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Abstract

Object hallucination in Large Vision-Language001
Models (LVLMs) significantly impedes their002
real-world applicability. As the primary compo-003
nent for accurately interpreting visual informa-004
tion, the choice of visual encoder is pivotal. We005
hypothesize that the diverse training paradigms006
employed by different visual encoders instill007
them with distinct inductive biases, which leads008
to their diverse hallucination performances. Ex-009
isting benchmarks typically focus on coarse-010
grained hallucination detection and fail to cap-011
ture the diverse hallucinations elaborated in our012
hypothesis. To systematically analyze these013
effects, we introduce VHBench-10, a compre-014
hensive benchmark with approximately 10,000015
samples for evaluating LVLMs across ten fine-016
grained hallucination categories. Our evalu-017
ations confirm encoders exhibit unique hal-018
lucination characteristics. Building on these019
insights and the suboptimality of simple fea-020
ture fusion, we propose VisionWeaver, a novel021
Context-Aware Routing Network. It employs022
global visual features to generate routing sig-023
nals, dynamically aggregating visual features024
from multiple specialized experts. Comprehen-025
sive experiments confirm the effectiveness of026
VisionWeaver in significantly reducing hallu-027
cinations and improving overall model perfor-028
mance.029

1 Introduction030

Large Vision-Language Models (LVLMs), such as031

GPT-4V (Achiam et al., 2023) and LLaVA (Liu032

et al., 2024c), demonstrate remarkable abilities033

to understand (Hao et al., 2023; Kojima et al.,034

2022) and generate (Lian et al., 2023; Zhou et al.,035

2023) content from visual inputs. Despite these036

strengths, the models frequently exhibit object hal-037

lucinations—describing objects or attributes not038

present in the provided images. This tendency crit-039

ically undermines their reliability and applicability040

in real-world scenarios (Mai et al., 2023; Tang et al.,041

Category Hallucination

What is on the table?

There is a pizza on the table...

Color Hallucination

What is the woman wearing in the picture?

...adorned in a black shirt with yellow stripes...

Relative Position Hallucination

Please decribe the person in the picture.

A woman is positioned at the right of a table...

Text Hallucination

..."SHAKES" is written on the woman's cloth...

Please decribe what is written on the woman's cloth.

Figure 1: Examples of common hallucinations produced
by LVLMs, such as misidentifying object categories,
incorrect color descriptions, erroneous relative posi-
tioning, and inaccurate text recognition. It represent
the types of fine-grained visual errors that our vision-
centric VHBench-10 benchmark is designed to evaluate
across categories like detection, segmentation, localiza-
tion, and classification.

2024; Zhou et al., 2023; Huang et al., 2024; Liu 042

et al., 2023). 043

The choice of visual encoder within LVLMs is 044

critical. This selection directly influences the ca- 045

pacity of model for accurate visual interpretation, 046

which consequently affects its propensity to gener- 047

ate hallucinations. Furthermore, variations in train- 048

ing paradigms and architectural designs mean that 049

different visual encoders introduce distinct biases 050

and capabilities into LVLMs. These differences 051

subsequently lead to diverse hallucination patterns 052

observed in downstream tasks. For example, the 053

widely adopted CLIP (Radford et al., 2021) visual 054

encoder excels at vision-text alignment, largely 055

due to its pre-training on extensive image-text 056

datasets. However, it is less effective at captur- 057

ing fine-grained visual details when compared to 058

vision-focused models such as DINOv2 (Oquab 059

et al., 2023). 060
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To systematically investigate how different vi-061

sual encoders influence hallucination behaviors in062

LVLMs, a more nuanced understanding of hallu-063

cination types is necessary. Existing benchmarks,064

such as POPE (Li et al., 2023), primarily assess065

object hallucinations. Their evaluation typically066

focuses on whether models generate descriptions067

of non-existent objects. While this methodology068

is valuable, it treats all hallucinations uniformly.069

This overlooks the possibility that such errors may070

stem from failures in distinct visual sub-tasks.071

These sub-tasks include object detection, segmenta-072

tion, localization, or classification, each demanding073

unique visual perception capabilities. Deficiencies074

in any such capability can, in turn, lead to specific075

types of hallucinations.076

To address this issue, we propose VHBench-077

10, a comprehensive vision-centric hallucination078

benchmark designed to evaluate LVLMs across ten079

fine-grained hallucination categories. These cate-080

gories are systematically grouped into four main081

types: detection, segmentation, localization, and082

classification. VHBench-10 consists of approxi-083

mately 10,000 samples, with each sample including084

an image, a detailed factual description, and a cor-085

responding description that contains a specific hal-086

lucination. By measuring the likelihood of LVLMs087

generating hallucinated versus factual descriptions,088

VHBench-10 facilitates a precise diagnosis of defi-089

ciencies in visual perception capabilities and offers090

targeted insights for model refinement.091

Based on evaluations conducted on VHBench-092

10, we observe that the choice of visual encoder093

significantly influences hallucination behavior. For094

instance, an LVLM employing the Vary visual en-095

coder, which is specifically pre-trained on text096

recognition tasks, illustrates this. Such a model097

exhibits markedly lower hallucination rates in text-098

related visual tasks compared to its performance in099

other task domains.100

Based on these findings, a natural question101

arises: Can integrating diverse visual encoders102

help LVLMs reduce hallucinations across tasks103

and lower overall hallucination propensity? How-104

ever, our experiments (detailed in Sec 5.3) revealed105

that simple feature fusion techniques for visual106

encoders (e.g., feature addition or feature concate-107

nation (Tong et al., 2024)) often yield suboptimal108

performance compared to using these encoders in-109

dividually. To address this challenge, we intro-110

duce VisionWeaver, a Context-Aware Routing Net-111

work. Guided by the LVLM’s global visual un-112

derstanding, this network dynamically aggregates 113

visual features from multiple specialized encoders. 114

Specifically, our proposed adaptive routing module 115

utilizes the [CLS] token feature from CLIP as a 116

primary input. This feature, which encapsulates 117

global image context and key visual information, is 118

then processed by the module and transformed into 119

routing signals for the specialized visual encoders. 120

Comprehensive experiments conducted on both 121

established hallucination benchmarks (such as 122

POPE (Li et al., 2023), AutoHallusion (Wu et al., 123

2024), and our VHBench-10) and general LVLM 124

benchmarks demonstrate that VisionWeaver effec- 125

tively reduces hallucinations while concurrently 126

enhancing overall performance. 127

2 Related Work 128

2.1 Benchmarks for Hallucinations 129

In the scope of LVLMs, hallucinations is consid- 130

ered to generating incorrect or misleading text, 131

which do not match the content for the given im- 132

age. Numerous benchmarks evaluate hallucinations 133

in LVLMs. For instance, POPE (Li et al., 2023) 134

assesses object existence, often via polling-based 135

queries. HallusionBench (Guan et al., 2024) probes 136

entangled language/visual illusions and event un- 137

derstanding. AMBER (Wang et al., 2024b) offers 138

an LLM-free, multi-dimensional evaluation of exis- 139

tence, attribute, and relation hallucinations. While 140

these benchmarks effectively identify various hallu- 141

cination types, they often categorize errors broadly 142

(e.g., general attribute errors) without pinpointing 143

why these occur in terms of specific visual cogni- 144

tive failures. This makes it difficult to diagnose the 145

precise visual processing weaknesses. VHBench- 146

10 addresses this gap by grounding its taxonomy 147

in classical vision tasks (color, shape, counting, po- 148

sition), enabling a fine-grained diagnosis of which 149

specific visual perceptual abilities are deficient and 150

contribute to hallucinations. 151

2.2 Mitigating Hallucinations 152

Multiple solutions have been proposed recently to 153

address hallucinations. (Hu et al., 2023; You et al., 154

2023) try to solve the problem from the aspect of 155

data bias, by constructing better-grounded anno- 156

tated training data. There is also several works 157

(Wang et al., 2024a; Leng et al., 2023) starting with 158

decoding strategies for LVLMs. (Jain et al., 2024; 159

Chen et al., 2024b) are introduced to improve their 160

overall performance by enhancing the perception 161
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ability of MLLMs. The closest work related to162

ours is (He et al., 2024), with the help of multi-163

task vision experts, they try to provide a more com-164

prehensive and accurate summarization of visual165

inputs. Different from (He et al., 2024), we use166

a context-aware routing mechanism to choose the167

task-specific knowledge from the pool, which can168

preserve better performance compared with a fix169

visual inputs.170

3 The VHBench-10 Benchmark171

3.1 Vision-Centric Taxonomy172

VHBench-10 is constructed based on critical obser-173

vations of current methodologies. Existing hallu-174

cination taxonomy approaches (Wang et al., 2023;175

Liu et al., 2024a) and benchmarks (Liu et al.,176

2024e), while valuable, primarily address coarse-177

grained object existence or general inconsistencies.178

Existing evaluation protocols often fall short in179

capturing the subtleties of fine-grained visual hal-180

lucinations, such as minor attribute inaccuracies or181

misestimated spatial relations. Furthermore, they182

lack the diagnostic granularity to link these errors183

to specific deficiencies in underlying visual per-184

ceptual abilities. For instance, benchmarks such185

as POPE (Li et al., 2023) can effectively evalu-186

ate coarse-grained object existence using polling-187

based yes/no questions, but they inherently lack the188

granularity to diagnose more subtle, fine-grained189

visual errors. To address this methodological gap,190

we introduce VHBench-10. This comprehensive191

benchmark is specifically designed to disentangle192

and evaluate hallucinations in LVLMs. By cen-193

tering the analysis on core visual competencies,194

VHBench-10 facilitates a more structured assess-195

ment of the origins and nature of hallucinations.196

The core idea behind VHBench-10 is that vi-197

sual hallucinations in LVLMs frequently arise from198

shortcomings in specific underlying visual process-199

ing sub-tasks. To enable a more insightful analysis200

beyond a uniform treatment of hallucinations, we201

introduce a hierarchical taxonomy of visual under-202

standing. This taxonomy focuses on four visual203

competencies deemed fundamental to image un-204

derstanding: detection, segmentation, localization,205

and classification. We concentrate on these four206

because an analysis of mainstream vision bench-207

marks shows that tasks in these areas represent208

81%(Meta, 2025) of dataset annotations. Conse-209

quently, they form the foundational basis for the210

majority of contemporary vision applications.211
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Figure 2: We classify hallucinations into four major
categories, which are further subdivided into 10 fine-
grained sub-tasks. The corresponding number for each
sub-task represents the sample count in our VHBench-
10 benchmark.

3.2 Data Construction 212

Guided by the vision-centric taxonomy previously 213

detailed, our analysis of visual understanding fail- 214

ures resulted in defining ten distinct, fine-grained 215

hallucination sub-categories. These sub-categories 216

are systematically derived from the four core visual 217

competencies: detection, segmentation, localiza- 218

tion, and classification. VHBench-10 is meticu- 219

lously structured around these ten sub-categories, 220

offering a framework for evaluating LVLM per- 221

formance. Appendix A details these ten sub- 222

categories. Each category is designed to investigate 223

specific aspects of visual perception, allowing for 224

a granular diagnosis of an LVLM’s weaknesses in 225

visual understanding. For example, classification- 226

related errors can include misidentifying object 227

attributes (like color or material) or misclassify- 228

ing an object entirely. Detection-related hallucina- 229

tions might involve asserting the presence of non- 230

existent objects. Localization errors can pertain to 231

incorrect spatial relationships, and segmentation is- 232

sues may involve misinterpreting object boundaries. 233

By evaluating performance across these distinct 234

categories, VHBench-10 helps shift the focus from 235

merely identifying hallucinations to pinpointing 236

the underlying visual perceptual failures. 237

Following the detailed description of the struc- 238

ture of VHBench-10 and task categories, we now 239
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present its design principles and data curation240

methodology. The central goal was to produce241

targeted evaluation samples for each specific sub-242

category. This process involved several meticulous243

steps:244

1. Image and Factual Caption Selection: We245

begin by carefully selecting 2,000 images246

from the LLaVA-ReCap-118K dataset. Each247

chosen image was accompanied by a detailed248

and factually accurate caption, serving as the249

ground truth (R) for the visual content.250

2. Targeted Hallucination Generation: For251

each selected image and its factual caption, we252

leveraged the GPT-4(Achiam et al., 2023) to253

generate a corresponding hallucinated caption254

(H). Details of the instructions can be found255

in Appendix B. Crucially, each generated hal-256

lucination was specifically crafted to align257

with one of the ten pre-defined sub-categories258

detailed in section 3.2, thereby ensuring that259

each sample in VHBench-10 probes a partic-260

ular type of visual misinterpretation. This261

process resulted in 9,648 unique instances.262

3. Dataset Structure: Each sample in263

VHBench-10 is formulated as a ternary (I ,264

R, H), where I represents the image, R is265

the real, factual caption, and H is the caption266

containing a specific, deliberately injected267

hallucination tied to one of our defined268

sub-categories. This structure facilitates a269

direct comparison of an LVLM’s propensity270

to endorse factual versus hallucinated271

descriptions.272

3.3 Evaluation and Analysis273

To validate the utility of VHBench-10 and investi-274

gate the impact of different visual encoders on hal-275

lucination patterns, we evaluated several LVLMs276

equipped with various vision experts, establishing277

initial baselines. Specifically, we input image with278

real caption (I +R) and image with hallucinated279

caption (I +H) into LVLM respectively, and cal-280

culate the probability of generating these two com-281

binations through perplexity (ppl). A model is con-282

sidered to have made an error on a VHBench-10283

sample if it deems the hallucinated caption (H)284

more probable than the factual caption (R). The285

complete evaluation process can be found in Ap-286

pendix C.287

Object Presence

Color

Shape

Dynamic Action

Quantity

Text Recognition

Spatial

Part-to-Whole

Relative Position

Relative Interaction
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1.0

VisionWeaver
DINOv2
CLIP

EVA
SAM

ConvNext
Vary

Figure 3: Results with different visual experts and our
VisionWeaver on VHBench-10. The evaluation metric
is the normalized error rate. Our method achieves lowest
error rate in all ten tasks.

The results, summarized in Figure 3, reveal dis- 288

tinct hallucination characteristics correlated with 289

the choice of visual encoder. For example, LVLMs 290

utilizing the CLIP (Radford et al., 2021) visual 291

encoder demonstrated lower error rates in tasks re- 292

quiring global perception, such as identifying Ob- 293

ject Presence. In contrast, models employing DI- 294

NOv2 (Oquab et al., 2023), known for its focus on 295

fine-grained details, performed better at perceiving 296

attributes like Color and Action. Furthermore, an 297

LVLM using the Vary visual encoder, pre-trained 298

on text recognition tasks, exhibited significantly 299

lower hallucination rates in text-related visual tasks 300

within VHBench-10. The full evaluation results 301

can be found in Appendix C. 302

These findings underscore the specialized 303

strengths of different vision experts and how their 304

individual biases influence an LVLM’s suscepti- 305

bility to specific types of hallucinations. Notably, 306

when evaluating our proposed VisionWeaver (de- 307

tailed in Chapter 4) on VHBench-10, it consistently 308

achieved the lowest error rates across the full spec- 309

trum of hallucination categories. This superior per- 310

formance highlights VisionWeaver’s effectiveness 311

in adaptively leveraging diverse visual expertise 312

to mitigate a wide range of hallucinations, thereby 313

demonstrating its capability in enhancing the relia- 314

bility of LVLMs. 315
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4 VisionWeaver316

4.1 Overview317

Generally, LVLMs comprise a visual perception318

module, a lightweight projection module, and a319

large language model. The visual perception mod-320

ule extracts visual information, the projection mod-321

ule aligns it with language embeddings, and the322

LLM generates text.323

Our work focuses on mitigating object hallucina-324

tions from the visual perception module. Different325

visual encoders exhibit distinct hallucination be-326

haviors; for instance, prevalent CLIP-like encoders,327

while extracting general semantic features, possess328

constrained perception for diverse visual scenes329

and fine-grained details. This inherent limitation330

motivates the integration of multiple, specialized331

vision experts. However, simply fusing features332

from these diverse experts (e.g., through feature333

addition or concatenation (Tong et al., 2024)) often334

yields suboptimal performance.335

To address this challenge and effectively har-336

ness the complementary strengths of various vi-337

sual encoders, we propose VisionWeaver. Instead338

of relying on a single, potentially limited encoder339

or a simplistic fusion, VisionWeaver aims to in-340

telligently integrate multiple types of vision ex-341

perts. As illustrated in Figure 4, our method pri-342

marily relies on two pivotal modules. The first is343

the Context-Aware Routing module, which utilizes344

global image features to produce soft weights, guid-345

ing the selection of the most appropriate experts346

for the given visual input. Second, we propose347

a knowledge enhancement module to effectively348

fuse the selected knowledge from these experts.349

More specifically, we utilize a linear adapter to in-350

tegrate the representations from the chosen vision351

encoders. Through these modules, VisionWeaver352

can comprehensively encode visual inputs from353

diverse perspectives, thereby helping to reduce ob-354

ject hallucinations by leveraging the specialized355

capabilities of each integrated encoder.356

4.2 Routing Vision Experts Representations357

Context-Aware Expert Selection The context-358

aware expert routing mechanism leverages the359

global semantic features of an image to compute360

adaptive soft routing weights for selecting appro-361

priate visual experts.362

Concretely, we begin by extracting visual fea-363

tures from each expert. For subsequent routing, the364

outputs from all visual experts are combined us-365

ing weighted fusion. The visual feature extraction 366

process is defined as: 367

Zi = gi(X), i = 1, . . . , N (1) 368

where gi denotes the i-th visual experts, Zi repre- 369

sents the i-th encoded feature. 370

To better guide the model in selecting a visual 371

expert model suitable for the current scenario, it 372

is essential to pick out a token that carries the key 373

visual signals of the image. Previous studies have 374

shown that the [CLS] token in the CLIP image 375

encoder captures the key visual information of the 376

image (Liang et al., 2022). Therefore, we select 377

the [CLS] token as the indicator to guide the model. 378

Next, based on the [CLS] token output by the CLIP 379

image encoder, VisionWeaver learns to allocate the 380

weight of each vision expert. The process can be 381

formulated as follows: 382

{IC , IP } = ϕ(X) (2) 383

A = f(IC) (3) 384

W = softmax
1≤j≤N

Aj (4) 385

where ϕ is the CLIP encoder, IC , IP are the CLS 386

and patch token features after CLIP encoding, re- 387

spectively. f : RD → RN , D is the feature dimen- 388

sion of the CLIP. By now, we have already obtained 389

the top-k vision experts and corresponding impor- 390

tance scores. 391

Expert Representation Fusion. In the CLIP vi- 392

sion encoder, Patch Token is obtained by dividing 393

the input image into non-overlapping patches, flat- 394

tening them into 1-dimensional vectors, and then 395

projecting them through a linear layer. It mainly 396

carries the local visual information of the image 397

patches, and in the Transformer encoder, Patch To- 398

kens interact with each other via the self-attention 399

mechanism to help the model capture the depen- 400

dencies between different image regions and learn 401

global features, being arranged in the spatial order 402

of the patches in the sequence. To better fuse the 403

representation from the vision experts, we propose 404

a simple yet effective way by aligning the router- 405

guided representation and the patch token output 406

by CLIP. The process can be formulated as: 407

Y = WiZi, i = 1, . . . , N (5) 408

Î = IP +Y (6) 409

Here, Zi denotes the representation from the i-th 410

vision expert, and Wi is the corresponding learned 411
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Figure 4: The pipeline of VisionWeaver. VisionWeaver performs a context-aware routing to solve a given question.
The context-aware expert routing is performed in the first stage to select context-relevant experts. Next, we fuse the
task-specific knowledge from these selected experts in a fine-grained manner.

weight. The aggregated expert representation is412

denoted as Y, which shares the same dimensional-413

ity as both Zi and the CLIP patch token IP . The414

final visual representation Î is obtained by com-415

bining the expert features with the original CLIP416

representation through a residual-style connection.417

The final output is then passed to the projector418

to map it into the LLM’s embedding space(labeled419

as "Image Feature" in Fig.4).420

5 Experiments421

The present experiments were conducted based422

on the LLaVA-1.5 (Liu et al., 2024b) architecture.423

Specifically, the LLaVA-1.5 settings were followed,424

with CLIP-ViT-L-336px serving as the base visual425

encoder and a two-layer MLP acting as the visual426

projector. Concurrently, we substituted the LLM427

with the most recent versions of Llama3.2-Instruct-428

3B (Team, 2024) and Qwen2.5-Instruct-3B (Qwen429

et al., 2025). This substitution was made to ascer-430

tain the applicability of our method to the latest431

LLMs. The 3B version was selected due to its suit-432

ability for end-side deployment and its prevalent433

use in devices such as cell phones.434

For multiple vision encoders in VisionWeaver,435

inspired by EAGLE (Shi et al., 2024), we chose436

ConvNext (Liu et al., 2022), EVA-02 (Fang437

et al., 2024), SAM (Kirillov et al., 2023), DI-438

NOv2 (Oquab et al., 2023), and Vary (Wei et al.,439

2025) as task-specific visual encoders, which were440

pre-trained on different downstream tasks with dif-441

ferent visual capabilities. In order to align with442

CLIP encoders when processing images, we use in- 443

terpolation to fix the input resolution of all encoders 444

to 336×336 and the output token to 576. The output 445

dimension is fixed to 1024 using a linear adapter. 446

5.1 Implementation Details 447

Our training pipeline consists of two stages: pre- 448

training and supervised fine-tuning. For the pre- 449

training phase, we trained our model on the LLaVA- 450

Pretrain (Liu et al., 2024b) dataset using the 451

AdamW optimizer with a batch size of 256 and 452

a learning rate of 2 × 10−4 for 1 epoch. At 453

this stage, we only adjust all projectors. Subse- 454

quently, in the supervised fine-tuning phase, we 455

also use the AdamW optimizer to perform 1 epoch 456

of fine-tuning using the LLaVA-Finetune (Liu et al., 457

2024b) dataset at batch size 128 and learning rate 458

2× 10−5. All parameters are adjusted at this stage. 459

We further discuss the impact of parameter effi- 460

ciency on performance in Appendix F. Our exper- 461

iments were performed on 8 Nvidia A100 GPUs, 462

with two phases using 8 and 16 hours, respectively. 463

5.2 Main Results 464

Hallucination Mitigation Evaluation of our Vi- 465

sionWeaver method for mitigating hallucinations 466

in LVLMs was conducted using POPE (Li et al., 467

2023) and AutoHallusion benchmarks (Wu et al., 468

2024). POPE evaluates the level of hallucination in 469

LVLMs by asking if there is an object O in the im- 470

age. AutoHallusion evaluates the ability of LVLMs 471

to combat hallucinations by creating conflicting 472
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Table 1: Hallucination evaluation results on POPE (Li et al., 2023) and AutoHallusion (Wu et al., 2024). VE stands
for Visual Encoder and ME stands for Multi Encoder, including CLIP, Convnext, DINOv2, EVA-02, SAM, Vary.
Avg. is the average of the F1 metric from POPE and the Overall Accuracy metric from AutoHallusion.

LLM Size VE Vision
Weaver

POPE AutoHallusion
Avg.

Accuracy Precision Recall F1 Overall Synthetic Real-World

Vicuna 7B CLIP × 87.2 93.8 79.6 86.1 44.5 46.6 41.8 65.3

Llama3.2 3B

CLIP × 87.7 93.4 81.1 86.8 44.3 45.7 44.8 65.6

ME × 88.7 94.8 81.9 87.9 47.6 46.3 49.2 67.8

ME ✓ 89.5 95.1 83.3 88.8 48.2 47.0 49.6 68.5

Qwen2.5 3B

CLIP × 85.7 93.9 78.0 85.2 53.2 51.5 55.6 69.2

ME × 85.7 93.9 78.0 85.2 53.9 52.2 56.1 69.6

ME ✓ 87.7 95.7 79.3 86.7 54.3 52.6 56.5 70.5

images and inducing hallucinations in the model.473

Table 1 shows the effectiveness of our method in474

mitigating hallucinations. We used three pedestal475

models: Vicuna-7B, which is the implementa-476

tion of LLaVA-1.5 (Liu et al., 2024b), Llama3.2-477

Instruct3B, and Qwen2.5-Instruct-3B, with the re-478

sults of Vicuna-7B serving as the baseline for our479

approach. The results reveal that: (1) The underly-480

ing architecture of a model can have a more signifi-481

cant impact on performance than its scale. The 3B482

models generally outperformed Vicuna-7B, con-483

firming our suspicion that the newer model has484

greater capacity. (2) On the POPE benchmark,485

Llama3.2 with Multi Encoders and VisionWeaver486

achieved the strongest performance. In the Auto-487

Hallusion evaluation, Qwen2.5 demonstrated su-488

perior resistance to hallucination across both syn-489

thetic and real-world scenarios. Its overall accuracy490

was notably higher than both Vicuna and Llama3.2.491

(3) The average metric shows Qwen2.5-3B with492

Multi Encoders and VisionWeaver achieving the493

highest overall performance. This metric suggests494

that our VisionWeaver provides the most robust495

performance across different types of hallucination496

challenges.497

Perceptual Perspective To demonstrat the broad498

generalizability of our method, we evaluated Vi-499

sionWeaver on five standard LVLM benchmarks:500

MME (Fu et al., 2024), MMStar (Chen et al.,501

2024a), MMBench (Liu et al., 2024d), OCRBench502

(Liu et al., 2024f) and MathVista (Lu et al., 2024).503

Table 3 presents these evaluation results. We tested504

it with Llama3.2-3B and Qwen2.5-3B, comparing505

configurations where VisionWeaver was integrated506

(ME + VW) against baseline setups using a stan-507

dard Visual Encoder (CLIP) and Multiple Encoders508

(ME) alone. 509

The experimental results demonstrate the con- 510

sistent effectiveness of VisionWeaver across mul- 511

tiple benchmarks. It shows notable enhancements 512

in MMBench and OCRBench tasks for Llama3.2, 513

while delivering improvements in MME and MM- 514

Star benchmarks for Qwen2.5. These results con- 515

sistently show that VisionWeaver is effective at 516

improving model performance. 517

5.3 Systematic Analysis 518

In order to further validate the effectiveness of our 519

VisionWeaver, we perform the validation from each 520

of the following two perspectives: expert selection 521

as well as fusion strategy. All experiments were 522

performed using the Llama3.2-3B-Instruct model. 523

The results are shown in Table 2. 524

Expert Selection We investigated the impact of 525

different visual experts (VE) by conducting exper- 526

iments on both POPE and AutoHallusion bench- 527

marks. The results, as shown in Table 2, led to 528

two key observations. First, different visual experts 529

exhibited varying strengths and performance levels. 530

Second, we found that simply increasing the num- 531

ber of visual encoders does not guarantee better 532

performance. For instance, using all six encoders 533

with additive fusion resulted in an average perfor- 534

mance of 67.9%, which is slightly lower than the 535

68.4% achieved using only four specific encoders 536

(CLIP, ConvNext, EVA, and SAM) with the same 537

fusion strategy. 538

Fusion Strategy To evaluate the effectiveness of 539

our proposed VisionWeaver, we conducted compre- 540

hensive experiments comparing three fusion strate- 541

gies: feature summation (Add), feature concatena- 542

tion (Concat), and our VisionWeaver. These strate- 543
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Table 2: Results of a systematic analysis of expert selection and fusion strategies.

VE
Fusion

POPE AutoHallusion
Avg.

CLIP ConvNext EVA SAM DINOv2 Vary Acc P R F1 Acc S R

✓ - - - - - - 87.7 93.4 81.1 86.8 44.3 45.7 44.8 65.6

- ✓ - - - - - 86.6 90.4 81.9 85.9 48.0 47.0 49.2 67.0

- - ✓ - - - - 87.0 87.7 86.0 86.8 47.6 47.4 47.9 67.1

- - - ✓ - - - 80.6 77.8 85.6 81.5 45.9 45.7 46.1 63.7

- - - - ✓ - - 87.7 91.9 82.6 87.0 41.5 42.0 40.9 64.3

- - - - - ✓ - 74.2 69.1 87.4 77.1 46.0 46.0 46.0 61.6

✓ ✓ ✓ - - - Add 88.9 94.4 82.7 88.2 44.3 44.0 44.6 66.3

✓ ✓ ✓ ✓ - - Add 89.6 93.9 84.6 89.1 47.6 47.8 47.2 68.4

✓ ✓ ✓ ✓ ✓ - Add 88.2 95.4 80.2 87.1 44.9 46.6 42.9 66.0

✓ ✓ ✓ ✓ ✓ ✓ Add 89.0 94.9 82.4 88.2 47.6 46.3 49.2 67.9

✓ ✓ ✓ ✓ ✓ ✓ Concat 88.7 94.8 81.9 87.9 42.6 42.3 43.0 65.3

✓ ✓ ✓ ✓ ✓ ✓ VisionWeaver 89.5 95.1 83.3 88.8 48.2 47.0 49.6 68.5

Table 3: Evaluation results of generalized vision bench-
marks. VE stands for Visual Encoder, ME stands for
Multi Encoders and VW stands for our VisionWeaver.

LLM VE VW MME MMStar MMB OCRB MathVista

Llama3.2

CLIP × 1382.15 37.54 67.41 31.41 27.14

ME × 1375.47 37.97 67.14 33.93 27.67

ME ✓ 1392.45 39.86 69.76 35.61 29.63

Qwen2.5

CLIP × 1444.26 40.94 64.09 29.47 31.76

ME × 1440.91 41.57 67.84 32.72 33.08

ME ✓ 1465.92 43.65 69.24 36.48 35.81

gies were assessed using all six visual experts on544

both POPE and AutoHallusion benchmarks, with545

results detailed in Table 2. The experimental results546

reveal several key findings. First, feature summa-547

tion demonstrated superior performance compared548

to feature concatenation. Summation achieved549

a POPE Accuracy of 89.0% and an AutoHallu-550

sion Accuracy of 47.6% (Avg. 67.9%), whereas551

concatenation resulted in a POPE Accuracy of552

88.7% and an AutoHallusion Accuracy of 42.6%553

(Avg. 65.3%). This performance difference can554

be attributed to the challenges posed by the high-555

dimensional feature space created through concate-556

nation, which potentially complicates the projec-557

tion of visual features into the embedding space of558

the LLM. Among all three fusion strategies, Vision-559

Weaver achieved optimal performance, delivering560

top scores with 89.5% POPE accuracy and 48.2%561

AutoHallusion accuracy (Avg. 68.5%). These re-562

sults suggest that VisionWeaver more effectively563

integrates complementary information from differ-564

ent visual experts while maintaining the structural565

integrity of the feature space, leading to more ef-566

fective hallucination suppression. 567

6 Limitations 568

Despite exploring fine-grained hallucinations of 569

LVLMs, our work still has limitations. First, al- 570

though our benchmark covers the most realistic 571

problems as well as possible, there are still about 572

20% of hard-to-categorize realistic samples that 573

are difficult to classify into this benchmark because 574

they involve more complex scenarios and require 575

more fine-grained design. Second, our benchmark 576

is built based on GPT-4, which inevitably intro- 577

duces a slight error. Finally, due to the limitation of 578

computational resources, our experiments are built 579

on several smaller scale models. 580

7 Conclusion 581

In this paper, we present the VHBench-10, a new 582

benchmark that systematically classifies the visual 583

hallucinations of the LVLM into 10 different cate- 584

gories, allowing for their fine-grained analysis. By 585

replacing the visual encoder of LVLM , we found 586

that different encoders lead to diverse hallucinatory 587

tendencies. Based on these insights, we propose 588

VisionWeaver, a powerful LVLM architecture that 589

incorporates a context-aware expert routing mech- 590

anism and a knowledge augmentation module to 591

efficiently leverage task-specific visual expertise. 592

Extensive experiments demonstrate the effective- 593

ness of our approach, establishing VIsionWeaver 594

as a powerful solution for alleviating hallucinations 595

in LVLMs. This work opens new avenues for de- 596

veloping more reliable and accurate LVLMs. 597
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A Ten Hallucination Sub-Categories827

To provide a clear and structured understanding of828

the various errors that can occur in vision-language829

models, this section meticulously defines and cate-830

gorizes ten distinct hallucination sub-types. These831

categories are grouped under broader error classes832

such as Detection, Segmentation, Localization, and833

Classification Hallucinations, offering a compre-834

hensive taxonomy for analyzing model failures.835

1. Detection Hallucination: In computer vision836

tasks requiring precise object recognition and837

localization, we categorize detection halluci-838

nations into three distinct subtypes based on839

error manifestations:840

(a) Category Hallucination (Object Pres-841

ence Misidentification): Occurs when842

the model incorrectly identifies the pres-843

ence of an object category absent in the844

visual context. Example: While the im-845

age solely depicts a beach and sea, the846

model erroneously reports "a man surf-847

ing".848

(b) Counting Hallucination (Object Quan-849

tity Misestimation): Arises from the850

model’s failure to accurately enumerate851

instances of detected objects. Example:852

An image containing three felines is in-853

correctly described as "two cats playing".854

(c) Occlusion Hallucination (Partial Obser-855

vation Fallacy): Results from making856

holistic object judgments based on in-857

complete visual evidence. Example: In-858

ferring a complete car’s presence solely859

from visible tire segments.860

2. Segmentation Hallucination: Unlike object861

detection tasks that operate at the instance862

level, segmentation tasks require a pixel-level863

understanding of object boundaries and spatial864

characteristics. We categorize segmentation865

hallucination into two subtypes:866

(a) Text Hallucination: Character-level mis-867

interpretation in scene text recognition.868

This occurs when models confuse visu-869

ally similar glyphs despite accurate lo-870

calization. Example: Misrecognizing 871

"Cloud" as "Clown" due to font artifacts. 872

(b) Shape Hallucination: Geometric distor- 873

tion in object contour perception. Pixel- 874

level errors in boundary prediction lead 875

to incorrect shape interpretations. Exam- 876

ple: Describing a quadrilateral table as 877

circular when partial occlusion disrupts 878

edge continuity. 879

3. Localization Hallucination: Refers to sys- 880

tematic errors in spatial perception where 881

models misinterpret coordinate systems or ge- 882

ometric relationships. We identify two distinct 883

manifestations: 884

(a) Absolute Positioning Hallucination: 885

Failure in Cartesian coordinate compre- 886

hension. Models exhibit metric measure- 887

ment inaccuracies in defined coordinate 888

frames. Example: Locating a tree at 889

(x1, y1) while its true position is (x2, y2), 890

resulting in "left-right" inversion descrip- 891

tions. 892

(b) Relative Positioning Hallucination: 893

Breakdown in spatial relation reasoning. 894

Models fail to preserve topological re- 895

lationships between entities. Example: 896

A car approaching from behind is local- 897

ized as preceding the pedestrian due to 898

motion parallax misinterpretation. 899

4. Classification Hallucination: Systematic er- 900

rors in categorical attribution across visual- 901

semantic alignment. We dissect this phe- 902

nomenon through three perceptual failure 903

modes: 904

(a) Color Hallucination: Spectral sensitiv- 905

ity breakdown in color perception. Mod- 906

els confuse the color of the object despite 907

correct object recognition. Example: De- 908

scribing a red car as blue. 909

(b) Action Hallucination: Temporal- 910

semantic disconnection in motion 911

parsing. Models misinterpret static 912

poses as dynamic actions. Example: 913

Classifying a static "holding basketball" 914

pose as the dynamic "dunking" action 915

due to lack of temporal context. 916

(c) Relative Interaction Hallucination: 917

Failure in social signal processing. Mod- 918

els incorrectly infer interpersonal dynam- 919

11



ics from spatial configurations. Exam-920

ple: Interpreting two agents facing each921

other with 1.2m distance as "handshak-922

ing" rather than "conversing".923

B Detailed Benchmark Construction924

To elucidate the methodology behind the creation925

of our novel benchmark, VHBench-10, this section926

provides a step-by-step account of its construction927

process. The aim is to ensure transparency and re-928

producibility in how the benchmark was developed929

to systematically evaluate specific hallucination930

types.931

For the VHBench-10 benchmark construction,932

each image was paired with only one type of hal-933

lucination in each generated instance. The process934

followed these steps:935

1. We randomly selected 2,000 images with936

their corresponding detailed captions from the937

LLaVA-ReCap-118K dataset.938

2. For each image-caption pair, we developed 10939

different specialized prompts—one for each940

type of hallucination (Category, Counting, Oc-941

clusion, Text, Shape, Absolute Positioning,942

Relative Positioning, Color, Action, and Rela-943

tive Interaction).944

3. Each prompt directed GPT-4 to modify the945

original caption to introduce a specific type of946

hallucination while maintaining consistency947

with the rest of the description. The general948

structure of the prompt provided to GPT-4 is949

detailed in Table 8. For example, when cre-950

ating text hallucinations, specific instructions951

within this prompt structure guided GPT-4 to:952

• Determine if there was modifiable text953

content (such as signs, books, screen dis-954

plays).955

• If present, modify only the text content956

interpretation while keeping other ele-957

ments unchanged.958

• Maintain the original level of detail and959

keep the context plausible.960

4. We applied all 10 prompts (each tailored for a961

specific hallucination type but following the962

general structure outlined in Table 8) to each963

image-caption pair. Depending on the image964

content, an image might yield between 0-10965

hallucinated captions. For instance, if an im- 966

age did not contain any text, it would not gen- 967

erate a text hallucination caption. Similarly, if 968

an image did not contain multiple objects, it 969

might not support a counting hallucination. 970

5. Importantly, each generated hallucinated cap- 971

tion contained exactly one type of hallucina- 972

tion (not multiple types), making it possible to 973

precisely evaluate model performance against 974

specific hallucination categories. 975

6. This resulted in our final dataset of 9,648 in- 976

stances, each containing a ternary of (I , R, 977

H) where I is the image, R is the real caption, 978

and H is the caption with a specific type of 979

hallucination. 980

This approach allowed us to create a more focused 981

benchmark that could systematically evaluate an 982

LVLM’s vulnerability to specific types of halluci- 983

nations. 984

C Evaluation Process on VHBench-10 985

To detail how models are assessed using our bench- 986

mark, this section describes the specific evaluation 987

protocol employed on VHBench-10. This includes 988

the input prompting strategy and the metric used 989

to determine model error rates against different 990

hallucination types. 991

A single sample of our VHBench-10 contains a 992

ternary (I,R,H). We utilize the following prompt, 993

where the model is given either R or H for the 994

<caption> field: 995

'<image>\nDescribe the image: <caption>' 996

We input (I +R) and (I +H) to the model sepa- 997

rately to test the PPL of its output. 998

If it exhibits PPL(I + R) > PPL(I + H), 999

it means the model erroneously assigns a higher 1000

probability to H over R, which means the model is 1001

wrong. We replaced the vision encoder of LLaVA- 1002

1.5 with different experts and performed the above 1003

operation on all samples of VHBench-10, record- 1004

ing the error rate of each expert. 1005

We evaluated the error rates of the original 1006

LLaVA (CLIP), five different expert encoders, and 1007

our VisionWeaver on 10 hallucination types. The 1008

results are shown in Table 4. 1009

D Details of Parameter Efficiency 1010

To demonstrate the effectiveness of our proposed 1011

method in resource-limited settings, we conducted 1012

two sets of experiments: 1013
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Table 4: Error rates of different visual encoders on various vision tasks.

Method Category Color Shape Action Counting Text Absolute Position Occlusion Relative Position Relative Interaction

CLIP 2.04 4.39 4.30 4.73 7.25 9.43 11.02 5.43 10.27 6.82

ConvNext 2.21 1.67 1.31 1.17 3.76 8.36 11.19 2.26 8.41 1.75

DINO 2.81 1.11 1.68 0.95 4.16 14.29 8.09 2.71 6.99 2.92

EVA 3.47 1.98 2.06 2.11 5.50 10.24 7.23 2.26 8.93 3.12

SAM 4.47 3.03 1.87 1.24 4.97 16.17 11.19 1.81 8.93 2.92

Vary 4.96 11.50 1.78 1.17 5.64 8.36 14.11 2.71 9.82 3.12

VisionWeaver 1.49 0.31 0.84 0.51 3.36 7.28 6.37 1.81 5.43 1.75

1. Freeze the vision part and only full fine-tune1014

the projectors and LLM.1015

2. Freeze the vision part and fine-tune the pro-1016

jectors and LLM using LORA.1017

We used POPE to evaluate our method. As1018

shown in Table 5, our approach maintains its ad-1019

vantages in resource-constrained scenarios as well.1020

Table 5: Performance of different training strategies.

Method Accuracy Precision Recall F1

LLaVA-1.5-Llama3.2-3B (w/o vision) 87.0 94.6 78.5 85.9

LLaVA-1.5-Llama3.2-3B (w/ vision) 87.7 93.4 81.1 86.8

VisionWeaver (w/o vision, LORA) 88.1 94.7 80.7 87.1

VisionWeaver (w/o vision) 88.6 95.2 81.4 87.8

VisionWeaver (w/ vision) 89.5 95.1 83.3 88.8

E Comparison with SOTA1021

To demonstrate that our VisionWeaver can alleviate1022

model hallucinations compared to competing meth-1023

ods, this section presents a comparative analysis of1024

VisionWeaver against other state-of-the-art (SOTA)1025

methods on the POPE benchmark. These methods1026

are:1027

1. SEOSS(Yue et al., 2024) proposes a method1028

to reduce multimodal hallucinations. It1029

achieves this by improving how models make1030

the end-of-sequence decision. This adjust-1031

ment aims to prevent the generation of un-1032

grounded information.1033

2. OHD-Caps(Liu et al., 2024e) introduces1034

a counterfactual data augmentation method.1035

This method is designed to mitigate object1036

hallucinations in CLIP models. It is also ef-1037

fective for larger vision-language models that1038

utilize CLIP as their visual encoder.1039

3. DAMRO(Gong et al., 2024) presents a 1040

training-free strategy to address object hal- 1041

lucinations in Large Vision-Language Models 1042

(LVLMs). The method targets hallucinations 1043

caused by misdirected attention to background 1044

tokens, an issue often linked to the visual en- 1045

coder. Specifically, the DAMRO strategy em- 1046

ploys the Vision Transformer’s CLS token to 1047

identify and then suppress the influence of 1048

these outlier tokens during the decoding pro- 1049

cess. 1050

4. DeCo(Wang et al., 2024a) develops a training- 1051

free dynamic correction decoding strategy 1052

for Multimodal Large Language Models 1053

(MLLMs). It addresses hallucinations that oc- 1054

cur when correct visual information, initially 1055

recognized in earlier model layers, is sup- 1056

pressed by strong language priors in deeper 1057

layers. The DeCo strategy mitigates these hal- 1058

lucinations by leveraging this preceding-layer 1059

knowledge to adjust the final output logits. 1060

As shown in Table 6, we have compared our ap- 1061

proach on POPE against other SOTA methods, and 1062

the results demonstrate that our method performs 1063

competitively with these methods. 1064

Table 6: Performance Comparison on POPE Dataset.

Method Accuracy Precision Recall F1

LLaVA-1.5-Llama3.2-3B 87.7 93.4 81.1 86.8

SEOSS (Yue et al., 2024) 86.8 93.5 79.5 86.0

OHD-Caps (Liu et al., 2024e) 81.2 90.9 85.1 87.9

DAMRO (Gong et al., 2024) 85.3 88.8 81.1 84.7

DeCo (Wang et al., 2024a) - - - 86.7

VisionWeaver 89.5 95.1 83.3 88.8

13



F Computational Efficiency of Our1065

Method1066

To underscore the practical viability of our ap-1067

proach for real-world applications, this section elab-1068

orates on the design aspects that contribute to its1069

computational efficiency and presents empirical1070

measurements of inference time.1071

Our approach can avoid introducing significant1072

latency during inference. This is achieved through1073

several key design aspects:1074

1. Lightweight Visual Encoders: Our n visual1075

encoder experts have a combined size of ap-1076

proximately 1 billion parameters (for all 5 ex-1077

perts), which is relatively small compared to1078

the language model (LLM) component (over1079

3 billion parameters). As a result, the main1080

computational load resides within the LLM1081

component.1082

2. Efficient Token Aggregation: The Vision-1083

Weaver module performs a weighted aggrega-1084

tion of visual tokens from various experts onto1085

the output tokens of the CLIP encoder. Cru-1086

cially, this process maintains the same num-1087

ber of visual tokens that are input to the large1088

model. This prevents any additional computa-1089

tion time being introduced in the large model1090

component.1091

3. KV Caching Utilization: During the infer-1092

ence stage, we utilize KV caching. This1093

means that our method processes the image1094

through the experts only once, during the pre-1095

fill phase. Following this, all visual tokens are1096

cached, which eliminates redundant computa-1097

tions in the subsequent generation steps.1098

We empirically measured the average inference1099

time with and without the VisionWeaver module1100

when generating 100 random captions. The results1101

are presented in Table 7.1102

Table 7: Comparison of average inference time.

Methods Prefill Time (ms) Inference Time (ms) Prefill Percentage (%)

LLaVA-1.5-Llama3.2-3B 50.99 1273.20 3.85

VisionWeaver 99.46 1201.52 7.64

Table 8: Unified Prompt Template for Generating Spe-
cific Hallucinations.

Prompt Template

# Task Description

Based on the input image description, determine if
there are modifiable

{{MODIFICATION_TASK_SPECIFICS}}.

If present, modify only the

{{MODIFICATION_TASK_SPECIFICS}}

while keeping other elements unchanged.

# Input Format

Image description text

# Output Format

If no {{EXISTENCE_CONDITION_DESCRIPTION}}
exists, output: NO

If exists, output modified description

# Guidelines

• First determine if
{{EXISTENCE_CONDITION_DESCRIPTION}}
exist

• Modified {{MODIFIED_ELEMENTS_NAME}} must
be logically consistent

• {{UNCHANGED_CONSTRAINT_TEXT}}
• Maintain original level of detail
• Context should remain plausible

# Input

{input}

# Output
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