Unlocking Feature Visualization for Deeper Networks
with Magnitude Constrained Optimization

Thomas Fel*':24, Thibaut Boissin*23, Victor Boutin*'-2, Agustin Picard*>3, Paul Novello*>»3
Julien Colin'°, Drew Linsley', Tom Rousseau*, Rémi Cadéne', Lore Goetschalckx',
Laurent Gardes®*, Thomas Serre!2
!Carney Institute for Brain Science, Brown University
2 Artificial and Natural Intelligence Toulouse Institute
3Institut de Recherche Technologique Saint-Exupery
4Innovation & Research Division, SNCF °ELLIS Alicante, Spain.
{thomas_fel@brown.edu, thibaut.boissin@irt-saintexupery.com}

Abstract

Feature visualization has gained substantial popularity, particularly after the in-
fluential work by Olah et al. in 2017, which established it as a crucial tool for
explainability. However, its widespread adoption has been limited due to a reliance
on tricks to generate interpretable images, and corresponding challenges in scaling
it to deeper neural networks. Here, we describe MACO, a simple approach to
address these shortcomings. The main idea is to generate images by optimizing
the phase spectrum while keeping the magnitude constant to ensure that generated
explanations lie in the space of natural images. Our approach yields significantly
better results — both qualitatively and quantitatively — and unlocks efficient and
interpretable feature visualizations for large state-of-the-art neural networks. We
also show that our approach exhibits an attribution mechanism allowing us to
augment feature visualizations with spatial importance. We validate our method on
a novel benchmark for comparing feature visualization methods, and release its
visualizations for all classes of the ImageNet dataset on @ Lens.

Overall, our approach unlocks, for the first time, feature visualizations for large,
state-of-the-art deep neural networks without resorting to any parametric prior
image model.

1 Introduction

The field of Explainable Artificial Intelligence (XAI) [2, 3] has largely focused on characterizing
computer vision models through the use of attribution methods [4, 5, 6, 7, 8,9, 10, 11, 12, 13]. These
methods aim to explain the decision strategy of a network by assigning an importance score to each
input pixel (or group of input pixels [14, 15, 16]), according to their contribution to the overall
decision. Such approaches only offer a partial understanding of the learned decision processes as they
aim to identify the location of the most discriminative features in an image, the “where”, leaving open
the “what” question, i.e. the semantic meaning of those features. Recent work [17, 18, 19, 20, 21, 22]
has highlighted the intrinsic limitations of attribution methods [23, 24, 25, 26], calling for the
development of methods that provide a complementary explanation regarding the “what”.

Feature visualizations provide a bridge to fill this gap via the generation of images that elicit a strong
response from specifically targeted neurons (or groups of neurons). One of the simplest approaches
uses gradient ascent to search for such an image. In the absence of regularization, this optimization is
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Figure 1: Comparison between feature visualization methods for “White Shark” classifica-
tion. (Top) Standard Fourier preconditioning-based method for feature visualization [1]. (Bottom)
Proposed approach, MACO, which incorporates a Fourier spectrum magnitude constraint.

known to yield highly noisy images — sometimes considered adversarial [27]. Hence, regularization
methods are essential to rendering more acceptable candidate images. Such regularizations can
consist of penalizing high frequencies in the Fourier domain [ 1, 28, 29, 30, 31], regularizing the
optimization process with data augmentation [1, 32, 33, 34, 35, 36, 37] or restricting the search space
to a subspace parameterized by a generative model [38, 39, 40, 41]. The first two approaches provide
faithful visualizations, as they only depend on the model under study; unfortunately, in practice, they
still fail on large modern classification models (e.g., ResNet50V2 [42] and ViT [43], see Figure 1).
The third approach yields interpretable feature visualizations even for large models but at the cost of
major biases: in that case, it is impossible to disentangle the true contributions of the model under
study from those of the generative prior model. Herein, we introduce a new feature visualization
approach that is applicable to the largest state-of-the-art networks without relying on any parametric
prior image model.

Our proposed approach, called MAgnitude Constrained Optimization (MACO), builds on the seminal
work by Olah et al. who described the first method to optimize for maximally activating images in
the Fourier space in order to penalize high-frequency content [1]. Our method is straightforward and
essentially relies on exploiting the phase/magnitude decomposition of the Fourier spectrum, while
exclusively optimizing the image’s phase while keeping its magnitude constant. Such a constraint
is motivated by psychophysics experiments that have shown that humans are more sensitive to
differences in phase than in magnitude [44, 45, 46, 47, 48]. Our contributions are threefold:

(i) We unlock feature visualizations for large modern CNNs without resorting to any strong
parametric image prior (see Figure 1).

(i) We describe how to leverage the gradients obtained throughout our optimization process
to combine feature visualization with attribution methods, thereby explaining both “what”
activates a neuron and “where” it is located in an image.

(@i) We introduce new metrics to compare the feature visualizations produced with MACO to
those generated with other methods.

As an application of our approach, we propose feature visualizations for FlexViT [49] and ViT [43]
(logits and intermediate layers; see Figure 4). We also employ our approach on a feature inversion
task to generate images that yield the same activations as target images to better understand what
information is getting propagated through the network and which parts of the image are getting
discarded by the model (on ViT, see Figure 6). Finally, we show how to combine our work with



a state-of-the-art concept-based explainability method [50] (see Figure 6b). Much like feature
visualization, this method produces explanations on the semantic “what” that drives a model’s
prediction by decomposing the latent space of the neural network into a series of “directions” —
denoted concepts. More importantly, it also provides a way to locate each concept in the input image
under study, thus unifying both axes — “what” and “where”. As feature visualization can be used to
optimize in directions in the network’s representation space, we employ MACO to generate concept
visualizations, thus allowing us to improve the human interpretability of concepts and reducing the
risk of confirmation bias. We showcase these concept visualizations on an interactive website:
Lens. The website allows browsing the most important concepts learned by a ResNet50 for all 1, 000
classes of ImageNet [42].

2 Related Work

Feature visualization methods involve solving an optimization problem to find an input image that
maximizes the activation of a target element (neuron, layer, or whole model) [10]. Most of the
approaches developed in the field fall along a spectrum based on how strongly they regularize the
model. At one end of the spectrum, if no regularization is used, the optimization process can search
the whole image space, but this tends to produce noisy images and nonsensical high-frequency
patterns [51].

To circumvent this issue, researchers have proposed to penalize high-frequency in the resulting
images — either by reducing the variance between neighboring pixels [28], by imposing constraints
on the image’s total variation [40, 41, 4], or by blurring the image at each optimization step [29].
However, in addition to rendering images of debatable validity, these approaches also suppress
genuine, interesting high-frequency features, including edges. To mitigate this issue, a bilateral
filter may be used instead of blurring, as it has been shown to preserve edges and improve the
overall result [30]. Other studies have described a similar technique to decrease high frequencies by
operating directly on the gradient, with the goal of preventing their accumulation in the resulting
visualization [31]. One advantage of reducing high frequencies present in the gradient, as opposed
to the visualization itself, is that it prevents high frequencies from being amplified by the optimizer
while still allowing them to appear in the final image if consistently encouraged by the gradient. This
process, known as "preconditioning” in optimization, can greatly simplify the optimization problem.
The Fourier transform has been shown to be a successful preconditioner as it forces the optimization
to be performed in a decorrelated and whitened image space [1]. The feature visualization technique
we introduce in this work leverages a similar preconditioning. The emergence of high-frequency
patterns in the absence of regularization is associated with a lack of robustness and sensitivity of the
neural network to adversarial examples [27], and consequently, these patterns are less often observed
in adversarially robust models [34, 33, 32]. An alternative strategy to promote robustness involves
enforcing small perturbations, such as jittering, rotating, or scaling, in the visualization process [35],
which, when combined with a frequency penalty [ 1], has been proved to greatly enhance the generated
images.

Unfortunately, previous methods in the field of feature visualization have been limited in their ability
to generate visualizations for newer architectures beyond VGG, resulting in a lack of interpretable
visualizations for larger networks like ResNets [ 1]. Consequently, researchers have shifted their focus
to approaches that leverage statistically learned priors to produce highly realistic visualizations. One
such approach involves training a generator, like a GAN [40] or an autoencoder [52, 41], to map
points from a latent space to realistic examples and optimizing within that space. Alternatively, a
prior can be learned to provide the gradient (w.r.t the input) of the probability and optimize both
the prior and the objective jointly [41, 30]. Another method involves approximating a generative
model prior by penalizing the distance between output patches and the nearest patches retrieved from
a database of image patches collected from the training data [38]. Although it is well-established
that learning an image prior produces realistic visualizations, it is difficult to distinguish between
the contributions of the generative models and that of the neural network under study. Hence, in this
work, we focus on the development of visualization methods that rely on minimal priors to yield the
least biased visualizations.

3 Magnitude-Constrained Feature Visualization

Notations Throughout, we consider a general supervised learning setting, with an input space
X C RY™w an output space Y C R€, and a classifier f : X — ) that maps inputs x € X to a
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prediction y € Y. Without loss of generality, we assume that f admits a series of L intermediate
spaces Ay C RP¢ 1 < ¢ < L. In this setup, fr : X — A, maps an input to an intermediate activation
v = (v1,...,0p,)T € Ag of f. We respectively denote F and F~! as the 2-D Discrete Fourier
Transform (DFT) on X’ and its inverse.

Optimization Criterion. The primary goal of a feature visualization method is to produce an image
a* that maximizes a given criterion L, (x) € R; usually some value aggregated over a subset of
weights in a neural network f (neurons, channels, layers, logits). A concrete example consists in
finding a natural "prototypical” image x* of a class k € [[1, K] without using a dataset or generative
models. However, optimizing in the pixel space R" *# is known to produce noisy, adversarial-like
x* (see section 2). Therefore, the optimization is constrained using a regularizer R : X — RT to
penalize unrealistic images:

x* = argmax Ly (x) — AR(x). (1

reX

In Eq. 1, X is a hyperparameter used to balance the main optimization criterion £,, and the regularizer
‘R. Finding a regularizer that perfectly matches the structure of natural images is hard, so proxies
have to be used instead. Previous studies have explored various forms of regularization spanning
from total variation, £1, or /5 loss [40, 41, 4]. More successful attempts rely on the reparametrization
of the optimization problem in the Fourier domain rather than on regularization.

3.1 A Fourier perspective

Mordvintsev et al. [53] noted in their seminal work that one could use differentiable im-
age parametrizations to facilitate the maximization of L£,. Olah et al. [1] proposed to re-
parametrize the images using their Fourier spectrum. Such a parametrization allows am-
plifying the low frequencies using a scalar w. Formally, the prototypal image x* can

be written as z* = F l(2* ® w) with 2* = argmax,ccwxu Ly(F 1z © w)).
Finding * boils down to optimizing a Fourier .
buffer z = a-+ib together with boosting the low- a) Fourier FV b) ImageNet

spectrum spectrum

frequency components and then recovering the
final image by inverting the optimized Fourier
buffer using inverse Fourier transform.

However, multiple studies have shown that the
resulting images are not sufficiently robust, in
the sense that a small change in the image can
cause the criterion £, to drop. Therefore, it
is common to see robustness transformations
applied to candidate images throughout the op-
timization process. In other words, the goal
is to ensure that the generated image satisfies 4 0 4 8 12
the criterion even if it is rotated by a few de- mean power spectrum (log)

grees or jittered by a few pixels. Formally,
given a set of possible transformation func-
tions — sometimes called augmentations — that
we denote T such that for any transformation

Figure 2: Comparison between Fourier FV and
natural image power spectrum. In (a), the power
spectrum is averaged over 10 different logits visu-
TS0 alizations for each of the 1000 classes of ImageNet.
T~T, we have 7(x) € &, the optimization be-  The yisualizations are obtained using the Fourier
comes 2* = argmax,ecwxn Erv7(Lo((T © FVFourier FV method to maximize the logits of a
F _1)(z O w)). ViT network [1]. In (b) the spectrum is averaged

Empirically, it is common knowledge that the ©Ver all training images of the ImageNet dataset.
deeper the models are, the more transforma-

tions are needed and the greater their magni-

tudes should be. To make their approach work on models like VGG, Olah ef al. [1] used no less
than a dozen transformations. However, this method fails for modern architectures, no matter how
many transformations are applied. We argue that this may come from the low-frequency scalar
(or booster) no longer working with models that are too deep. For such models, high frequencies
eventually come through, polluting the resulting images with high-frequency content — making them
impossible to interpret by humans. To empirically illustrate this phenomenon, we compute the k
logit visualizations obtained by maximizing each of the logits corresponding to the & classes of a
ViT using the parameterization used by Olah ef al. In Figure 2 (left), we show the average of the
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Figure 3: Overview of the approach: (a) Current Fourier parameterization approaches optimize the
entire spectrum (yellow arrow). (b) In contrast, the optimization flow in our approach (green arrows)
goes from the network activation (y) to the phase of the spectrum (¢) of the input image ().

spectrum of these generated visualizations over all classes: + Zle | F(x})|. We compare it with the
average spectrum of images on the ImageNet dataset (denoted D): E,.p(|F(x)|) (Figure 2, right
panel). We observe that the images obtained through optimization put much more energy into high
frequencies compared to natural images. Note that we did not observe this phenomenon in older
models such as LeNet or VGG.

In the following section, we introduce our method named MACO, which is motivated by this
observation. We constrain the magnitude of the visualization to a natural value, enabling natural
visualization for any contemporary model, and reducing the number of required transformations to
only two.

3.2 MACO: from Regularization to Constraint

Parameterizing the image in the Fourier space makes it possible to directly manipulate the image in
the frequency domain. We propose to take a step further and decompose the Fourier spectrum z into
its polar form z = re'? instead of its cartesian form z = a + ib, which allows us to disentangle the
magnitude (7) and the phase ().

It is known that human recognition of objects in images is driven not by magnitude but by phase [44,
45,46, 47, 48]. Motivated by this, we propose to optimize the phase of the Fourier spectrum while
fixing its magnitude to a typical value of a natural image (with few high frequencies). In particular,
the magnitude is kept constant at the average magnitude computed over a set of natural images (such
as ImageNet), so 7 = E5..p(|F(x)]). Note that this spectrum needs to be calculated only once and
can be used at will for other tasks.

Therefore, our method does not backpropagate through Algorithm 1 MACO

th§ entirf Fourier spectrum but only through the phase Require: 7, o ~ U([—, 7])
(Figure 3), thus reducing the number of parameters to Require: o — 0

optimize by half. Since the magnitude of our spectrum for n E [0, N] do

is constrained, we no longer need hyperparameters such J_— sa’mple(T)

as A or scaling factors, and the generated image at each £, = (T 0 F 1) (reien)
step is naturally plausible in the frequency domain. We "
also enhance the quality of our visualizations via two data
augmentations: random crop and additive uniform noise.
To the best of our knowledge, our approach is the first to
completely alleviate the need for explicit regularization —
using instead a hard constraint on the solution of the optimization problem for feature visualization.
To summarize, we formally introduce our method:

WxH

Pnt1 = Pn + nvapcv(:ﬁn)
a=a+|Vy Ly(x,)|

end for

return z* = F~1(re'"V)

Definition 3.1 (MACO). The feature visualization results from optimizing the parameter vector @
such that:

¢* = argmax B, o7 (Ly((T 0 F 1) (re'?)) where v =Egop(|F(x)|)

(QERW X H

The feature visualization is then obtained by applying the inverse Fourier transform to the optimal
complex-valued spectrum: z* = F~1((re'?")

Transparency for free: Visualizations often suffer from repeated patterns or unimportant elements
in the generated images. This can lead to readability problems or confirmation biases [54]. It is



Pineapple

Block 1

Block 3

Block 6

Block 10

Figure 4: (left) Logits and (right) internal representations of FlexiViT. MACO was used to
maximize the activations of (left) logit units and (right) specific channels located in different blocks
of the FlexViT (blocks 1, 2, 6 and 10 from left to right).

important to ensure that the user is looking at what is truly important in the feature visualization. The
concept of transparency, introduced in [53], addresses this issue but induces additional implementation
efforts and computational costs.

We propose an effective approach, which leverages attribution methods, that yields a transparency map
« for the associated feature visualization without any additional cost. Our solution shares theoretical
similarities with SmoothGrad [5] and takes advantage of the fact that during backpropagation, we

can obtain the intermediate gradients on the input 9L, (x)/0x for free as 8%”—("’) = aﬁa”—éz)g—i.
We store these gradients throughout the optimization process and then average them, as done in
SmoothGrad, to identify the areas that have been modified/attended to by the model the most during
the optimization process. We note that a similar technique has recently been used to explain diffusion
models [55]. In Algorithm 1, we provide pseudo-code for MACO and an example of the transparency

maps in Figure 6 (third column).

4 Evaluation

We now describe and compute three different scores to compare the different feature visualization
methods: Fourier (Olah et al.), CBR (optimization in the pixel space), and MACO (ours). It is
important to note that these scores are only applicable to output logit visualizations. To keep a fair
comparison, we restrict the benchmark to methods that do not rely on any learned image priors.
Indeed, methods with learned prior will inevitably yield lower FID scores (and lower plausibility
score) as the prior forces the generated visualizations to lie on the manifold of natural images.



Plausibility score. We consider a feature visualization plausible when it is similar to the distribution
of images belonging to the class it represents. We quantify the plausibility through an OOD metric
(Deep-KNN, recently used in [56]): it measures how far a feature visualization deviates from the
corresponding ImageNet object category images based on their representation in the network’s
intermediate layers (see Table 1).

FID score. The FID quantifies the similarity between the distribution of the feature visualizations
and that of natural images for the same object category. Importantly, the FID measures the distance
between two distributions, while the plausibility score quantifies the distance from a sample to a
distribution. To compute the FID, we used images from the ImageNet validation set and used the
Inception v3 last layer (see Table 1). Additionally, we center-cropped our 512 x 512 images to
299 x 299 images to avoid the center-bias problem [39].

Transferability score. This score measures how consistent the feature visualizations are with
other pre-trained classifiers. To compute the transferability score, we feed the obtained feature
visualizations into 6 additional pre-trained classifiers (MobileNet [57], VGG16 [58], Xception [59],
EfficientNet [60], Tiny ConvNext [61] and Densenet [62]), and we report their classification accuracy
(see Table 2).

All scores are computed using 500 feature visualizations, each of them maximizing the logit of one
of the ImageNet classes obtained on the FlexiViT [49], ViT[63], and ResNetV2[64] models. For
the feature visualizations derived from Olah et al. [1], we used all 10 transformations set from the
Lucid library”. CBR denotes an optimization in pixel space and using the same 10 transformations,
as described in [29]. For MACO, 7 only consists of two transformations; first we add uniform noise
& ~ U([-0.1,0.1)" > and crops and resized the image with a crop size drawn from the normal
distribution A/(0.25, 0.1), which corresponds on average to 25% of the image. We used the NAdam
optimizer [65] with {r = 1.0 and N = 256 optimization steps. Finally, we used the implementation
of [1] and CBR which are available in the Xplique library [66] " which is based on Lucid.

FlexiViT ViT ResNetV2 FlexiViT ViT ResNetV2
e Plausibility score (1-KNN) ({) e Transferability score(1): MACO/ Fourier [ 1]
MACO 1473 1097 1248 MobileNet 68/ 38 48/ 37 93/36
Fourier [1] 1815 1817 1837 VGGI16 64/30 50/30 90 /20
CBR [29] 1866 1920 1933 Xception 85/61 73/62 97/ 64
e FID Score (]) Eff. Net 88/25 63/25 82/21
MACO 230.68  241.68 312.66 ConvNext 96/52 84/55 93 /60

Fourier [1]  250.25  257.81 318.15 DenseNet 84/32 66/31 93 /25

CBR [29] 247.12  268.59 346.41

Table 1: Plausibility and FID scores for dif-  Table 2: Transferability scores for different feature
ferent feature visualization methods applied visualization methods applied on FlexiVIT, ViT
on FlexiVIT, ViT and ResNetV2 and ResNetV2.

For all tested metrics, we observe that MACO produces better feature visualizations than those
generated by Olah ef al. [1] and CBR [29]. We would like to emphasize that our proposed evaluation
scores represent the first attempt to provide a systematic evaluation of feature visualization methods,
but we acknowledge that each individual metric on its own is insufficient and cannot provide a
comprehensive assessment of a method’s performance. However, when taken together, the three
proposed scores provide a more complete and accurate evaluation of the feature visualization methods.

4.1 Human psychophysics study

Ultimately, the goal of any feature visualization method is to demystify the CNN’s underlying
decision process in the eyes of human users. To evaluate MACO s ability to do this, we closely
followed the psychophysical paradigm introduced in [67]. In this paradigm, the participants are
presented with examples of a model’s “favorite” inputs (i.e., feature visualization generated for a
given unit) in addition to two query inputs. Both queries represent the same natural image, but have a

*https://github.com/tensorflow/lucid
Thttps://github.com/deel-ai/xplique
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FlexiViT Plausibility () FID () logit magnitude (1)

MACO 571.68 211.0 5.12
- transparency 617.9 (+46.2) 208.1 (-2.9) 5.05 (-0.1)
- crop 680.1 (+62.2)  299.2 (-91.1) 8.18 (+3.1)
- noise 707.3 (+27.1)  324.5(-25.3) 11.7 (+3.5)
Fourier [1] 673.3 259.0 322
- augmentations 7359 (+62.6)  312.5 (+53.5) 12.4 (49.2)

Table 3: Ablation study on the FlexiViT model: This reveals that 1. augmentations help to
have better FID and Plausibility scores, but lead to lesser salients visualizations (softmax value), 2.
Fourier [1] benefits less from augmentations than MACO.

different part of the image hidden from the model by a square occludor. The task for participants
is to judge which of the two queries would be “favored by the model” (i.e., maximally activate the
unit). The rationale here is that a good feature visualization method would enable participants to
more accurately predict the model’s behavior. Here, we compared four visualization conditions
(manipulated between subjects): Olah [1], MACO with the transparency mask (the transparency
mask is decribed in 3.2), MACO without the transparency mask, and a control condition in which no
visualizations were provided. In addition, the network (VGG16, ResNet50, ViT) was a within-subject
variable. The units to be understood were taken from the output layer.

Based on the data of 174 participants on Pro-
lific (www.prolific.com) [September 2023], we

found both visualization and network to sig- § 0.9+ Control ® MACO (with mask)
nificantly predict the logodds of choosing the 5 B Olah MACO (no mask)
right query (Fig. 5). That is, the logodds were 3 0.8-
significantly higher for participants in both the 2
MACO conditions compared to Olah. On the ® 0.7-
other hand, our tests did not yield a significant § )
difference between Olah and the control con- <
dition, or between the two MACO conditions. % 0.6+
Finally, we found that, overall, ViT was signif- &
icantly harder to interpret than ResNet50 and ¢ 0.5
< ViT VGG16 ResNet50

VGGL16, with no significant difference observed
between the latter two networks. Full experi-
ment and analysis details can be found in the
supplementary materials, section C. Taken to- Figure 5: Human causal understanding of model
gether, these results support our claim that even  activations. We follow the experimental procedure
if feature visualization methods struggle in offer- introduced in [67] to evaluate Olah and MACO vi-
ing interpretable information as networks scale, sualizations on 3 different networks. The control
MACO still convincingly helps people better condition is when the participant did not see any
understand deeper models while Olah’s method feature visualization.

[1] does not.

Network

4.2 Ablation study

To disentangle the effects of the various components of MACO, we perform an ablation study on the
feature visualization applications. We consider the following components: (1) the use of a magnitude
constraint, (2) the use of the random crop, (3) the use of the noise addition, and (4) the use of
the transparency mask. We perform the ablation study on the FlexiViT model, and the results are
presented in Table 3. We observe an inherent tradeoff between optimization quality (measured by
logit magnitude) on one side, and the plausibility (and FID) scores on the other side. This reveals that
plausible images which are close to the natural image distribution do not necessarily maximize the
logit. Finally, we observe that the transparency mask does not significantly affect any of the scores
confirming that it is mainly a post-processing step that does not affect the feature visualization itself.



5 Applications

We demonstrate the versatility of the proposed MACO technique by applying it to three different
XAI applications:

Logit and internal state visualization. For logit visualization, the optimization objective is to
maximize the activation of a specific unit in the logits vector of a pre-trained neural network (here a
FlexiViT[49]). The resulting visualizations provide insights into the features that contribute the most
to a class prediction (refer to Figure 4a). For internal state visualization, the optimization objective is
to maximize the activation of specific channels located in various intermediate blocks of the network
(refer to Figure 4b). This visualization allows us to better understand the kind of features these blocks
— of a FlexiViT[49] in the figure — are sensitive to.

Feature inversion. The goal of this application is to find an image that produces an activation
pattern similar to that of a reference image. By maximizing the similarity to reference activations,
we are able to generate images representing the same semantic information at the target layer but
without the parts of the original image that were discarded in the previous stages of the network,
which allows us to better understand how the model operates. Figure 6a displays the images (second
column) that match the activation pattern of the penultimate layer of a VIT when given the images
from the first column. We also provide examples of transparency masks based on attribution (third
column), which we apply to the feature visualizations to enhance them (fourth column).

b)

Broccoli

Figure 6: Feature inversion and concept visualizaiton. a) Images in the second column match the
activation pattern of the penultimate layer of a ViT when fed with the images of the first column.
In the third column, we show their corresponding attribution-based transparency masks, leading to
better feature visualization when applied (fourth column). b) MACO is used to visualize concept
vectors extracted with the CRAFT method [50]. The concepts are extracted from a ResNet50 trained
on ImageNet. All visualizations for all ImageNet classes are available at @, Lens.

Concept visualization. Herein we combine MACO with concept-based explainability. Such
methods aim to increase the interpretability of activation patterns by decomposing them into a set of
concepts [68]. In this work, we leverage the CRAFT concept-based explainability method [50], which
uses Non-negative Matrix Factorization to decompose activation patterns into main directions — that
are called concepts —, and then, we apply MACO to visualize these concepts in the pixel space. To
do so, we optimize the visualization such that it matches the concept activation patterns. In Figure 6b,
we present the top 2 most important concepts (one concept per column) for five different object
categories (one category per row) in a ResNet50 trained on ImageNet. The concepts’ visualizations
are followed by a mosaic of patches extracted from natural images: the patches that maximally
activate the corresponding concept.
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6 Limitations

We have demonstrated the generation of realistic explanations for large neural networks by imposing
constraints on the magnitude of the spectrum. However, it is important to note that generating
realistic images does not necessarily imply effective explanation of the neural networks. The
metrics introduced in this paper allow us to claim that our generated images are closer to natural
images in latent space, that our feature visualizations are more plausible and better reflect the
original distribution. However, they do not necessarily indicate that these visualizations helps
humans in effectively communicating with the models or conveying information easily to humans.
Furthermore, in order for a feature visualization to provide informative insights about the model,
including spurious features, it may need to generate visualizations that deviate from the spectrum
of natural images. Consequently, these visualizations might yield lower scores using our proposed
metrics. Simultaneously, several interesting studies have highlighted the weaknesses and limitations
of feature visualizations [54, 69, 67]. One prominent criticism is their lack of interpretability for
humans, with research demonstrating that dataset examples are more useful than feature visualizations
in understanding convolutional neural networks (CNNs) [54]. This can be attributed to the lack
of realism in feature visualizations and their isolated use as an explainability technique. With
our approach, MACO , we take an initial step towards addressing this limitation by introducing
magnitude constraints, which lead to qualitative and quantitative improvements. Additionally, through
our website, we promote the use of feature visualizations as a supportive and complementary tool
alongside other methods such as concept-based explainability, exemplified by CRAFT [50]. We
emphasize the importance of feature visualizations in combating confirmation bias and encourage
their integration within a comprehensive explainability framework.

7 Conclusions

In this paper, we introduced a novel approach, MACO, for efficiently generating feature visualizations
in modern deep neural networks based on (i) a hard constraint on the magnitude of the spectrum to
ensure that the generated visualizations lie in the space of natural images, and (ii) a new attribution-
based transparency mask to augment these feature visualizations with the notion of spatial importance.
This enhancement allowed us to scale up and unlock feature visualizations on large modern CNNs
and vision transformers without the need for strong — and possibly misleading — parametric priors.
We also complement our method with a set of three metrics to assess the quality of the visualizations.
Combining their insights offers a way to compare the techniques developed in this branch of XAI
more objectively. We illustrated the scalability of MACO with feature visualizations of large models
like ViT, but also feature inversion and concept visualization. Lastly, by improving the realism of the
generated images without using an auxiliary generative model, we supply the field of XAI with a
reliable tool for explaining the semantic (“what” information) of modern vision models.
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