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ABSTRACT

Weight decay is a popular and even necessary regularization technique for train-
ing deep neural networks that generalize well. Previous work usually interpreted
weight decay as a Gaussian prior from the Bayesian perspective. However, weight
decay sometimes shows mysterious behaviors beyond the conventional understand-
ing. For example, the optimal weight decay value tends to be zero given long
enough training time. Moreover, existing work typically failed to recognize the
importance of scheduling weight decay during training. Our work aims at theoreti-
cally understanding novel behaviors of weight decay and designing schedulers for
weight decay in deep learning. This paper mainly has three contributions. First, we
propose a novel theoretical interpretation of weight decay from the perspective of
learning dynamics. Second, we propose a novel weight-decay linear scaling rule
for large-batch training that proportionally increases weight decay rather than the
learning rate as the batch size increases. Third, we provide an effective learning-
rate-aware scheduler for weight decay, called the Stable Weight Decay (SWD)
method, which, to the best of our knowledge, is the first practical design for weight
decay scheduling. In our various experiments, the SWD method often makes
improvements over L2 Regularization and Decoupled Weight Decay.

1 INTRODUCTION

Weight decay is a popular and even necessary regularization technique for training deep neural
networks that generalize well (Krogh and Hertz, 1992). People commonly use L2 regularization
as “weight decay” for training of deep neural networks and interpret it as a Gaussian prior over the
model weights (David, 1992; Graves, 2011). This is true for vanilla Stochastic Gradient Descent
(SGD). However, Loshchilov and Hutter (2018) revealed that, when the learning rate is adaptive, the
commonly used L2 regularization is not identical to the vanilla weight decay proposed by Hanson
and Pratt (1989):

θt = (1− λ′)θt−1 − η
∂L(θt−1)

∂θ
, (1)

where λ′ is the weight decay hyperparameter, η is the learning rate, and L(θt−1) is the loss function
over one minibatch. We denote the loss function over the whole training dataset as L(θ).

A conventional belief is that, from the Bayesian perspective, weight decay indicates a Gaussian
prior over the model parameters, which regularize the complexity of the learned model (Graves,
2011). However, we argue that this Bayesian interpretation cannot explain the empirical success of
weight decay in deep learning. On one hand, Wenzel et al. (2020) demonstrated that the conventional
Bayesian posterior usually does not work well in deep learning. This challenged the meaning of
weight decay as a proper prior in the Bayesian interpretation. On the other hand, Lewkowycz and Gur-
Ari (2020) and our experimental results (Figure 2) both suggested that weight decay is surprisingly
unnecessary for long-time training. This observation critically challenged the Bayesian interpretation
of weight decay in deep learning. The Bayesian interpretation believes that the prior knowledge over
model parameters truly exist. Thus, the prior knowledge should not depend on the training time of
deep neural networks, which contradicts with the experimental results in Figure 2.

Recently researchers started to explore other explanations for weight decay. Zhang et al. (2019b)
revealed three different roles of weight decay. Some papers (Van Laarhoven, 2017; Zhang et al.,
2019b) argued that weigh decay increases the effective learning rate but has no regularization effect
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Table 1: Test performance comparison of optimizers. We report the mean and the standard deviations
(as the subscripts) of the optimal test errors computed over three runs of each experiment. The SWD
method enables Adam to generalize as well as SGD and even outperform complex Adam variants.

DATASET MODEL SGD ADAMS ADAM AMSGRAD ADAMW ADABOUND PADAM YOGI RADAM

CIFAR-10 RESNET18 5.010.03 4.910.04 6.960.02 6.160.18 5.080.07 5.650.08 5.120.04 5.870.12 6.010.10
VGG16 6.420.02 6.090.11 7.310.25 7.140.14 6.590.13 6.760.12 6.150.06 6.900.22 6.560.04

CIFAR-100 RESNET34 21.520.37 21.760.42 27.160.55 25.530.19 22.990.40 22.870.13 22.720.10 23.570.12 24.410.40
DENSENET121 19.810.33 20.520.26 25.110.15 24.430.09 21.550.14 22.690.15 21.100.23 22.150.36 22.270.22
GOOGLENET 21.210.29 21.050.18 26.120.33 25.530.17 21.290.17 23.180.31 21.820.17 24.240.16 22.230.15

when combined with scale-invariant normalization layers, such as batch normalization (Ioffe and
Szegedy, 2015). Li et al. (2020) defined a new “intrinsic learning rate” parameter that is the product
of the vanilla learning rate η and the weight decay factor λ and argued that the convergence time
depends on this intrinsic learning rate.

However, people still expect to further explore the theoretical mechanism of weight decay, because
weight decay sometimes shows mysterious behaviors beyond the existing theoretical understanding.
As we discussed above, the Bayesian interpretation has been critically challenged by recent empirical
findings (Lewkowycz and Gur-Ari, 2020). The interpretation of increasing the effective learning rate
only holds for scale-invariant normalization layers, which is a narrow scope.

Contributions. In this paper, we try to theoretically understand the novel behaviors of weight decay
and explore the potential of weight decay. Our paper mainly has three contributions.

First, we propose a novel theoretical interpretation of weight decay from the perspective of learning
dynamics. We study how the stability of the stationary points and the convergence time depend on
weight decay, which corresponds to two main effects of weight decay.

Second, we propose a novel weight-decay linear scaling rule (See Rule 2 in Section 3) for large-batch
training. We discover that the existing linear scaling rule (Krizhevsky, 2014; Goyal et al., 2017)
for large-batch training that proportionally increases the learning rate may sometimes be harmful
to large-batch training due to bad convergence. Instead, increasing weight decay is a more suitable
solution in this case.

Third, to the best of our knowledge, we are the first to design an effective learning-rate-aware
scheduler for weight decay which may significantly improve test performance. Our work fills the
gap in this direction. We note that a trivial weight decay scheduling method recently proposed by
Lewkowycz and Gur-Ari (2020) has limited practical value because it only works well with constant
learning rate, as the original paper claimed. Inspired by the stability of the stationary points, we show
that weight decay should be coupled with the effective learning rate. We call the proposed method
Stable Weight Decay (SWD). Adam (Kingma and Ba, 2015) with SWD (AdamS) is displayed in
Algorithm 2. The results in Table 1 fully supports that SWD can significantly improve Adam.

Structure of this paper. In Section 2, we analyze the dynamics of weight decay. In Section 3, we
study how weight decay can improve large-batch training. In Section 4, we propose SWD. In Section
5, we empirically study SWD. In Section 6, we conclude our work.

2 UNDERSTANDING THE DYNAMICS OF WEIGHT DECAY

In this section, we provide a way to understand weight decay from a viewpoint of learning dynamics.

Weight decay should be coupled with the learning rate scheduler. The vanilla weight decay
described by Hanson and Pratt (1989) is given by Equation (1). A more popular implementation for
vanilla SGD in modern deep learning libraries, such as PyTorch (Paszke et al., 2019) and TensorFlow
(Abadi et al., 2016), is given by

θt = (1− ηtλ)θt−1 − ηt
∂L(θt−1)

∂θ
, (2)
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where ηt is the learning rate at the t-th step and weight decay is coupled with the learning rate
scheduler. While previous work did not studied why weight decay should be coupled with the
learning rate scheduler, this trick has been adopted by most deep learning libraries.

We first take vanilla SGD as the studied example, where no Momentum is involved. It is easy to see
that vanilla SGD with L2 regularization λ

2 ‖θ‖
2 is also given by Equation (2). Suppose the learning

rate is fixed in the whole training procedure. Then Equation (2) will be identical to Equation (1) if we
simply choose λ′ = ηλ. However, learning rate decay is quite important for training of deep neural
networks. So Equation (2) is not identical to Equation (1) in practice.

Which implementation is better? In Figure 1, we empirically verified that the popular Equation-(2)-
based weight decay indeed outperforms the vanilla implementation in Equation (1). We argue that
Equation-(2)-based weight decay is theoretically better than Equation-(1)-based weight decay in
terms of the stability of the stationary points. We define the stability as Definition 1.
Definition 1 (The stability of the stationary point). The stationary point is stable if a stationary point
is fixed during training. Otherwise, we define it as an unstable stationary point.

The training objective at step-t of Equation (1) is L(θ) + λ′

ηt
‖θ‖2, while that of Equation (2) is

L(θ) + λ‖θ‖2. Thus, the stationary points of the regularized loss given by Equation (2) are stable
during training, while that given by Equation (1) is unstable due to the dynamic training objective.

Weight decay matters to the stability. As the stability of the stationary points critically depends on
the weight decay scheduler, we define stable weight decay accordingly in Definition 2.
Definition 2 (Stable Weight Decay). The weight decay is stable if the stationary points are stable
during training. Otherwise, we define it as unstable weight decay.

We propose Theorem 1 and prove that even deterministic Gradient Descent (GD) with vanilla weight
decay may not converge to any non-zero stationary point due the instability of the stationary points.
Theorem 1 (Non-convergence of GD with unstable weight decay). Suppose learning dynamics is
governed by GD with vanilla weight decay (Equation (1)) and the learning rate ηt ∈ (0,+∞) holds.
If ∃δ that satisfies 0 < δ ≤ |ηt − ηt+1| for any t > t0, then the learning dynamics cannot converge
to any non-zero stationary point satisfying the condition

lim
t→+∞

[‖∇L(θt)‖2 + ‖∇L(θt+1)‖2] = 0.

Remark. We leave the proof in Appendix A.1. Even if the gradient is zero at the t-th step, the gradient
at the t+ 1-th step will not be zero. Unstable weight decay causes changing the objective and hence
the solution does not converge to any non-zero stationary point. Thus, GD with unstable weight decay
has no theoretical convergence guarantee like GD (Wolfe, 1969). This explains why weight decay
should be coupled with the learning rate to keep the stationary points stable during training. We
conjecture that the stability of the stationary points should be a desirable property in deep learning.

Dynamics of weight decay. Lewkowycz and Gur-Ari (2020) empirically discovered that, if we let
the training time be approximately inverse to weight decay, the test error can monotonically decrease
as weight decay decreases, which is beyond the existing theoretical understanding. We will show that
it is easy to understand this empirical observation by analyzing the dynamics of weight decay.

We first state Assumption 1. Assumption 1 which holds near minima are common and useful for
analyzing the solution or the convergence behavior in related papers (Mandt et al., 2017; Neyshabur
et al., 2017; Xie et al., 2021a; Li et al., 2017; Zhang et al., 2019a; Zhou et al., 2020). It is known
that stochastic optimization can escape multiple bad minima (Xie et al., 2021b; Zhu et al., 2019;
Kleinberg et al., 2018) and finally converge to a good minimum during training. Thus, Assumption 1
can be repeatedly applied near each minimum during training.
Assumption 1. The loss function around a minimum θ? can be written as

L(θ) = L(θ?) +
1

2
(θ − θ?)>H(θ − θ?),

where H is the Hessian at θ?.

We propose Theorem 2 and demonstrate how the learned model parameters θ may depend on weight
decay. We leave the proof in Appendix A.2.
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Figure 1: We compared Equation-(1)-based
weight decay and Equation-(2)-based weight de-
cay by training ResNet18 on CIFAR-10 via
vanilla SGD. In the presence of a popular learning
rate scheduler, Equation-(2)-based weight decay
shows better test performance. It demonstrates
that the form −ηtλθ is a better weight decay im-
plementation than −λ′θ.
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Figure 2: We train ResNet18 via SGD on CIFAR-
10 for verifying that tconvergence = O

(
λ−1

)
.

With the fixed 200 epochs, the optimal weight
decay is about 0.0005. With 0.1λ−1 epochs, de-
creasing weight decay monotonically decreases
test performance. Table 3 further supports that the
optimal weight decay is approximately inverse to
the number of epochs.

Theorem 2 (Dynamics of weight decay). Suppose Assumption 1 holds, and learning dynamics is
governed by SGD with weight decay (Equation (2)). If the learning rate scheduler is constant, the
expected θt after t iterations satisfies the following:

E[θt − θ?] = [I − η(H + λI)]t
[
θ0 −H(H + λI)−1θ?

]
− λ(H + λI)−1θ?, (3)

where I is the identity matrix. If the learning rate scheduler is given by the sequence {η1, η2, . . . , ηt},
the expected θt after t iterations satisfies the following:

E[θt − θ?] =

t∏
k=1

[I − ηk(H + λI)]
[
θ0 −H(H + λI)−1θ?

]
− λ(H + λI)−1θ?. (4)

Theorem 2 is a useful tool to understand convergence behaviors which may repeatedly happen during
searching minima of deep learning. While Theorem 2 depends on Assumption 1, we will show that it
is remarkably consistent with novel empirical behaviors of weight decay and can also reveal novel
insights. Theorem 2 indicates that weight decay mainly has two effects: 1) biasing the expected
learned solution and 2) accelerating the convergence.

Effect 1. Weight decay biases the stationary points. Theorem 2 provides us two key insights about
weight decay. The first insight is Corollary 1 derived from Theorem 2 by choosing the long-time
limit. Corollary 1 indicates that large weight decay may not learn accurate minima well. This insight
is consistent with the regularization-based understanding of weight decay (Krogh and Hertz, 1992).
Corollary 1. Suppose the conditions of Theorem 2 hold and Hi + λ > 0, where Hi is the i-th
eigenvalue of H . Then, in the limit of long training time that t→ +∞, the displacement from the
true minimum θ? to the expected learned solution along the i-th direction is given by

µi = −λ(Hi + λ)−1θ?, (5)
where the bias µ = limt→∞ E[θt − θ?].

Figure 2 suggests that, given long enough training time inverse to weight decay, decreasing the
weight decay hyperparameter may consistently improve test performance, which is also verified by
Lewkowycz and Gur-Ari (2020). This observation is contradicted with the conventional regularization-
based understanding (Krogh and Hertz, 1992), but fully supports Corollary 1 that weight decay is
bad, if we already have good convergence.

Effect 2. Weight decay accelerates convergence. However, we discover that the long-time posterior
cannot explain the convergence behaviors. Figure 2 also suggests that, we need to increase the number
of training iterations by 1

λ for maintaining good convergence, which is also discovered by Lewkowycz
and Gur-Ari (2020) and Li et al. (2020). To explain why the convergence time depends on 1

λ , we
need to explore the dynamics of weight decay before approaching the convergence.

The second insight is Corollary 2 that estimates the number of iterations for good convergence.
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Corollary 2. Suppose the conditions of Theorem 2 hold and δi = Hi + λ > 0, where Hi is the i-th
eigenvalue of H . Then, the convergence time in the i-th direction is

tconvergence,i = O
(
(Hi + λ)−1η−1

)
. (6)

It is well-known that the Hessian in deep learning has a very small number of large eigenvalues and a
large number of nearly zero eigenvalues (Sagun et al., 2016; 2017). Thus, we have Hi + λ ≈ λ for
most directions. It means that the convergence time critically depend on the dynamics in the subspace
corresponding to those nearly zero eigenvalues:

tconvergence = O
(
λ−1η−1

)
. (7)

Equation (7) reveals two facts. First, Equation (7) supports the statement that the initial learning rate
and the weight decay hyperparameter λ are linearly coupled for maintaining performance (Loshchilov
and Hutter, 2018; Van Laarhoven, 2017; Zhang et al., 2019b; Hoffer et al., 2018). Second, Equation
(7) demonstrates that the number of iterations (not the number of epochs or training time) for good
convergence depends onO

(
λ−1η−1

)
. This not only explains the relation in Figure 2, but also reveals

that we should increase the number of iterations instead of the number of epochs by 1
λ . We note that

the second fact is also reported by Lewkowycz and Gur-Ari (2020), while Lewkowycz and Gur-Ari
(2020) did not present formal theoretical analysis like Theorem 2.

In our theoretical analysis, weight decay mainly has two effects. The first effect is to bias the expected
solution in the long-time limit. The first effect is negative for learning accurate minima. The second
effect is to accelerate the convergence in the subspace corresponding to nearly zero eigenvalues of
the Hessian. The second effect is positive for accelerating training. Tuning weight decay needs to
balance the tradeoff between the two effects.

3 WEIGHT DECAY IMPROVES LARGE-BATCH TRAINING

In this section, motivated by the theoretical insights in Section 2, we study how weight decay may
surprisingly improve large-batch training.

Large-batch training can efficiently utilize the parallel computation to speedup training of deep
networks (Goyal et al., 2017). However, large-batch training suffers from the difficulty of minimizing
the training loss and usually find sharp minima that do not generalize well (Hoffer et al., 2017; Keskar
et al., 2017). How to perform large-batch training with good generalization is an important problem
which has attracted much attention from both academia (Zhang et al., 2019a; Wu et al., 2020; Wen
et al., 2020) and industry (You et al., 2017; Goyal et al., 2017).

Rule 1 mitigates the small noise problem in large-batch training. The famous linear scaling
rule, namely Rule 1, for large-batch training is well-known (Krizhevsky, 2014; Goyal et al., 2017).
Large-batch training can easily get stuck in saddle points and sharp minima due to small gradient
noise, because the noise magnitude in SGD dynamics is approximately proportional to the ratio of
the learning rate η to batch size B, namely η

B (Mandt et al., 2017; Keskar et al., 2017). Xie et al.
(2021b) recently proved that ηB exponentially matters to SGD dynamics. Thus, the learning-rate linear
scaling rule is a natural result of maintaining the similar magnitude of stochastic gradient noise and
similar learning dynamics invariant to the batch size. When the noise magnitude is the performance
bottleneck, Rule 1 is usually an effective solution.
Rule 1. When the batch size is multiplied by k, multiply the learning rate by k.

For large-batch training, people usually focused on the noise magnitude problem but overlooked
the convergence problem (Jain et al., 2018; Ma et al., 2018; Yin et al., 2018). Sometimes, the noise
magnitude is not the performance bottleneck. People usually perform large-batch training with a fixed
number of epochs for keeping the total computational costs moderate. Under the constraint of fixing
the number of epochs, obviously, the number of iterations will be multiplied by k−1 if the batch size
is multiplied by k. Thus, the number of iterations may be too small to achieve good convergence.

Rule 2 mitigates the bad convergence problem in large-batch training. If the bad convergence
problem is the performance bottleneck, the learning-rate linear scaling rule will even be harmful to
large-batch training due to slower convergence. When Rule 1 causes optimization divergence or bad
convergence, we instead propose the weight-decay linear scaling rule as Rule 2 based on Equation
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Figure 3: Large-batch training (B = 16384) with various learning rates and weight decay. Note
that η = 10−3 and λ = 10−4 is the baseline choice for B = 128. Subfigure (a) and (b) show that,
even slightly increasing the learning rate (by multiplying 16) is harmful to optimization convergence.
Subfigure (c) shows that Rule 1 is completely invalid in this common large-batch training setting.
Subfigure (d) shows that, multiplying weight decay by 128 (λ = 0.0128) has the lowest test error,
which fully supports the proposed Rule 2.

(7). Because large weight decay may accelerate the convergence. Note that, increasing the learning
rate only works in a narrow range, i.e., B ≤ 8192 on ImageNet (Keskar et al., 2017), since too large
learning rates may lead to optimization divergence or bad convergence (Keskar et al., 2017; Masters
and Luschi, 2018).To the best of our knowledge, we are the first to propose the weight-decay-based
rule for large-batch training. Previous papers did not design a rule for the second-type problem.
Rule 2. When the batch size is multiplied by k, multiply the weight decay by k.

Empirical Analysis of Large-Batch Training. We conducted experiments to show that, when the
learning-rate linear scaling rule is harmful due to the convergence problem, the weight-decay linear
scaling rule significantly improves large-batch training. In Figure 3, we trained ResNet18 via SGD on
CIFAR-10 with the very large batch size B = 16384, which is 128 times the common batch size 128.

We note that, in this common setting on CIFAR-10, even slightly increasing the learning rate is very
harmful to large-batch training. Figure 3 demonstrates Rule 1 may seriously cause bad convergence.
This observation means that, in the setting of training ResNet18 on CIFAR-10, the convergence
problem is the main performance bottleneck instead of the noise magnitude. As Rule 2, we observed
that multiplying the weight decay hyperparameter by 128 works best. Thus, in this second-type
problem of large-batch training, Rule 2 significantly outperforms Rule 1.

4 STABLE WEIGHT DECAY

In this section, we design a weight decay scheduler for adaptive gradient methods, such as Adam.

Algorithm 1: Adam/AdamW
gt = ∇L(θt−1) + λθt−1;
mt = β1mt−1 + (1− β1)gt;
vt = β2vt−1 + (1− β2)g2

t ;
m̂t = mt

1−βt
1

;
v̂t = vt

1−βt
2

;
θt = θt−1 − η√

v̂t+ε
m̂t − ηλθt−1;

Algorithm 2: AdamS (p = 0.5)
gt = ∇L(θt−1);
mt = β1mt−1 + (1− β1)gt;
vt = β2vt−1 + (1− β2)g2

t ;
m̂t = mt

1−βt
1

;
v̂t = vt

1−βt
2

;
v̄t = mean(v̂t);
θt = θt−1 − η√

v̂t+ε
m̂t − η

v̄pt
λθt−1;

Decoupled weight decay is unstable weight decay in adaptive gradient methods. Loshchilov
and Hutter (2018) first pointed that, when the learning rate is adaptive, the commonly used L2

regularization is not identical to weight decay. In the following analysis, we ignore the effect
of Momentum and focus on the effect of Adaptive Learning Rate for simplicity. Thus, AdamW
(Loshchilov and Hutter, 2018) can be written as

θt = (1− ηλ)θt−1 − ηv
− 1

2
t

∂L(θt−1)

∂θ
, (8)
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(a) VGG16 on CIFAR-10
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(b) ResNet34 on CIFAR-100

0 25 50 75 100 125 150 175 200
Epochs

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Te
st

 E
rro

r

AdamS
AdamW
Adam

(c) DenseNet121 on CIFAR-100

Figure 4: The learning curves of AdamS, AdamW, and Adam on CIFAR-10 and CIFAR-100. AdamS
shows significantly better generalization than AdamW and Adam.
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Figure 5: The scatter plot of
training losses and test errors
during final 40 epochs of train-
ing ResNet34 on CIFAR-100.
Even with similar or higher train-
ing losses, AdamS still general-
izes better than other Adam vari-
ants. We leave the scatter plot
on CIFAR-10 in Appendix C.
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Figure 6: The learning curves
of all adaptive gradient methods
by training ResNet34 on CIFAR-
100. AdamS outperforms other
Adam variants. The test perfor-
mance of other models can be
found in Table 1.
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Figure 7: The test errors of
VGG16 on CIFAR-10 with var-
ious weight decay rates. The
displayed weight decay value of
AdamW has been rescaled by
the factor≈ 0.001. A similar ex-
perimental result for ResNet34
is presented in Appendix C.

where vt is the exponential moving average of the squared gradients in Algorithm 1 and the power
notation of a vector means the element-wise power of the vector. We interpret ηv−

1
2

t as the effective
learning rate for multiplying the gradients. However, we clearly see that decoupled weight decay
uses the vanilla learning rate to perform weight decay rather than the effective learning rate. The
minimum θ̂? of the regularized loss function optimized by AdamW at the t-th step is

θ̂? − θ? = −λv
1
2
t (H + λv

1
2
t )−1θ?. (9)

There is no guarantee that vt will be constant for t. Thus, the regularized loss function optimized by
AdamW has unstable minima.

Scheduling weight decay in adaptive gradient methods. An easy solution to fix the unstable
weight decay problem is using the following scheduled weight decay:

θt = (1− ηv−
1
2

t λ)θt−1 − ηv
− 1

2
t

∂L(θt−1)

∂θ
. (10)

This gives θ̂? − θ? = −λ(H + λ)−1θ?. Equation (10) can indeed make stationary points of the
regularized loss function stable for different t.

However, if we still use the element-wise scheduler v−
1
2

t for weight decay, the anisotropic convergence
problem will appear in the subspace corresponding to small eigenvalues of the Hessian. By Theorem
2, the convergence can be measured by

∏t
k=1(I − v−

1
2

k ηλ). Due to the element-wise learning rate
adaptivity, a common number of iterations may be not enough for achieving the convergence along
some dimensions.
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Figure 8: The test errors of ResNet18 on CIFAR-10. AdamS has a much deeper and wider basin near
dark points (≤ 4.9%). The optimal test error of AdamS, AdamW, and Adam are 4.52%, 4.90%, and
5.49%, respectively. The displayed weight decay value of AdamW has been rescaled by the factor
≈ 0.001.

Unfortunately, there is no ideal solution to fix the stability problem and the convergence problem at
the same time for adaptive gradient methods. We conjecture that this may be an internal fault of all
optimizers that use Adaptive Learning Rate. To balance the tradeoff between the stability and the
convergence in presence of Adaptive Learning Rate, we propose a non-element-wise learning-rate-
aware scheduler for weight decay as

θt = (1− ηv̄−pt λ)θt−1 − ηv
− 1

2
t

∂L(θt−1)

∂θ
, (11)

where v̄t is the mean of all elements of the vector vt and p is a hyperparameter to control the adaptivity
of the scheduler. Note that ηv̄−pt is always isotropic. We call weight decay with this stability-inspired
heuristic scheduler Stable Weight Decay. The pseudocode of AdamS is displayed in Algorithm 2.

We recommend p = 0.5 as the default value in AdamS unless we specify it, because ηv̄−pt with
p = 0.5 may approximate the magnitude of the adaptive learning rate. Note that Decoupled Weight
Decay (Loshchilov and Hutter, 2018; Bjorck et al., 2021) is a special case of Stable Weight Decay
with p = 0.

We note that v̄ is not expected to be zero at minima due to stochastic gradient noise, because the
variance of the stochastic gradient is directly observed to be much larger than the expectation of the
stochastic gradient at/near minima (Zhu et al., 2019) and depends on the Hessian (Xie et al., 2021b).
In some special cases, such as full-batch training, it is fine to add a small value (i.e., 10−8) to v̄ to
avoid being zero as a divisor.

5 EMPIRICAL ANALYSIS OF STABLE WEIGHT DECAY

In this section, we conducted comprehensive experiments to verify the advantage of the SWD
scheduler over Decoupled Weight Decay and L2 for Adam. Our experiments also include popular
Adam variants, including AMSGrad (Reddi et al., 2019), Yogi (Zaheer et al., 2018), AdaBound (Luo
et al., 2019), Padam (Chen and Gu, 2018), and RAdam (Liu et al., 2019),.

Models and Datasets. We choose Adam as the base optimizer, and train popular deep models,
including ResNet18/34/50 (He et al., 2016), VGG16 (Simonyan and Zisserman, 2014), DenseNet121
(Huang et al., 2017), GoogLeNet (Szegedy et al., 2015), and Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), on CIFAR-10/CIFAR-100 (Krizhevsky and Hinton, 2009), and
Penn TreeBank (Marcus et al., 1993). The implementation details are in Appendix B.

Image Classification on CIFAR-10/CIFAR-100. Figure 4 shows the learning curves of AdamS,
AdamW, and Adam on several benchmarks. In our experiments, AdamS always leads to lower test
errors. Figure 5 shows that, even if with similar or higher training losses, AdamS still generalizes
significantly better than AdamW, Adam, and recent Adam variants. Figure 6 displays the learning
curves of all adaptive gradient methods. The test performance of other models can be found in Table
1. Simply scheduling weight decay for Adam by SWD even outperforms complex Adam variants.
We also note that most Adam variants surprisingly generalize worse than SGD (See Appendix C).
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Figure 9: Rule 2 holds well for all Adam,
AdamW, and AdamS on ResNet18. Figure 16
shows similar results for VGG16, which has no
scale-invariant loss landscape.
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Figure 10: ResNet50 on ImageNet. The lowest
Top-1 test errors of AdamS, AdamW, and Adam
are 24.19%, 24.29%, and 30.07%, respectively.

Robustness to the hyperparameters. Figure 7 further demonstrates that AdamS consistently outper-
forms Adam and AdamW under various weight decay hyperparameters. According to Figure 7, we
also notice that the optimal decoupled weight decay hyperparameter in AdamW can be very different
from L2 regularization and SWD. Thus, AdamW requires re-tuning the weight decay hyperparameter
in practice, which is time-consuming. Figure 8 shows that AdamS is more robust to the learning
rate and weight decay than AdamW and Adam. AdamS has a much deeper and wider basin than
AdamW and Adam. We leave the experiments with cosine annealing schedulers and warm restarts
(Loshchilov and Hutter, 2016) in Appendix E, which also support that AdamS yields superior test
performance and converges to lower training losses.

Large-Batch Training. In Figure 9, we again verified that Rule 2 holds well on all of Adam, AdamW,
and AdamS. We also note that, in the case that applies Rule 2, AdamS generalizes better than AdamW
and Adam on large-batch training (B = 16384).

Limitations. Figure 10 shows that, on ImageNet, the improvement of AdamS over AdamW becomes
marginal. Figure 11 in Appendix C demonstrates that, for LSTM on Penn TreeBank, L2 regularization
yields better test results than both Decoupled Weight Decay and SWD.

6 CONCLUSION AND DISCUSSION

Our experiments on large-batch training shows that the learning-rate linear scaling rule sometimes
is harmful to large-batch training due to bad convergence. We propose the weight-decay linear
scaling rule for large-batch training as an alternative solution. We note that the results may not be
explained by previous papers(Arora et al., 2019; Li et al., 2020), which studied scale-invariant deep
loss landscape due to batch normalization(Ioffe and Szegedy, 2015). Instead, the empirical results
verified our theoretical analysis with or without scale-invariant loss functions.

Inspired by the theoretical analysis of weight decay on stability and convergence, we propose a
scheduler for weight decay. Previous work did not studied how to design schedulers for weight decay.
Our empirical results demonstrate that SWD often makes improvements over L2 regularization and
Decoupled Weight Decay. The generalization gap between SGD and Adam can be almost closed by a
simple weight decay scheduler on CIFAR datasets. Although our analysis mainly focused on Adam,
SWD can be easily combined with other Adam variants, too.

Finally, we discuss the limitations of SWD. While SWD makes significant improvements in first
three experiments of Section 5, the experiments on ImageNet and Language Modeling suggest that
the improvement of SWD may be marginal for complex loss landscapes. SWD as the first practical
design for weight decay scheduling is not perfect. In future, it will be interesting to design weight
decay schedulers that can accelerate convergence in the early training phase while learning stable and
accurate minima in the late training phase.
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A PROOFS

A.1 PROOF OF THEOREM 1

Proof. We first write the regularized loss function corresponding to SGD with vanilla weight decay
as

ft(θ) = L(θ) +
λ′

2ηt
‖θ‖2 (12)

at t-th step.

If the corresponding L2 regularization λ′

2ηt
is unstable during training, the regularized loss function

ft(θ) will also be a time-dependent function and has no non-zero stable stationary points.

Suppose we have a non-zero solution θ? which is a stationary point of f(θ, t) at t-th step and SGD
finds θt = θ? at t-th step.

Even if the gradient of ft(θ) at t-step is zero, we have the gradient at (t+ 1)-th step as

gt+1 = ∇ft+1(θ?) = λ′(η−1
t − η−1

t+1)θ?. (13)

It means that ‖gt+1‖2 = λ′2(η−1
t − η−1

t+1)2‖θ?‖2.

To achieve convergence, we must have ‖gt+1‖2 = 0.

It requires (η−1
t − η−1

t+1)2 = 0 or ‖θ?‖2 = 0.

Theorem 2.2 of Shapiro and Wardi (1996) told us that the learning rate should be small enough for
convergence. Obviously, we have η <∞ in practice.

As ηt = ηt+1 does not hold, SGD cannot converging to any non-zero stationary point.

The proof is now complete.

A.2 PROOF OF THEOREM 2

Proof. Under Assumption 1, we write the dynamics of SGD with weight decay as

θt = θt−1 − ηtH(θt−1 − θ?)− ηtξt − ηtλθt−1 (14)

Note that the stochastic gradient noise ξ is zero-mean, E[ξ] = 0, where ξ is the difference of the true
gradient and the stochastic gradient. The zero-mean property generally holds because SGD randomly
selects minibatches from the whole training dataset, which is widely used in related papers (Xie et al.,
2021c; Kingma and Ba, 2015; Reddi et al., 2019).

The dynamics above is equivalent to minimizing the training loss with L2 regularization as

θt = θt−1 − ηt∇Lwd(θ)− ηtξt, (15)

where

Lwd(θ) =
1

2
(θ − θ?)>H(θ − θ?) + λθ>θ

=
1

2
(H + λI)[θ −H(H + λI)−1θ?]2 +Hλ(H + λI)−1θ?. (16)
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Thus, we may rewrite the dynamics of SGD with weight decay as

θt =θt−1 − ηt(H + λI)[θt−1 −H(H + λI)−1θ?]− ηtξt (17)

θt −H(H + λI)−1θ? =[I − ηt(H + λI)](θt−1 −H(H + λI)−1θ?)− ηtξt (18)

E[θt −H(H + λI)−1θ?] =E

[
t∏

k=1

[I − ηk(H + λI)](θ0 −H(H + λI)−1θ?)

]
, (19)

where the expectation of the stochastic gradient noise term is zero. As we care about the difference
between the expected learned solution and the true minimum θ?, we may further obtain

E[θt −H(H + λI)−1θ?] =

t∏
k=1

[I − ηk(H + λI)](θ0 −H(H + λI)−1θ?)− λ(H + λI)−1.

(20)

In the case of the constant learning rate scheduler, we may simplify the equation above as

E[θt −H(H + λI)−1θ?] = [I − η(H + λI)]t(θ0 −H(H + λI)−1θ?)− λ(H + λI)−1. (21)

The proof is now complete.

B EXPERIMENTAL DETAILS

Computational environment. The experiments are conducted on a computing cluster with GPUs of
NVIDIA R© Tesla

TM
P100 16GB and CPUs of Intel R© Xeon R© CPU E5-2640 v3 @ 2.60GHz.

B.1 IMAGE CLASSIFICATION ON CIFAR-10 AND CIFAR-100

Data Preprocessing For CIFAR-10 and CIFAR-100: We perform the common per-pixel zero-
mean unit-variance normalization, horizontal random flip, and 32× 32 random crops after padding
with 4 pixels on each side.

Hyperparameter Settings: We select the optimal learning rate for each experiment from
{0.0001, 0.001, 0.01, 0.1, 1, 10} for non-adaptive gradient methods. We use the default learning
rate for adaptive gradient methods in the experiments of Table ??, while we compared Adam,
AdamW, AdanS under various learning rates and batch sizes in the experiments of Figure 7 and
Figure 8. In the experiments on CIFAF-10 and CIFAR-100: η = 0.1 for SGD and SGDS; η = 0.001
for Adam, AdamW, AdamW, AMSGrad, AdamW, AdaBound, and RAdam; η = 0.01 for Padam. For
the learning rate schedule, the learning rate is divided by 10 at the epoch of {80, 160} for CIFAR-10
and {100, 150} for CIFAR-100, respectively. The batch size is set to 128 for both CIFAR-10 and
CIFAR-100, unless we specify it on large-batch training.

The strength of L2 regularization and SWD is default to 0.0005 as the baseline. Considering the
linear scaling rule, we choose λW =

λL2

η . Thus, the weight decay of AdamW uses λW = 0.5

for CIFAR-10 and CIFAR-100. The basic principle of choosing weight decay strength is to let all
optimizers have similar convergence speed.

We set the momentum hyperparameter β1 = 0.9 for SGD and SGDS. As for other optimizer
hyperparameters, we apply the default hyperparameter settings directly.

We repeated each experiment for three times in the presence of the error bars.

We leave the empirical results with the weight decay setting λ = 0.0001 in Appendix C.

B.2 LARGE-BATCH TRAINING ON CIFAR-10

Model: we always used the common ResNet18 for large-batch training.

Optimizer: we always used Adam and its variant as the optimizer, because adaptive gradient methods
often outperform SGD in large-batch training.
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The learning rate scheduler: Suppose the number of epochs is E, the learning rate is divided by 10
at the epoch of {0.4E, 0.8E}.
The default batch size is 16384 in large-batch training. The default weight decay is 0.0001 or follows
Rule 2. The default learning rate is 0.001 or follows Rule 1.

As for other optimizer hyperparameters, we apply the default hyperparameter setting directly.

B.3 IMAGE CLASSIFICATION ON IMAGENET

Data Preprocessing For ImageNet: For ImageNet, we perform the per-pixel zero-mean unit-
variance normalization, horizontal random flip, and the resized random crops where the random size
(of 0.08 to 1.0) of the original size and a random aspect ratio (of 3

4 to 4
3 ) of the original aspect ratio is

made.

Hyperparameter Settings for ImageNet: We select the optimal learning rate for each experiment
from {0.0001, 0.001, 0.01, 0.1, 1, 10} for all tested optimizers. For the learning rate schedule, the
learning rate is divided by 10 at the epoch of {30, 60}. We train each model for 90 epochs. The batch
size is set to 256. The weight decay hyperparameter of AdamS, AdamW, Adam are chosen from
{5× 10−6, 5× 10−5, 5× 10−4, 5× 10−3, 5× 10−2}. As for other optimizer hyperparameters, we
still apply the default hyperparameter settings directly.

B.4 LANGUAGE MODELING

We use a classical language model, Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) with 2 layers, 512 embedding dimensions, and 512 hidden dimensions, which has 14 million
model parameters and is similar to the “medium LSTM” in Zaremba et al. (2014). Note that our
baseline performance is better than the reported baseline performance in Zaremba et al. (2014). The
benchmark task is the word-level Penn TreeBank (Marcus et al., 1993). We empirically compared
AdamS, AdamW, and Adam under the common and same conditions.

Hyperparameter Settings. Batch Size: B = 20. BPTT Size: bptt = 35. Learning Rate: η = 0.001.
We run the experiments under various weight decay selected from {10−4, 5 × 10−5, 10−5, 5 ×
10−6, 10−6, 5× 10−7, 10−7}.The dropout probability is set to 0.5. We clipped gradient norm to 1.

C SUPPLEMENTARY FIGURES AND RESULTS OF ADAPTIVE GRADIENT
METHODS

Popular Adam variants often generalize worse than SGD. A few Adam variants tried to fix the
hidden problems in adaptive gradient methods, including AdamW Loshchilov and Hutter (2018),
AMSGrad (Reddi et al., 2019) and Yogi (Zaheer et al., 2018). A recent line of research, such as
AdaBound (Luo et al., 2019), Padam (Chen and Gu, 2018), and RAdam (Liu et al., 2019), believes
controlling the adaptivity of learning rates may improve generalization. This line of research usually
introduces extra hyperparameters to control the adaptivity, which requires more efforts in tuning
hyperparameters. However, we and Zhang et al. (2019c) found that this argument is contradicted
with our comparative experimental results (see Table 1). In our empirical analysis, most advanced
Adam variants may narrow but not completely close the generalization gap between adaptive gradient
methods and SGD. SGD with a fair weight decay hyperparameter as the baseline performance usually
generalizes better than recent adaptive gradient methods. The main problem may lie in weight
decay. SGD with weight decay λ = 0.0001, a common setting in related papers, is often not a good
baseline, as λ = 0.0005 often shows better generalization on CIFAR-10 and CIFAR-100 (see in
Figures 19 and 21 of Appendix F). We also conduct comparative experiments with λ = 0.0001 (see
Table 2 of Appendix C). Under the setting λ = 0.0001, while some existing Adam variants may
outperform SGD sometimes due to the lower baseline performance of SGD, AdamS shows superior
test performance. For example, for ResNet18 on CIFAR-10, the test error of AdamS is lower than
SGD by nearly one point and no other Adam variant may compare with AdamS.

Language Modeling. It is well-known that, different from computer vision tasks, the standard Adam
(with L2 regularization) is the most popular optimizer for language models. Figure 11 in Appendix
C demonstrates that the conventional belief is true that the standard L2 regularization yields better
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Table 2: Test performance comparison of optimizers with λL2
= λS = 0.0001 and λW = 0.1, which

is a common weight decay setting in related papers. AdamS still show better test performance than
popular adaptive gradient methods and SGD.

DATASET MODEL SGD ADAMS ADAM AMSGRAD ADAMW ADABOUND PADAM YOGI RADAM

CIFAR-10 RESNET18 5.58 4.69 6.08 5.72 5.33 6.87 5.83 5.43 5.81
VGG16 6.92 6.16 7.04 6.68 6.45 7.33 6.74 6.69 6.73

CIFAR-100 RESNET34 24.92 23.50 25.56 24.74 23.61 25.67 25.39 23.72 25.65
DENSENET121 20.98 21.35 24.39 22.80 22.23 24.23 22.26 22.40 22.40
GOOGLENET 21.89 21.60 24.60 24.05 21.71 25.03 26.69 22.56 22.35
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Figure 11: Language modeling under various weight decay. Note that the lower perplexity is better.

test results than both Decoupled Weight Decay and SWD. The weight decay scheduler suitable for
language models is an open problem.

We report the learning curves of all adaptive gradient methods in Figure 12. They shows that vanilla
Adam with SWD can outperform other complex variants of Adam.

Figure 13 displays the scatter plot of training losses and test errors during final 40 epochs of training
DenseNet121 on CIFAR-100.

Figure 14 displays the test performance of AdamS, AdamW, and Adam under various weight decay
hyperparameters of ResNet34 on CIFAR-100.

We train ResNet18 on CIFAR-10 for 900 epochs to explore the performance limit of AdamS, AdamW,
and Adam in Figure 15.

Note that ResNets have scale-invariant loss landscape, while VGGs have no scale-invariant loss
landscape. Our theoretical analysis generally holds under Assumption 1, which is independent of
the scale-invariant property of the loss landscape. Figure 16 further shows that, with or without
normalization layers, our theoretical result can be empirically observed. This is beyond the intrinsic
learning rate proposed by Li et al. (2020) which depends on the scale-invariant property of the loss
function.
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Figure 12: The learning curves of adaptive gradient methods.
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Figure 13: Even if with similar or higher training losses, AdamS still generalizes better than AdamW
and Adam. The scatter plot of training losses and test errors during final 50 epochs of training VGG16
on CIFAR-10 and DenseNet121 on CIFAR-100.
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Figure 14: We compare the generalization of Adam, AdamW, and AdamS with various weight decay
rates by training ResNet34 on CIFAR-100. The displayed weight decay of AdamW in the figure has
been rescaled by the factor ≈ 0.001. The optimal test performance of AdamS is significantly better
than AdamW and Adam.
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Figure 15: We train ResNet18 on CIFAR-10 for 900 epochs to explore the performance limit of
AdamS, AdamW, and Adam. The learning rate is divided by 10 at the epoch of 300 and 600. AdamS
achieves the most optimal test error, 4.70%.
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Figure 16: Rule 2 holds well for all of Adam, AdamW, and AdamS. VGG16 on CIFAR-10.
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Table 3: In the experiment of ResNet18 trained via SGD on CIFAR-10, we verified that the optimal
weight decay is approximately inverse to the number of epochs. The predicted optimal weight decay
is approximately 0.1× Epochs−1, because the optimal weight decay is λ = 0.0005 selected from
{10−2, 5× 10−3, 10−3, 5× 10−4, 10−4, 5× 10−5, 10−5, 5× 10−6, 10−6} with 200 epochs as the
base case. The observed optimal weight decay is selected from {Epochs−1, 0.1×Epochs−1, 0.01×
Epochs−1}. We observed that the optimal test errors are all corresponding to the predicted optimal
weight decay λ = 0.1 × Epochs−1. At least in the sense of the order of magnitude, the predicted
optimal weight decay is fully consistent with the observed optimal weight decay. Thus, the empirical
results supports that the optimal weight decay is approximately inverse to the number of epochs in
the common range of the number of epochs.

EPOCHS λ = Epochs−1 λ = 0.1× Epochs−1 λ = 0.01× Epochs−1

50 74.06 7.12 7.50
100 22.04 5.56 6.01
200 11.81 5.02 5.61
1000 4.67 4.43 6.02
2000 4.59 4.48 5.70

D ADDITIONAL ALGORITHMS

Algorithm 3 is the TensorFlow implementation for SGD.

Algorithm 4 is the implementation of Adai, AdaiW, and AdaiS. As β3

1−β1
is always 1 in Adai, AdaiW

is identical to AdaiS.

We note that the implementation of AMSGrad in Algorithm 5 is the popular implementation in
PyTorch. We use the PyTorch implementation in our paper, as it is widely used in practice.

Algorithm 3: SGD in TensorFlow
gt = ∇L(θt−1) + λθt−1;
mt = β1mt−1 − ηgt;
θt = θt−1 +mt;

Algorithm 4: Adai /AdaiS=AdaiW
gt = ∇L(θt−1) + λθt−1;
vt = β2vt−1 + (1− β2)g2

t ;
v̂t = vt

1−βt
2

;
v̄t = mean(v̂t);
β1t = (1− β0

v̂t
v̄t

).Clip(0, 1− ε);
mt = β1tmt−1 + (1− β1t)gt;
m̂t = mt

1−
∏t

k=1 β1k
;

θt = θt−1 − ηm̂t − ηλθt−1;

Algorithm 5: AMSGrad/AMSGradW
gt = ∇L(θt−1) + λθt−1;
mt = β1mt−1 + (1− β1)gt;
vt = β2vt−1 + (1− β2)g2

t ;
m̂t = mt

1−βt
1

;
vmax = max(vt, vmax);
v̂t = vmax

1−βt
2

;
θt = θt−1 − η√

v̂t+ε
m̂t − ηλθt−1;

Algorithm 6: AMSGradS
gt = ∇L(θt−1);
mt = β1mt−1 + (1− β1)gt;
vt = β2vt−1 + (1− β2)g2

t ;
m̂t = mt

1−βt
1

;
vmax = max(vt, vmax);
v̂t = vmax

1−βt
2

;
v̄t = mean(v̂t);
θt = θt−1 − η√

v̂t+ε
m̂t − η√

v̄t
λθt−1;
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Figure 17: The learning curves of ResNet18 and VGG16 on CIFAR-10 with cosine annealing and
warm restart schedulers. The weight decay hyperparameter: λL2

= λS = 0.0005 and λW = 0.5.
Top Row: Test curves. Bottom Row: Training curves. AdamS yields significantly lower test errors
and training losses than AdamW and Adam.

E SUPPLEMENTARY EXPERIMENTS WITH COSINE ANNEALING SCHEDULERS
AND WARM RESTARTS

In this section, we conducted comparative experiments on AdamS, AdamW, and Adam in the presence
of cosine annealing schedulers and warm restarts proposed by Loshchilov and Hutter (2016). We set
the learning rate scheduler with a recommended setting of Loshchilov and Hutter (2016): T0 = 14
and Tmul = 2. The number of total epochs is 210. Thus, we trained each deep network for four
runs of warm restarts, where the four runs have 14, 28, 56, and 112 epochs, respectively. Other
hyperparameters and details are displayed in Appendix B.

Our experimental results in Figures 17 and 18 suggest that AdamS consistently outperforms AdamW
and Adam in the presence of cosine annealing schedulers and warm restarts. It demonstrates that,
with various learning rate schedulers, the advantage of SWD may generally hold.

Moreover, we did not empirically observe that cosine annealing schedulers with warm restarts may
consistently outperform the common piecewise-constant learning rate schedulers for adaptive gradient
methods. We noticed that Loshchilov and Hutter (2016) empirically compared four-staged piecewise-
constant learning rate schedulers with cosine annealing schedulers with warm restarts, and argue
that cosine annealing schedulers with warm restarts are better. There may be two possible causes.
First, three-staged piecewise-constant learning rate schedulers, which usually have a longer first stage
and decay learning rates by multiplying 0.1, are the recommended settings, while the four-staged
piecewise-constant learning rate schedulers in Loshchilov and Hutter (2016) are usually not optimal.
Second, warm restarts may be helpful, while cosine annealing may be not. The ablation study on
piecewise-constant learning rate schedulers with warm restarts is lacked. We argued that how to
choose learning rate schedulers may still be an open question, considering the complex choices of
schedulers and the complex loss landscapes.

F WEIGHT DECAY IN MOMENTUM

In this section, we rethink weight decay in Momentum.
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Figure 18: The test errors of ResNet18 and VGG16 on CIFAR-10 under various weight decay
with cosine annealing and warm restart schedulers. AdamS yields significantly better optimal test
performance than AdamW and Adam.

It is also commonly believed that L2 regularization is an optimal weight decay implementation
when Adaptive Learning Rate is not involved. Almost all deep learning libraries directly use L2

regularization as the default weight decay implementation. However, we reveal that L2 regularization
is not identical to decoupled weight decay Loshchilov and Hutter (2018) and sometimes harms
performance slightly when Momentum is involved.

We take Stochastic Heavy Ball (SHB) (Zavriev and Kostyuk, 1993), which only uses fixed momentum
inertia and dampening coefficients, as the studied example in the presence of Momentum, as SHB-
style Momentum methods are widely used by many popular optimizers. SGD implemented in
PyTorch (Paszke et al., 2019) is actually SHB with default hyperparameters. We write SHB with L2

regularization and SHB with decoupled weight decay in Algorithm 7.

Algorithm 7: SGD/SGDW (SHB/SHBW)
gt = ∇L(θt−1) + λθt−1;
mt = β1mt−1 + β3gt;
θt = θt−1 − ηmt − ηλθt−1;

Algorithm 8: SGDS (SHBS)
gt = ∇L(θt−1);
mt = β1mt−1 + β3gt;
θt = θt−1 − ηmt − β3

1−β1
ηλθt−1;

Inspired by Theorem 1, we propose SGD with SWD (SGDS) as{
mt = β1mt−1 + β3gt

θt =
[
1− β3(1−βt

1)
1−β1

ηλ
]
θt−1 − ηmt,

(22)

where β3(1−βt
1)

1−β1
η is the effective learning rate in SHB, asmt ≈ β3(1−βt

1)
1−β1

E[gt]. As (1−βt1) converges

to 1 soon, we use the simplified β3

1−β1
η as the bias correction in practice, where relatively large weight

decay in the first dozen iterations can work like a model parameter initialization strategy. It is easy to
see that the factor β3

1−β1
for weight decay is exactly the difference between our stable weight decay

and decoupled weight decay suggested by Loshchilov and Hutter (2018). The pseudocode of SGDS
is displayed in Algorithm 8. It may also be called SHB with SWD (SHBS).

Empirical Analysis on SGDS. We empirically verified that the optimal performance of
SGDS/SGDW is often slightly better than the widely used vanilla SGD and SGD, as seen in Figures
19 and 21. We leave more empirical results of SGDS in Appendix G (see Table 4).

In Figure 19, the optimal performance of SGDS/SGDW is better than the widely used Vanilla SGD
and SGD. For Vanilla SGD, SGD, and SGDS, we may choose λL2

= λS = 0.0005 to maintain
the optimal performance. But we have to re-tune λW = 0.005 for SGDW. Hyperparameter Setting:
β1 = 0 for Vanilla SGD; β1 = 0.9 for SGD, SGDW, and SGDS. We repeat each simulation for three
runs. A similar experimental result for ResNet18 is presented in Appendix G. In Figure 20, we report
the test performance of SGDS and SGD for ResNet18 on CIFAR-10 under various learning rates and
weight decay. SGDS has a deeper blue basin than SGD.
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Figure 19: We compare the gen-
eralization of Vanilla SGD, SGD,
SGDW, and SGDS under various
weight decay hyperparameters by
training VGG16 on CIFAR-10.
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Figure 20: The test errors of ResNet18 on CIFAR-10. SGDS has
a slightly deeper blue basin near dark points (≤ 4.83%). The
optimal choices of η and λ are very close for SGDS and SGD.

Table 4: Test performance comparison of Adai, AdaiS, SGD, and SGDS. Stable/Decoupled Weight
Decay often outperform L2 regularization for optimizers involving in momentum. We report the
mean and the standard deviations (as the subscripts) of the optimal test errors computed over three
runs of each experiment.

DATASET MODEL ADAIS ADAI SGDS SGD

CIFAR-10 RESNET18 4.590.16 4.740.14 4.690.09 5.010.03
VGG16 5.810.07 6.000.09 6.280.07 6.420.02

CIFAR-100 DENSENET121 19.440.21 19.590.38 19.610.26 19.810.33
GOOGLENET 20.500.25 20.550.32 20.680.03 21.210.29

It is not well-known that SGDW often outperforms SGD slightly. We believe it is mainly because
people rarely know re-tuning λW based on β3

1−β1
is necessary for maintaining good performance

when people switch from SGD to SGDW. As the effective learning rate of SGD is β3

1−β1
η, the weight

decay rate of SGDW is actually R = 1−β1

β3
λW rather than λW . If we use different settings of β1

and β3 in decoupled weight decay, we will undesirably change the weight decay rate R unless we
re-tune λW . However, people usually directly let λW = λL2

for SGDW in practice. Figure 19
shows that, the optimal λL2

and λS in SGD ( with β1 = 0.9 and β3 = 1) are both 0.0005, while the
optimal λW is 0.005 instead. The optimal λL2

and λS are almost same, while the optimal λW is
quite different. Thus, the advantage of SGDS over SGDW can save us from re-tuning the weight
decay hyperparameter.

G SUPPLEMENTARY RESULTS OF SGD WITH MOMENTUM AND ADAI

We compare SGDS, SGDW, vanilla SGD and SGD under various weight decay hyperparameters by
training ResNet18 on CIFAR-10. We observe that the optimal performance of SGDS/SGDW is better
than vanilla SGD and SGD in Figure 21. The advantage of SGDS over SGDW is that we do not need
to fine-tune the weight decay hyperparameters based on β3

1−β1
.

We report the learning curves of SGD and SGDS in Figure 22. SGDS compares favorably with SGD.

Based on a diffusion theoretical framework (Xie et al., 2021b), Xie et al. (2020) proposed Adaptive
Inertia Estimation (Adai) that uses adaptive momentum inertia instead of Adaptive Learning Rate to
help training. Adaptive inertia can be regarded as an inertia-adaptive variant of SHB. The previous
analysis on SHB can be easily generalized to Adai. We display Adai with SWD (AdaiS) in Algorithm
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Figure 21: We compare the generalization of Vanilla SGD, SGD, SGDW, and SGDS with various
weight decay hyperparameters by training ResNet18 on CIFAR-10. The optimal weight decay rates
are near 0.0005 for all three weight implementations. The optimal performance of SGDS/SGDW
is better than Vanilla SGD and SGD. For Vanilla SGD, SGD, and SGDS, we may safely choose
λL2

= λS = 0.0005. But we have to re-tune λW = 0.005 for SGDW. Hyperparameter Setting:
β1 = 0 for Vanilla SGD; β1 = 0.9 for SGD, SGDW, and SGDS.
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(a) ResNet18 on CIFAR-10
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Figure 22: Generalization analysis on SGDS and SGD with L2 regularization. Hyperparameter
Setting: λS = λL2

= 0.0005 and β1 = 0.9.
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Figure 23: Generalization analysis on AdaiS and Adai with L2 regularization. Hyperparameter
Setting: λS = λL2

= 0.0005.
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4. We report the learning curves of Adai and AdaiS in Figure 23, which may verify the generalization
advantage of AdaiS over Adai.
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