254120 n04355933 n04435653 n04476259 n04517823 n04525305 n04584207 n04613696 n07711569
n07714990 n07716906 n07718472 n07718747 n07754684 n09288635 n09472597 n12144580 n12620546 n13054560

segmentation tasks (Lin et al., 2014). VOC 07 detection and VOC 07+12 detection tasks fine-tune
Faster R-CNN with C4-backbone (Ren et al., 2015; Wu et al., 2019) in VOC 07 trainval and VOC
07 trainval + VOC 12 train respectively and evaluate in VOC 07 test. COCO detection and instance
segmentation tasks fine-tune (1 × schedule) Mask R-CNN with C4-backbone (He et al., 2017; Wu
et al., 2019) in COCO 17 train and evaluate in COCO 17 val. In this evaluation, we use 8 × RTX
3090 GPUs, the default number of GPUs for the tasks.
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