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ABSTRACT

Recent advances in off-policy deep reinforcement learning (RL) have led to im-
pressive success in complex tasks from visual observations. Experience replay im-
proves sample-efficiency by reusing experiences from the past, and convolutional
neural networks (CNNs) process high-dimensional inputs effectively. However,
such techniques demand high memory and computational bandwidth. In this pa-
per, we present Latent Vector Experience Replay (LeVER), a simple modification
of existing off-policy RL methods, to address these computational and memory
requirements without sacrificing the performance of RL agents. To reduce the
computational overhead of gradient updates in CNNs, we freeze the lower layers
of CNN encoders early in training due to early convergence of their parameters.
Additionally, we reduce memory requirements by storing the low-dimensional la-
tent vectors for experience replay instead of high-dimensional images, enabling an
adaptive increase in the replay buffer capacity, a useful technique in constrained-
memory settings. In our experiments, we show that LeVER does not degrade the
performance of RL agents while significantly saving computation and memory
across a diverse set of DeepMind Control environments and Atari games. Finally,
we show that LeVER is useful for computation-efficient transfer learning in RL
because lower layers of CNNs extract generalizable features, which can be used
for different tasks and domains.

1 INTRODUCTION

Success stories of deep reinforcement learning (RL) from high dimensional inputs such as pixels or
large spatial layouts include achieving superhuman performance on Atari games (Mnih et al., 2015;
Schrittwieser et al., 2019; Badia et al., 2020), grandmaster level in Starcraft II (Vinyals et al., 2019)
and grasping a diverse set of objects with impressive success rates and generalization with robots
in the real world (Kalashnikov et al., 2018). Modern off-policy RL algorithms (Mnih et al., 2015;
Hessel et al., 2018; Hafner et al., 2019; 2020; Srinivas et al., 2020; Kostrikov et al., 2020; Laskin
et al., 2020) have improved the sample-efficiency of agents that process high-dimensional pixel
inputs with convolutional neural networks (CNNs; LeCun et al. 1998) using the past experiential
data that is typically stored as raw observations form in a replay buffer (Lin, 1992). However, these
methods demand high memory and computational bandwidth, which makes deep RL inaccessible
in several scenarios, such as learning with much lighter on-device computation (e.g. mobile phones
or other light-weight edge devices).

For compute- and memory-efficient deep learning, several strategies, such as network pruning (Han
et al., 2015; Frankle & Carbin, 2019), quantization (Han et al., 2015; Iandola et al., 2016) and
freezing (Yosinski et al., 2014; Raghu et al., 2017) have been proposed in supervised learning and
unsupervised learning for various purposes (see Section 2 for more details). In computer vision,
Raghu et al. (2017) showed that the computational cost of updating CNNs can be reduced by freez-
ing lower layers earlier in training, and Han et al. (2015) introduced a deep compression, which
reduces the memory requirement of neural networks by producing a sparse network. In natural lan-
guage processing, several approaches (Tay et al., 2019; Sun et al., 2020) have studied improving
the computational efficiency of Transformers (Vaswani et al., 2017). In deep RL, however, devel-
oping compute- and memory-efficient techniques has received relatively little attention despite their
serious impact on the practicality of RL algorithms.
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In this paper, we propose Latent Vector Experience Replay (LeVER), a simple technique to reduce
computational overhead and memory requirements that is compatible with various off-policy RL al-
gorithms (Haarnoja et al., 2018; Hessel et al., 2018; Srinivas et al., 2020). Our main idea is to freeze
the lower layers of CNN encoders of RL agents early in training, which enables two key capabil-
ities: (a) compute-efficiency: reducing the computational overhead of gradient updates in CNNs;
(b) memory-efficiency: saving memory by storing the low-dimensional latent vectors to experience
replay instead of high-dimensional images. Additionally, we leverage the memory-efficiency of
LeVER to adaptively increase the replay capacity, resulting in improved sample-efficiency of off-
policy RL algorithms in constrained-memory settings. LeVER achieves these improvements without
sacrificing the performance of RL agents due to early convergence of CNN encoders.

To summarize, the main contributions of this paper are as follows:

• We present LeVER, a compute- and memory-efficient technique that can be used in conjunction
with most modern off-policy RL algorithms (Haarnoja et al., 2018; Hessel et al., 2018).

• We show that LeVER significantly reduces computation while matching the original perfor-
mance of existing RL algorithms on both continuous control tasks from DeepMind Control
Suite (Tassa et al., 2018) and discrete control tasks from Atari games (Bellemare et al., 2013).

• We show that LeVER improves the sample-efficiency of RL agents in constrained-memory set-
tings by enabling an increased replay buffer capacity.

• Finally, we show that LeVER is useful for computation-efficient transfer learning, highlighting
the generality and transferability of encoder features.

2 RELATED WORK

Off-policy deep reinforcement learning. The most sample-efficient RL agents often use off-policy
RL algorithms, a recipe for improving the agent’s policy from experiences that may have been
recorded with a different policy (Sutton & Barto, 2018). Off-policy RL algorithms are typically
based on Q-Learning (Watkins & Dayan, 1992) which estimates the optimal value functions for the
task at hand, while actor-critic based off-policy methods (Lillicrap et al., 2016; Schulman et al.,
2017; Haarnoja et al., 2018) are also commonly used. In this paper we will consider Deep Q-
Networks (DQN; Mnih et al. 2015),which combine the function approximation capability of deep
convolutional neural networks (CNNs; LeCun et al. 1998) with Q-Learning along with the usage of
the experience replay buffer (Lin, 1992) as well as off-policy actor-critic methods (Lillicrap et al.,
2016; Haarnoja et al., 2018), which have been proposed for continuous control tasks.

Taking into account the learning ability of humans and practical limitations of wall clock time for
deploying RL algorithms in the real world, particularly those that learn from raw high dimensional
inputs such as pixels (Kalashnikov et al., 2018), the sample-inefficiency of off-policy RL algo-
rithms has been a research topic of wide interest and importance (Lake et al., 2017; Kaiser et al.,
2020). To address this, several improvements in pixel-based off-policy RL have been proposed
recently: algorithmic improvements such as Rainbow (Hessel et al., 2018) and its data-efficient ver-
sions (van Hasselt et al., 2019); using ensemble approaches based on bootstrapping (Osband et al.,
2016; Lee et al., 2020); combining RL algorithms with auxiliary predictive, reconstruction and con-
trastive losses (Jaderberg et al., 2017; Higgins et al., 2017; Oord et al., 2018; Yarats et al., 2019;
Srinivas et al., 2020; Stooke et al., 2020); using world models for auxiliary losses and/or synthetic
rollouts (Sutton, 1991; Ha & Schmidhuber, 2018; Kaiser et al., 2020; Hafner et al., 2020); using
data-augmentations on images to improve sample-efficiency (Laskin et al., 2020; Kostrikov et al.,
2020).

Compute-efficient techniques in machine learning. Most recent progress in deep learning and RL
has relied heavily on the increased access to more powerful computational resources. To address this,
Mattson et al. (2020) presented MLPerf, a fair and precise ML benchmark to evaluate model training
time on standard datasets, driving scalability alongside performance, following a recent focus on
mitigating the computational cost of training ML models. Several techniques, such as pruning and
quantization (Han et al., 2015; Frankle & Carbin, 2019; Blalock et al., 2020; Iandola et al., 2016; Tay
et al., 2019) have been developed to address compute and memory requirements. Raghu et al. (2017)
proposed freezing earlier layers to remove computationally expensive backward passes in supervised
learning tasks, motivated by the bottom-up convergence of neural networks. This intuition was
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further extended to recurrent neural networks (Morcos et al., 2018) and continual learning (Pellegrini
et al., 2019), and Yosinski et al. (2014) study the transferability of frozen and fine-tuned CNN
parameters. Fang et al. (2019) store low-dimensional embeddings of input observations in scene
memory for long-horizon tasks. We focus on the feasibility of freezing neural network layers in
deep RL and show that this idea can improve the compute- and memory-efficiency of many off-
policy algorithms using standard RL benchmarks.

3 BACKGROUND

We formulate visual control task as a partially observable Markov decision process (POMDP; Sut-
ton & Barto 2018; Kaelbling et al. 1998). Formally, at each timestep t, the agent receives a high-
dimensional observation ot, which is an indirect representation of the state st, and chooses an action
at based on its policy π. The environment returns a reward rt and the agent transitions to the next
observation ot+1. The return Rt =

∑∞
k=0 γ

krt+k is the total accumulated rewards from timestep t
with a discount factor γ ∈ [0, 1). The goal of RL is to learn a policy π that maximizes the expected
return over trajectories. By following the common practice in DQN (Mnih et al., 2015), we han-
dle the partial observability of environment using stacked input observations, which are processed
through the convolutional layers of an encoder fψ .

Soft Actor-Critic. SAC (Haarnoja et al., 2018) is an off-policy actor-critic method based on the
maximum entropy RL framework (Ziebart, 2010), which encourages the robustness to noise and
exploration by maximizing a weighted objective of the reward and the policy entropy. To update the
parameters, SAC alternates between a soft policy evaluation and a soft policy improvement. At the
soft policy evaluation step, a soft Q-function, which is modeled as a neural network with parameters
θ, is updated by minimizing the following soft Bellman residual:

LSACQ (θ, ψ) = Eτt∼B
[(
Qθ(fψ(ot), at)− rt

− γEat+1∼πφ
[
Qθ̄(fψ̄(ot+1), at+1)− α log πφ(at+1|fψ(ot+1))

])2
]
,

where τt = (ot, at, rt, ot+1) is a transition, B is a replay buffer, θ̄, ψ̄ are the delayed parameters, and
α is a temperature parameter. At the soft policy improvement step, the policy π with its parameter
φ is updated by minimizing the following objective:

LSACπ (φ) = Eot∼B,at∼πφ
[
α log πφ(at|fψ(ot))−Qθ(fψ(ot), at)

]
. (1)

Here, the policy is modeled as a Gaussian with mean and covariance given by neural networks to
handle continuous action spaces.

Deep Q-learning. DQN algorithm (Mnih et al., 2015) learns a Q-function, which is modeled as a
neural network with parameters θ, by minimizing the following Bellman residual:

LDQN(θ, ψ) = Eτt∼B

[(
Qθ(fψ(ot), at)− rt − γmax

a
Qθ̄(fψ̄(ot+1), a)

)2
]
, (2)

where τt = (ot, at, rt, ot+1) is a transition, B is a replay buffer, and θ̄, ψ̄ are the delayed parameters.
Rainbow DQN integrates several techniques, such as double Q-learning (Van Hasselt et al., 2016)
and distributional DQN (Bellemare et al., 2017). For exposition, we refer the reader to Hessel et al.
(2018) for more detailed explanations of Rainbow DQN.

4 LEVER: LATENT VECTOR EXPERIENCE REPLAY

In this section, we present LeVER: Latent Vector Experience Replay, which can be used in conjunc-
tion with most modern off-policy RL algorithms, such as SAC (Haarnoja et al., 2018) and Rainbow
DQN (Hessel et al., 2018). Our main idea is to freeze lower layers during training and only update
higher layers, which eliminates the computational overhead of computing gradients and updating in
lower layers. We additionally improve the memory-efficiency of off-policy RL algorithms by storing
low-dimensional latent vectors in the replay buffer instead of high-dimensional pixel observations.
See Figure 1 and Appendix A for more details of our method.
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Figure 1: Illustration of our framework. (a) Before the encoder is frozen, all forward and backward
passes are active through the network, and we store images in the replay buffer. (b) After freezing,
we store latent vectors in the replay buffer, and remove all forward and backward passes through the
encoder. We remark that more samples can be stored in the replay buffer due to the relatively low
dimensionality of the latent vector.

4.1 FREEZING ENCODER FOR SAVING COMPUTATION AND MEMORY

We process high-dimensional image input with an encoder fψ to obtain zt = fψ(ot), which is used
as input for policy πφ and Q-function Qθ as described in Section 3. In off-policy RL, we store tran-
sitions (ot, at, ot+1, rt) in the replay buffer B to improve sample-efficiency by reusing experience
from the past. However, processing high-dimensional image input ot is computationally expensive.
To handle this issue, after Tf updates, we freeze the parameters of encoder ψ, and only update the
policy and Q-function. We remark that this simple technique can save computation without perfor-
mance degradation because the encoder is modeled as deep convolutional neural networks, while
a shallow MLP is used for policy and Q-function. Freezing lower layers of neural networks also
has been investigated in supervised learning based on the observation that neural networks converge
to their final representations from the bottom-up, i.e., lower layers converge very early in train-
ing (Raghu et al., 2017). For the first time, we show the feasibility and effectiveness of this idea in
pixel-based reinforcement learning (see Figure 7(a) for supporting experimental results) and present
solutions to its RL-specific implementation challenges.

Moreover, in order to save memory, we consider storing (compressed) latent vectors instead of
high-dimensional image inputs. Specifically, each experience in B is replaced by the latent tran-
sition (zt, at, zt+1, rt), and the replay capacity is increased to Ĉ (see Section 4.2 for more de-
tails). Thereafter, for each subsequent environment interaction, the latent vectors zt = fψ(ot) and
zt+1 = fψ(ot+1) are computed prior to storing (zt, at, zt+1, rt) in B. During agent updates, the
sampled latent vectors are directly passed into the policy πφ and Q-function Qθ, bypassing the en-
coder convolutional layers. Since the agent samples and trains with latent vectors after freezing, we
only store the latent vectors and avoid the need to maintain large image observations in B.

4.2 ADDITIONAL TECHNIQUES AND DETAILS FOR LEVER

Data augmentations. Recently, various data augmentations (Srinivas et al., 2020; Laskin et al.,
2020; Kostrikov et al., 2020) have provided large gains in the sample-efficiency of RL from pixel
observations. However, LeVER precludes data augmentations because we store the latent vector
instead of the raw pixel observation. We find that the absence of data augmentations could decrease
sample-efficiency in some cases, e.g., when the capacity of B is small. To mitigate this issue,
we perform K number of different data augmentations for each input observation ot and store K
distinct latent vectors {zkt = fψ(AUGk(ot))|k = 1 · · ·K}. We find empirically thatK = 4 achieves
competitive performance to standard RL algorithms in most cases.

Increasing replay capacity. By storing the latent vector in replay buffer, we can adaptively increase
the capacity (i.e., total number of transitions), which is determined by the size difference between
the input pixel observations and the latent vectors output by the encoder, with a few additional
considerations. The new capacity of the replay buffer is

Ĉ =
⌊
C ∗

(
P

4NKL

) ⌋
,
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where C is the capacity of the original replay buffer, P is the size of the raw observation, L is
the size of the latent vector, and K is the number of data augmentations. The number of encoders
N is algorithm-specific and determines the number of distinct latent vectors encountered for each
observation during training. For Q-learning algorithms N = 1, whereas for actor-critic algorithms
N = 2 if the actor and critic each compute their own latent vectors. Some algorithms employ a
target network for updating the Q-function (Mnih et al., 2015; Haarnoja et al., 2018), but we use
the same latent vectors for the online and target networks after freezing to avoid storing target latent
vectors separately and find that tying their parameters does not degrade performance.1 The factor
of 4 arises from the cost of saving floats for latent vectors, while raw pixel observations are saved
as integer pixel values. We assume the memory required for actions, and rewards is small and only
consider only the memory used for observations.

5 EXPERIMENTAL RESULTS

We designed our experiments to answer the following questions:

• Can LeVER reduce the computational overhead of various off-policy RL algorithms for both
continuous (see Figure 2) and discrete (see Figure 3) control tasks?

• Can LeVER reduce the memory consumption and improve the sample-efficiency of off-policy
RL algorithms by adaptively increasing the buffer size (see Figure 4 and Figure 5)?

• Can LeVER be useful for computation-efficient transfer learning (see Figure 7(a))?
• Do CNN encoders of RL agents converge early in training (see Figure 7(b) and Figure 7(c))?

5.1 SETUPS

Computational efficiency. We first demonstrate the computational efficiency of LeVER on the
DeepMind Control Suite (DMControl; Tassa et al. 2018) and Atari games (Bellemare et al., 2013)
benchmarks. DMControl is commonly used for benchmarking sample-efficiency for image-based
continuous control methods. For DMControl experiments, we consider a state-of-the-art model-free
RL method, which applies contrastive learning (CURL; Srinivas et al. 2020) to SAC (Haarnoja
et al., 2018), using the image encoder architecture from SAC-AE (Yarats et al., 2019). For evalu-
ation, we compare the computational efficiency of CURL with and without LeVER by measuring
floating point operations (FLOPs).2 For discrete control tasks from Atari games, we perform simi-
lar experiments comparing the FLOPs required by Rainbow (Hessel et al., 2018) with and without
LeVER. For both our method and the baseline, we use the hyperparameters and encoder architecture
of data-efficient Rainbow (van Hasselt et al., 2019). We train our method and the baseline for 500K
timesteps as done in Srinivas et al. (2020) and Laskin et al. (2020).

Memory efficiency. We showcase the memory efficiency of LeVER with a set of constrained-
memory experiments in DMControl. For Cartpole and Finger, the memory allocated for storing
observations is constrained to 0.03 GB, corresponding to an initial replay buffer capacity C = 1000.
For Reacher and Walker, the memory is constrained to 0.06 GB for an initial capacity of C = 2000
due to the difficulty of learning in these environments. In this constrained-memory setting, we
compare the sample-efficiency of CURL with and without LeVER. As an upper bound, we also
report the performance of CURL without memory constraints, i.e., the replay capacity is set to the
number of training steps. For Atari experiments, the baseline agent is data-efficient Rainbow and
the memory allocation is 0.07 GB, corresponding to initial replay capacity C = 10000. The other
hyperparameters are the same as those in the computational efficiency experiments.

The encoder architecture used for our experiments with CURL is used in Yarats et al. (2019). It
consists of four convolutional layers with 3 x 3 kernels and 32 channels, with the ReLU activa-
tion applied after each conv layer. The architecture used for our Rainbow experiments is from van
Hasselt et al. (2019), consisting of a convolutional layer with 32 channels followed by a convolu-
tional layer with 64 channels, both with 5 x 5 kernels and followed by a ReLU activation. For our
method, we freeze the first fully-connected layer of the actor and critic in CURL experiments and

1We remark that the higher layers of the target network are not tied to the online network after freezing.
2We explain our procedure for counting the number of FLOPs in Appendix B.
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Figure 2: Learning curves for CURL with and without LeVER, where the x-axis shows FLOPs.
The dotted gray line denotes the encoder freezing time t = Tf . The solid line and shaded regions
represent the mean and standard deviation, respectively, across five runs.

S
co

re

600

800

1000

1200

1400

FLOPs
0 2.5×1013 5.0×1013

Alien

S
co

re

50

100

150

200

250

300

FLOPs
0 2.5×1013 5.0×1013

Amidar

S
co

re
0

100

200

300

FLOPs
0 2.5×1013 5.0×1013

BankHeist

S
co

re

2000

2500

3000

3500

4000

FLOPs
0 2.5×1013 5.0×1013

Krull

S
co

re

−200

−100

0

100

200

300

400

500

FLOPs
2×1013 3×1013 4×1013 5×1013

PrivateEye

S
co

re

0

1000

2000

3000

4000

5000

FLOPs
0 2.5×1013 5.0×1013

Qbert

0

10,000

20,000

30,000

40,000

FLOPs
0 2×1013 4×1013 6×1013

CrazyClimber

S
co

re

100

200

300

400

500

600

FLOPs
0 2.5×1013 5.0×1013

Seaquest

Rainbow Rainbow + LeVER (ours)

Figure 3: Learning curves for Rainbow with and without LeVER, where the x-axis shows FLOPs.
The dotted gray line denotes the encoder freezing time t = Tf . The solid line and shaded regions
represent the mean and standard deviation, respectively, across five runs.

the last convolutional layer of the encoder in Rainbow experiments (see Appendix E for justifica-
tion). We present the best results achieved by LeVER across various values of Tf , the number of
training steps before freezing the encoder. The full list of hyperparameters is provided in Appendix
G (DMControl) and Appendix H (Atari).

5.2 IMPROVING COMPUTE- AND MEMORY-EFFICIENCY

Experimental results in DMControl and Atari showcasing the computational efficiency of LeVER
are provided in Figures 2 and Figure 3. CURL and Rainbow both achieve higher performance within
significantly fewer FLOPs when combined with LeVER in DMControl and Atari, respectively. Ad-
ditionally, Table 1 compares the performance of Rainbow with and without LeVER at 45T (4.5e13)
FLOPs. In particular, the average returns are improved from 145.8 to 276.6 compared to baseline
Rainbow in BankHeist and from 2325.5 to 4123.5 in Qbert. We remark that LeVER achieves better
computational efficiency while maintaining the agent’s final performance and comparable sample-
efficiency (see Appendix E for corresponding figures).

Experimental results in Atari and DMControl showcasing the sample-efficiency of LeVER in the
constrained-memory setup are provided in Figure 4 and Figure 5. CURL and Rainbow achieve
higher final performance and better sample-efficiency when combined with LeVER in DMControl
and Atari, respectively. Additionally, Table 1 compares the performance of unbounded memory
Rainbow and constrained-memory (0.07 GB) Rainbow with and without LeVER at 500K environ-
ment interactions. In particular, the average returns are improved from 10498.0 to 17620.0 compared
to baseline Rainbow in CrazyClimber and from 2430.5 to 3231.0 in Qbert. Although we disentan-
gle the computational and memory benefits of LeVER in these experiments, we also highlight the
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Scores at 45T FLOPs Scores at 500K environment steps (0.07GB)
Rainbow Rainbow+LeVER Rainbow Rainbow+LeVER

Alien 992.0± 152.7 1172.6 ±239.0 1038.4± 101.1 1134.6 ±452.9
Amidar 144.0± 27.4 250.5 ±47.4 121.0± 31.2 165.3 ±47.6
BankHeist 145.8± 61.2 276.6 ±98.1 161.6 ±57.7 151.8± 65.8
CrazyClimber 21580.0± 3514.6 28066.0 ±4108.5 10498.0± 1387.8 17620.0 ±4418.4
Krull 2799.5± 468.1 3277.5 ±440.5 2215.7± 336.9 3069.2 ±377.6
PrivateEye 81.5± 37.0 100.0 ±0.0 80.0 ±40.0 80.0 ±40.0
Qbert 2325.5± 1152.7 4123.5 ±1385.5 2430.5± 658.8 3231.0 ±1567.6
Seaquest 402.8± 48.4 561.2 ±100.5 262.8± 19.1 336.8 ±45.9

Table 1: Scores on Atari games at 45T FLOPs corresponding to Figure 3 and scores on Atari games
at 500K environment interactions in the constrained-memory setup (0.07GB) corresponding to Fig-
ure 4. The results show the mean and standard deviation averaged five runs, and the best results are
indicated in bold.

computational gain of LeVER in constrained-memory settings (effectively combining the benefits)
in Appendix D.
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Figure 4: Comparison of the sample-efficiency of Rainbow with and without LeVER in constrained-
memory (0.07 GB) settings. The dotted gray line denotes the encoder freezing time t = Tf . The
solid line and shaded regions represent the mean and standard deviation, respectively, across five
runs.

5.3 FREEZING LARGER CONVOLUTIONAL ENCODERS

We also verify the benefits of LeVER using deeper convolutional encoders, which are widely used in
a range of applications such as visual navigation tasks and favored for their superior generalization
ability. Specifically, we follow the setup described in Section 5.1 and replace the SAC-AE architec-
ture (4 convolutional layers) with the IMPALA architecture (Espeholt et al., 2018) (15 convolutional
layers containing residual blocks (He et al., 2016)). Figure 6(b) shows the computational efficiency
of LeVER in Cartpole-swingup and Walker-walk with the IMPALA architecture. CURL achieves
higher performance within significantly fewer FLOPs when combined with LeVER. We remark that
the gains due to LeVER are more significant because computing and updating gradients for large
convolutional encoders is very computationally expensive.
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Figure 5: Comparison of the sample-efficiency of CURL with and without LeVER in constrained-
memory settings. The dotted gray line denotes the encoder freezing time t = Tf . The solid line and
shaded regions represent the mean and standard deviation, respectively, across five runs.

(a) Varying batch sizes (b) IMPALA architecture

Figure 6: (a) Left: Cheetah-run learning curves for CURL with and without LeVER, with batch sizes
b=512 and b=128, respectively, where the x-axis shows samples. Right: Number of FLOPs used by
each agent to achieve its final performance. (b) Learning curves for CURL using the IMPALA
architecture with and without LeVER, where the x-axis shows FLOPs. The dotted gray line denotes
the encoder freezing time t = Tf . The solid line and shaded regions represent the mean and standard
deviation, respectively, across five runs.

5.4 IMPROVING SAMPLE EFFICIENCY WITH LEVER AND LARGER BATCH SIZES

In this subsection we show that we can combine LeVER with larger batch sizes to improve the
sample-efficiency of RL agents. Larger batch sizes have been shown to improve agent performance
in many settings, but require more compute since each gradient calculation and update is performed
on more observations. We demonstrate that LeVER can mitigate these issues by showing results
in Cheetah-run, a task known to achieve better performance with larger batch sizes. Figure 6(a)
shows the sample-efficiency of CURL (batch 128) and CURL+LeVER (batch 512), and the cor-
responding computational efficiency of each agent. CURL achieves better sample-efficiency when
combined with LeVER and the larger batch size, but does this within a comparable compute budget.
In contrast, CURL (batch 256) requires significantly more compute to achieve similar performance
to CURL+LeVER (batch 512).

5.5 IMPROVING COMPUTATIONAL EFFICIENCY IN TRANSFER SETTINGS

We demonstrate, as another application of our method, that LeVER increases computational effi-
ciency in the transfer setting: utilizing the parameters from Task A on unseen Tasks B. Specifically,
we train a CURL agent for 60K environment interactions on Walker-stand; then, we only fine-tune
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(a) Walker-stand to Walker-walk
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Figure 7: (a) Comparison of the computational efficiency of agents trained from scratch with CURL
and agents trained with CURL+LeVER from Walker-stand pretraining. (b) Spatial attention map
from CNN encoders. (c) SVCCA (Raghu et al., 2017) similarity scores between each layer and
itself at time t and t+10K throughout training for Walker-walk.

the policy and Q-functions on unseen tasks (e.g., Walker-walk and Cheetah-run) using network
parameters from Walker-stand. To save computation, during fine-tuning, we freeze the encoder pa-
rameters. Figure 7(a) shows the computational gain of LeVER in task transfer (i.e., Walker-stand to
Walker-walk similar to Yarats et al. (2019)), and domain transfer (i.e., Walker-stand to Cheetah-run
and Walker-stand to Hopper-hop) is shown in Appendix C. Due to the generality of CNN features,
we can achieve this computational gain using a pretrained encoder. For the task transfer setup,
we provide more analysis on the number of frozen layers and freezing time hyperparameter Tf in
Appendix C.

5.6 ENCODER ANALYSIS

In this subsection we present visualizations to verify that the neural networks employed in deep
reinforcement learning indeed converge from the bottom up, similar to those used in supervised
learning (Raghu et al., 2017). Figure 7(b) shows the spatial attention map for two Atari games
and one DMControl environment at various points during training. Similar to Laskin et al. (2020)
and Zagoruyko & Komodakis (2017), we compute the spatial attention map by mean-pooling the
absolute values of the activations along the channel dimension and follow with a 2-dimensional
spatial softmax. The attention map shows significant change in the first 20% of training, and remains
relatively unchanged thereafter, suggesting that the encoder converges to its final representations
early in training. Figure 7(c) shows the SVCCA (Raghu et al., 2017) score, a measure of neural
network layer similarity, between a layer and itself at time t and t+10K. The convolutional layers
of the encoder achieve high similarity scores with themselves between time t and t+10K, while the
higher layers of the policy and Q-network continue to change throughout training. In our DMControl
environments we freeze the convolutional layers and the first fully-connected layer of the policy and
Q-network (denoted fc1). Although the policy fc1 continues to change, the convergence of the Q-
network fc1 and the encoder layers allow us to achieve our computational and memory savings with
minimal performance degradation.

6 CONCLUSION

In this paper, we presented LeVER, a simple but powerful modification of off-policy RL algorithms
that significantly reduces computation and memory requirements while maintaining state-of-the-
art performance. We leveraged the intuition that CNN encoders in deep RL converge to their fi-
nal representations early in training to freeze the encoder and subsequently store latent vectors to
save computation and memory. In our experimental results, we demonstrated the compute- and
memory-efficiency of LeVER in various DMControl environments and Atari games, and proposed
a technique for computation-efficient transfer learning. With LeVER, we highlight the potential for
improvements in compute- and memory-efficiency in deep RL that can be made without sacrificing
performance, in hopes of making deep RL more practical and accessible in the real world.
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Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? arXiv preprint arXiv:2003.03033, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures, 2018.

Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese. Scene memory transformer for
embodied agents in long-horizon tasks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 538–547, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2018.

Irina Higgins, Arka Pal, Andrei A Rusu, Loic Matthey, Christopher P Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot trans-
fer in reinforcement learning. In International Conference on Machine Learning, 2017.

Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. Condensenet: An
efficient densenet using learned group convolutions. In IEEE conference on computer vision and
pattern recognition, 2018.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

10



Under review as a conference paper at ICLR 2021

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Jongheon Jeong and Jinwoo Shin. Training cnns with selective allocation of channels. In Interna-
tional Conference on Machine Learning, 2019.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. In International Conference on Learning Representations, 2020.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. In Conference on Robot Learning,
2018.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40, 2017.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. In Advances in neural information processing systems,
2020.
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Appendix

A ALGORITHM

We detail the specifics of modifying off-policy RL methods with LeVER below. For concreteness,
we describe LeVER combined with deep Q-learning methods.

Algorithm 1 Latent Vector Experience Replay (DQN Base Agent)

1: Initialize replay buffer B with capacity C
2: Initialize action-value network Q with parameters θ and encoder f with parameters ψ
3: for each timestep t do
4: Select action: at ← arg maxaQθ(fψ(ot), a)
5: Collect observation ot+1 and reward rt from the environment by taking action at
6: if t ≤ Tf then
7: Store transition (ot, at, ot+1, rt) in replay buffer B
8: else
9: Compute latent states zt, zt+1 ← fψ(ot), fψ(ot+1)

10: Store transition (zt, at, zt+1, rt) in replay buffer B
11: end if
12: // REPLACE PIXEL-BASED TRANSITIONS WITH LATENT TRAJECTORIES
13: if t = Tf then
14: Compute latent states {(zt, zt+1)}min(Tf ,c)

t=1 ← {(fψ(ot), fψ(ot+1))}min(Tf ,c)
t=1

15: Replace {(ot, at, ot+1, rt)}
min(Tf ,c)
t=1 with latent transitions {(zt, at, zt+1, rt)}

min(Tf ,c)
t=1

16: Increase the capacity of B to Ĉ
17: end if
18: // UPDATE PARAMETERS OF Q-NETWORK WITH SAMPLED IMAGES OR LATENTS
19: for each gradient step do
20: if t < Tf then
21: Sample random minibatch {(oj , aj , oj+1, rj)}bj=1 ∼ B
22: Calculate target yj = rj + γmaxa′ Qθ̄(fψ̄(oj+1), a′)

23: Perform a gradient step on LDQN(θ, ψ) (2)
24: else
25: Sample random minibatch {(zj , aj , zj+1, rj)}bj=1 ∼ B
26: Calculate target yj = rj + γmaxa′ Qθ̄(zj+1, a

′)
27: Perform a gradient step on LDQN(θ) (2)
28: end if
29: end for
30: end for

B CALCULATION OF FLOATING POINT OPERATIONS

We consider each backward pass to require twice as many FLOPs as a forward pass. 3 Each weight
requires one multiply-add operation in the forward pass. In the backward pass, it requires two
multiply-add operations: at layer i, the gradient of the loss with respect to the weight at layer i and
with respect to the output of layer (i− 1) need to be computed. The latter computation is necessary
for subsequent gradient calculations for weights at layer (i− 1).

We use functions from Huang et al. (2018) and Jeong & Shin (2019) to obtain the number of op-
erations per forward pass for all layers in the encoder (denoted E) and number of operations per
forward pass for all MLP layers (denoted M ). For concreteness, we provide a FLOPs breakdown
by layer for the architectures we use in Table 2 and 3.

3This method for FLOP calculation is used in https://openai.com/blog/ai-and-compute/.
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We denote the number of forward passes per iteration F , the number of backward passes per iteration
B, and the batch size b. We assume the number of updates per timestep is 1. Then, the number of
FLOPs per iteration before freezing at time t = Tf is:

bF (E +M) + 2bB(E +M)

For the baseline, FLOPs are computed using this formula throughout training.

LeVER reduces computational overhead by eliminating most of the encoder forward and backward
passes. The number of FLOPs per iteration after freezing is:

bFM + 2bBM + EKN

where K is the number of data augmentations and N is the number of networks as described in
Section 4.2. The forward and backward passes of the encoder are removed, with the exception of
the EKN term at the end that arises from calculating latent vectors for the current observation.

At freezing time t = Tf , we need to compute latent vectors for each transition in the replay buffer.
This introduces a one-time cost of (EKN min(Tf , C)) FLOPs, since the number of transitions in
the replay buffer is min(Tf , C), where C is the initial replay capacity.

Table 2: Forward pass FLOPs breakdown by layer for DM Control experiments.

Layer FLOPs Layer FLOPs Layer FLOPs

encoder:conv1 4.3e6 critic:fc1 1.9e6 actor:fc1 1.9e6
encoder:conv2 1.4e7 critic:fc2 5.3e4 actor:fc2 5.2e4
encoder:conv3 1.3e7 critic:fc3 1.0e6 actor:fc3 1.0e6
encoder:conv4 1.1e7 critic:fc4 1.0e3 actor:fc4 2.0e3

Table 3: Forward pass FLOPs breakdown by layer for Atari experiments.

Layer FLOPs Layer FLOPs Layer FLOPs

encoder:conv1 8.2e5 value stream:fc1 1.5e5 advantage stream:fc1 1.5e5
encoder:conv2 4.6e5 value stream:fc2 1.3e4 advantage stream:fc2 1.2e5

C ADDITIONAL TRANSFER EXPERIMENTS

Domain transfer. In Figure 7(a) we show the computational efficiency of LeVER in a task transfer
setting. Here we show in Figure 8 that frozen encoder parameters can also be used in domain transfer
tasks (i.e. Walker-stand to Cheetah-run and Walker-stand to Hopper-hop). In this setting, we only
transfer the encoder parameters, whereas we transfer the entire network in task transfer.

Transfer setting analysis. In Figure 7(a) we show the computational efficiency of LeVER on
Walker-walk with Walker-stand pretrained for 60K steps, with four convolutional layers frozen.
We provide analysis for the number of layers frozen and number of environment interactions be-
fore freezing Tf in Figure 9. We find that freezing more layers allows for more computational
gain, since we can avoid computing gradients for the frozen layers without sacrificing performance.
Longer pretraining in the source task improves compute-efficiency in the target task; however, early
convergence of encoder parameters enables the agent to learn a good policy even with only 20K
interactions before transfer.

We remark that Yosinski et al. (2014) examine the generality of features learned by neural networks
and the feasibility of transferring parameters between similar image classification tasks. Yarats et al.
(2019) show that transferring encoder parameters pretrained from Walker-walk to Walker-stand and
Walker-run can improve the performance and sample-efficiency of a SAC agent. For the first time,
we show that encoder parameters trained on simple tasks can be useful for computation-efficient
training in complex tasks and new domains.
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(a) Walker-stand to Cheetah-run (b) Walker-stand to Hopper-hop

Figure 8: Comparison of the computational efficiency of agents trained from scratch with CURL
and agents trained with CURL+LeVER from Walker-stand pretraining.

(a) Number of frozen layers. (b) Freezing time hyperparameter Tf .

Figure 9: (a) Analysis on the number of frozen convolutional layers in Walker-walk training from
Walker-stand pretrained for 60K steps. (b) Analysis on the number of environment steps Walker-
stand agent is pretrained prior to Walker-walk transfer, where the first four convolutional layers are
frozen.

D COMPUTATIONAL EFFICIENCY IN CONSTRAINED-MEMORY SETTINGS

In our main experiments, we isolate the two major contributions of our method, reduced compu-
tational overhead and improved sample-efficiency in constrained-memory settings. In Figures 10
and 11 we show that these benefits can also be combined for significant computational gain in
constrained-memory settings.

E SAMPLE-EFFICIENCY PLOTS

In section 5.2 we show the computational efficiency of our method in DMControl and Atari envi-
ronments. We show in Figure 12 that our sample-efficiency is very close to that of baseline CURL
(Srinivas et al., 2020), with only slight degradation in Cartpole-swingup and Walker-walk. In Atari
games (Figure 13), we match the sample-efficiency of baseline Rainbow (Hessel et al., 2018) very
closely, with no degradation.

F GENERAL IMPLEMENTATION DETAILS

LeVER can be applied to any convolutional encoder which compresses the input observation into a
latent vector with smaller dimension than the observation. We generally freeze all the convolutional
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(a) Cartpole-swingup (b) Finger-spin (c) Reacher-easy

(d) Cheetah-run (e) Walker-walk

Figure 10: Comparison of CURL in constrained-memory settings with and without LeVER, where
the x-axis shows FLOPs, corresponding to Figure 5. The dotted gray line denotes the encoder
freezing time t = Tf . The solid line and shaded regions represent the mean and standard deviation,
respectively, across five runs.

(a) Alien (b) Amidar (c) BankHeist (d) CrazyClimber

(e) Krull (f) PrivateEye (g) Qbert (h) Seaquest

Figure 11: Comparison of Rainbow in constrained-memory settings with and without LeVER, where
the x-axis shows FLOPs, corresponding to Figure 4. The dotted gray line denotes the encoder
freezing time t = Tf . The solid line and shaded regions represent the mean and standard deviation,
respectively, across five runs.

layers and possibly the first fully-connected layer. In our main experiments, we chose to freeze the
first fully-connected layer for DM Control experiments and the last convolutional layer for Atari
experiments. We made this choice in order to simultaneously save computation and memory; for
those architectures, if we freeze an earlier layer, we save less computation, and the latent vectors
(convolutional features) are too large for our method to save memory. In DM Control experiments,
the latent dimension of the first fully-connected layer is 50, which allows a roughly 12X memory
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(a) Cartpole-swingup (b) Finger-spin (c) Reacher-easy

(d) Cheetah-run (e) Walker-walk

Figure 12: Comparison of the sample-efficiency of CURL with and without LeVER, corresponding
to Figure 2. The dotted gray line denotes the encoder freezing time t = Tf . The solid line and
shaded regions represent the mean and standard deviation, respectively, across five runs.

(a) Alien (b) Amidar (c) BankHeist (d) CrazyClimber

(e) Krull (f) PrivateEye (g) Qbert (h) Seaquest

Figure 13: Comparison of the sample-efficiency of Rainbow with and without LeVER, correspond-
ing to Figure 3. The dotted gray line denotes the encoder freezing time t = Tf . The solid line and
shaded regions represent the mean and standard deviation, respectively, across five runs.

gain. In Atari experiments, the latent dimension of the last convolutional layer is 576, which allows
a roughly 3X memory gain.

G DMCONTROL IMPLEMENTATION DETAILS

We use the network architecture in https://github.com/MishaLaskin/curl for our
CURL (Srinivas et al., 2020) implementation. We show a full list of hyperparameters in Table
4.

H ATARI IMPLEMENTATION DETAILS

We use the network architecture in https://github.com/Kaixhin/Rainbow for our Rain-
bow (Hessel et al., 2018) implementation and the data-efficient Rainbow (van Hasselt et al., 2019)
encoder architecture and hyperparameters. We show a full list of hyperparameters in Table 5.

17

https://github.com/MishaLaskin/curl
https://github.com/Kaixhin/Rainbow


Under review as a conference paper at ICLR 2021

Table 4: Hyperparameters used for DMControl experiments. Most hyperparameter values are un-
changed across environments with the exception of initial replay buffer size, action repeat, and
learning rate.

Hyperparameter Value

Augmentation Crop
Observation rendering (100, 100)
Observation down/upsampling (84, 84)
Replay buffer size in Figure 2 Number of training steps
Initial replay buffer size in Figure 5 1000 cartpole, swingup; cheetah, run; finger, spin

2000 reacher, easy; walker, walk
Number of updates per training step 1
Initial steps 1000
Stacked frames 3
Action repeat 2 finger, spin; walker, walk

4 cheetah, run; reacher, easy
8 cartpole, swingup

Hidden units (MLP) 1024
Evaluation episodes 10
Evaluation frequency 2500 cartpole, swingup

10000 cheetah, run; finger, spin; reacher, easy; walker, walk
Optimizer Adam
(β1, β2)→ (fψ, πφ, Qθ) (.9, .999)
(β1, β2)→ (α) (.5, .999)
Learning rate (fψ, πφ, Qθ) 2e− 4 cheetah, run

1e− 3 cartpole, swingup; finger, spin; reacher, easy; walker, walk
Learning rate (α) 1e− 4
Batch Size 512 cheetah, run

128 cartpole, swingup; finger, spin; reacher, easy; walker, walk
Q function EMA τ 0.01
Critic target update freq 2
Convolutional layers 4
Number of filters 32
Non-linearity ReLU
Encoder EMA τ 0.05
Latent dimension 50
Discount γ .99
Initial temperature 0.1
Freezing time Tf in Figure 2 10000 cartpole, swingup

50000 finger, spin; reacher, easy
60000 walker, walk
80000 cheetah, run

Freezing time Tf in Figure 5 10000 cartpole, swingup
50000 finger, spin
30000 reacher, easy
80000 cheetah, run; walker, walk
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Table 5: Hyperparameters used for Atari experiments. All hyperparameter values are unchanged
across environments with the exception of encoder freezing time.

Hyperparameter Value

Augmentation None
Observation rendering (84, 84)
Replay buffer size in Figure 3 Number of training steps
Initial replay buffer size in Figure 4 10000
Number of updates per training step 1
Initial steps 1600
Stacked frames 4
Action repeat 1
Hidden units (MLP) 256
Evaluation episodes 10
Evaluation frequency 10000
Optimizer Adam
(β1, β2)→ (fψ, Qθ) (.9, .999)
Learning rate (fψ, Qθ) 1e− 3
Learning rate (α) 0.0001
Batch Size 32
Multi-step returns length 20
Critic target update freq 2000
Convolutional layers 2
Number of filters 32, 64
Non-linearity ReLU
Discount γ .99
Freezing time Tf in Figure 3 50000 Alien; Amidar; BankHeist; Krull; Seaquest

100000 CrazyClimber; PrivateEye; Qbert
Freezing time Tf in Figure 4 50000 Amidar; BankHeist; Krull

100000 Alien; CrazyClimber; Qbert
150000 PrivateEye; Seaquest
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