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ABSTRACT

This paper focuses on the challenge of machine unlearning, aiming to remove the
influence of specific training data on machine learning models. Traditionally, the
development of unlearning algorithms runs parallel with that of membership infer-
ence attacks (MIA), a type of privacy threat to determine whether a data instance
was used for training. However, the two strands are intimately connected: one can
view machine unlearning through the lens of MIA success with respect to removed
data. Recognizing this connection, we propose a game-theoretic framework that in-
tegrates MIAs into the design of unlearning algorithms. Specifically, we model the
unlearning problem as a Stackelberg game in which an unlearner strives to unlearn
specific training data from a model, while an auditor employs MIAs to detect the
traces of the ostensibly removed data. Adopting this adversarial perspective allows
the utilization of new attack advancements, facilitating the design of unlearning
algorithms. Our framework stands out in two ways. First, it takes an adversarial
approach and proactively incorporates the attacks into the design of unlearning
algorithms. Secondly, it uses implicit differentiation to obtain the gradients that
limit the attacker’s success, thus benefiting the process of unlearning. We present
empirical results to demonstrate the effectiveness of the proposed approach for
machine unlearning.

1 INTRODUCTION

The enactment of the General Data Protection Regulation (GDPR) by the EU has elevated the
importance of deleting user data from machine learning models to a critical level. This process is
distinctly more intricate compared to removing data from conventional databases. Erasing the data’s
imprint from a machine learning model necessitates an approach to negate the data’s influence on the
model comprehensively while maintaining the utility and accuracy of the model.

Beyond this, establishing the true extent to which data influence has been erased from the model poses
a significant challenge (Song & Mittal, 2021). Numerous methods and metrics have been advanced to
validate the thoroughness of data removal, each with varying degrees of reliability and efficacy (Guo
et al., 2020; Thudi et al., 2022b). We propose a novel adversarial perspective on unlearning that we
argue is a more robust framework for effective machine unlearning. In this approach, the focus shifts
to simulating possible attacks aimed at inferring whether the data that should have been forgotten
nevertheless maintains some influence on the model. If, within this adversarial framework, an attacker
fails to distinguish whether a data point was part of the training set or merely a typical instance of
unseen data, we can conclude that the influence of the data point on the data has been successfully
unlearned.

We leverage advancements from the burgeoning domain of Membership Inference Attacks (MIA)
to simulate an adversary (Shokri et al., 2017), therein framing a Stackelberg Game (SG) between
an unlearner, tasked with orchestrating the unlearning process, and an auditor deploying MIA to
deduce the membership of data in the model’s training set. The key idea is for the unlearner to
adjust the model being unlearned by utilizing gradient feedbacks from the auditor’s optimization
problem, moving the model in a direction that limits the effectiveness of the attack, thus achieving the
goal of unlearning. Specifically, we formulate the MIA as a utility-maximizing problem, where the
utility measures the remaining influence of a data point in the unlearned model. The unlearner’s loss
function is defined as a combination of the degradation of model performance and the auditor’s utility.
We harness the development from implicit differentiation and design a gradient-based algorithm to
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solve the game, allowing for seamless integration into existing end-to-end pipelines (Gould et al.,
2016; Amos & Kolter, 2017; Agrawal et al., 2019).

The contributions of the present paper are summarized below
• We propose to evaluate the effectiveness of an unlearning algorithm from an adversarial perspective,

inspiring us to develop a game theory framework that enables the use of advanced MIAs for
enhancing the unlearning process.

• Additionally, we design a gradient-based solution method to solve the game by leveraging implicit
differentiation, making it amenable to end-to-end pipelines.

• Finally, we support the efficacy of the game and the solution method with extensive results.

2 RELATED WORK

The first related thread is machine unlearning, which focuses on removing the influence of a subset of
data (referred to as the forget set) from a machine learning model. The unlearning approaches are
divided into two classes. The first one is exact unlearning, which involves retraining the model on data
excluding the forget set. The second one is approximate unlearning. The ideas behind approximate
unlearning are twofold. The first is to track the influence of each training data on the updates to a
model’s weights, allowing for a rollback during unlearning (Bourtoule et al., 2021; Graves et al.,
2021b; Chen et al., 2022). The second is using a loss function to capture the objectives of unlearning
(e.g., removing the influence of the forget set while maintaining model utility) and modifying the
model weights to minimize the loss function (Guo et al., 2020; Golatkar et al., 2020b; Izzo et al.,
2021b; Warnecke et al., 2023; Chundawat et al., 2023; Jia et al., 2023). The method proposed in this
paper aligns with the second idea. Specifically, we design a loss function that simulates an auditor
who uses MIAs to evaluate the effectiveness of unlearning. By differentiating through the auditor’s
optimization problem, we compute the gradients that reduce the auditor’s utility, thus increasing the
effectiveness of unlearning. Besides algorithmic developments, Jagielski et al. (2023) proposes a
measure to quantify the forgetting during training; Thudi et al. (2022b) takes a formal analysis of the
definition of approximation unlearning and propose methods to verify exact unlearning. Due to space
constraint, it is not feasible to provide a comprehensive review of all related studies. We refer the
readers to the survey article by Nguyen et al. (2022) for a more exhaustive discussion.

The second related line is membership inference attacks (MIA). Shokri et al. (2017) introduced MIAs,
showing the privacy risks of machine learning models. Subsequently, different attack methods are
proposed (Chen et al., 2021; Carlini et al., 2022; Ye et al., 2022; Bertran et al., 2023). On the other
hand, Carlini et al. (2022) shows that existing criteria to evaluate MIAs are limited in capturing real-
world scenarios and propose more practical evaluation metrics. In addition, comprehensive evaluation
frameworks and tools are developed (Murakonda & Shokri, 2020; Song & Mittal, 2021). Finally,
Nasr et al. (2018) proposes a defense mechanism to counter MIAs from an adversarial perspective.
Our method shares conceptual similarities with this work, but there are several key differences. Our
primary focus is on machine unlearning problems, while their focus is on defending against MIAs.
This means that our framework needs to support multiple types of MIAs to provide a comprehensive
evaluation of unlearning, including both neural network (NN)-based and non-NN-based attacks.
However, their framework only supports NN-based attacks. Furthermore, NN-based attacks are
generally not suitable for our runtime requirements; indeed, if unlearning takes longer than retraining,
we would opt for retraining instead.

3 PRELIMINARIES

Machine Unlearning. Let D = {(xi, yi) | xi ∈ X , yi ∈ Y} be a labeled dataset, where X (resp. Y)
denote the feature (resp. label) space. The training, validation, and test sets are Dtr, Dval, and Dte,
respectively. A machine learning (ML) algorithm is denoted by A, mapping from the joint space of
features and labels X × Y to a hypothesis class. We refer to the model trained on the entire training
set as the original model, i.e., θo = A(Dtr).

Let Df = {(xf
j , y

f
j )}

q
j=1 ⊆ Dtr represent a forget set. The goal of machine unlearning is to remove

the influence of Df from the original model, resulting in an unlearned model θu (i.e., θu = U(θo))
where U represents a machine unlearning algorithm. The unlearning algorithm may have access to
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other inputs (e.g., the validation set Dval) depending on the problem settings. Let Dr be the retain
set, the subset of the training data excluding the forget set, i.e., Dr = Dtr \Df . The gold standard of
machine unlearning is θr = A(Dr), a model trained on the retain set, excluding the influence of Df .
We denote θr as the gold standard when comparing machine unlearning algorithms. Retraining is
expensive, especially for deep neural networks. This motivates the development of efficient machine
unlearning algorithms that satisfy the following conditions: 1) the influence of Df is removed from
the unlearned model, 2) the performance of the unlearned model is comparable to the performance of
the original model, and 3) the computational costs (e.g., running time) are lower compared to those
incurred during retraining.

Membership Inference Attacks. A membership inference attack (MIA) aims to determine whether
a data instance was used to train an ML model (Shokri et al., 2017). An instance that was in the
training set is called a member, while one that was not in the training set is called a non-member.
Formally, given a target model θ, an attacker infers the membership of an instance (x, y) based on the
model’s outputs (i.e., Sθ(x)) and the label. The attacker does not have access to either the training
data or the model parameters of the target model. Instead, he gathers proxy training and test sets and
learns a model θ̃ to mimic the behavior of the target model. Using the outputs of θ̃ on its own training
and test data, the attacker acquires a labeled (member v.s. non-member) dataset, and then uses the
labeled dataset to train a binary classifier for determining the membership of an instance.

We adapt the idea of MIA to determine whether the influence of the forget set still exists in an
unlearned model θu. Define an auditing set D̃θu = {(sfj , 1), (stej , 0)}qj=1, where sfj (resp. stej )
represents the outputs of the forget (resp. test) instances from the unlearned model, that is, sfj =

Sθu(x
f
j ) (resp. stej = Sθu(x

te
j )).

Here, the test instances serve as an empirical distribution for the unseen data. The outputs can
be scalars, such as the instance-wise cross-entropy losses. The outputs can also be the vectors of
probabilities across the classes (Shokri et al., 2017; Carlini et al., 2022). The labels “1" and “0"
indicate members and non-members, respectively. The MIA reduces to a binary classification task on
D̃θu , aiming to differentiate the forget instances from the test ones based on the outputs.

4 THE GAME MODEL

We model the machine unlearning problem as a Stackelberg game (SG) between an unlearner who
deploys models as services, and an auditor who launches MIAs against the models. The key idea is to
assess the effectiveness of an unlearning algorithm by measuring whether the auditor will succeed. In
particular, the unlearning is considered effective when the auditor is unable to differentiate between
the forget set from the test set based on their outputs from the unlearned model. The SG is played in
a sequential manner: the unlearner first deploys an unlearned model, and then the auditor launches an
MIA in response. Importantly, the advantage of first-mover endows the unlearner with the power to
make a decision knowing that the auditor will play a best response (i.e., launching a strong attack).
We now formally define the models for both players.

4.1 THE AUDITOR’S MODEL

We begin by defining the auditor’s model. Suppose the unlearner has deployed an unlearned model
θu. Following standard setup (Shokri et al., 2017; Song & Mittal, 2021), we assume that the auditor
has black-box access to the model,1 allowing him to query the model, e.g., submitting data to the
model and collecting the outputs. The auditor’s goal is to determine whether the influence of the
forget set still exists in the model based on the outputs. To achieve this, the auditor constructs an
auditing set D̃θu , consisting of the model’s outputs when passing the forget and test instances through
the unlearning model θu (see Section 3 for details about the auditing set). The auditor assesses
the distinctiveness of the two sets with a binary classifier trained on the auditing set through cross
validation.

Let Ua be the auditor’s utility function, quantifying the distinctiveness of the forget and test instances.
Intuitively, a large Ua indicates that the outputs of the forget instances are highly differentiable from

1
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the outputs of the test instances, strong evidence that the influence of the forget set still exists in the
unlearned model. We formulate the auditor’s model as the following optimization problem

Ua(θa, θu) = M(D̃val
θu ; θa) where θa ∈ Bθu = argmax

θ′
a∈Ha

M(D̃tr
θu ; θ

′
a). (1)

The auditing set D̃θu is divided into the training D̃tr
θu

and the validation D̃val
θu

sets. The constraint
encodes the process of learning a binary classifier. The set Bθu are the auditor’s best-responses
to the unlearner’s decision θu, that is, a specific MIA that maximally differentiates the forget and
test instances.2 The function M is an evaluation metric for the binary classifier on a dataset. The
definition of M is flexible. One can use the accuracy to quantify the average performance of the
classifier, where true positives are weighted equally with true negatives (Shokri et al., 2017; Song &
Mittal, 2021). Alternatively, an average measure may not capture real privacy threats. Instead, ROC
curve or true positive rates at specified false positive rates can be used for evaluation Carlini et al.
(2022).

The auditor’s model exhibits a high degree of generality, unifying several advanced MIAs in the
literature; this includes neural network-based attacks proposed by Nasr et al. (2018), quantile
regression-based attacks from Bertram et al. (2019), and prediction confidence-based attacks by Song
& Mittal (2021), etc. Under the formulation of equation 1, the mentioned attacks differ in 1) the
hypothesis classHa of the binary classifier and 2) the objective function M . Notice the dependence
of the auditor’s best-response on θu (i.e., Bθu ) arising from the unlearner’s first-mover advantage. The
unlearner utilizes this dependence to select an unlearned model that limits the auditor’s discriminative
power, which we discuss next.

4.2 THE UNLEARNER’S MODEL

Next, we define the unlearner’s model. Let Cu represent the unlearner’s cost function, which
encompasses two main objectives for unlearning. The first objective is to maintain the utility of the
model, ensuring that the unlearned model performs comparably (e.g., in terms of predictive power) to
the original model. To achieve this objective, we minimize a loss function L(Dr; θu) computed on
the retain set Dr, following the principles of empirical risk minimization. All regularization terms are
included in the loss function to simplify notation. The second objective focuses on eliminating the
influence of the forget set from the model being unlearned. We approach this objective adversarially
by considering the auditor’s utility M . In essence, a smaller value of the auditor’s utility indicates
that the forget set is harder to be distinguished from the test set, providing strong evidence that the
unlearning process is effective.

Formally, the unlearner’s optimization problem is to minimize the cost function below

Cu (θu, θa) = L(Dr; θu) + α ·M(D̃val
θu ; θa). (2)

The parameter α ∈ R+ balances the loss L and the auditor’s utility M . Depending on the specific
setting, the cost function Cu can be extended to incorporate additional objectives for unlearning. For
instance, one can specify that the unlearned model should perform poorly on the forget set (Graves
et al., 2021b); this can be achieved by minimizing an evaluation metric (e.g., likelihood) on the forget
set. Also, several sparsity-promoting techniques have been shown helpful for unlearning (Jia et al.,
2023); one way to achieve this is by adding an ℓ1 regularization to the cost function.

4.3 THE STACKELBERG GAME

Now, with the unlearner and the auditor models in place, we formally define the Stackelberg Game
(SG). The SG is to solve the following bi-level optimization problem (Colson et al., 2007)

min
θu∈Hu

L(Dr; θu) + α ·M(D̃val
θu ; θa)︸ ︷︷ ︸

Unlearner

s.t. θa ∈ Bθu︸ ︷︷ ︸
Auditor

.
(3)

The objective function has two components: the first ensures generalization by minimizing loss on the
retain set, while the second quantifies privacy leakage by assessing the auditor’s ability to differentiate

2For example, Bertram et al. (2019) proposed a quantile-regression-based MIA. In this case, the best response
is the optimal model parameters for the regression.
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between forget and test instances. A lower auditor utility indicates more effective unlearning, as it
reduces the distinguishability between the two sets. The hierarchical structure encodes the sequential
order of the play, with the upper level corresponding to the unlearner’s optimization problem and
the lower level capturing the auditor’s best-responses. During the unlearning, the unlearner needs
to proactively consider the auditor’s responses. This requires selecting an unlearning model where
the influence of the forget set is erased, or from the auditor’s perspective, the forget instances are
indistinguishable from the test ones.

The key assumption of the SG is that if the forget set cannot be distinguished from the test set—in
terms of the effectiveness of an MIA—its influence is deemed eliminated from the unlearned model.
We justify this assumption from three angles. First, one common way to measure forgetfulness is by
assessing the accuracy of the unlearned model on the forget set (Graves et al., 2021b; Chundawat
et al., 2023; Baumhauer et al., 2022). This approach is grounded on the observation that machine
learning models exhibit distinct performance between training data and unseen data. However, it is
important to note that accuracy on the forget set does not necessarily correlate with forgetfulness, as
there are inherently difficult (or easy) instances that result in low (or high) accuracy regardless of
whether they were part of the training set (Carlini et al., 2022). Secondly, MIAs have been used to
study training data forgetting (Jagielski et al., 2023), demonstrating its utility in detecting residual
traces of a dataset. Finally, from an adversarial perspective, if a sophisticated attack like an MIA
cannot differentiate the forget set from the test set, it is reasonable to expect that the influence of the
forget set has been removed.

We solve the SG using gradient-based methods, allowing for easy integration into end-to-end training
pipelines. Specifically, we use Implicit Function Theorem to differentiate through the auditor’s
optimization problem equation 1, obtaining the gradient of the auditor’s utility with respect to (w.r.t)
the unlearning model’s weights, i.e., ∂M/∂θu. As a result, the SG becomes a differentiable layer,
compatible with the standard forward-backward computation. The solution methods will be detailed
in the next section.

5 SG-UNLEARN : STACKELBERG GAME UNLEARN

In this section, we describe the algorithm for solving the SG. In general, it is NP-hard to find an
optimal solution for the unlearner (Conitzer & Sandholm, 2006). Instead, we focus on gradient-based
algorithms to find an approximate solution, i.e., a model parameter θu exhibiting good unlearning
performance. The main technical challenge is computing the gradient of the auditor’s utility w.r.t.
the unlearning model’s weights (i.e., ∂M/∂θu), which requires differentiation through the auditor’s
optimization problem. While the differentiation can be bypassed in some special cases, e.g., when
the unlearner’s hypothesis class is of linear regressions (Tong et al., 2018), this is rarely applicable in
the current setting given our primary focus on unlearning deep neural networks.

Our solution leverages both the Implicit Function Theorem (IFT) (Dontchev et al., 2009) and tools
from Differentiable Optimization (DO) to compute the gradients (Gould et al., 2016; Amos & Kolter,
2017; Agrawal et al., 2019), thereby rendering the SG a differentiable layer seamlessly integrable
into existing end-to-end pipelines.

We start by expanding the gradient of Cu w.r.t. θu using the chain rule

∂Cu

∂θu
=

∂L(Dr; θu)

∂θu
+

∂M(D̃val
θu

; θa)

∂θa
· ∂θa

∂D̃tr
θu

·
∂D̃tr

θu

∂θu
. (4)

The first term on the right-hand side can be easily computed using an automatic differentiation tool
like PyTorch (Paszke et al., 2017). In essence, the computation involves passing Dr through the
unlearning model (i.e., θu) in the forward pass, computing the loss L, and getting the gradients in
the backward pass. The second term on the right is an expansion of ∂M/∂θu using the chain rule;
for clarity we omit the arguments of the functions. The gradient ∂M/∂θa is obtained by performing
a standard forward-backward pass. Some evaluation metrics for binary classification, such as the
0-1 loss, AUC, recall, etc., are non-differentiable. Therefore, we adhere to standard practices by
employing a differentiable proxy for M , such as utilizing the logistic loss as a substitute for the 0-1
loss.
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Leveraging Implicit Function Theorem Computing the gradient ∂θa/∂D̃tr
θu

requires differentiation
through the attacker’s optimization problem. The main challenge is the absence of an explicit function
that maps D̃tr

θu
to θa. However, under certain regularity assumptions, one can derive an implicit

mapping between D̃tr
θu

and θa based on the optimality conditions of the auditor’s optimization
problem (Gould et al., 2016). A concrete example is when the optimization problem is convex, such
as learning a Support Vector Machine3. In this case, the KKT conditions are necessary and sufficient
conditions for the optimality, and it connects θa with D̃tr

θu
through a system of linear equations, i.e.,

f(D̃tr
θu , θa) = 0, (5)

where f encapsulates the stationarity conditions, the primal and dual feasibility conditions, and the
complementary slackness conditions (Boyd & Vandenberghe, 2004). For illustration purposes, a
concrete example of the KKT conditions f for linear SVM is provided in Appendix A.9. We apply
IFT to the system of linear equations, resulting in

∂θa

∂D̃tr
θu

= −

(
∂f(D̃tr

θu
, θa)

∂θa

)−1
∂f(D̃tr

θu
, θa)

∂D̃tr
θu

. (6)

For further insights into differentiating through an optimization problem using the implicit function
theorem, we recommend referring to the lectures by Gould (2023).

Leveraging Differentiable Optimization In practice, we capitalize on tools from Differentiable
Optimization (DO) to compute the gradients. Intuitively, we can consider DO as software that
implements IFT, as shown in equation equation 6, for a given optimization problem. What we need
to do is describing the auditor’s optimization problem using a specialized modeling language, e.g.,
cvxpy (Diamond & Boyd, 2016). We then use DO to transform this description into a differentiable
layer. Subsequently, this differentiable layer is positioned atop the model undergoing unlearning,
thereby establishing a computational pathway from θu to θa. The pseudocode for this process is
provided in Algorithm 1. This algorithm has a time complexity of O(n3), where n denotes the size
of the attacker’s optimization problem (i.e., the number of variables and/or constraints). This cubic
dependence stems from the matrix inversion in equation 6.

Algorithm 1 SG-Unlearn
1: Input: Dr, Df , Dte and the original model θo
2: Initialize: i = 0, θ0u = θo, a scheduler ηi
3: while i < epoch do
4: Compute L(Dr; θ

i
u) on the retain set in a forward pass

5: Update θi
′

u ← θiu − ηi · ∂L(Dr;θ
i
u)

∂θi
u

6: Construct the auditing set D̃θi′
u

from Df and Dte

7: Describe the auditor’s optimization problem equation 1 with cvxpy
8: Convert the description to a differentiable layer AuditorLayer
9: Plug AuditorLayer into the computational graph

10: Get the auditor’s best response θia ← AuditorLayer(D̃θi′
u
)

11: Compute M
(
D̃val

θi′
u
; θia

)
12: Update θi+1

u ← θi
′

u − ηi ·
∂M

(
D̃val

θi
′

u
;θi

a

)
∂θi

u

13: i← i+ 1
14: end while
15: Return: θiu

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

We conduct experiments on both computer vision (CV) and natural language processing (NLP)
datasets. For the CV tasks, we use the widely recognized image classification datasets CIFAR-10,

3This includes several state-of-the-art MIAs (Bertran et al., 2023; Song & Mittal, 2021).
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CIFAR-100, and SVHN (Krizhevsky et al., 2009; Netzer et al., 2011). The backbone model we use is
ResNet-18 (He et al., 2016). For NLP tasks, we assess performance on the 20 Newsgroups dataset,
leveraging the BERT model. We explore two learning scenarios: random forgetting and class-wise
forgetting. In random forgetting, instances are sampled uniformly at random from all classes. In
contrast, class-wise forgetting involves selecting all instances from a specific class. For CIFAR-10
and CIFAR-100, the forget set consists of 10% of the entire training set, while the ratio is reduced
to 5% for SVHN. In all experiments, the attacker’s optimization problem is formulated as a binary
classification task, where a linear support vector machine (SVM) is used to distinguish between forget
and test instances.

The baseline methods we use for comparison with SG include Retrain4, Fine-Tune (FT) (Warnecke
et al., 2021; Golatkar et al., 2020a), Gradient Ascent (GA) (Graves et al., 2021a; Thudi et al.,
2022a), Influence Unlearning (IU) (Izzo et al., 2021a; Koh & Liang, 2017b), ℓ1-sparse (Jia et al.,
2023), Random Label (RL) (Hayase et al., 2020), Boundary Expansion (BE), Boundary Shrink
(BS) (Chen et al., 2023) and SCRUB (Kurmanji et al., 2024). Further details on the baseline methods
are provided in Section A.6 of the Appendix. For all methods, we use the SGD optimizer with a
weight decay of 5e-4 and a momentum of 0.9. Other hyper-parameters are selected through the
validation set. Specifically, we create a new auditing set. For each unlearning method, we select
the hyper-parameters that maximize the difference between the validation accuracy and the MIA
accuracy on this new auditing set. This approach ensures that the model both generalizes well to
unseen data (high validation accuracy) and is less vulnerable to the attacks (low MIA accuracy). The
hyperparameters are listed in Table 9 in the Appendix.

6.2 EVALUATION METRICS

We evaluate SG and the baseline methods using metrics commonly adopted in prior studies (Bourtoule
et al., 2021; Jagielski et al., 2023; Jia et al., 2023; Chundawat et al., 2023). It is important to note
that the test accuracy is evaluated on a subset of the test data that is separate from the one used for
solving SG. Retain accuracy (Accr) and test accuracy (Accte) are used to quantify model utility (Jia
et al., 2023). MIA accuracy, AUC and F1 score are the metrics to quantify the effectiveness of
unlearning, all of which are estimated on the auditing set with 10-fold cross Carlini et al. (2022).
An effective unlearning algorithm should result in MIA metrics that approach random guessing
(0.5). Forget accuracy (Accf ) and the absolute difference between the forget and test accuracy
(|Accf − Accte|): An effective unlearning algorithm should result in Accf being close to Accte.
This indicates that the unlearned model no longer retains specific information about the forget data,
as its performance on the forget set should be similar to its performance on unseen test data (Dte),
reflecting the removal of the influence of Df . To gather additional statistical evidence regarding
the effectiveness of unlearning, we collect the cross-entropy losses of the forget and test instances
from the unlearned model into the empirical distributions Lf and Lte, respectively. Next, we run a
Kolmogorov-Smirnov statistics (KS Stat.) test to determine if the distributions can be differentiated
from each other. The KS statistic quantifies the differences between Lf and Lte, where the p-value
indicates whether the difference is significant (Massey Jr, 1951). In addition to the KS statistics, we
provide the Wasserstein distance (W. Dist.) between the empirical distributions of Lf and Lte. This
complements the KS statistics and evaluates the unlearning performance in terms of the similarity
between the losses.

6.3 RESULTS

The experimental results for random forgetting and class-wise forgetting are presented in Section 6.3.1
and 6.3.2, respectively. We consider retrain as the gold standard for evaluating unlearning algorithms:
the closer to the metrics of retrain the more effective the algorithm. We highlight the closest metrics
to retrain in bold.

6.3.1 RANDOM FORGETTING

We present the results for CIFAR-10, CIFAR-100 and 20 NewsGroup in Table 1. The results for
SVHN datasets are provided in Appendix A.2.1. SG achieves the best performance for most of

4Retraining the unlearning model on Dtr \Df from scratch.
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the metrics, demonstrating its effectiveness in unlearning. Specifically, the KS statistic of SG is
consistently lower than those of the other baselines, exhibiting an order of magnitude difference in
the statistics for CIFAR-10 compared to most baselines. Intuitively, ML models behave differently
on training data compared to unseen data, and this difference is usually reflected in the corresponding
losses (Carlini et al., 2022). The small KS statistic of SG implies that the forget and test instances
exhibit greater similarity in terms of the model’s behavior, although there is still a discernible
difference between the losses. Another metric for measuring the similarity is the Wasserstein distance
(W. Dist.). The baseline RL achieves the lowest distance, although the difference with SG is not
statistically significant. A visualization of the cross-entropy losses for the forget and test instances
from one of the experiments is provided in Figure 4 in the Appendix. The experiment results of
CelebA and TinyImageNet are given in Table 7 and 6 in Appendix.

Table 1: Experimental results (Meanstd) on CIFAR-10, CIFAR-100 and 20 NewsGroup for random
forgetting. The highlighted metrics are the closest to those of retraining, which is considered as the
best performance compared with the other baselines.

CIFAR-10 Accr Accte Accf |Accf −Accte| MIA acc. MIA AUC MIA F1 KS Stat. W. Dist. RTE (min., ↓)
Retrain 0.99960.0001 0.92910.0022 0.92300.0043 0.0061 0.50690.0073 0.50830.0099 0.50940.0187 0.02550.0080 0.03070.0115 14.92

FT 0.98860.0055 0.91140.0050 0.98510.0056 0.0737 0.54050.0031 0.54570.0070 0.62930.0127 0.09330.0050 0.31580.0142 0.45
GA 0.99960.0001 0.93040.0007 0.99950.0003 0.0691 0.55040.0066 0.56110.0071 0.66250.0106 0.14030.0037 0.27820.0026 0.18
IU 0.97230.0255 0.89660.0242 0.97220.0243 0.0756 0.53980.0055 0.55480.0076 0.61930.0204 0.10500.0192 0.40830.0554 0.02

ℓ1-sparse 0.99700.0007 0.92340.0014 0.99380.0016 0.0704 0.55010.0049 0.56940.0087 0.64050.6259 0.10180.0034 0.27040.0074 0.96
RL 0.99880.0001 0.92170.0008 0.98100.0025 0.0593 0.52170.0087 0.52970.0133 0.59350.0140 0.09860.0136 0.15200.0058 0.84
BE 0.99960.0001 0.93040.0007 0.99960.0003 0.0692 0.55410.0049 0.56390.0058 0.66290.0082 0.14120.0030 0.27830.0020 0.27
BS 0.99950.0001 0.93070.0008 0.99950.0004 0.0688 0.55880.0072 0.57790.0097 0.65900.0156 0.14660.0032 0.30720.0026 0.46

SCRUB 0.99710.0018 0.92510.0018 0.99590.0022 0.0708 0.55330.0059 0.56790.0073 0.63370.0149 0.10380.0071 0.24850.0154 1.30
GAU 0.95830.0033 0.90090.0026 0.93110.0042 0.0302 0.51840.0018 0.51460.0090 0.64390.0008 0.03930.0057 0.12160.0091 8.34

SG 0.99480.0029 0.89400.0048 0.93510.0070 0.0411 0.52020.0054 0.51340.0084 0.64800.0043 0.04820.0082 0.15550.0194 1.47
SG (Acc.) 0.99620.0003 0.88700.0011 0.90900.0001 0.0293 0.51100.0003 0.52000.0001 0.63580.0002 0.02740.0005 0.10870.0016 0.88

SG + LiRA 0.99480.0038 0.88650.0059 0.91580.0093 0.0293 0.51510.0039 0.51000.0070 0.63900.0026 0.03630.0059 0.11260.0014 8.33
SG (Acc.) + RL 0.99680.0048 0.92370.0051 0.94680.0108 0.0231 0.52080.0145 0.52300.0206 0.52360.0198 0.09580.0224 0.10820.0191 1.79

CIFAR-100 Accr Accte Accf |Accf −Accte| MIA acc. MIA AUC MIA F1 KS Stat. W. Dist. RTE (min., ↓)
Retrain 0.99960.0001 0.70350.0025 0.69250.0039 0.0110 0.51840.0057 0.52810.0053 0.51040.0081 0.02030.0045 0.05670.0200 13.08

FT 0.99910.0001 0.71170.0021 0.99840.0006 0.2867 0.66300.0075 0.73000.0102 0.68780.0107 0.45660.0083 1.25830.0166 0.39
GA 0.99960.0001 0.71580.0008 0.99960.0002 0.2838 0.69770.0060 0.76010.0065 0.72070.0088 0.49150.0030 1.22190.0038 0.20
IU 0.99710.0029 0.70260.0080 0.99590.0034 0.2933 0.66600.0089 0.73050.0134 0.69500.0124 0.45830.0168 1.26120.0366 0.21

ℓ1-sparse 0.99580.0013 0.70950.0025 0.98900.0028 0.2785 0.67380.0081 0.73920.0088 0.69520.0073 0.37170.0113 1.11570.0079 0.84
RL 0.99650.0054 0.66650.0031 0.84830.0447 0.1818 0.58080.0426 0.61520.0527 0.60800.0466 0.23230.0731 0.80670.1705 0.73
BE 0.99950.0001 0.71730.0014 0.99960.0002 0.2823 0.69770.0037 0.76610.0066 0.72480.0065 0.49400.0031 1.21750.0119 0.23
BS 0.99950.0001 0.71600.0013 0.99960.0002 0.2836 0.69870.0052 0.76510.0072 0.72390.0054 0.49630.0033 1.23820.0206 0.39

SCRUB 0.99930.0001 0.70970.0019 0.99910.0004 0.2894 0.70150.0057 0.77470.0060 0.72990.0056 0.47170.0052 1.22800.0128 1.14
GAU 0.93460.0006 0.66870.0045 0.80210.0073 0.1334 0.57600.0044 0.58160.0045 0.65260.0042 0.13800.0134 0.72680.0858 13.35

SG 0.89930.0105 0.63780.0066 0.72390.0093 0.0861 0.54120.0070 0.53200.0076 0.60610.0056 0.09880.0061 0.53160.0295 3.07
SG (Acc.) 0.96460.0019 0.60280.0003 0.70320.0027 0.1004 0.55190.0008 0.55710.0010 0.61920.0004 0.11200.0029 0.61760.0007 1.55

SG + LiRA 0.95740.0038 0.60080.0059 0.69420.0093 0.0293 0.54110.0039 0.53030.0070 0.60570.0026 0.02740.0059 0.10870.0014 10.68
SG (Acc.) + RL 0.99660.0014 0.66790.0033 0.80950.0113 0.1416 0.56090.0397 0.60320.0412 0.60130.0023 0.20410.0935 0.63910.1845 2.39

20 NewsGroup Accr Accte Accf |Accf −Accte| MIA acc. MIA AUC MIA F1 KS Stat. W. Dist. RTE (min., ↓)
Retrain 1.0000 0.8528 0.9224 0.0696 0.5285 0.5512 0.5501 0.1405 0.5925 40.8

FT 0.9999 0.8518 0.8035 0.0482 0.5672 0.6059 0.6220 0.2495 1.1894 20.2
GA 0.0483 0.0483 0.0500 0.0017 0.4995 0.4973 0.2704 0.0334 0.0990 26.1
IU 1.0000 0.8575 0.9990 0.1415 0.5676 0.6054 0.6348 0.2986 0.9614 27.9
RL 0.9985 0.8298 0.6709 0.1589 0.7123 0.7651 0.7148 0.5334 1.1402 21.2

SG 1.0000 1.0000 1.0000 0.0000 0.5065 0.4922 0.5627 0.0791 0.0007 15.6

Another observation from the table is the inherent trade-off between model performance, measured
by test accuracy, and the effectiveness of unlearning, measured by MIA accuracy. This trade-off has
been documented in prior studies as a common challenge in unlearning tasks (Golatkar et al., 2020a;
Bourtoule et al., 2021). Specifically, SG is more effective at unlearning the forget instances, as indi-
cated by the highlighted MIA metrics. However, this effectiveness comes at a cost to the test accuracy
on CIFAR-10 and CIFAR-100, a phenomenon observed in other unlearning techniques as well (Jia
et al., 2023; Graves et al., 2021a). Despite this trade-off, the degradation in test accuracy remains
minimal. We run a large array of experiments with varying α from {0.05, 0.1, 0.25, 0.5, 1, 2, 5} (see
equation 2) to explore the extent to which the trade-off can be reduced. The results are presented in
Figure 2. Unfortunately, we do not see a consistent trend that makes SG closer to retrain across all
the metrics.

6.3.2 CLASS-WISE FORGETTING

We use CIFAR-10 as the benchmark for class-wise forgetting. For results on other datasets, please
refer to Appendix A.8. In random forgetting, instances are uniformly sampled across all classes,
preserving the overall dataset distribution. In contrast, class-wise forgetting removes all instances
from a specific class, resulting in a significant distribution shift that makes forget data more detectable.
The experimental results, presented in Table 2, highlight the metrics closest to retraining. However, all
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methods perform poorly on MIA-related metrics, as the auditor can easily distinguish between forget
and test instances due to the distinct distributional shifts caused by class-wise forgetting. Additionally,
no single method consistently outperforms the others.

Table 2: Experimental results (Meanstd) on CIFAR-10 for class-wise forgetting. The highlighted
metrics are the closest to those of retrain, which is considered as the best performance compared with
the other baselines.

CIFAR-10 Accr Accte Accf |Accf −Accte| MIA acc. MIA AUC MIA F1 KS Stat. W. Dist. RTE (min., ↓)
Retrain 0.99960.0001 0.93330.0009 0.00000.0000 0.9333 0.99350.0006 0.99830.0004 0.99360.0007 0.98030.0002 9.56010.0911 13.96

FT 0.99580.0022 0.92260.0030 0.60430.0450 0.3183 0.99150.0011 0.99850.0002 0.99150.0011 0.79750.0133 0.93240.1847 1.16
GA 0.84780.0046 0.79420.0055 0.00070.0002 0.7935 0.99440.0011 0.99960.0002 0.99380.0015 0.92690.0087 15.29410.1656 0.84
IU 0.93390.0161 0.86440.0141 0.06190.0149 0.8025 0.99720.0009 0.99960.0001 0.99720.0007 0.81510.0195 8.25740.6484 0.31

ℓ1-sparse 0.99720.0005 0.92850.0014 0.09140.0310 0.8371 0.99100.0014 0.99890.0001 0.99100.0014 0.92080.0078 2.55520.1738 1.84
RL 0.99960.0000 0.93300.0008 0.00010.0001 0.9329 0.99160.0013 0.99900.0005 0.99160.0013 0.96950.0025 6.39890.0789 1.97
BE 0.97100.0012 0.89840.0023 0.24770.0022 0.6507 0.99640.0005 0.99900.0004 0.99640.0005 0.73060.0047 4.89840.0432 0.32
BS 0.96910.0031 0.89690.0031 0.25040.0105 0.6465 0.99650.0001 0.99880.0005 0.99650.0002 0.71960.0072 5.01550.0922 0.66

SCRUB 1.00000.0000 0.92690.0021 0.00000.0000 0.9269 1.00000.0000 1.00000.0000 1.00000.0000 0.99990.0001 70.99342.9441 3.47

SG 0.96670.0054 0.90560.0055 0.00000.0000 0.9056 0.98140.0026 0.99020.0025 0.98180.0025 0.96960.0032 5.27540.1882 0.84

6.3.3 THE EFFECT OF THE ATTACKER MODEL

Finally, we conduct a comparative study to understand the impact of adversarial modeling on the
unlearning process, controlled by the parameter α as defined in equation 2. We show the results
for random forgetting and defer the results for class-wise forgetting to the appendix. In Figure 1,
we compare two cases where α is set to either 1 or 0, denoted by SG-1 and SG-0 respectively. The
comparison is done across four metrics: 1) the test accuracy ; 2) the MIA accuracy; 3) the defender’s
utility, evaluated as the test accuracy minus the MIA accuracy, which provides a combined scalar
value that measures both the performance of the unlearned model and the effectiveness of unlearning;
4) the Wasserstein distance between the empirical distributions of Lf and Lte. We show the averages
over 10 experiments with different seeds, and 95% confidence intervals are displayed. The first
observation is that the adversarial term (i.e., α ·M(D̃val

θu
; θa)) acts as a regularizer, improving the

generalizability of the unlearned model. This observation is supported by comparing the test accuracy
of SG-1 and SG-0 on CIFAR-10 (top middle). Similar findings have been reported in Nasr et al.
(2018). Another observation is that adversarial modeling limits the attacker’s ability to differentiate
between forget instances and test instances; this is demonstrated by the MIA accuracy on CIFAR-100.
The right-most column displays the Wasserstein distances between Lf and Lte. It is evident that
the two losses are closer as a result of adversarial modeling, especially for CIFAR-100 dataset.
Additionally, the distances progressively decrease throughout the epochs, confirming the effectiveness
of the gradient-based method.

In addition to the existence of attacker, we also investigate the strength of the attacker by changing
α. We select the α in large range of {0.05, 0.1, 0.25, 0.5, 1, 2, 5}. In Figure 2, we compare the
performance regarding the test accuracy Accte. The cross of the red dash line is the performance of
the retrain model. We can find that SG is robust to the attacker strength.

6.4 MIA SELECTION

To validate the generalization ability of SG, we select the MIA used in (Jia et al., 2023) as the attacker
and we evaluate SG according to (Jia et al., 2023). The results given in Table 3 show that SG is not
sensitive to the MIA.

7 DISCUSSION

In this paper, we design an adversarial framework for addressing the problem of unlearning a set data
from a machine learning model. Our approach focuses on evaluating the effectiveness of unlearning
from an adversarial perspective, leveraging membership inference attacks (MIAs) to detect any
residual traces of the data within the model. The framework allows for a proactive design of the
unlearning algorithm, synthesizing two lines of research—machine unlearning and MIAs—that
have heretofore progressed in parallel. By using implicit differentiation techniques, we develop a
gradient-based algorithm for solving the game, making the framework easily integrable into existing
end-to-end learning pipelines. We present empirical results to support the efficacy of the framework
and the algorithm. We believe our work can make a progress in trustworthy ML.
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Figure 1: An ablation study to understand the impact of adversarial modeling on the process of
unlearning; α = 1 and α = 0 corresponds to the cases with and without adversarial modeling,
respectively. The results are the averages over 10 experiments with different seeds, and 95%
confidence intervals are displayed. From the left to the right: 1) the defender’s utility, evaluated as
the test accuracy Accte minus the MIA accuracy; 2) test accuracy; 3) MIA accuracy; 4) Wasserstein
distance between the cross-entropy losses of the forget and test instances. Top row: CIFAR-10;
Bottom row: CIFAR-100. Epoch 0: Original model.
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Figure 2: Experiments with different values of the trade-off parameter α. We consider 7 values
{0.05, 0.1, 0.25, 0.5, 1, 2, 5}. Each dot represents a batch of 5 random experiments with the same α.
The coordinates of a dot are the corresponding metrics averaged over the 5 runs. Top row: CIFAR-10;
Bottom row: CIFAR-100.

Table 3: SG is evaluated using the MIA attacker described in (Jia et al., 2023), comparing its
performance against baseline models on the CIFAR-10 dataset under the random forgetting paradigm.
For the metrics UA, MIA, RA, and TA, the value closest to the Retrain baseline is highlighted in bold.

CIFAR-10 UA (1−Accf ) MIA RA (Accr) TA (Accr) Avg. Gap (↓) RTE (min, ↓)
Retrain 0.08070.0047 0.17410.0069 1.00000.0001 0.91610.0024 - 24.66

FT 0.01100.0019 0.04060.0041 0.99830.0003 0.93700.0010 0.0555 1.58
GA 0.00560.0001 0.01190.0005 0.99480.0002 0.94550.0005 0.0680 0.31
IU 0.17510.0219 0.21390.0170 0.83280.0244 0.78130.0285 0.1091 1.18

ℓ1-sparse 0.01210.0038 0.04330.0052 0.97390.0031 0.95490.0018 0.0661 1.82
RL 0.02800.0037 0.18590.0348 0.99970.0001 0.94080.0012 0.0224 1.98
BE 0.00000.0000 0.00260.0002 1.00000.0000 0.95350.0018 0.0724 3.17
BS 0.00480.0007 0.01160.0004 0.99470.0001 0.94580.0003 0.0684 1.41

SCRUB 0.00700.0059 0.03880.0125 0.99590.0034 0.94220.0026 0.0598 4.05

SG 0.07480.0041 0.18350.0117 0.99900.0131 0.90720.0189 0.0063 3.48

Limitation One future direction is to enhance the algorithm’s efficiency. As shown in equation 6,
the gradient-based algorithm requires a matrix inversion, which exhibits an O(n3) dependence on
the size of the auditor’s optimization problem. Therefore, developing a more efficient method to
differentiate through the auditor’s optimization could significantly accelerate the algorithm. Another
direction is to experiment with different combinations of the unlearning algorithm and the MIA
within the SG framework. Currently, the unlearner employs Fine-Tune as the unlearning algorithm,
while the auditor uses an SVM-based MIA. Exploring the performance of other combinations, such
as Random Label with a neural network-based MIA, would be worthwhile.
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ETHIC STATEMENT

This work does not involve potential malicious or unintended uses, fairness considerations, privacy
considerations, security considerations, crowd sourcing, or research with human subjects.

REPRODUCIBILITY STATEMENT

We provide details to reproduce our results in Appendix A.6 and A.7. We also provide pseudo-code
in Algorithm 1 and will release the code upon acceptance.
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A APPENDIX

A.1 NOTATION TABLE

Table 4: A summary of the notations used in the paper
Notation Meaning

D = {(xi, yi)} A dataset
(xi, yi) One data point where xi is the feature while yi is the label
X ,Y The feature space and the label space

Df , Dte, Dval, Dtr, Dr The forgetting, testing, validation, training, and retain set
(xf

j , y
f
j ) One data point from the forget set Df

A A machine learning algorithm
U A machine unlearning algorithm
θo The original model, i.e., A(Dtr)
θu The unlearned model, i.e., U(θo)
θr The retrained model, i.e., A(Dr)

D̃θu The auditing dataset for membership inference attack
sfj The output of a forget instance in the auditing dataset D̃θu from θu
stej The output of a testing instance in the auditing dataset D̃θu from θu

D̃tr
θu
, D̃val

θu
The training and validation split of D̃θu .

Cu The unlearner’s cost function
Bθu The auditor’s best response given an unlearning model θu
Ua The utility function of the auditor
Ha The hypothesis class of the auditor
Hu The hypothesis class of the unlearner
α The trade-off factor as defined in the unlearner’s cost function equation 2

A.2 RANDOM FORGETTING

A.2.1 SVHN DATASET

The results of SVHN dataset on random forgetting are given in Table 5.

Table 5: Experimental results (Meanstd) on SVHN for random forgetting. The highlighted metrics are
the closest to those of retraining, which is considered as the best performance compared with the
other baselines.

SVHN Accr Accte Accf |Accf −Accte| MIA acc. MIA AUC MIA F1 KS Stat. W. Dist. RTE (min., ↓)
Retrain 0.99590.0002 0.96100.0010 0.95340.0024 0.0076 0.52480.0058 0.54220.0075 0.51490.0157 0.03060.0117 0.06860.0145 20.46

FT 0.99910.0001 0.71170.0021 0.98760.0070 0.2867 0.53720.0123 0.55920.0121 0.55230.0170 0.06130.0342 0.17430.0091 1.55
GA 0.99540.0001 0.96410.0002 0.99490.0006 0.0308 0.51910.0072 0.54110.0051 0.55000.0178 0.08670.0065 0.14730.0026 0.97
IU 0.90760.0707 0.88170.0658 0.90500.0713 0.0233 0.53730.0116 0.55800.0097 0.54690.0187 0.04730.0207 0.14070.0882 0.41

ℓ1-sparse 0.93780.0615 0.91910.0540 0.92980.0620 0.0107 0.54570.0220 0.56650.0229 0.53470.0324 0.03960.0112 0.11580.0954 1.86
RL 0.99490.0002 0.96090.0006 0.97970.0018 0.0188 0.52110.0106 0.54110.0147 0.51440.0225 0.10790.0175 0.06420.0060 2.65
BE 0.99550.0001 0.96330.0002 0.99550.0006 0.0322 0.52090.0090 0.54410.0064 0.55530.0175 0.10160.0062 0.15280.0019 0.46
BS 0.99560.0002 0.96410.0001 0.99520.0008 0.0311 0.53220.0060 0.55090.0034 0.55940.0176 0.09940.0074 0.14040.0033 0.81

SCRUB 0.98320.0010 0.95590.0014 0.98090.0020 0.0250 0.52730.0031 0.54310.0103 0.52960.0196 0.04920.0139 0.10320.0141 1.85

SG 0.96860.0017 0.95760.0033 0.95600.0027 0.0016 0.50120.0052 0.50890.0272 0.32920.1798 0.05940.0233 0.01850.0041 3.16

A.3 TINYIMAGENET DATASET

The results of TinyImageNet dataset on random forgetting are given in Table 6.

A.4 CELEBA DATASET

The results of CelebA dataset on random forgetting are given in Table 7.
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Table 6: Experimental results (Meanstd) on TinyImageNet for random forgetting. The highlighted
metrics are the closest to those of retraining, which is considered as the best performance compared
with the other baselines.

TinyImageNet Accr Accte Accf |Accf −Accte| MIA acc. MIA AUC MIA F1 KS Stat. W. Dist. RTE (min., ↓)
Retrain 0.83770.0009 0.59670.0045 0.50570.0014 0.0910 0.54710.0028 0.56770.0029 0.48030.0037 0.11010.0021 0.46080.0124 237.12

FT 0.82420.0009 0.60950.0023 0.70330.0015 0.0938 0.54020.0019 0.53360.0013 0.60560.0024 0.09570.0030 0.50170.0071 65.07
GA 0.81320.0138 0.59660.0061 0.80560.0170 0.2090 0.59660.0056 0.60320.0057 0.66190.0059 0.19680.0103 0.91950.0371 12.49
IU 0.83590.0010 0.60610.0001 0.83400.0033 0.2269 0.60510.0029 0.61500.0026 0.67080.0032 0.21700.0007 0.96840.0082 6.73

ℓ1-sparse 0.78200.0015 0.61440.0012 0.63750.0045 0.0231 0.50390.0034 0.49060.0026 0.56740.0040 0.05000.0025 0.22170.0082 103.85
RL 0.77470.0006 0.60180.0020 0.59160.0030 0.0102 0.52800.0025 0.57020.0018 0.47530.0047 0.16610.0013 0.33040.0034 60.79
BE 0.80540.0115 0.55610.0120 0.80380.0162 0.2477 0.62170.0026 0.63410.0033 0.67790.0005 0.24030.0047 1.09620.0040 31.37
BS 0.82610.0008 0.57750.0001 0.82320.0020 0.2457 0.62340.0044 0.63330.0025 0.68180.0038 0.24150.0049 1.06230.0070 8.67

SG 0.84860.0007 0.59760.0005 0.55600.0053 0.0416 0.52120.0055 0.53410.0070 0.55220.0198 0.08930.0003 0.34160.0046 13.36

Table 7: Experimental results (Meanstd) on CelebA for random forgetting. The highlighted metrics
are the closest to those of retraining, which is considered as the best performance compared with the
other baselines.

CelebA Accr Accte Accf |Accf −Accte| MIA acc. MIA AUC MIA F1 KS Stat. W. Dist. RTE (min., ↓)
Retrain 0.95840.0114 0.90870.0110 0.92840.0048 0.0076 0.51230.0085 0.51030.0087 0.63850.0082 0.02850.0155 0.06860.0613 33.70

FT 0.93610.0010 0.92570.0021 0.93200.0028 0.0063 0.50380.0003 0.50700.0037 0.61800.0037 0.01330.0008 0.01580.0052 3.43
GA 0.94440.0003 0.92760.0001 0.94800.0012 0.0204 0.52150.0004 0.52140.0019 0.63250.0006 0.02360.0018 0.04910.0038 2.43

ℓ1-sparse 0.71040.0883 0.70400.0917 0.71630.0921 0.0123 0.50380.0002 0.50740.0068 0.58500.0332 0.02510.0107 0.02770.0125 5.12
RL 0.93630.0007 0.92570.0005 0.93790.0063 0.0122 0.50360.0006 0.50810.0047 0.62380.0025 0.01880.0026 0.03430.0069 2.65
BE 0.93860.0027 0.92100.0021 0.94060.0015 0.0196 0.50810.0005 0.51710.0038 0.60550.0009 0.02890.0048 0.05460.0049 3.59
BS 0.94340.0005 0.92700.0002 0.94650.0043 0.0195 0.50960.0012 0.51390.0005 0.62870.0018 0.02700.0008 0.04830.0065 1.67
SG 0.93480.0011 0.92220.0001 0.92880.0010 0.0066 0.51590.0002 0.51030.0007 0.63580.0009 0.02740.0003 0.01080.0006 9.74

A.5 VIT RESULTS

The comparison of SG on SVHN for random forgetting with and without attacker is illustrated in
Figure 3.

A.5.1 LOSS DISTRIBUTIONS

A visualization of the cross-entropy losses of the forget and test instances is in Figure 4.

A.6 BASELINE METHODS

Retrain: The first baseline is retraining, where the unlearned model is obtained by training on the
retain set from scratch. We aim to develop unlearning algorithms so that the metrics they produce
are as closely aligned with those of the retraining as possible.
Fine-Tuning (FT): As the second baseline, FT continues to train the original model on the retain
set for a few epochs. This a standard baseline used in various prior research (Graves et al., 2021b;
Warnecke et al., 2023).

Figure 3: An ablation study to understand the impact of adversarial modeling on the process of
unlearning; α = 1 and α = 0 corresponds to the cases with and without adversarial modeling,
respectively. The results are the averages over 10 experiments with different seeds, and 95%
confidence intervals are displayed. From the left to the right: 1) the defender’s utility, evaluated as
the test accuracy Accte minus the MIA accuracy; 2) test accuracy; 3) MIA accuracy; 4) Wasserstein
distance between the cross-entropy losses of the forget and test instances.
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Table 8: Experimental results (Meanstd) on CIFAR-10 for random forgetting using ViT. The high-
lighted metrics are the closest to those of retraining, which is considered as the best performance
compared with the other baselines.

CIFAR-10 Accr Accte Accf |Accf −Accte| MIA acc. MIA AUC MIA F1 KS Stat. W. Dist. RTE (min., ↓)
Retrain 0.83840.0020 0.74270.0017 0.74830.0033 0.0056 0.50000.0007 0.50000.0059 0.57940.0163 0.01900.0105 0.03040.0073 206.50s

FT 0.86300.0017 0.75990.0033 0.82210.0083 0.0622 0.52860.0001 0.53520.0005 0.61880.0019 0.06750.0078 0.24130.0142 18.85
GA 0.84730.0017 0.75940.0105 0.84610.0018 0.0867 0.54180.0020 0.55120.0050 0.63020.0002 0.08980.0074 0.30550.0313 3.01

ℓ1-sparse 0.84720.0015 0.75910.0103 0.84570.0007 0.0866 0.54230.0016 0.55120.0050 0.63050.0002 0.08900.0076 0.30480.0313 6.32
RL 0.84150.0027 0.75920.0085 0.81240.0034 0.0532 0.51570.0008 0.51140.0056 0.58620.0017 0.05980.0099 0.14730.0158 8.09

SG 0.85150.0045 0.74760.0203 0.83220.0091 0.0846 0.50190.0074 0.51000.0013 0.58140.0010 0.03740.0004 0.10410.0034 11.42

Table 9: The hyper-parameter for the baseline method and SG used in this paper.
Parameters Retrain FT GA IU ℓ1-sparse RL BE BS SCRUB SG

Learning rate 1e-2 5e-2 1e-3 × 1e-2 1e-2 1e-5 1e-5 5e-4 1e-2
Num. of epoch 160 30 5 × 10 10 10 10 10 30

γ × × × × 5e-4 × × × × ×
α × × × 10 × × × × × ×
T × × × × × × × × 4 ×

Decay epochs × × × × × × × × [3, 5, 9] ×
β × × × × × × × × 0.1 ×

Attacker α × × × × × × × × × 1.0

Gradient Ascent (GA): This baseline takes the original model as the starting point and runs a few
epochs of gradient ascent on the forget set Df . The intuition is to disrupt the model’s generalizability
on Df (Graves et al., 2021b). Another name of GA is NegGrad (Kurmanji et al., 2024).
Influence Unlearning (IU): This baseline uses Influence Function to estimate the updates required
for a model’s weights as a result of removing the forget set from the training data (Izzo et al., 2021b;
Koh & Liang, 2017a).
ℓ1-sparse: This baseline integrates an ℓ1 norm-based sparse penalty into machine unlearning loss
Jia et al. (2023).
Random Label (RL): This baseline trains the original model on the retain set and the forgetting
set Df whose labels are random to make the model unlearn Df while keep the model capability as
much as possible.
Boundary Expansion: This baseline proposes a neighbor searching method to identify the nearest
but incorrect class labels to guide the way of boundary shifting.
Boundary Shrink: This baseline artificially assigns forgetting samples to an extra shadow class of
the original model Chen et al. (2023).
SCRUB: This baseline achieve MU by using a teacher model and student model Kurmanji et al.
(2024).

A.7 EXPERIMENT DETAILS

The hyperparameters used for SG and the baselines are in Table 9. The losses for the retraining
baseline across the epochs are displayed in Figure 5. We run all the experiments using PyTorch 1.12
on NVIDIA A5000 GPUs and AMD EPYC 7513 32-Core Processor.

A.8 CLASS-WISE FORGETTING

The results of SVHN dataset on classwise forgetting are given in Table 10.

A.9 AN EXAMPLE OF THE CONDITION IN EQUATION 5

In this section, we provide a concrete example of the KKT conditions for linear support vector
machines (SVM). As described in Section 1, the KKT conditions are key to relating the attacker’s
model parameters, denoted as θa, with the auditing set D̃θu , which allows us to derive the gradient
∂θa/∂D̃θu . The conditions f can be similarly derived for any model where the learning problem is
convex. To simplify the notations, we use {(xi, yi)}qi=1 to represent D̃θu . A standard formulation of
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Figure 5: The training loss for the retrain baseline. For CIFAR10 and CIFAR100, the learning rate is
multiplied by 0.1 when epoch is at 60, 120, 160; for SVHN, the same multiplication is done at epoch
60, 120. Top to bottom: CIFAR10, CIFAR100, SVHN.

Table 10: Experimental results (Meanstd) on SVHN for classwise forgetting. The highlighted metrics
are the closest to those of retraining, which is considered as the best performance compared with the
other baselines.

SVHN Accr Accte Accf |Accf −Accte| MIA acc. MIA AUC MIA F1 KS Stat. W. Dist. RTE (min., ↓)
Retrain 0.99630.0001 0.96390.0007 0.00000.0000 0.9639 0.99500.0005 0.99860.0004 0.99510.0005 0.99090.0003 8.69240.0750 20.46

FT 0.99780.0002 0.96220.0020 0.09950.0179 0.8627 0.99450.0005 0.99850.0006 0.99460.0007 0.95330.0038 2.32200.0216 3.17
GA 0.94440.0055 0.91440.0047 0.00000.0000 0.9144 0.99690.0004 0.99980.0000 0.99700.0002 0.98490.0012 16.48340.2720 0.98
IU 0.80440.1177 0.80610.0978 0.00000.0000 0.8061 0.99980.0003 1.00000.0000 0.99980.0003 0.99360.0056 15.06971.7117 0.41

ℓ1-sparse 0.97990.0004 0.95800.0017 0.00000.0000 0.9580 0.99210.0013 0.99660.0003 0.99210.0012 0.98180.0030 4.51390.2512 3.73
RL 0.99590.0001 0.96120.0013 0.00000.0000 0.9612 0.99120.0013 0.99710.0016 0.99130.0012 0.98130.0016 5.59780.0357 2.60
BE 0.98800.0008 0.95460.0012 0.28120.0061 0.6734 0.99760.0005 0.99950.0002 0.99760.0006 0.91060.0050 4.38160.0659 0.46
BS 0.98640.0010 0.95370.0010 0.31090.0052 0.6428 0.99750.0003 0.99950.0002 0.99760.0003 0.90720.0031 4.42900.1169 0.82

SCRUB 0.99160.0007 0.96160.0014 0.00000.0000 0.9616 0.99990.0001 1.00000.0001 0.99990.0001 0.99890.0008 24.45902.2852 3.91

SG 0.97160.0007 0.96010.0014 0.00000.0000 0.9601 0.99280.0001 0.99540.0001 0.99290.0001 0.99070.0008 5.01482.2852 5.92

the linear SVM is as follows

min
θa,b

1

2
∥θa∥2

s.t. yi · (θ⊤a xi + b) ≥ 1,∀i,
(7)

where b is the bias term. The standard form is typically formulated as a minimization problem, so the
attacker is to maximize V = − 1

2∥θa∥
2. Eq. equation 7 is a convex program, and the optimal solution

(i.e., θ∗a and b∗) is characterized by the KKT conditions. The Lagrangian of the above is as follows
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where αi ≥ 0 are the Lagrantian multipliers:

L(θa, b, αi) =
1

2
∥θa∥2 −

q∑
i=1

αi

(
yi · (θ⊤a xi + b)− 1

)
. (8)

Following sandard procedures (Boyd & Vandenberghe, 2004), the KKT conditions are as folllows

f(D̃θu , θa) =



θa −
q∑

i=1

αiyixi = 0

−
q∑

i=1

αiyi = 0

yi · (θ⊤a xi + b) ≥ 1

αi ≥ 0,∀i
αi(yi(θ

⊤
a xi + b)− 1) = 0,∀i

, (9)

which implicitly define a function between θa and the data D̃θu = {(xi, yi)}qi=1. In practice, we
describe the optimization problem equation 7 using cvxpy (Diamond & Boyd, 2016). Then, we
employ an off-the-shelf package called cvxpylayers (Agrawal et al., 2019) to automatically
derive the KKT conditions and compute the gradient ∂θa/∂D̃θu .
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