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Abstract

Object hallucination in Large Vision-Language
Models (LVLMs) significantly impedes their
real-world applicability. As the primary compo-
nent for accurately interpreting visual informa-
tion, the choice of visual encoder is pivotal. We
hypothesize that the diverse training paradigms
employed by different visual encoders instill
them with distinct inductive biases, which leads
to their diverse hallucination performances. Ex-
isting benchmarks typically focus on coarse-
grained hallucination detection and fail to cap-
ture the diverse hallucinations elaborated in our
hypothesis. To systematically analyze these
effects, we introduce VHBench-10, a compre-
hensive benchmark with approximately 10,000
samples for evaluating LVLMs across ten fine-
grained hallucination categories. Our evalu-
ations confirm encoders exhibit unique hal-
lucination characteristics. Building on these
insights and the suboptimality of simple fea-
ture fusion, we propose VisionWeaver, a novel
Context-Aware Routing Network. It employs
global visual features to generate routing sig-
nals, dynamically aggregating visual features
from multiple specialized experts. Comprehen-
sive experiments confirm the effectiveness of
VisionWeaver in significantly reducing hallu-
cinations and improving overall model perfor-
mance.

1 Introduction

Large Vision-Language Models (LVLMs), such as
GPT-4V (Achiam et al., 2023) and LLaVA (Liu
et al., 2024¢c), demonstrate remarkable abilities
to understand (Hao et al., 2023; Kojima et al.,
2022) and generate (Lian et al., 2023; Zhou et al.,
2023) content from visual inputs. Despite these
strengths, the models frequently exhibit object hal-
lucinations—describing objects or attributes not
present in the provided images. This tendency crit-
ically undermines their reliability and applicability
in real-world scenarios (Mai et al., 2023; Tang et al.,
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Figure 1: Examples of common hallucinations produced
by LVLMs, such as misidentifying object categories,
incorrect color descriptions, erroneous relative posi-
tioning, and inaccurate text recognition. It represent
the types of fine-grained visual errors that our vision-
centric VHBench-10 benchmark is designed to evaluate
across categories like detection, segmentation, localiza-
tion, and classification.

2024; Zhou et al., 2023; Huang et al., 2024; Liu
et al., 2023).

The choice of visual encoder within LVLMs is
critical. This selection directly influences the ca-
pacity of model for accurate visual interpretation,
which consequently affects its propensity to gener-
ate hallucinations. Furthermore, variations in train-
ing paradigms and architectural designs mean that
different visual encoders introduce distinct biases
and capabilities into LVLMs. These differences
subsequently lead to diverse hallucination patterns
observed in downstream tasks. For example, the
widely adopted CLIP (Radford et al., 2021) visual
encoder excels at vision-text alignment, largely
due to its pre-training on extensive image-text
datasets. However, it is less effective at captur-
ing fine-grained visual details when compared to
vision-focused models such as DINOv2 (Oquab
et al., 2023).



To systematically investigate how different vi-
sual encoders influence hallucination behaviors in
LVLMs, a more nuanced understanding of hallu-
cination types is necessary. Existing benchmarks,
such as POPE (Li et al., 2023), primarily assess
object hallucinations. Their evaluation typically
focuses on whether models generate descriptions
of non-existent objects. While this methodology
is valuable, it treats all hallucinations uniformly.
This overlooks the possibility that such errors may
stem from failures in distinct visual sub-tasks.
These sub-tasks include object detection, segmenta-
tion, localization, or classification, each demanding
unique visual perception capabilities. Deficiencies
in any such capability can, in turn, lead to specific
types of hallucinations.

To address this issue, we propose VHBench-
10, a comprehensive vision-centric hallucination
benchmark designed to evaluate LVLMs across ten
fine-grained hallucination categories. These cate-
gories are systematically grouped into four main
types: detection, segmentation, localization, and
classification. VHBench-10 consists of approxi-
mately 10,000 samples, with each sample including
an image, a detailed factual description, and a cor-
responding description that contains a specific hal-
lucination. By measuring the likelihood of LVLMs
generating hallucinated versus factual descriptions,
VHBench-10 facilitates a precise diagnosis of defi-
ciencies in visual perception capabilities and offers
targeted insights for model refinement.

Based on evaluations conducted on VHBench-
10, we observe that the choice of visual encoder
significantly influences hallucination behavior. For
instance, an LVLM employing the Vary visual en-
coder, which is specifically pre-trained on text
recognition tasks, illustrates this. Such a model
exhibits markedly lower hallucination rates in text-
related visual tasks compared to its performance in
other task domains.

Based on these findings, a natural question
arises: Can integrating diverse visual encoders
help LVLMs reduce hallucinations across tasks
and lower overall hallucination propensity? How-
ever, our experiments (detailed in Sec 5.3) revealed
that simple feature fusion techniques for visual
encoders (e.g., feature addition or feature concate-
nation (Tong et al., 2024)) often yield suboptimal
performance compared to using these encoders in-
dividually. To address this challenge, we intro-
duce VisionWeaver, a Context-Aware Routing Net-
work. Guided by the LVLM’s global visual un-

derstanding, this network dynamically aggregates
visual features from multiple specialized encoders.
Specifically, our proposed adaptive routing module
utilizes the [CLS] token feature from CLIP as a
primary input. This feature, which encapsulates
global image context and key visual information, is
then processed by the module and transformed into
routing signals for the specialized visual encoders.

Comprehensive experiments conducted on both
established hallucination benchmarks (such as
POPE (Li et al., 2023), AutoHallusion (Wu et al.,
2024), and our VHBench-10) and general LVLM
benchmarks demonstrate that VisionWeaver effec-
tively reduces hallucinations while concurrently
enhancing overall performance.

2 Related Work

2.1 Benchmarks for Hallucinations

In the scope of LVLMs, hallucinations is consid-
ered to generating incorrect or misleading text,
which do not match the content for the given im-
age. Numerous benchmarks evaluate hallucinations
in LVLMs. For instance, POPE (Li et al., 2023)
assesses object existence, often via polling-based
queries. HallusionBench (Guan et al., 2024) probes
entangled language/visual illusions and event un-
derstanding. AMBER (Wang et al., 2024b) offers
an LLM-free, multi-dimensional evaluation of exis-
tence, attribute, and relation hallucinations. While
these benchmarks effectively identify various hallu-
cination types, they often categorize errors broadly
(e.g., general attribute errors) without pinpointing
why these occur in terms of specific visual cogni-
tive failures. This makes it difficult to diagnose the
precise visual processing weaknesses. VHBench-
10 addresses this gap by grounding its taxonomy
in classical vision tasks (color, shape, counting, po-
sition), enabling a fine-grained diagnosis of which
specific visual perceptual abilities are deficient and
contribute to hallucinations.

2.2 Mitigating Hallucinations

Multiple solutions have been proposed recently to
address hallucinations. (Hu et al., 2023; You et al.,
2023) try to solve the problem from the aspect of
data bias, by constructing better-grounded anno-
tated training data. There is also several works
(Wang et al., 2024a; Leng et al., 2023) starting with
decoding strategies for LVLMs. (Jain et al., 2024;
Chen et al., 2024b) are introduced to improve their
overall performance by enhancing the perception



ability of MLLMs. The closest work related to
ours is (He et al., 2024), with the help of multi-
task vision experts, they try to provide a more com-
prehensive and accurate summarization of visual
inputs. Different from (He et al., 2024), we use
a context-aware routing mechanism to choose the
task-specific knowledge from the pool, which can
preserve better performance compared with a fix
visual inputs.

3 The VHBench-10 Benchmark

3.1 Vision-Centric Taxonomy

VHBench-10 is constructed based on critical obser-
vations of current methodologies. Existing hallu-
cination taxonomy approaches (Wang et al., 2023;
Liu et al., 2024a) and benchmarks (Liu et al.,
2024e), while valuable, primarily address coarse-
grained object existence or general inconsistencies.
Existing evaluation protocols often fall short in
capturing the subtleties of fine-grained visual hal-
lucinations, such as minor attribute inaccuracies or
misestimated spatial relations. Furthermore, they
lack the diagnostic granularity to link these errors
to specific deficiencies in underlying visual per-
ceptual abilities. For instance, benchmarks such
as POPE (Li et al., 2023) can effectively evalu-
ate coarse-grained object existence using polling-
based yes/no questions, but they inherently lack the
granularity to diagnose more subtle, fine-grained
visual errors. To address this methodological gap,
we introduce VHBench-10. This comprehensive
benchmark is specifically designed to disentangle
and evaluate hallucinations in LVLMs. By cen-
tering the analysis on core visual competencies,
VHBench-10 facilitates a more structured assess-
ment of the origins and nature of hallucinations.
The core idea behind VHBench-10 is that vi-
sual hallucinations in LVLMs frequently arise from
shortcomings in specific underlying visual process-
ing sub-tasks. To enable a more insightful analysis
beyond a uniform treatment of hallucinations, we
introduce a hierarchical taxonomy of visual under-
standing. This taxonomy focuses on four visual
competencies deemed fundamental to image un-
derstanding: detection, segmentation, localization,
and classification. We concentrate on these four
because an analysis of mainstream vision bench-
marks shows that tasks in these areas represent
81%(Meta, 2025) of dataset annotations. Conse-
quently, they form the foundational basis for the
majority of contemporary vision applications.
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Figure 2: We classify hallucinations into four major
categories, which are further subdivided into 10 fine-
grained sub-tasks. The corresponding number for each
sub-task represents the sample count in our VHBench-
10 benchmark.

3.2 Data Construction

Guided by the vision-centric taxonomy previously
detailed, our analysis of visual understanding fail-
ures resulted in defining ten distinct, fine-grained
hallucination sub-categories. These sub-categories
are systematically derived from the four core visual
competencies: detection, segmentation, localiza-
tion, and classification. VHBench-10 is meticu-
lously structured around these ten sub-categories,
offering a framework for evaluating LVLM per-
formance. Appendix A details these ten sub-
categories. Each category is designed to investigate
specific aspects of visual perception, allowing for
a granular diagnosis of an LVLM’s weaknesses in
visual understanding. For example, classification-
related errors can include misidentifying object
attributes (like color or material) or misclassify-
ing an object entirely. Detection-related hallucina-
tions might involve asserting the presence of non-
existent objects. Localization errors can pertain to
incorrect spatial relationships, and segmentation is-
sues may involve misinterpreting object boundaries.
By evaluating performance across these distinct
categories, VHBench-10 helps shift the focus from
merely identifying hallucinations to pinpointing
the underlying visual perceptual failures.
Following the detailed description of the struc-
ture of VHBench-10 and task categories, we now



present its design principles and data curation
methodology. The central goal was to produce
targeted evaluation samples for each specific sub-
category. This process involved several meticulous
steps:

1. Image and Factual Caption Selection: We
begin by carefully selecting 2,000 images
from the LLaVA-ReCap-118K dataset. Each
chosen image was accompanied by a detailed
and factually accurate caption, serving as the
ground truth (R) for the visual content.

2. Targeted Hallucination Generation: For
each selected image and its factual caption, we
leveraged the GPT-4(Achiam et al., 2023) to
generate a corresponding hallucinated caption
(H). Details of the instructions can be found
in Appendix B. Crucially, each generated hal-
lucination was specifically crafted to align
with one of the ten pre-defined sub-categories
detailed in section 3.2, thereby ensuring that
each sample in VHBench-10 probes a partic-
ular type of visual misinterpretation. This
process resulted in 9,648 unique instances.

3. Dataset Structure: Each sample in
VHBench-10 is formulated as a ternary (/,
R, H), where I represents the image, R is
the real, factual caption, and H is the caption
containing a specific, deliberately injected
hallucination tied to one of our defined
sub-categories. This structure facilitates a
direct comparison of an LVLM’s propensity
to endorse factual versus hallucinated
descriptions.

3.3 Evaluation and Analysis

To validate the utility of VHBench-10 and investi-
gate the impact of different visual encoders on hal-
lucination patterns, we evaluated several LVLMs
equipped with various vision experts, establishing
initial baselines. Specifically, we input image with
real caption (I + R) and image with hallucinated
caption (I + H) into LVLM respectively, and cal-
culate the probability of generating these two com-
binations through perplexity (ppl). A model is con-
sidered to have made an error on a VHBench-10
sample if it deems the hallucinated caption (H)
more probable than the factual caption (R). The
complete evaluation process can be found in Ap-
pendix C.
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Figure 3: Results with different visual experts and our
VisionWeaver on VHBench-10. The evaluation metric
is the normalized error rate. Our method achieves lowest
error rate in all ten tasks.

The results, summarized in Figure 3, reveal dis-
tinct hallucination characteristics correlated with
the choice of visual encoder. For example, LVLMs
utilizing the CLIP (Radford et al., 2021) visual
encoder demonstrated lower error rates in tasks re-
quiring global perception, such as identifying Ob-
ject Presence. In contrast, models employing DI-
NOV2 (Oquab et al., 2023), known for its focus on
fine-grained details, performed better at perceiving
attributes like Color and Action. Furthermore, an
LVLM using the Vary visual encoder, pre-trained
on text recognition tasks, exhibited significantly
lower hallucination rates in text-related visual tasks
within VHBench-10. The full evaluation results
can be found in Appendix C.

These findings underscore the specialized
strengths of different vision experts and how their
individual biases influence an LVLM’s suscepti-
bility to specific types of hallucinations. Notably,
when evaluating our proposed VisionWeaver (de-
tailed in Chapter 4) on VHBench-10, it consistently
achieved the lowest error rates across the full spec-
trum of hallucination categories. This superior per-
formance highlights VisionWeaver’s effectiveness
in adaptively leveraging diverse visual expertise
to mitigate a wide range of hallucinations, thereby
demonstrating its capability in enhancing the relia-
bility of LVLMs.

Dyngmic Action



4 VisionWeaver

4.1 Overview

Generally, LVLMs comprise a visual perception
module, a lightweight projection module, and a
large language model. The visual perception mod-
ule extracts visual information, the projection mod-
ule aligns it with language embeddings, and the
LLM generates text.

Our work focuses on mitigating object hallucina-
tions from the visual perception module. Different
visual encoders exhibit distinct hallucination be-
haviors; for instance, prevalent CLIP-like encoders,
while extracting general semantic features, possess
constrained perception for diverse visual scenes
and fine-grained details. This inherent limitation
motivates the integration of multiple, specialized
vision experts. However, simply fusing features
from these diverse experts (e.g., through feature
addition or concatenation (Tong et al., 2024)) often
yields suboptimal performance.

To address this challenge and effectively har-
ness the complementary strengths of various vi-
sual encoders, we propose VisionWeaver. Instead
of relying on a single, potentially limited encoder
or a simplistic fusion, VisionWeaver aims to in-
telligently integrate multiple types of vision ex-
perts. As illustrated in Figure 4, our method pri-
marily relies on two pivotal modules. The first is
the Context-Aware Routing module, which utilizes
global image features to produce soft weights, guid-
ing the selection of the most appropriate experts
for the given visual input. Second, we propose
a knowledge enhancement module to effectively
fuse the selected knowledge from these experts.
More specifically, we utilize a linear adapter to in-
tegrate the representations from the chosen vision
encoders. Through these modules, VisionWeaver
can comprehensively encode visual inputs from
diverse perspectives, thereby helping to reduce ob-
ject hallucinations by leveraging the specialized
capabilities of each integrated encoder.

4.2 Routing Vision Experts Representations

Context-Aware Expert Selection The context-
aware expert routing mechanism leverages the
global semantic features of an image to compute
adaptive soft routing weights for selecting appro-
priate visual experts.

Concretely, we begin by extracting visual fea-
tures from each expert. For subsequent routing, the
outputs from all visual experts are combined us-

ing weighted fusion. The visual feature extraction
process is defined as:

Zi:gi(X), iIl,...,N (1)

where g; denotes the i-th visual experts, Z’ repre-
sents the i-th encoded feature.

To better guide the model in selecting a visual
expert model suitable for the current scenario, it
is essential to pick out a token that carries the key
visual signals of the image. Previous studies have
shown that the [CLS] token in the CLIP image
encoder captures the key visual information of the
image (Liang et al., 2022). Therefore, we select
the [CLS] token as the indicator to guide the model.
Next, based on the [CLS] token output by the CLIP
image encoder, VisionWeaver learns to allocate the
weight of each vision expert. The process can be
formulated as follows:

{Ic,Ip} = ¢(X) 2)

A = f(Io) (3)

W = softmax A; )
1<j<N

where ¢ is the CLIP encoder, I, Ip are the CLS
and patch token features after CLIP encoding, re-
spectively. f : R? — RY, D is the feature dimen-
sion of the CLIP. By now, we have already obtained
the top-k vision experts and corresponding impor-
tance scores.

Expert Representation Fusion. In the CLIP vi-
sion encoder, Patch Token is obtained by dividing
the input image into non-overlapping patches, flat-
tening them into 1-dimensional vectors, and then
projecting them through a linear layer. It mainly
carries the local visual information of the image
patches, and in the Transformer encoder, Patch To-
kens interact with each other via the self-attention
mechanism to help the model capture the depen-
dencies between different image regions and learn
global features, being arranged in the spatial order
of the patches in the sequence. To better fuse the
representation from the vision experts, we propose
a simple yet effective way by aligning the router-
guided representation and the patch token output
by CLIP. The process can be formulated as:

Y=WZ;,i=1,...,N 5)
i=1p+Y (6)

Here, Z; denotes the representation from the i-th
vision expert, and W; is the corresponding learned
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Figure 4: The pipeline of VisionWeaver. VisionWeaver performs a context-aware routing to solve a given question.
The context-aware expert routing is performed in the first stage to select context-relevant experts. Next, we fuse the
task-specific knowledge from these selected experts in a fine-grained manner.

weight. The aggregated expert representation is
denoted as Y, which shares the same dimensional-
ity as both Z: and the CLIP patch token Ip. The
final visual representation I is obtained by com-
bining the expert features with the original CLIP
representation through a residual-style connection.

The final output is then passed to the projector
to map it into the LLM’s embedding space(labeled
as "Image Feature" in Fig.4).

5 Experiments

The present experiments were conducted based
on the LLaVA-1.5 (Liu et al., 2024b) architecture.
Specifically, the LLaVA-1.5 settings were followed,
with CLIP-ViT-L-336px serving as the base visual
encoder and a two-layer MLP acting as the visual
projector. Concurrently, we substituted the LLM
with the most recent versions of Llama3.2-Instruct-
3B (Team, 2024) and Qwen2.5-Instruct-3B (Qwen
et al., 2025). This substitution was made to ascer-
tain the applicability of our method to the latest
LLMs. The 3B version was selected due to its suit-
ability for end-side deployment and its prevalent
use in devices such as cell phones.

For multiple vision encoders in VisionWeaver,
inspired by EAGLE (Shi et al., 2024), we chose
ConvNext (Liu et al.,, 2022), EVA-02 (Fang
et al., 2024), SAM (Kirillov et al., 2023), DI-
NOvV2 (Oquab et al., 2023), and Vary (Wei et al.,
2025) as task-specific visual encoders, which were
pre-trained on different downstream tasks with dif-
ferent visual capabilities. In order to align with

CLIP encoders when processing images, we use in-
terpolation to fix the input resolution of all encoders
to 336x336 and the output token to 576. The output
dimension is fixed to 1024 using a linear adapter.

5.1 Implementation Details

Our training pipeline consists of two stages: pre-
training and supervised fine-tuning. For the pre-
training phase, we trained our model on the LLaVA-
Pretrain (Liu et al., 2024b) dataset using the
AdamW optimizer with a batch size of 256 and
a learning rate of 2 x 107 for 1 epoch. At
this stage, we only adjust all projectors. Subse-
quently, in the supervised fine-tuning phase, we
also use the AdamW optimizer to perform 1 epoch
of fine-tuning using the LLaVA-Finetune (Liu et al.,
2024b) dataset at batch size 128 and learning rate
2 x 107°. All parameters are adjusted at this stage.
We further discuss the impact of parameter effi-
ciency on performance in Appendix F. Our exper-
iments were performed on 8 Nvidia A100 GPUs,
with two phases using 8 and 16 hours, respectively.

5.2 Main Results

Hallucination Mitigation Evaluation of our Vi-
sionWeaver method for mitigating hallucinations
in LVLMs was conducted using POPE (Li et al.,
2023) and AutoHallusion benchmarks (Wu et al.,
2024). POPE evaluates the level of hallucination in
LVLMs by asking if there is an object O in the im-
age. AutoHallusion evaluates the ability of LVLMs
to combat hallucinations by creating conflicting



Table 1: Hallucination evaluation results on POPE (Li et al., 2023) and AutoHallusion (Wu et al., 2024). VE stands
for Visual Encoder and ME stands for Multi Encoder, including CLIP, Convnext, DINOv2, EVA-02, SAM, Vary.
Avg. is the average of the F1 metric from POPE and the Overall Accuracy metric from AutoHallusion.

isi POPE AutoHallusi

LLM Size VE V\‘;lsmn utoHallusion Ave.

€aVer | Accuracy Precision Recall F1 | Overall Synthetic Real-World
Vicuna B CLIP X 87.2 93.8 79.6 86.1 44.5 46.6 41.8 65.3
CLIP X 87.7 934 81.1 86.8 443 45.7 44.8 65.6
Llama3.2 3B ME X 88.7 94.8 81.9 87.9 47.6 46.3 49.2 67.8
ME 89.5 95.1 83.3 8838 48.2 47.0 49.6 68.5
CLIP X 85.7 93.9 78.0 852 532 51.5 55.6 69.2
QOwen2.5 3B ME X 85.7 93.9 780 852 53.9 522 56.1 69.6
ME 87.7 95.7 79.3 86.7 54.3 52.6 56.5 70.5

images and inducing hallucinations in the model. (ME) alone.

Table 1 shows the effectiveness of our method in
mitigating hallucinations. We used three pedestal
models: Vicuna-7B, which is the implementa-
tion of LLaVA-1.5 (Liu et al., 2024b), Llama3.2-
Instruct3B, and Qwen2.5-Instruct-3B, with the re-
sults of Vicuna-7B serving as the baseline for our
approach. The results reveal that: (1) The underly-
ing architecture of a model can have a more signifi-
cant impact on performance than its scale. The 3B
models generally outperformed Vicuna-7B, con-
firming our suspicion that the newer model has
greater capacity. (2) On the POPE benchmark,
Llama3.2 with Multi Encoders and VisionWeaver
achieved the strongest performance. In the Auto-
Hallusion evaluation, Qwen2.5 demonstrated su-
perior resistance to hallucination across both syn-
thetic and real-world scenarios. Its overall accuracy
was notably higher than both Vicuna and Llama3.2.
(3) The average metric shows Qwen2.5-3B with
Multi Encoders and VisionWeaver achieving the
highest overall performance. This metric suggests
that our VisionWeaver provides the most robust
performance across different types of hallucination
challenges.

Perceptual Perspective  To demonstrat the broad
generalizability of our method, we evaluated Vi-
sionWeaver on five standard LVLM benchmarks:
MME (Fu et al., 2024), MMStar (Chen et al.,
2024a), MMBench (Liu et al., 2024d), OCRBench
(Liu et al., 2024f) and MathVista (Lu et al., 2024).
Table 3 presents these evaluation results. We tested
it with Llama3.2-3B and Qwen2.5-3B, comparing
configurations where VisionWeaver was integrated
(ME + VW) against baseline setups using a stan-
dard Visual Encoder (CLIP) and Multiple Encoders

The experimental results demonstrate the con-
sistent effectiveness of VisionWeaver across mul-
tiple benchmarks. It shows notable enhancements
in MMBench and OCRBench tasks for Llama3.2,
while delivering improvements in MME and MM-
Star benchmarks for Qwen2.5. These results con-
sistently show that VisionWeaver is effective at
improving model performance.

5.3 Systematic Analysis

In order to further validate the effectiveness of our
VisionWeaver, we perform the validation from each
of the following two perspectives: expert selection
as well as fusion strategy. All experiments were
performed using the Llama3.2-3B-Instruct model.
The results are shown in Table 2.

Expert Selection  We investigated the impact of
different visual experts (VE) by conducting exper-
iments on both POPE and AutoHallusion bench-
marks. The results, as shown in Table 2, led to
two key observations. First, different visual experts
exhibited varying strengths and performance levels.
Second, we found that simply increasing the num-
ber of visual encoders does not guarantee better
performance. For instance, using all six encoders
with additive fusion resulted in an average perfor-
mance of 67.9%, which is slightly lower than the
68.4% achieved using only four specific encoders
(CLIP, ConvNext, EVA, and SAM) with the same
fusion strategy.

Fusion Strategy To evaluate the effectiveness of
our proposed VisionWeaver, we conducted compre-
hensive experiments comparing three fusion strate-
gies: feature summation (Add), feature concatena-
tion (Concat), and our VisionWeaver. These strate-



Table 2: Results of a systematic analysis of expert selection and fusion strategies.

VE Fusion POPE AutoHallusion Ave,
CLIP ConvNext EVA SAM DINOv2 Vary Acc P R F1 | Acc S R

v - - - - - - 87.7 934 81.1 86.8 | 443 457 448 | 656
- v - - - - - 86.6 904 819 859 | 480 470 492 | 67.0
- - v - - - - 87.0 877 860 868 | 47.6 474 479 | 67.1
- - - v - - - 80.6 77.8 85.6 815|459 457 461 | 63.7
- - - v - - 87.7 919 826 87.0 | 415 420 409 | 643

- - - - - v - 742 69.1 874 77.1 | 46.0 46.0 46.0 | 61.6
v v v - - - Add 889 944 827 882 | 443 440 446 | 663
v v v v - - Add 89.6 939 846 891 | 476 478 472 | 684
v v v v v - Add 882 954 802 87.1 | 449 466 429 | 66.0
v v v v v v Add 89.0 949 824 882|476 463 492 | 679
v v v v v v Concat 88.7 948 819 879 | 426 423 43.0 | 653
v v v v v v VisionWeaver | 89.5 95.1 833 88.8 | 48.2 470 49.6 | 68.5

Table 3: Evaluation results of generalized vision bench-
marks. VE stands for Visual Encoder, ME stands for
Multi Encoders and VW stands for our VisionWeaver.

LLM VE VW ‘ MME MMStar MMB OCRB MathVista
CLIP X 1382.15 37.54 67.41 31.41 27.14
Llama3.2  ME X 1375.47 37.97 67.14 33.93 27.67
ME v 1392.45 39.86 69.76  35.61 29.63
CLIP X 144426 40.94 64.09 29.47 31.76
Qwen2.5  ME X 1440.91 41.57 67.84 32.72 33.08
ME v 1465.92 43.65 69.24  36.48 35.81

gies were assessed using all six visual experts on
both POPE and AutoHallusion benchmarks, with
results detailed in Table 2. The experimental results
reveal several key findings. First, feature summa-
tion demonstrated superior performance compared
to feature concatenation. Summation achieved
a POPE Accuracy of 89.0% and an AutoHallu-
sion Accuracy of 47.6% (Avg. 67.9%), whereas
concatenation resulted in a POPE Accuracy of
88.7% and an AutoHallusion Accuracy of 42.6%
(Avg. 65.3%). This performance difference can
be attributed to the challenges posed by the high-
dimensional feature space created through concate-
nation, which potentially complicates the projec-
tion of visual features into the embedding space of
the LLM. Among all three fusion strategies, Vision-
Weaver achieved optimal performance, delivering
top scores with 89.5% POPE accuracy and 48.2%
AutoHallusion accuracy (Avg. 68.5%). These re-
sults suggest that VisionWeaver more effectively
integrates complementary information from differ-
ent visual experts while maintaining the structural
integrity of the feature space, leading to more ef-

fective hallucination suppression.

6 Limitations

Despite exploring fine-grained hallucinations of
LVLMs, our work still has limitations. First, al-
though our benchmark covers the most realistic
problems as well as possible, there are still about
20% of hard-to-categorize realistic samples that
are difficult to classify into this benchmark because
they involve more complex scenarios and require
more fine-grained design. Second, our benchmark
is built based on GPT-4, which inevitably intro-
duces a slight error. Finally, due to the limitation of
computational resources, our experiments are built
on several smaller scale models.

7 Conclusion

In this paper, we present the VHBench-10, a new
benchmark that systematically classifies the visual
hallucinations of the LVLM into 10 different cate-
gories, allowing for their fine-grained analysis. By
replacing the visual encoder of LVLM , we found
that different encoders lead to diverse hallucinatory
tendencies. Based on these insights, we propose
VisionWeaver, a powerful LVLM architecture that
incorporates a context-aware expert routing mech-
anism and a knowledge augmentation module to
efficiently leverage task-specific visual expertise.
Extensive experiments demonstrate the effective-
ness of our approach, establishing VIsionWeaver
as a powerful solution for alleviating hallucinations
in LVLMs. This work opens new avenues for de-
veloping more reliable and accurate LVLMs.
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A Ten Hallucination Sub-Categories

To provide a clear and structured understanding of
the various errors that can occur in vision-language
models, this section meticulously defines and cate-
gorizes ten distinct hallucination sub-types. These
categories are grouped under broader error classes
such as Detection, Segmentation, Localization, and
Classification Hallucinations, offering a compre-
hensive taxonomy for analyzing model failures.

1. Detection Hallucination: In computer vision
tasks requiring precise object recognition and
localization, we categorize detection halluci-
nations into three distinct subtypes based on
error manifestations:

(a) Category Hallucination (Object Pres-
ence Misidentification): Occurs when
the model incorrectly identifies the pres-
ence of an object category absent in the
visual context. Example: While the im-
age solely depicts a beach and sea, the
model erroneously reports "a man surf-
ing".

(b) Counting Hallucination (Object Quan-
tity Misestimation): Arises from the
model’s failure to accurately enumerate
instances of detected objects. Example:
An image containing three felines is in-
correctly described as "two cats playing".

(¢) Occlusion Hallucination (Partial Obser-
vation Fallacy): Results from making
holistic object judgments based on in-
complete visual evidence. Example: In-
ferring a complete car’s presence solely
from visible tire segments.

2. Segmentation Hallucination: Unlike object
detection tasks that operate at the instance
level, segmentation tasks require a pixel-level
understanding of object boundaries and spatial
characteristics. We categorize segmentation
hallucination into two subtypes:

(a) Text Hallucination: Character-level mis-
interpretation in scene text recognition.
This occurs when models confuse visu-
ally similar glyphs despite accurate lo-
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calization. Example: Misrecognizing
"Cloud" as "Clown" due to font artifacts.

(b) Shape Hallucination: Geometric distor-
tion in object contour perception. Pixel-
level errors in boundary prediction lead
to incorrect shape interpretations. Exam-
ple: Describing a quadrilateral table as
circular when partial occlusion disrupts
edge continuity.

3. Localization Hallucination: Refers to sys-

tematic errors in spatial perception where
models misinterpret coordinate systems or ge-
ometric relationships. We identify two distinct
manifestations:

(a) Absolute Positioning Hallucination:
Failure in Cartesian coordinate compre-
hension. Models exhibit metric measure-
ment inaccuracies in defined coordinate
frames. Example: Locating a tree at
(x1,y1) while its true position is (z2, y2),
resulting in "left-right" inversion descrip-
tions.

(b) Relative Positioning Hallucination:
Breakdown in spatial relation reasoning.
Models fail to preserve topological re-
lationships between entities. Example:
A car approaching from behind is local-
ized as preceding the pedestrian due to
motion parallax misinterpretation.

4. Classification Hallucination: Systematic er-

rors in categorical attribution across visual-
semantic alignment. We dissect this phe-
nomenon through three perceptual failure
modes:

(a) Color Hallucination: Spectral sensitiv-
ity breakdown in color perception. Mod-
els confuse the color of the object despite
correct object recognition. Example: De-
scribing a red car as blue.

(b) Action Hallucination: Temporal-
semantic disconnection in motion
parsing. Models misinterpret static
poses as dynamic actions. Example:
Classifying a static "holding basketball"
pose as the dynamic "dunking" action
due to lack of temporal context.

(c) Relative Interaction Hallucination:
Failure in social signal processing. Mod-
els incorrectly infer interpersonal dynam-



ics from spatial configurations. Exam-
ple: Interpreting two agents facing each
other with 1.2m distance as "handshak-
ing" rather than "conversing".

B Detailed Benchmark Construction

To elucidate the methodology behind the creation
of our novel benchmark, VHBench-10, this section
provides a step-by-step account of its construction
process. The aim is to ensure transparency and re-
producibility in how the benchmark was developed
to systematically evaluate specific hallucination
types.

For the VHBench-10 benchmark construction,
each image was paired with only one type of hal-
lucination in each generated instance. The process
followed these steps:

1. We randomly selected 2,000 images with
their corresponding detailed captions from the
LLaVA-ReCap-118K dataset.

For each image-caption pair, we developed 10
different specialized prompts—one for each
type of hallucination (Category, Counting, Oc-
clusion, Text, Shape, Absolute Positioning,
Relative Positioning, Color, Action, and Rela-
tive Interaction).

. Each prompt directed GPT-4 to modify the
original caption to introduce a specific type of
hallucination while maintaining consistency
with the rest of the description. The general
structure of the prompt provided to GPT-4 is
detailed in Table 8. For example, when cre-
ating text hallucinations, specific instructions
within this prompt structure guided GPT-4 to:

* Determine if there was modifiable text
content (such as signs, books, screen dis-
plays).

* If present, modify only the text content
interpretation while keeping other ele-
ments unchanged.

* Maintain the original level of detail and
keep the context plausible.

4. We applied all 10 prompts (each tailored for a
specific hallucination type but following the
general structure outlined in Table 8) to each
image-caption pair. Depending on the image
content, an image might yield between 0-10
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hallucinated captions. For instance, if an im-
age did not contain any text, it would not gen-
erate a text hallucination caption. Similarly, if
an image did not contain multiple objects, it
might not support a counting hallucination.

. Importantly, each generated hallucinated cap-
tion contained exactly one type of hallucina-
tion (not multiple types), making it possible to
precisely evaluate model performance against
specific hallucination categories.

. This resulted in our final dataset of 9,648 in-
stances, each containing a ternary of (I, R,
H) where I is the image, R is the real caption,
and H is the caption with a specific type of
hallucination.

This approach allowed us to create a more focused
benchmark that could systematically evaluate an
LVLM’s vulnerability to specific types of halluci-
nations.

C Evaluation Process on VHBench-10

To detail how models are assessed using our bench-
mark, this section describes the specific evaluation
protocol employed on VHBench-10. This includes
the input prompting strategy and the metric used
to determine model error rates against different
hallucination types.

A single sample of our VHBench-10 contains a
ternary (I, R, H). We utilize the following prompt,
where the model is given either R or H for the
<caption> field:

'<image>\nDescribe the image: <caption>'
We input (I + R) and ({ + H) to the model sepa-
rately to test the PPL of its output.

If it exhibits PPL(I + R) > PPL(I + H),
it means the model erroneously assigns a higher
probability to H over R, which means the model is
wrong. We replaced the vision encoder of LLaVA-
1.5 with different experts and performed the above
operation on all samples of VHBench-10, record-
ing the error rate of each expert.

We evaluated the error rates of the original
LLaVA (CLIP), five different expert encoders, and
our VisionWeaver on 10 hallucination types. The
results are shown in Table 4.

D Details of Parameter Efficiency

To demonstrate the effectiveness of our proposed
method in resource-limited settings, we conducted
two sets of experiments:



Table 4: Error rates of different visual encoders on various vision tasks.

Method Category Color Shape Action Counting Text Absolute Position Occlusion Relative Position Relative Interaction
CLIP 2.04 439 430 473 7.25 9.43 11.02 543 10.27 6.82
ConvNext 2.21 1.67 1.31 1.17 3.76 8.36 11.19 2.26 8.41 1.75
DINO 2.81 1.11 1.68 0.95 4.16 14.29 8.09 2.71 6.99 2.92
EVA 3.47 1.98 2.06 2.11 5.50 10.24 7.23 2.26 8.93 3.12
SAM 4.47 3.03 1.87 1.24 4.97 16.17 11.19 1.81 8.93 2.92
Vary 4.96 11.50  1.78 1.17 5.64 8.36 14.11 2.71 9.82 3.12
VisionWeaver 1.49 0.31 0.84 0.51 3.36 7.28 6.37 1.81 5.43 1.75

1. Freeze the vision part and only full fine-tune
the projectors and LLM.

2. Freeze the vision part and fine-tune the pro-
jectors and LLM using LORA.

We used POPE to evaluate our method. As
shown in Table 5, our approach maintains its ad-
vantages in resource-constrained scenarios as well.

Table 5: Performance of different training strategies.

Method Accuracy Precision Recall F1
LLaVA-1.5-Llama3.2-3B (w/o vision) 87.0 94.6 785 859
LLaVA-1.5-Llama3.2-3B (w/ vision) 87.7 93.4 81.1 86.8
VisionWeaver (w/o vision, LORA) 88.1 94.7 80.7 87.1
VisionWeaver (w/o vision) 88.6 95.2 814 878
VisionWeaver (w/ vision) 89.5 95.1 833 88.8

E Comparison with SOTA

To demonstrate that our VisionWeaver can alleviate
model hallucinations compared to competing meth-
ods, this section presents a comparative analysis of
VisionWeaver against other state-of-the-art (SOTA)
methods on the POPE benchmark. These methods
are:

1. SEOSS(Yue et al., 2024) proposes a method
to reduce multimodal hallucinations. It
achieves this by improving how models make
the end-of-sequence decision. This adjust-
ment aims to prevent the generation of un-
grounded information.

2. OHD-Caps(Liu et al., 2024e) introduces
a counterfactual data augmentation method.
This method is designed to mitigate object
hallucinations in CLIP models. It is also ef-
fective for larger vision-language models that
utilize CLIP as their visual encoder.
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3. DAMRO(Gong et al., 2024) presents a

training-free strategy to address object hal-
lucinations in Large Vision-Language Models
(LVLMs). The method targets hallucinations
caused by misdirected attention to background
tokens, an issue often linked to the visual en-
coder. Specifically, the DAMRO strategy em-
ploys the Vision Transformer’s CLS token to
identify and then suppress the influence of
these outlier tokens during the decoding pro-
cess.

4. DeCo(Wang et al., 2024a) develops a training-

free dynamic correction decoding strategy
for Multimodal Large Language Models
(MLLMs). It addresses hallucinations that oc-
cur when correct visual information, initially
recognized in earlier model layers, is sup-
pressed by strong language priors in deeper
layers. The DeCo strategy mitigates these hal-
lucinations by leveraging this preceding-layer
knowledge to adjust the final output logits.

As shown in Table 6, we have compared our ap-
proach on POPE against other SOTA methods, and
the results demonstrate that our method performs
competitively with these methods.

Table 6: Performance Comparison on POPE Dataset.

Method Accuracy Precision Recall F1

LLaVA-1.5-Llama3.2-3B 87.7 934 81.1  86.8
SEOSS (Yue et al., 2024) 86.8 93.5 795  86.0
OHD-Caps (Liu et al., 2024e) 81.2 90.9 85.1 879
DAMRO (Gong et al., 2024) 85.3 88.8 81.1 847
DeCo (Wang et al., 2024a) - - - 86.7
VisionWeaver 89.5 95.1 833 888




F Computational Efficiency of Our
Method

To underscore the practical viability of our ap-
proach for real-world applications, this section elab-
orates on the design aspects that contribute to its
computational efficiency and presents empirical
measurements of inference time.

Our approach can avoid introducing significant
latency during inference. This is achieved through
several key design aspects:

1. Lightweight Visual Encoders: Our n visual
encoder experts have a combined size of ap-
proximately 1 billion parameters (for all 5 ex-
perts), which is relatively small compared to
the language model (LLM) component (over
3 billion parameters). As a result, the main
computational load resides within the LLM
component.

. Efficient Token Aggregation: The Vision-
Weaver module performs a weighted aggrega-
tion of visual tokens from various experts onto
the output tokens of the CLIP encoder. Cru-
cially, this process maintains the same num-
ber of visual tokens that are input to the large
model. This prevents any additional computa-
tion time being introduced in the large model
component.

. KV Caching Utilization: During the infer-
ence stage, we utilize KV caching. This
means that our method processes the image
through the experts only once, during the pre-
fill phase. Following this, all visual tokens are
cached, which eliminates redundant computa-
tions in the subsequent generation steps.

We empirically measured the average inference
time with and without the VisionWeaver module
when generating 100 random captions. The results
are presented in Table 7.

Table 7: Comparison of average inference time.

Methods Prefill Time (ms) Inference Time (ms) Prefill Percentage (%)

LLaVA-1.5-Llama3.2-3B 50.99 1273.20 3.85

VisionWeaver 99.46 1201.52 7.64
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Table 8: Unified Prompt Template for Generating Spe-
cific Hallucinations.

Prompt Template

# Task Description

Based on the input image description, determine if
there are modifiable

{{MODIFICATION_TASK_SPECIFICS}}.
If present, modify only the
{{MODIFICATION_TASK_SPECIFICS}}

while keeping other elements unchanged.

# Input Format

Image description text

# Output Format

If no {{EXISTENCE_CONDITION_DESCRIPTION}}
exists, output: NO

If exists, output modified description

# Guidelines

* First determine if
{{EXISTENCE_CONDITION_DESCRIPTION}}
exist

 Modified {{MODIFIED_ELEMENTS_NAME}} must
be logically consistent

* {{UNCHANGED_CONSTRAINT_TEXT3}}

* Maintain original level of detail

* Context should remain plausible

# Input
{input}

# Output
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