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Abstract

Large Language Models (LLMs) have demon-001
strated impressive in-context learning (ICL) ca-002
pabilities from few-shot demonstration exem-003
plars. Recent learning-based demonstration se-004
lection methods have proven beneficial to ICL005
by choosing more useful exemplars. While006
these methods generally assume they learn bet-007
ter similarity measurements between exemplars008
and test cases, what kinds of similarities are009
captured by them and are vital to performing010
ICL still remain under-explored. To dive into011
this question, we analyze the working mecha-012
nism of learning-based demonstration selection013
methods and empirically identify two essential014
factors of their similarity measurements: 1) In-015
tegrating task-agnostic similarities of different016
levels between the input of exemplars and test017
cases; 2) Incorporating task-specific similarity018
between the output of exemplars and test cases.019
We validate these two findings through exten-020
sive quantitative analysis across ten datasets021
and various LLMs. Based on these insights,022
we introduce two simplified exemplar selection023
methods, MLSM and TTF, catering to task-024
agnostic and task-specific demands to elimi-025
nate costly data collection. The effectiveness026
of both methods supports our findings and pave027
the way for future studies.028

1 Introduction029

In-context learning (ICL) has emerged as a promis-030

ing paradigm that employs a sequence of demon-031

stration exemplars as prompts to assist large lan-032

guage models (LLMs) in effectively performing033

unseen tasks (Brown et al., 2020; Su et al., 2023).034

However, the performance of ICL can be sensitive035

to the choice, format, and order of the in-context036

exemplar (Zhao et al., 2021; Zhou et al., 2023;037

Voronov et al., 2024; Lu et al., 2022). To mitigate038

this challenge, given a test case xt, the exemplar se-039

lection task assumes access to a demonstration set040

D containing input-output pairs (x, y) and focuses041

on selecting the most effective exemplar from D to 042

inform the target output yt. 043

To address this task, it is the most common prac- 044

tice to select demonstration exemplars based on a 045

similarity measurement between x and xt (Rubin 046

et al., 2022; Ye et al., 2023; An et al., 2023; Ton- 047

glet et al., 2023; Li and Qiu, 2023; Milios et al., 048

2023). Some work utilizes task-agnostic similar- 049

ity like term frequency-based similarity BM25 and 050

semantic similarity computed by off-the-shelf text 051

encoders (Liu et al., 2022; An et al., 2023). Recent 052

learning-based studies (Rubin et al., 2022; Ye et al., 053

2023; Li et al., 2023), however, separately train a 054

retriever to learn implicit similarity measurements 055

using a contrastive leaning-based proxy task where 056

positive exemplars x+ and negative exemplars x− 057

are labeled by interacting with LLMs. This data 058

creation process often requires hundreds of thou- 059

sands of queries to LLMs for each task to collect 060

sufficient positive/negative data. 061

Although learning-based methods consistently 062

exhibit significant performance improvements over 063

task-agnostic similarity across various tasks, the 064

implicit similarity they capture and their connec- 065

tion to the performance of ICL remain unclear. 066

Through a detailed examination of previous works, 067

we observe 1) While the low-level similarity like 068

BM25 and semantic similarity excel in different 069

tasks (e.g., Top-K BM25 outperforms Top-K BERT 070

on Nl2Bash (Lin et al., 2018) and SWAG (Zellers 071

et al., 2019) in Table 1 and Table 2), learning-based 072

similarity generally performs well across all tasks. 073

2) In the proxy task, the input and output simi- 074

larity between positive exemplars and test cases 075

is higher than that of negative exemplars and test 076

cases. Moreover, learning-based methods often suf- 077

fer from poor generalization across different tasks, 078

as corroborated by findings in (Ye et al., 2023). 079

Based on these initial observations, we propose 080

two hypotheses regarding learning-based methods: 081

H1: After training, the retriever acts as an en- 082
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semble model that adaptively integrates multi-level083

task-agnostic similarities between the exemplar in-084

put (x) and test cases (xt) for different tasks.085

H2: Beyond input similarities, the training pro-086

cess encourages selecting exemplars with similar087

output (y) to the output of the test case (yt), im-088

plicitly predicted during retrieval, enhancing the089

retriever’s discriminative power for a specific task.090

Extensive quantitative experiments are designed091

to validate these hypotheses: 1) We take various092

layers of BERT as anchors for similarities of dif-093

ferent levels and discover learning-based methods094

exhibiting varying preferences for these anchors be-095

fore and after training, suggesting an adaptive com-096

bination of these similarities tailored to different097

tasks. 2) We investigate the exemplar retrieved by098

learning-based methods and find these exemplars099

show a higher similarity in output to the test case100

than other task-agnostic similarity-based methods.101

This finding indicates that learning-based methods102

incorporate task-specific similarities between the103

outputs of exemplars and test cases during the ex-104

emplar selection process, potentially capturing the105

joint distribution of inputs and outputs between ex-106

emplars and test cases. Additionally, by connecting107

our findings with existing interpretative theories of108

ICL (Olsson et al., 2022; Kossen et al., 2023; Yan109

et al., 2023; Halawi et al., 2023; Wang et al., 2023),110

we further qualitatively validate our conclusions.111

Drawing insights from these findings, we112

propose two cost-effective exemplar selection113

methods: 1) Multi-level Similarity Maximization114

(MLSM) retriever that maximizes agreement across115

different similarity levels represented by various116

layers of BERT in the inference of LLMs. 2)117

Test Task Fine-tuning (TTF) retriever, which uses118

labeled data from the demonstration set to fine-119

tune the retriever to learn task-specific informa-120

tion. Both retrievers eliminate the need for costly121

data collection for the proxy task, catering to cross-122

task and task-specific demands. To validate the123

effectiveness of these methods, we conduct exper-124

iments across five distinct LLMs and a range of125

tasks. These promising applications confirm our126

hypotheses and benefit future demonstration selec-127

tion studies for more efficient LLM deployment.128

2 Preliminary129

2.1 Learning-based Demonstration Selection130

Demonstration selection aims to identify a se-131

quence of high-quality exemplars from the demon-132

stration set as a prompt to enhance test case ac- 133

curacy on LLMs. Prior studies (Liu et al., 2022; 134

Gao et al., 2021) find that good exemplars exhibit 135

similarities with the test case. They employ the pre- 136

trained text encoder like BERT (Devlin et al., 2019) 137

as a retriever to encode inputs and take the average 138

embedding of all tokens from the final layer of this 139

encoder to represent test cases and exemplars. Sub- 140

sequently, cosine similarity scores are computed 141

between test cases and exemplars to retrieve the 142

top-K most similar exemplars as prompts. 143

While the pipeline of learning-based demonstra- 144

tion selection methods (Rubin et al., 2022; Ye et al., 145

2023; Li et al., 2023) is similar to the above strat- 146

egy, they further exploit LLMs to label positive 147

and negative exemplars to construct a proxy task 148

to fine-tune the retriever, aiming to learn a better 149

similarity metric. Specifically, let D denote the 150

demonstration set. Given an exemplar (xi, yi) in 151

D, Rubin et al. (2022) propose EPR to sample a se- 152

quence of candidate examples from D, denoted as 153

S = {(x1, y1), . . . , (xm, ym)} and score them by 154

s(x, y) = PLLM(Y = yi|(x, y), xi), correspond- 155

ing to the probability of producing correct output 156

yi for xi conditioned on (x, y) using an LLM. Sub- 157

sequently, x with the highest score is selected as 158

the positive sample, denoted as x+ and the lowest 159

as the hard negative sample, denoted as x− for xi. 160

These samples are then used to train the retriever 161

by maximizing the similarity between x and x+ 162

and minimizing the similarity between x and x− 163

via contrastive learning. In subsequent sections, 164

without special note, we analyze EPR to unravel 165

the mechanics of learning-based demonstration se- 166

lection methods and adopt BERT1 consisting of 167

twelve transformer layers as the retriever. 168

2.2 Layers of BERT as Anchors of Multi-level 169

Similarities 170

Previous studies (Jawahar et al., 2019; Ma et al., 171

2019) have empirically shown that the intermediate 172

layers of BERT encode a rich hierarchy of linguis- 173

tic information with surface features at the bottom, 174

syntactic features in the middle and semantic fea- 175

tures at the top through probing tasks. Moreover, 176

BERT has been pre-trained on a vast corpus captur- 177

ing general linguistic features that can be utilized 178

for various tasks. These inspire us to take different 179

layers of the original BERT (i.e., BERT without 180

1https://huggingface.co/google-bert/
bert-base-uncased
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task-specific fine-tuning) as anchors of multi-level181

similarities. Especially for a layer l, given two texts182

s1 and s2, we can extract all token embedding from183

this layer and compute their average pooling as the184

representation of both texts, denoted as hl1 and hl2.185

Then, the similarity between s1 and s2 correspond-186

ing to layer l can be obtained by computing the187

cosine similarity between hl1 and hl2.188

3 Rethinking Learning-based189

Demonstration Selection190

This section proposes two key hypotheses re-191

garding the underlying similarity mechanism of192

learning-based exemplar selection methods: (H1)193

The learning-based retriever is analogous to an en-194

semble model which adaptively aggregates multi-195

level similarities computed by different BERT lay-196

ers between the input of exemplar and test cases (x197

and xt). (H2) The learning-based retriever favors198

selecting exemplars with similar output (y) to the199

test case output (yt). Both hypotheses are validated200

through quantitative analysis as shown below and201

qualitative analysis in Appendix F.202

3.1 Multi-level Similarity (H1)203

Although semantic similarity generally excels in204

text retrieval, our observations show that low-level205

similarity (e.g., BM25) can sometimes outperform206

semantic counterpart in the demonstration selection207

task, especially on Nl2Bash (Lin et al., 2018) and208

SWAG (Zellers et al., 2019). Thus, we speculate209

that a critical aspect that makes the learning-based210

exemplar retriever effective lies in its ability to211

potentially learn and automatically integrate task-212

agnostic similarities of different levels during train-213

ing (H1). In the following quantitative validation,214

we empirically find that the learning-based method215

EPR dynamically ensembles the similarity encoded216

by various layers of an off-the-shelf BERT encoder.217

As the first step, we validate the assumption that218

different layers of BERT, representing various lev-219

els of similarities, can exhibit different behaviors220

for different tasks as a retriever. To do that, follow-221

ing EPR, which builds a positive set {(xi, x+i )}Ni222

using an LLM (as described in Sec. 2.1), we treat223

each x+i as a gold exemplar to be retrieved for224

xi. Then we utilize different layers of the original225

BERT (not fine-tuned) to retrieve/rank exemplars226

(as discussed in Sec. 2.2) for each xi and evalu-227

ate the Top-10 retrieval accuracy, representing the228

probability of retrieving the positive exemplar x+i229

in top 10 predictions. The results on four tasks 230

are depicted in Fig. 1 when using GPT-Neo as the 231

LLM. It reveals that different tasks exhibit distinct 232

preferences towards specific layers, emphasizing 233

different similarity levels. More information on 234

these tasks can be found in Appendix B.1. Further- 235

more, while it is prevalent to employ the final layer 236

of BERT for exemplar retrieval (Liu et al., 2022; 237

Zhang et al., 2023a), it is not consistently optimal, 238

likely due to the potential inclusion of irrelevant 239

information caused by BERT’s pre-training tasks. 240

In the next step, we investigate what is encap- 241

sulated in the retriever learned by EPR. As this 242

retriever utilizes the last layer of BERT to compute 243

similarities, we extract the representations from this 244

layer and compare those with representations from 245

each layer of the original BERT to study the corre- 246

lations between the EPR retriever and each original 247

BERT layer. For this purpose, We introduce CKA 248

(Kornblith et al., 2019), which effectively identi- 249

fies correspondences between representations in 250

different networks. Let Xa ∈ Rn×p1 denote a ma- 251

trix of activations of p1 neurons for n examples 252

and Xb ∈ Rn×p2 denote a matrix of activations 253

of p2 neurons for the same n examples. The core 254

insight of CKA lies in measuring the similarity 255

between two matrices Xa and Xb by considering 256

the inter-sample similarities. Specifically, CKA 257

computes Ka and Kb to derive the inter-example 258

similarity structures for Xa and Xb, where Ka = 259

ka(Xa, Xa), Kb = kb(Xb, Xb), ka and kb repre- 260

sent two linear kernels (i.e., k(X,X) = XXT ). 261

Then, the CKA metric can be formulated as fol- 262

lows: 263

CKA(Ka,Kb) =
HSIC(Ka,Kb)√

HSIC(Ka,Ka)HSIC(Kb,Kb)
,

(1) 264

where HSIC(Ka,Kb) = 1
(n−1)2

tr(KaHKbH) and 265

HSIC is the aberration of Hilbert-Schmidt Inde- 266

pendence Criterion. H is the centering matrix 267

Hn = In − 1
nJn where In is the identity matrix 268

of size n and Jn is a n-by-n all-ones matrix. 269

To measure the similarity between the last layer 270

of the EPR retriever and each layer of the original 271

BERT, we randomly sample n = 2000 instances 272

from the demonstration set D (If |D| < 2000, 273

n = |D|) for each task. Denote XEPR as the ma- 274

trix composing n rows of last-layer representations 275

from the EPR retriever, and X l as the matrix com- 276

posing n rows of the lth-layer representations from 277

the original BERT. Then we can calculate the CKA 278

score CKA(KEPR,K l) for each task using Eq. 1. 279
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Figure 1: Left: Top-10 retrieval accuracy using each of the twelve layers of the original BERT to retrieve positive
exemplars to solve the proxy task of EPR across ten tasks. Different colors represent different layers. Top-10
accuracy refers to the probability of retrieving the positive exemplar in the top 10 predictions. Middle: CKA
scores between twelve layers of original BERT (x-axis) and the final layer of BERT of EPR trained on ten tasks.
Right: CKA scores between each layer of the original BERT. These CKA scores are min-max normalized for better
visualization. We use GPT-Neo (Black et al., 2021) as the LLM.

The results are depicted in Fig. 1 (Middle). Each280

row reflects the CKA similarity between the EPR281

retriever and each layer of the original BERT for a282

specific task. The CKA distribution across various283

tasks exhibits significant diversity among differ-284

ent BERT layers. This finding supports H1 that285

learning-based methods can adaptively aggregate286

multi-level (layer) similarities catering to different287

tasks. For instance, the results suggest that the ex-288

emplar retriever trained on Nl2Bash and SWAG289

tasks may prioritize low-level similarities. Specifi-290

cally, the CKA score between the 1st layer of the291

original BERT and the final layer of the BERT292

retriever of EPR trained on Nl2Bash is approx-293

imately 0.5, significantly higher than the corre-294

sponding scores for other tasks, which are gener-295

ally below 0.2. This aligns with our experimen-296

tal results, where the BM25-based method out-297

performs higher-level semantic-based methods on298

these two datasets. Moreover, a similar validation299

using Llama 3 (Dubey et al., 2024) as the LLM is300

depicted in Fig. 5 to evince H1 can generalize to301

more advanced LLMs.302

3.2 Output Similarity (H2)303

When employing the learning-based paradigm to304

acquire better similarity measurements between ex-305

emplars and test cases for ICL, such mechanics are306

expected to perform well on unseen tasks, given the307

high cost of data collection process. However, the308

sub-optimal generalization performance revealed309

by Ye et al. (2023) suggests that the exemplar re-310

triever, trained on the proxy task, primarily learns311

task-specific information.312

As data and training objectives can serve as a313

lens to analyze the behavior of neural network mod-314

els, we first investigate the data generated for the315

proxy task involving positive and negative pairs,316

as shown in Fig. 2 (Left), which depicts the simi-317

larity between the input of positive/negative exem- 318

plars and the test case as well as the output of posi- 319

tive/negative exemplars and the test case. Specifi- 320

cally, for input similarity, we compute text similar- 321

ity using sentence-transformers2 for all tasks, while 322

we compute exact match for the first three classi- 323

fication tasks and text similarity for other tasks as 324

output similarity. Let (x, y), (x+, y+), (x−, y−) 325

denote the test case and corresponding positive and 326

negative exemplars. The results indicate that the 327

similarity between x+ and x is significantly higher 328

than that between x and x−, affirming the efficacy 329

of input similarity-based exemplar selection meth- 330

ods. Moreover, it is noteworthy that the similarity 331

between y+ and y is also markedly higher than that 332

between y and y−. 333

Acknowledge that the training objective of the 334

proxy task is to push the embeddings of x and x+ 335

closer and push x and x− away through contrastive 336

learning in the embedding space. As a result, dur- 337

ing the training phase, demonstration exemplars 338

with similar outputs will resemble each other in 339

this space due to the strong correlation between 340

y and y+, which leads to a higher probability of 341

selecting exemplars with outputs similar to the test 342

case as prompts when the test case’s output is un- 343

known. Therefore, we suggest that the success of 344

learning-based approaches partly stems from the 345

implicit prediction of the output of test cases during 346

exemplar retrieval (H2), which could be viewed as 347

computing similarity of the joint distribution of in- 348

put and output between the test case and exemplars. 349

After training on the proxy task, we utilize the 350

EPR retriever to assess the similarity between the 351

input of the test case and exemplars from the 352

demonstration set to select top-K exemplars as 353

2https://huggingface.co/sentence-transformers/
paraphrase-MiniLM-L6-v2
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Figure 2: Left: Comparison of similarity between the input/output of positive and negative demonstration examples
and the input/output of the test case across ten tasks for EPR training. Right: Difference between EPR and three
task-agnostic demonstration exemplar selection methods in average similarity between the output of test case and
retrieved exemplars during testing. We use GPT-Neo (Black et al., 2021) as the LLM.

prompts. To validate H2, we evaluate the retriever’s354

ability to learn the output similarity by computing355

the average similarity between the output of test356

cases and the retrieved exemplars. We compare357

EPR trained using GPT-Neo against task-agostic358

methods (i.e., Random, Top-K BM25 and Top-K359

BERT), as depicted in Fig. 2 (Right). We compute360

the output similarity for all tasks in the same way as361

experiments in Fig. 2 (Left). The results show that362

the exemplar chosen by EPR has outputs more akin363

to the test case than other competitors, particularly364

in classification tasks where the output similarity365

can be well-captured by exact match. Similar val-366

idation is conducted for EPR with GPT2-XL and367

Llama 3 in Fig. 4 and Fig. 6, and these results align368

with the above findings obtained for GPT-Neo, thus369

providing consistent support for H2.370

4 Methodology371

Building on the above findings, we propose two372

simple yet effective alternatives for learning-based373

demonstration exemplar section methods, which374

do not require costly interaction with LLMs to375

construct the proxy task. Specially, we introduce376

1) Multi-level Similarity Maximization (MLSM)377

leveraging an adaptive ensemble of task-agnostic378

layer-wise anchors from BERT to achieve better379

cross-task generalization given H1; 2) Test Task380

Fine-tuning (TTF) infusing task-specific informa-381

tion to the retriever to enhance performances for382

this specific task according to H2.383

4.1 Multi-level Similarity Maximization384

(MLSM)385

H1 emphasizes that learning-based methods can386

adaptively integrate diverse similarities, which can387

be captured through different layers of a pretrained388

text encoder (e.g., BERT) from bottom to top. In- 389

spired by ensemble learning (Polikar, 2009; Barber 390

and Bishop, 1997; Zhang et al., 2022a), each layer 391

can work as an expert for exemplar selection. The 392

goal of MLSM is to integrate the insights from all 393

experts by maximizing their agreement during the 394

inference of LLMs. 395

However, as depicted in Fig. 1 (Right), each 396

layer of BERT shows a high similarity to adjacent 397

layers due to the residual design of transformers. 398

Hence, we initially filter out redundant layers to 399

avoid overfitting to the similarity of specific levels 400

and reduce computational overhead. Specifically, 401

given a task and its corresponding demonstration 402

set D, we sample a subset of unlabeled exemplars 403

from D and compute layer-wise CKA scores be- 404

tween every pair of BERT layers, forming a simi- 405

larity matrix S ∈ R12×12 where Si,j signifies the 406

similarity between the i-th and j-th layers of BERT. 407

We then employ an unsupervised K-medoids clus- 408

tering algorithm to derive nl clusters, maximizing 409

the intra-cluster CKA score while minimizing the 410

inter-cluster CKA score, and designate the central 411

node in each cluster as the representative layer. Fi- 412

nally, we attain a set of refined layers, denoted as 413

L = {li}nl
i=1, as experts to represent the similarity 414

at varying levels. 415

For a given test case xt, we first sample a mini 416

training set Dp = {xj}
np

j=1 and validation set Dv = 417

{xj}nv
j=1 from D. Then, for each layer li ∈ L, 418

we compute the average of all token embeddings 419

extracted from li as the representation of xt (de- 420

noted as ht) and demonstration exemplars xj ∈ Dp 421

(denoted as hj). Following this, we compute the 422

cosine similarity between xt and each exemplar 423

in Dp as ri = [cos(ht,h1), ..., cos(h
t,hnp)], and 424

normalize it to obtain the probability distribution of 425
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these exemplars via ei = softxmax(riτ ) for layer426

li, where τ is the temperature parameter. Intuitively,427

such distribution can represent the ranking distri-428

bution of the demonstration exemplars when us-429

ing the similarity level captured at li for retrieval.430

After collecting the output distribution of all ex-431

perts in L, we aggregate them with learnable ag-432

gregation weights, denoted as w ∈ Rnl and get433

the ensembled exemplar ranking distribution as434

ê = softmax(
∑nl

i=1 wiri
τ ), where w is normalized435

before aggregation, i.e.,
∑nl

i wi = 1. To encour-436

age agreement among experts, we minimize the437

loss L = −
∑nl

i=1 ê · ei. The optimal w can be de-438

termined based on the loss on the validation set Dv439

by an early stopping strategy. Notably, this process440

does not rely on any task label (unsupervised) and441

focuses on general information regardless of spe-442

cific tasks, thus catering to task-agnostic demands.443

While MLSM focuses on the online scenario,444

where only one test point is observed during infer-445

ence to align with the real-world demand (VS et al.,446

2023; Zhang et al., 2022a), it can enable batch in-447

ference by updating w using a batch of test cases,448

thereby enhancing computational efficiency.449

4.2 Test Task Fine-tuning (TTF)450

H2 posits that the learning-based demonstration451

retriever inherently acquires the output similarity452

between exemplars and test cases for one specific453

target task when training on the proxy task. How-454

ever, this proxy task requires costly interactions455

with LLMs for each target task to collect labeled456

positive/negative exemplars. To alleviate this issue,457

we propose TTF that fine-tunes the retriever with458

additional modules customized for distinct tasks459

using labeled data from the demonstration set D460

directly, thereby eliminating the need for interac-461

tions with LLMs. Furthermore, we explain how462

such test task fine-tuning has the potential to inte-463

grate task-specific similarities between the output464

of exemplars and test cases with the retriever.465

For convenience, let fθ denote the retriever and466

qϕ denote the extra module, containing θ and ϕ as467

learnable parameters. For classification tasks, qϕ468

will be instantiated through various classification469

heads. Given a test input x, assuming a linear470

classifier, the prediction of the test task model (fθ471

and qϕ) is derived by taking the argmax over the472

approximated probability distribution:473

argmax
yi

qϕ(Y = yi|z) =
exp(z · ϕi)∑
j exp(z · ϕj)

, (2)474

where z = fθ(x) and ϕi is the i-th component of 475

the weights ϕ corresponding to label yi. As the 476

prediction is determined by evaluating the distance 477

between ϕi and z, test cases with a similar out- 478

put are more likely to exhibit a smaller distance 479

in the semantic space, as they are closer to their 480

corresponding ϕ. Furthermore, previous research 481

(Zhang et al., 2023b; Iwasawa and Matsuo, 2021) 482

has leveraged z as a pseudo-prototype for each la- 483

bel to construct non-parametric classifiers, provid- 484

ing evidence that TTF can effectively encapsulate 485

the input-output relationship for classification. 486

For generation tasks, while decoder-only frame- 487

works are unsuitable for deriving sentence em- 488

beddings without prompting or fine-tuning (Muen- 489

nighoff, 2022), we adopt the encoder-decoder ar- 490

chitecture, where qϕ is instantiated by the decoder 491

and the retriever fθ works as the encoder. Then this 492

encoder-decoder model can be fine-tuned on gener- 493

ation tasks using a conditional generation objective. 494

Since the decoder generates new tokens based on 495

the encoder’s output, allowing the encoder’s out- 496

put to capture pertinent input-output information 497

naturally, we follow Ni et al. (2022) to use the av- 498

erage pooling of all token embeddings extracted 499

from the last layer of the encoder to represent test 500

cases and exemplars for retrieval. The detailed im- 501

plementation of TTF can be found in Appendix. 502

B.2. Ultimately, TTF acquires the output similarity 503

between demonstration exemplars and test cases by 504

training the retriever on the demonstration set D, 505

thereby adapting to task-specific requirements. 506

5 Experiments 507

Datasets. We conduct experiments on ten 508

datasets spanning seven categories of NLP tasks: 509

sentiment analysis, paraphrase detection, natural 510

language inference, commonsense reasoning, open- 511

domain question answering, code generation and 512

semantic parsing. As certain datasets lack a test 513

set, we take the training split as the demonstration 514

set and the validation split for evaluation across all 515

datasets. A detailed description of these datasets 516

and prompts to reproduce our experimental results 517

are shown in Appendix B.1. 518

Baselines. In line with previous studies (Rubin 519

et al., 2022; Ye et al., 2023), we consider two base- 520

line categories based on whether to use labeled 521

data in the demonstration set: unsupervised and 522

supervised methods. The unsupervised category 523

includes RANDOM, which randomly selects exem- 524
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Table 1: Main results on the classification task. ♣ indi-
cates methods requiring costly interaction with LLMs.

Method SST-5 MRPC QNLI CMSQA SWAG Avg.
Unsupervised Approaches

Random 28.61 65.93 55.08 42.34 41.39 46.67
Top-K BM25 32.06 65.93 60.11 35.79 43.35 47.45
Top-K BERT 32.70 69.12 60.94 35.87 41.09 47.94
MLSM 33.15 69.87 65.02 37.26 41.49 49.36

Supervised Approaches
EPR♣ 36.88 81.37 77.87 38.74 43.39 55.65
CEIL♣ 37.69 77.94 80.58 38.90 43.84 55.79
TTF 42.14 74.51 85.08 47.83 55.72 61.06

plars from the demonstration set without repetition;525

TOP-K BM25, which employs BM25 (Robertson526

and Zaragoza, 2009) to retrieve the Top-K most527

similar exemplars based on low-level text similar-528

ity; and TOP-K BERT, which generates text rep-529

resentations by averaging token embeddings from530

the final layer of BERT (Devlin et al., 2019) and531

retrieves the Top-K most similar exemplars based532

on semantic similarity. The supervised category533

includes EPR (Rubin et al., 2022), which utilizes534

TOP-K BM25 to generate demonstration candi-535

dates and scores them using LLMs to construct536

a proxy task, subsequently fine-tuning BERT in537

TOP-K BERT using this task; and CEIL (Ye et al.,538

2023), which employs EPR to generate demon-539

stration sequence candidates, scores them using540

LLMs to construct a proxy task, and further fine-541

tunes BERT using this task. CEIL balances di-542

versity and relevance using a trade-off parameter543

and searches for the optimal exemplar combination544

using Determinantal Point Processes (Kulesza and545

Taskar, 2011). While mainly utilizing BERT as the546

retriever of MLSM and TTF, we exploit T5 for547

TTF on the generation tasks because BERT-based548

encoder-decoder models cannot handle generation549

tasks3. The implementation detail of our methods550

and all baselines can be found in Appendix B.2.551

Experiment settings. As the primary goal of our552

work is to investigate the underlying mechanics of553

learning-based demonstration selection methods,554

we follow EPR and CEIL to employ GPT-Neo555

(2.7B) (Black et al., 2021) as the main LLM and556

conduct experiments on a smaller GPT-2 XL (Rad-557

ford et al., 2019) (1.5B) and text-davinci-002 to558

verify the transferability of our methods to ensure559

consistency and avoid introducing potential biases560

arising from differences of LLMs. Furthermore, we561

3That is because of the random initialization of external
cross attention modules and the lack of sufficient training data
for BERT-based generation models.

Table 2: Main results on the generation tasks. ♣ indi-
cates methods requiring costly interaction with LLMs.

Method WebQs GeoQ. NL2B. MTOP SMCA. Avg.
Unsupervised Approaches

Random 3.79 25.36 31.27 3.98 3.70 13.62
Top-K BM25 14.17 65.71 58.81 49.66 44.02 46.48
Top-K BERT 14.17 64.64 52.45 51.36 44.76 45.48
Top-K T5 16.24 70.35 43.29 53.02 42.83 45.14
MLSM 16.14 68.93 56.11 54.05 47.72 48.59

Supervised Approaches
EPR♣ 17.62 73.21 77.87 60.82 60.49 53.43
CEIL♣ 17.08 70.71 53.66 63.40 56.30 52.23
TTF 17.07 71.43 46.30 58.12 51.06 48.80

extend our experiments to more advanced LLMs, 562

including Llama 3 (8B) and GPT-3.5-Turbo-0125, 563

to support our hypotheses and findings in Appendix 564

C. Due to computational constraints and different 565

maximum context sizes among LMs, we restrict 566

the number of in-context exemplars to 20, differ- 567

ent from CEIL that uses a fixed context length to 568

determine the number of demonstrations for each 569

dataset. These exemplars are sorted based on their 570

similarities to test cases in ascending order follow- 571

ing prior practices (Rubin et al., 2022; An et al., 572

2023; Liu et al., 2022). For model evaluation, we 573

compare the predicted output with ground truth for 574

all methods and report Accuracy (Acc.) and Exact 575

Match (EM) for classification and generation tasks, 576

respectively. 577

Main Results. We compare MLSM and TTF 578

with existing unsupervised (using off-the-shelf 579

models directly) and supervised learning-based 580

baselines on classification tasks (Table 1) and gen- 581

eration tasks (Table 2). The results show that 582

MLSM consistently outperforms all unsupervised 583

baselines in most cases, achieving an average im- 584

provement of 1.42% over the best baseline, TOP- 585

K BERT (semantic similarity), on classification 586

tasks, and an average improvement of 2.11% over 587

the best baseline, TOP-K BM25 (low-level sim- 588

ilarity), on generation tasks. This suggests that 589

while different similarities excel at different tasks, 590

MLSM can adaptively integrate multi-level similar- 591

ities for various tasks by updating the aggregation 592

weight of the experts for each test case, thus provid- 593

ing evidence for H1. Moreover, supervised meth- 594

ods generally show a clear advantage over MLSM 595

across all tasks, highlighting the benefit of incorpo- 596

rating task-specific information into the retriever. 597

Notably, despite avoiding costly integration with 598

LLMs, TTF surpasses both EPR and CEIL, achiev- 599

ing over 5% absolute improvements on classifica- 600
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Table 3: Results of cross-LLM transferability validation. We show the absolute improvement of TTF and MLSM
over TOP-K BERT.

TTF MLSM

LLM SST-5 MRPC QNLI CMSQA Avg. SST-5 MRPC GeoQ. NL2B. Avg.
GPT-2 XL (1.5B) 3.54 0.00 5.35 6.38 3.82 1.54 0.00 1.07 4.57 1.74
GPT-NEO (2.7B) 9.45 5.39 24.14 11.96 12.73 0.05 0.75 4.29 3.66 2.29
text-davinci-002 3.27 1.51 18.52 1.15 6.11 1.82 1.47 3.21 3.02 2.38

Figure 3: Left: Comparison of transferability between
EPR and MLSM. We show the absolute improvement
of MLSM over EPR. Right: Comparisons of different
batch sizes for MLSM.

tion tasks, and consistently outperforms MLSM601

across all generation tasks except NL2Bash. It602

suggests that test task fine-tuning can be a more603

effective alternative to constructing proxy tasks in604

resource-limited scenarios, further validating H2.605

However, TTF underperforms compared to EPR606

and CEIL on some generation tasks likely due to607

inherent limitations of the encoder-decoder frame-608

work in retrieval tasks, particularly in identifying609

which parts of the model capture relevant input-610

output information. For instance, TOP-K T5 per-611

forms worse than TOP-K BERT regarding average612

accuracy across all generation tasks.613

Transfer across Tasks for MLSM. We compare614

EPR and MLSM on cross-task experiments, where615

EPR is trained on a source task and transferred to616

a target task, as depicted in Fig. 3 (Left). The re-617

sults show that EPR generally performs worse than618

MLSM, particularly when transferring between619

classification and generation tasks. It suggests that620

learning-based exemplar selection methods overfit621

task-specific features when trained on the proxy622

task, making it challenging to justify the high cost623

of data collection. In contrast, MLSM is a practi-624

cal solution for task-agnostic demands, as it only625

leverages information from the test case to adapt to626

different tasks during LLM inference.627

Ablation of Batch Size for MLSM. While628

MLSM assumes only a single test case is available629

for learning the aggregation weight w of different630

similarity levels, we perform an ablation study to631

assess the impact of increasing batch size in Fig.632

3 (Right). The results indicate that MLSM gener-633

ally benefits from a larger batch size, especially on 634

classification tasks, showing over 4% average im- 635

provements when the batch size is 8. This improve- 636

ment can be attributed to the fact that test cases 637

in the same batch tend to share common patterns 638

of multi-level similarities (i.e., similar w), further 639

suggesting that multi-level similarities are essential 640

for selecting good demonstration exemplars. 641

Transfer across LLMs. We validate the versa- 642

tility of TTF and MLSM on GPT-2 XL, GPT- 643

NEO, and text-davinci-002 in Table 3. The re- 644

sults indicate that both methods can enhance ICL 645

performance across different LLMs. TTF consis- 646

tently outperforms MLSM, verifying the effective- 647

ness of acquiring task-specific output similarity 648

between exemplars and test cases. However, TTF 649

exhibits higher variance in performance across dif- 650

ferent LLMs than MLSM, suggesting different 651

LLMs have varying abilities to exploit exemplars 652

with similar outputs to the test case. Addition- 653

ally, the better performance of TTF on GPT-NEO 654

compared to text-davinci-002 implies that the lat- 655

ter’s stronger ability may make it more resilient to 656

prompt choices. 657

6 Conclusion 658

In this work, we delve into the mechanism of 659

learning-based demonstration exemplar selection 660

methods. We speculate the advantages of these 661

methods stem from their ability to integrate similar- 662

ities of different levels for exemplar selection (H1) 663

and their capacity to choose exemplars with similar 664

outputs to the test case (H2). Motivated by these 665

hypotheses, we introduce two simple but effective 666

exemplar selection methods, MLSM and TTF, tai- 667

lored to task-agnostic and task-specific demands 668

without costly interactions with LLMs. Quantita- 669

tive validations and the effectiveness of both meth- 670

ods provide substantial evidence for H1 and H2. 671

In summary, our work offers insights into more 672

efficient LLM deployment in practical applications 673

and may benefit transparent research on exemplar 674

selection methods and ICL. 675
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Limitations.676

In this section, we discuss two technical limitations677

of our work.678

Combination of MLSM and TTF: Based on our679

two findings related to the working mechanism680

of learning-based exemplar section methods, we681

propose two cost-effective selection approaches:682

MSLM maximizing the agreement across the sim-683

ilarities of different levels and TTF fine-tuning a684

retriever with labeled data from the demonstration685

set to learn task-specific similarity between the out-686

put of exemplars and test cases. While MSLM and687

TTF excel in task-agnostic and task-specific sce-688

narios, combining them could potentially further689

enhance task-specific performance. To investigate690

this, we replace the original BERT in MSLM us-691

ing the trained retriever in TTF and conduct experi-692

ments on five classification tasks using the same im-693

plementation detailed in Appendix B.2. As shown694

in Table 4, although the combination of both meth-695

ods significantly outperforms MSLM with an av-696

erage improvement of around 4%, it falls short of697

TTF by over 6%. This performance drop suggests698

that the similarity between the output of exemplars699

and test cases is superior to similarities from other700

layers, and while TTF’s final layer effectively cap-701

tures such task-specific output similarity, integrat-702

ing it with other sub-optimal ones could introduce703

noise, negatively impacting the exemplar selection704

for ICL.705

Better Implementation of H2 than TTF: In H2,706

we empirically find that the success of learning-707

based methods partially stems from their ability708

to choose the demonstration exemplar with similar709

output to the test case. We propose TTF to simulate710

such output-based similarity by implicitly learning711

task-specific information from labeled demonstra-712

tion exemplars using different task heads. Despite713

showing promise on classification tasks, TTF is714

ineffective for generation tasks compared to EPR715

and CEIL. We attribute this to 1) the difficulty in716

identifying model components that capture effec-717

tive input-output relationships in a decoder-encoder718

framework and 2) the need for extensive data to719

fine-tune generation task heads or more advanced720

pre-trained models.721

To further explore H2, we try two approaches:722

First, akin to EPR, we select the exemplar with the723

most similar output to the test case as a positive724

pair and the most dissimilar one as a negative pair725

and then fine-tune a retriever. However, this led to a726

Table 4: Experimental results for the combination of
MLSM and TTF

Method SST-5 MRPC QNLI CMSQA SWAG Avg.

MLSM 33.15 69.87 65.02 37.26 41.49 49.36
TTF 42.14 74.51 85.08 47.83 55.72 61.06
Combination 36.14 71.07 65.31 45.61 50.27 53.69

performance collapse, likely due to the complexity 727

of modeling nuanced input-output similarities for 728

generation tasks. Secondly, building upon TTF, 729

we generate outputs using T5 for each test case and 730

compute similarities between inputs and outputs of 731

demonstration exemplars and test cases. Finally, 732

we integrate these similarities with a predefined ra- 733

tio (0.9 and 0.1), yielding an average improvement 734

of 1% over TTF. However, this method requires 735

first generating answers for test cases, making it 736

less efficient than using input embedding for exem- 737

plar retrieval. Additionally, recent exemplar selec- 738

tion methods (An et al., 2023; Zhou et al., 2024; 739

Sun et al., 2024) that use LLMs to briefly describe 740

the reasoning process and compute the similarity 741

between such descriptions of exemplars and test 742

case for retrieval, can be seen as an instantiation of 743

H2, as they also implicitly model the input-output 744

relationship. 745

In summary, the main contribution of our work 746

lies in suggesting and validating two hypotheses 747

regarding learning-based exemplar selection meth- 748

ods. While MSLM and TTF show advantages over 749

existing demonstration exemplar section methods, 750

they are just two possible implementations of our 751

findings. More advanced exemplar selection meth- 752

ods could be developed based on these insights. 753

As a result, we advocate for further research in 754

this area to enhance the efficient deployment and 755

transparency of LLMs and ICL. 756

Ethics Statement 757

This paper adheres to the ACM Code of Ethics and 758

Professional Conduct. This work presents two key 759

findings about the working mechanism of learning- 760

based demonstration selection and two methods 761

for low-cost exemplar selection, which do not pose 762

any societal harm. All datasets used are publicly 763

available. We will release our code following the 764

licenses of any utilized artifacts. 765
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A Outline of the Appendix1065

The appendix is organized as follows: Appendix B1066

provides descriptions of the datasets used in our ex-1067

periments, the prompts for reproducing our work,1068

and the implementation details for all baselines1069

as well as our proposed MLSM and TTF meth-1070

ods. Appendix C examines the generalization of1071

our findings and methods to more advanced LLMs.1072

Appendix D investigates the influence of various1073

number of representative layers and temperatures,1074

analyzes the distribution of representative layers1075

across different layers of BERT and compare Uni-1076

form Weight and Adaptive Weight for MLSM. Ap-1077

pendix E illustrates why not use the fine-tuned re-1078

triever in TTF for the test task and compares TTF1079

against UDR (Li et al., 2023). Appendix F offers1080

qualitative validation of H1 and H2 by connecting1081

our results with existing explanatory work on ICL.1082

Appendix G presents the statistical significance of1083

our proposed methods. Appendix H outlines the1084

theoretical foundation of MLSM and TTF, while1085

Appendix I analyzes the aggregation weights in1086

MLSM. Lastly, Appendix J discusses the running1087

efficiency of both methods.1088

B Experimental Setup1089

B.1 Datasets1090

Following existing work (Ye et al., 2023), we con-1091

duct experiments on five classification tasks and1092

five generation tasks4. The statistics of all datasets1093

are listed in Table 5. While we advise readers to re-1094

fer to the detail of each dataset in the original work1095

(Ye et al., 2023), we provide the prompts and exam-1096

ples for each dataset in Table 6 and offer a detailed1097

description of each dataset below for completeness.1098

SST-5 (Socher et al., 2013) is a sentiment clas-1099

sification benchmark containing five fine-grained1100

classes including ‘very positive’, ‘positive’ ‘neu-1101

tral’, ‘negative’, and ‘very negative’.1102

MRPC (Dolan et al., 2004) is a corpus of sen-1103

tence pairs automatically extracted from online1104

news sources, with human annotations for whether1105

the sentences in the pair are semantically equiva-1106

lent.1107

MNLI (Williams et al., 2017) is a crowdsourced1108

collection of sentence pairs with textual entailment1109

4We exclude MNLI (Williams et al., 2017) to reduce com-
putation cost and Break (Wolfson et al., 2020) because of
failure to reproduce its evaluation method.

annotations. Given a premise sentence and a hy- 1110

pothesis sentence, the task is to predict whether the 1111

premise entails the hypothesis (entailment), con- 1112

tradicts the hypothesis (contradiction), or neither 1113

(neutral). 1114

QNLI (Wang et al., 2018) is a question- 1115

answering dataset consisting of question-paragraph 1116

pairs, and the task is to determine whether the con- 1117

text sentence contains the answer to the question. 1118

CMSQA (Talmor et al., 2019) (short for 1119

CommonsenseQA) is a multiple-choice question- 1120

answering dataset that requires different types of 1121

commonsense knowledge. The task is to predict 1122

the correct answer out of five provided candidate 1123

answers. 1124

HellaSwag (Zellers et al., 2019) is a large-scale 1125

dataset of grounded commonsense reasoning. Each 1126

question has four candidate answers: a video cap- 1127

tion from ActivityNet Captions (Heilbron et al., 1128

2015) and the Large Scale Movie Description Chal- 1129

lenge (Rohrbach et al., 2017). The three incorrect 1130

answers are adversarially generated and human- 1131

validated to deceive machines. The correct answer 1132

is the actual video caption for the subsequent oc- 1133

currence in the video. 1134

WebQs (Berant et al., 2013) is question-answer 1135

pairs obtained from the web. The questions are se- 1136

lected using Google Suggest API, and the answers 1137

are entities in Freebase. 1138

Nl2Bash (Lin et al., 2018) is a dataset for the 1139

problem of mapping English sentences to Bash 1140

commands. The corpus consists of text–command 1141

pairs, where each pair consists of a Bash command 1142

scraped from the web and an expert-generated nat- 1143

ural language description. 1144

GeoQuery (Zelle and Mooney, 1996) contains 1145

a parallel corpus of 880 English questions about 1146

US geography paired with Prolog queries. 1147

Break (Wolfson et al., 2020) is a dataset that 1148

maps complex natural language questions into a 1149

language-based meaning representation. The ques- 1150

tion is decomposed into an ordered list of atomic 1151

steps used as the target sequence. We use the low- 1152

level Break subset following (Rubin et al., 2022). 1153

MTOP (Li et al., 2021) is a multilingual task- 1154

oriented semantic parsing dataset covering six lan- 1155

guages and 11 domains. The target commands are 1156
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Table 5: The statistics of ten datasets. We report the number of training instances after deduplicating.

Type Dataset Task Train Validation

Classification

SST-5 (Socher et al., 2013) Sentiment Analysis 8,534 1,101
MRPC (Dolan et al., 2004) Paraphrase Detection 3,668 408
QNLI (Wang et al., 2018) Natural Language Inference 104,707 5,463
CMSQA (Talmor et al., 2019) Commonsense Reasoning 9,740 1,221
HellaSwag (Zellers et al., 2019) Commonsense Reasoning 52,611 20,006

Generation

WebQs (Berant et al., 2013) Open-Domain QA 3,778 2,032
GeoQuery (Zelle and Mooney, 1996) Code Generation 404 280
Nl2Bash (Lin et al., 2018) Code Generation 7,441 609
MTOP (Li et al., 2021) Semantic Parsing 15,564 2,235
SMCalFlow (Andreas et al., 2020) Semantic Parsing 102,491 14,751

complex queries featuring nested intent-slot predic-1157

tion. Similar to past work (Rubin et al., 2022), we1158

use the English subset of MTOP.1159

SMCalFlow (Andreas et al., 2020) is a large1160

dialogue dataset featuring natural conversations1161

about tasks involving calendars, weather, places,1162

and people. The meaning representation is an exe-1163

cutable dataflow program featuring API calls, func-1164

tion composition, and complex constraints.1165

B.2 Implementation Details1166

We employ the implementation5 from Ye et al.1167

(2023) for all baselines. Specifically, for EPR1168

and CEIL, we limit the maximum instances in the1169

proxy task to 4,000 (|Ds| = 4, 000) and sample1170

50 candidates for each instance to create positive1171

and negative pairs. It is worth noting that collecting1172

these data for both methods (i.e., 200,000 queries to1173

LLMs) is pretty expensive and time-consuming, es-1174

pecially for CEIL, where each candidate sequence1175

involves 16 exemplars. Note that we limit the num-1176

ber of in-context exemplars for evaluation to 20 per1177

task when using GPT-Neo to reduce GPU memory1178

consumption. In contrast, CEIL (Ye et al., 2023)1179

uses a context length of 1600 to determine the num-1180

ber of demonstrations allowed for each dataset. Ad-1181

ditionally, we utilize the average pooling of the1182

[CLS] token and all text tokens for retrieval while1183

we usually mentioned “all token embedding” to1184

maintain conciseness in our descriptions.1185

For our proposed MLSM, we randomly sample1186

1,000 examples (nc = 1, 000) from the demon-1187

stration set D to compute layer-wise CKA scores1188

and obtain three representative layers through K-1189

medoids clustering (nl = 3), detailed in Algo-1190

rithm 1. We repeat this clustering process 1001191

5https://github.com/HKUNLP/icl-ceil

times due to the sensitivity of the unsupervised K- 1192

medoids algorithm to the initialization of centroids 1193

and choose the most frequently occurring results 1194

as the final representative layers. Then, we ran- 1195

domly sample 256 and 64 examples (nt = 256 and 1196

nv = 64) for each test case from D as mini training 1197

and validation sets, respectively. The temperature 1198

of the softmax function is set to 0.01 (τ = 0.01). 1199

We utilize Adam optimizer with batch size 32 and 1200

learning rate 0.1 to learn the aggregation weight w 1201

in fewer epochs. 1202

For our proposed TTF, we utilize the labeled 1203

data from the demonstration set, consisting of input- 1204

output pairs ((x, y)), to train the retriever with cus- 1205

tomized heads tailored to different tasks, where 1206

the goal is to predict y given x. We instantiate fθ 1207

with BERT and qϕ with different task heads for 1208

classification tasks. Concretely, for SST-5, MRPC 1209

and QNLI, we utilize the sequential classification 1210

head6 and train the model using Adam optimizer 1211

with batchsize 32, learning rate 5e-4 and weight 1212

decay 1e-4. For SWAG and CMSQA, we adopt 1213

the multi-choice head7 and also train the model 1214

using Adam optimizer with batchsize 8, learning 1215

rate 5e-4 and weight decay 1e-4. Additionally, for 1216

generation tasks, we instantiate fθ and qϕ using the 1217

encoder and decoder of T58 and utilize to Adam 1218

optimizer with batchsize 8, learning rate 4e-5 and 1219

weight decay 0.01. We finetune T5 by optimiz- 1220

ing a conditional generation objective, typically a 1221

sequence-to-sequence loss computed between the 1222

6https://huggingface.co/docs/
transformers/model_doc/bert#transformers.
BertForSequenceClassification

7https://huggingface.co/docs/
transformers/model_doc/bert#transformers.
BertForMultipleChoice

8https://huggingface.co/google-t5/t5-base
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Table 6: Datasets with corresponding prompts and examples used in the experiments.

Dataset Prompt Example

SST-5 {input} It is {output}
Input: this is a stunning film , a one-of-a-kind tour de force .
Output: very positive

MRPC {input1} Can we say "{input2}"? {output}
Input1: The company didn 't detail the costs of the replacement and repairs.
Input2: But company officials expect the costs of the replacement work to run into the millions of dollars .
Output: No

MNLI {input1} Can we say "{input2}"? {output}
Input1: yeah i know and i did that all through college and it worked too
Input2: I did that all through college but it never worked 
Output: No

QNLI {input1} Can we know "{input2}"? {output}
Input1: As of that day, the new constitution heralding the Second Republic came into force.
Input2: What came into force after the new constitution was herald?
Output: Yes

CMSQA {input} {output}
Input: Sammy wanted to go to where the people were. Where might he go?
Output: populated areas

HellaSwag {input} {output}
Input: Members of the procession walk down the street holding small horn brass instruments. A drum line
Output: passes by walking down the street playing their instruments

WebQs {input} {output}
Input: what does jamaican people speak?
Output: Jamaican Creole English Language

GeoQuery {input}\t{output}
Input: what is the population of montana ?
Output: answer(A,(population(B,A),const(B,stateid(montana))))

NL2Bash {input}\t{output}
Input: find all executable files in /home directory.
Output: find /home -type f -perm /a=x

Break {input}\t{output}
Input: How many large metallic items are there?
Output: 1#) return items 2#) return #1 that are large 3#) return #2 that are metallic 4#) return number of #3

Mtop {input}\t{output}
Input: Resume the timer in 10 seconds
Output: [IN:RESUME_TIMER [SL:METHOD_TIMER timer ] [SL:DATE_TIME in 10 seconds ] ]

SMCalFlow {input}\t{output}
Input: Can you create me a new meeting on thursday morning?
Output: (Yield (CreateCommitEventWrapper (CreatePreflightEventWrapper (Event.start_? 
(DateTimeConstraint (Morning) (NextDOW (Thursday)))))))

predicted and target outputs for each data point.1223

Furthermore, we conducted all experiments for1224

EPR and CEIL on two NVIDIA A100 GPUs1225

(40GB), while the remaining experiments were1226

performed on two NVIDIA V100 GPUs (30GB).1227

Each main experiment is repeated three times using1228

different random seeds to mitigate the effects of1229

randomness.1230

C Experiments on Advanced LLMs1231

Generalization of of H1and H2: In the main body1232

of our paper, we validate H1 and H2 using GPT-1233

Neo and GPT-2 XL. To extend this to more ad-1234

vanced LLMs, we utilize Llama 3 (8B) for the1235

learning-based method EPR on four datasets (i.e.,1236

MRPC, CMSQA, SWAG, and Nl2Bash) due to the1237

high cost of data collection for EPR’s proxy task.1238

As illustrated in Fig. 5 (Left), different tasks ex-1239

hibit distinct preferences for specific layers, and1240

the CKA distribution across various tasks shows1241

significant diversity among different pre-trained1242

layers of BERT in Fig. 5 (Right). These results1243

support H1, indicating that learning-based meth-1244

ods can effectively aggregate multi-level (layer)1245

linguistic similarities across tasks. Additionally,1246

as depicted in Fig. 6 (Left), positive exemplars1247

have consistently higher input-output similarities1248

with test cases than negative ones. Furthermore, as 1249

shown in Fig. 6 (Right), the exemplars chosen by 1250

EPR have outputs more similar to the test case than 1251

those selected by unsupervised competitors, sup- 1252

porting H2. Thus, our findings can be generalized 1253

to more advanced LLMs. 1254

Generalization of MLSM and TTF: We further 1255

verify the generalization capabilities of MLSM 1256

and TTF to more advanced LLMs using Llama 3 1257

(8B) and GPT-3.5 on four tasks. First, we com- 1258

pared these methods against both supervised (EPR) 1259

and unsupervised approaches (Top-K BERT, Ran- 1260

dom) with Llama 3 (8B), as shown in Table 7. The 1261

results demonstrate that MLSM consistently sur- 1262

passes Top-K BERT, while TTF achieves the high- 1263

est performance overall. We also evaluated MLSM 1264

and TTF against Top-K BERT on Llama 3 (8B) 1265

and GPT-3.5 across varying shot numbers in Ta- 1266

ble 10. Both methods generally outperform Top-K 1267

BERT, except for TTF when using 20 shots. We 1268

speculate that GPT-3.5 may learn incorrect patterns 1269

from selected exemplars when it could answer cor- 1270

rectly using its inherent knowledge, but the implicit 1271

prediction by TTF and EPR is wrong. Moreover, 1272

advanced LLMs are more sensitive to the instruc- 1273

tion prompt choice rather than exemplar, particu- 1274

larly when the shot of exemplars reaches a certain 1275
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Figure 4: Left: Comparison of similarity between the input/output of positive and negative demonstration examples
and the input/output of the test case across ten tasks for EPR. Right: Difference between EPR and three task-
agnostic demonstration exemplar selection methods in average similarity between the output of test case and
retrieved exemplars. We use GPT-2 XL (Black et al., 2021) as the LLM.

Figure 5: Left: Top-10 retrieval accuracy using each of the twelve layers of the original BERT to retrieve positive
exemplars to solve the proxy task of EPR across four tasks. Different colors represents different layers. Top-10
accuracy refers to the probability of retrieving the positive exemplar in the top 10 predictions. Middle: CKA scores
between twelve layers of original BERT (x-axis) and the final layer of BERT of EPR trained on four tasks. We use
Llama3 (8B) as the main LLM.

threshold (e.g., 3 shots) (Chen et al., 2023; Yuan1276

et al., 2024). In summary, our methods demonstrate1277

strong generalization across advanced LLMs.1278

D Supplementary Analysis of MLSM1279

Ablation Study on the Number of Layers (nl)1280

in MLSM: We perform an ablation study to inves-1281

tigate the impact of varying the number of layers1282

(nl) in MLSM on both classification and generation1283

tasks, as shown in Fig. 7 (Left). The performance1284

trends differ between the two tasks: for classifica-1285

tion tasks, performance improves with increasing1286

nl, peaks at nl = 5, and then declines; for genera-1287

tion tasks, performance generally decreases as nl1288

increases. To balance performance and computa-1289

tional efficiency, we set nl = 3 in our study.1290

Ablation Study on Temperature (τ ) for MLSM:1291

For all MLSM experiments, we adopt a small tem- 1292

perature parameter(less than 1) to approximate a 1293

ranking distribution of demonstrations, necessitat- 1294

ing a sharper preference distribution for candidate 1295

demonstration examples. To further anlysis the ef- 1296

fect of τ on MSLM, we conduct an ablation study 1297

of τ in Fig. 7 (Middle). In all MLSM experiments, 1298

we adopt a small temperature parameter (τ < 1) 1299

to approximate a sharper ranking distribution of 1300

demonstrations. To further analyze the effect of 1301

τ on MLSM, we conduct an ablation study, as 1302

presented in Fig. 7 (Middle). The results indi- 1303

cate that MLSM achieves the best performance 1304

when τ = 0.01, while performance degrades when 1305

τ ≥ 1. This may be attributed to the fact that larger 1306

temperature values result in a smoother ranking dis- 1307

tribution, which reduces the model’s ability to prior- 1308
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Figure 6: Left: Comparison of similarity between the input/output of positive and negative demonstration examples
and the input/output of the test case across four tasks for EPR. Right: Difference in average similarity between the
output of test case and retrieved exemplars for EPR and each of the three learning-free prompt retrieval methods.
We use Llama3 (8B) as the main LLM.

def k_medoids(similarity_matrix: np.ndarray , k: int , max_iter: int = 100) -> List[int]:
n = similarity_matrix.shape [0]
# random choose centroids
indices = list(range(n))
indices.sort()
np.random.shuffle(indices)
centroids = indices [:k]
inter_num = 0
for i in range(max_iter):

# assign each layer
clusters = [[] for _ in range(k)]
for i in range(n):

similarities = [similarity_matrix[i, centroid] for centroid in centroids]
closest_centroid = np.argmax(similarities)
clusters[closest_centroid ]. append(i)

for cluster in clusters:
cluster.sort()

# update centroids
new_centroids = []
for cluster in clusters:

centroid = np.mean(similarity_matrix[cluster , :], axis =0)
new_centroids.append(cluster[np.argmax(centroid[cluster ])])

new_centroids.sort()
# decide whether to converge
if sorted(new_centroids) == sorted(centroids):

break
centroids = new_centroids
inter_num = i

return centroids , inter_num

Algorithm 1: K-medoids Clustering Algorithm

itize demonstration examples that are more similar1309

to the test case. Conversely, when τ is smaller, only1310

the most similar examples are selected, leading to1311

improved performance.1312

Analysis of representative layers in MLSM: To1313

examine the impact of randomly selecting 1,0001314

examples from the demonstration set D on the de-1315

termination of representative layers in MLSM, we1316

randomly sample 1,000 examples from D and com-1317

pute layer-wise CKA scores three times. The clus-1318

tering results for the representative layers remain1319

consistent, as the clustering process is repeated1320

100 times to mitigate the sensitivity of the unsu-1321

pervised K-medoids algorithm to centroid initial-1322

ization for each example sampling. For instance,1323

in the MRPC task, where the representative layers1324

include the 3rd, 7th, and 10th layers of BERT for1325

three samplings of examples from D (i.e., 300 ran-1326

dom initializations of medoids), we visualize the 1327

distribution of medoid selections across BERT’s 1328

layers in Fig. 7 (Right). 1329

Comparison Between Uniform Weight and 1330

Adaptive Weight for MLSM: We compar the per- 1331

formance of Adaptive Weight in MLSM with uni- 1332

form weights (i.e., wi =
1
nl

for all i) as shown in 1333

Table 8. The results demonstrate that while MLSM 1334

and uniform weights achieve comparable average 1335

accuracy across all datasets, MLSM outperforms 1336

uniform weights in most cases, particularly on five 1337

generation tasks. This highlights the advantages 1338

of MLSM’s adaptive weighting approach. Further- 1339

more, the primary objective of MLSM is to vali- 1340

date H1, which hypothesizes that learning-based 1341

demonstration selection methods can adaptively in- 1342

tegrate task-agnostic similarities at different levels 1343

between exemplar inputs and test cases. Although 1344
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Table 7: Main results of MLSM and TTF on four datasets when using Llama 3 (8B) as the main LLM. Llama 3 (8B)
performs worse on NL2Bash because of the repetitive generation

Method MRPC CMSQA SWAG NL2B. Avg. Avg. (w/o NL2B.)
Random 67.65 68.39 74.67 9.89 55.15 70.23
Top-K BERT 72.28 68.29 74.03 9.77 56.09 71.54
MLSM 71.32 68.88 76.69 15.67 58.13 72.30
EPR 72.30 66.77 74.14 9.87 55.77 71.07
TTF 72.79 68.80 76.77 12.37 57.67 72.79

Figure 7: Left: Analysis of the impact of varying the number of layers (nl) in MLSM. Middle: Evaluation of the
effect of different temperature values (τ ) in MLSM. Right: Visualization of medoid distributions across layers of
BERT for the MRPC task. We use GPT-Neo as the main LLM.

uniformly distributed weights could be viewed as1345

a potential implementation of MLSM, they fail to1346

capture the adaptive nature of H1.1347

E Supplementary Analysis of TTF1348

Why Not Use the Fine-Tuned Retriever in TTF1349

for the Test Task?: While relying solely on the1350

retriever in TTF with task-specific modules fine-1351

tuned on the test tasks may be effective for simpler1352

tasks with minimal domain gaps between training1353

and testing data, this approach is less effective for1354

more complex tasks. In such cases, performance1355

becomes constrained by the capacity of the fine-1356

tuned, smaller model. For example, in the MRPC1357

task, the fine-tuned model achieves a validation1358

accuracy of 0.80, whereas GPT-Neo achieves only1359

77.94 and 74.51 when using CEIL and TTF, as1360

shown in Table 1. However, for a more complex1361

task like CMSQA, the fine-tuned model achieves a1362

validation accuracy of only 48.25, which is signifi-1363

cantly lower than the results achieved using a larger1364

language model such as Llama 3 (8B). For instance,1365

as shown in Table 7, Llama 3 achieves a substan-1366

tially higher accuracy (e.g., approximately 68.801367

for TTF), highlighting its advantages for tackling1368

more complex tasks.1369

Comparison between TTF and UDR: UDR (Li1370

et al., 2023) pre-trains the retriever on over 30 tasks1371

and subsequently evaluates it on the same tasks. In1372

contrast, our setting involves training the retriever1373

on a single task and testing it on the same task, 1374

following EPR (Rubin et al., 2022) and CEIL (Ye 1375

et al., 2023). Additionally, UDR requires substan- 1376

tial computational resources for training, specifi- 1377

cally 8 NVIDIA A100 GPUs (80GB) running for 8 1378

days, excluding the resources needed for evaluation. 1379

Given our current resource constraints, reproduc- 1380

ing UDR is infeasible. Therefore, we adopt the 1381

formal implementation of UDR but instead pre- 1382

train it on five classification tasks and evaluate it on 1383

these same tasks. As shown in Table 9, although 1384

UDR shows advantages over state-of-the-art un- 1385

supervised method MLSM, UDR underperforms 1386

other learning-based exemplar selection methods 1387

(i.e., EPR, CEIL and TTF). We suggest that this 1388

result may stem from UDR’s reliance on a large 1389

number of tasks to fully develop its capabilities 1390

or from potential task conflicts among these five 1391

classification tasks. 1392

F Connection with Explanatory Work of 1393

ICL 1394

Our work presents two hypotheses regarding the 1395

types of similarity measurements acquired by 1396

learning-based demonstration selection methods: 1397

Integrating task-agnostic similarities of different 1398

levels between the input of exemplars and test 1399

cases (H1), Incorporating task-specific similarity 1400

between the output of exemplars and test cases 1401

(H2). While we have quantitatively validated both 1402
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Table 8: Comparison between Uniform Weight and Adaptive Weight for MLSM when using GPT Neo as the main
LLM.

The results on the classification task.
Method SST-5 MRPC QNLI CMSQA SWAG. Avg.
Uniform 37.04 71.81 64.21 32.43 40.92 52.34
MLSM 33.15 69.87 65.02 37.26 41.49 53.41

The results on the generation task.
WebQs GeoQ. NL2B. MTOP SMCA. Avg.

Uniform 15.25 68.57 55.65 53.78 47.40 56.35
MLSM 16.14 68.93 56.11 54.05 47.72 56.70

Table 9: Comparison with UDR on the classification
task when using GPT Neo as the main LLM. ♣ indicates
methods requiring costly interaction with LLMs.

Method SST-5 MRPC QNLI CMSQA SWAG Avg.

MLSM 33.15 69.87 65.02 37.26 41.49 49.36
UDR♣ 36.60 70.10 71.98 31.11 51.76 52.31
EPR♣ 36.88 81.37 77.87 38.74 43.39 55.65
CEIL♣ 37.69 77.94 80.58 38.90 43.84 55.79
TTF 42.14 74.51 85.08 47.83 55.72 61.06

hypotheses in Sec. 3, we qualitatively support1403

both hypotheses by demonstrating the exemplars1404

selected based on the corresponding similarity mea-1405

surements will contribute to the ICL performance1406

based on the explanatory mechanisms of ICL.1407

Qualitative Validation of H1: H1 argues learning-1408

based exemplar selection methods retrieve exem-1409

plars with multi-level analogs to the test case.1410

These exemplars are more likely to lead LLMs1411

to correct predictions than dissimilar ones when1412

they contain relevant patterns (i.e., token and to-1413

ken sequences that aid correct predictions) for the1414

test case. For example, previous investigation (Ols-1415

son et al., 2022; Reddy, 2023) proposed a possible1416

inner working of ICL that LLMs can learn from sur-1417

face patterns in the demonstration sequence, such1418

as copying tokens from contextual prompts. Fur-1419

thermore, recent research (Yan et al., 2023) em-1420

pirically demonstrated that increased contextual1421

co-occurrences will strengthen the connection be-1422

tween two tokens during generation caused by the1423

maximizing likelihood objective of LLMs. These1424

insights suggest that influential demonstration ex-1425

emplars may exhibit more token or phrase-level1426

correspondence with the test case corresponding to1427

the low-level similarities in the lower or middle lay-1428

ers of pre-trained BERT, significantly influencing1429

LLM outputs and supporting H1.1430

Qualitative Validation of H2: In line with the1431

qualitative validation of H1, we illustrate the ex- 1432

emplar with similar input and output to test cases 1433

also contributes to the performance of ICL. Prior 1434

work has demonstrated that ICL typically learns 1435

input-output relation from exemplars even for a 1436

genuinely novel task the LLM cannot know from 1437

pre-training (Kossen et al., 2023; Halawi et al., 1438

2023; Zhao et al., 2024). Moreover, Kossen et al. 1439

(2023) further proposed that LLMs prefer utilizing 1440

information closer to the query rather than treat- 1441

ing all available information equally. Hence, if 1442

the exemplar selection method successfully learns 1443

the output similarity via the proxy task, it selects 1444

demonstration examples exhibiting useful input- 1445

output correlations for the test case due to their 1446

shared relevant input-output correlations and po- 1447

sitions it closely to the test query in the prompt. 1448

These advantages align with the previously men- 1449

tioned underlying working mechanisms of LLMs, 1450

thereby validating H2. 1451

G Statistical Significance 1452

To strengthen our evaluation, we re-ran MLSM 1453

and TTF for the main experiments in Table 1 and 1454

Table 2 using GPT-Neo as the LLM. We report 1455

the average accuracy and standard deviation for 1456

both methods and statistical significance for the 1457

comparison between MLSM and Top-K BERT in 1458

Table 11. The results demonstrate the effectiveness 1459

of both methods, particularly MLSM, which shows 1460

stable performance improvements, which may be 1461

attributed to the used loss function. 1462

H Theoretical Foundation Of MLSM and 1463

TTF 1464

While MLSM and TTF are naturally supported by 1465

our findings (H1and H2) as they are two implemen- 1466

tations of these findings, we provide a preliminary 1467

theoretical foundation for both methods. Specifi- 1468
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Table 10: Results of cross-LLM Transferability Validation of TTF and MLSM on Llama 3 8B and GPT 3.5.

TTF Verification
LLM Shot Method SST-5 MRPC QNLI CMSQA Avg.

Top-K BERT 48.50 70.34 78.13 63.05 65.00
3

TTF 48.68 70.83 77.96 63.55 65.26
Top-K BERT 49.41 71.32 77.25 60.52 64.63
TTF 47.96 66.91 77.34 60.94 63.29

GPT 3.5
20

EPR 49.14 64.22 77.03 59.79 62.55
Top-K BERT 72.28 71.28 73.73 68.29 71.40

Llama 3 20
TTF 72.79 72.79 77.72 68.80 73.03

MLSM Verification
LLM Shot Method SST-5 MRPC GeoQ. NL2B. Avg.

Top-K BERT 49.50 70.34 17.14 63.52 50.13
3

MLSM 49.32 70.59 18.00 64.56 50.62
Top-K BERT 49.41 71.32 4.64 60.52 46.47

GPT 3.5
20

MLSM 50.23 74.02 5.36 68.24 49.46
Top-K BERT 72.28 71.28 0.00 9.77 38.33

Llama 3 20
MLSM 72.79 72.79 0.00 15.67 40.31

Table 11: Main results of MLSM and TTF when using GPT Neo as the main LLM. † represents the probability that
the performance of MLSM exceeds that of BERT is over 95% by t-test. Org represents the performance reported in
the main body.

Main results on the classification task.
Method SST-5 MRPC QNLI CMSQA SWAG Avg.
Top-K BERT 32.64 69.70 61.94 35.25 41.46 48.20
MLSM (Org) 33.15 69.87 65.02 37.26 41.49 49.36
MLSM 35.00± 1.77† 69.69± 0.29 65.10± 0.11† 38.07± 0.81† 41.82± 0.32 49.94± 0.60†

EPR (Org) 36.88 81.37 77.87 38.74 43.39 55.65
TTF 42.04± 1.50 74.18± 0.58 85.15± 1.00 46.39± 1.55 56.51± 0.69 60.85± 0.27

Main results on the generation task.
Method WebQs GeoQ. NL2B. MTOP SMCA. Avg.
Top-K BERT 14.13 64.44 53.15 51.49 44.76 45.59
MLSM (Org) 16.14 68.93 56.11 54.05 47.72 48.59
MLSM 15.65± 0.47† 69.14± 0.19† 56.24± 1.27† 53.92± 0.20† 47.59± 0.19† 48.51± 0.17†

cally, MLSM treats different layers as experts and1469

uses the loss function L = −
∑nl

i=1 ê · ei to en-1470

semble them for demonstration selection. This1471

approach is theoretically proportional to mutual1472

information I(E, Ê) and inversely proportional to1473

selection entropy H(Ê), maximizing expert agree-1474

ment and ensuring stable selection. The detailed1475

proof is available in (Zhang et al., 2022b). For1476

TTF, we conduct preliminary theoretical analysis1477

showing how features from layers before the final1478

classification task heads can model input-output1479

distribution in Section 4.1480

I Analysis of aggregation weight1481

We analyze the probability density distribution of1482

aggregation weights of MLSM on four datasets1483

in Fig. 8. The results show that: 1) Different1484

datasets exhibit varying weight probability den-1485

sity distributions and mean values, indicating that1486

MLSM adaptively adjusts the weights of each layer 1487

to maximize agreement for demonstration retrieval. 1488

2) The weights w1 and w2 are often higher than 1489

w3, suggesting that MLSM focuses more on lower- 1490

level features, possibly due to the greater similarity 1491

of features extracted from these layers. Although 1492

MLSM’s performance is impressive, this method 1493

is just one possible instance of our proposed H1. 1494

Other alternatives, such as integrating MLSM with 1495

training examples from the proxy task of learning- 1496

based methods, may also be viable, which we leave 1497

in future exploration. 1498

J Running Efficiency 1499

Take the experiments on the QNLI dataset using 1500

a V100 GPU as an example. QNLI, a natural lan- 1501

guage inference task, comprises 5,463 test samples 1502

and 104,707 demonstration samples. For MLSM, 1503

in an online streaming scenario with a batch size of 1504
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Figure 8: Probability density distribution of aggregated weights for nl layers of MLSM, with nl = 3 for MRPC,
CMSQA, SWAG, and Nl2Bash, presented from top-left to bottom-right. The weights w1, w2, w3 correspond to
layers from low to high. The mean (standard deviation) of the weights are as follows: 0.35 (0.08), 0.43 (0.08), 0.21
(0.07) for MRPC, 0.34 (0.07), 0.48 (0.08), 0.17 (0.06) for CMSQA, 0.34 (0.07), 0.50 (0.08), 0.15 (0.06) for SWAG
and 0.26 (0.06), 0.43 (0.07), 0.30 (0.07) for Nl2Bash.

1 (i.e., only one test point is observed during infer-1505

ence), this method processes approximately 1.6–1.71506

data points per second. However, as indicated in1507

Ablation of Batchsize for MLSM in Sec. 5, MLSM1508

benefits significantly from larger batch sizes. In1509

this case, with batch sizes of 8 and 64, MLSM can1510

process approximately 4 and 32 data points per1511

second, respectively. Additionally, the GPU mem-1512

ory overhead for MLSM is small (400–800 MB),1513

enabling multi-process execution to accommodate1514

deployment requirements. In comparison, TTF can1515

process approximately 60 data points per second.1516
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