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Deep neural networks exhibit rich training dynamics under gradient descent up-
dates. The root of this phenomenon is the non-convex optimization of deep neural
networks, which is extensively studied in recent theory works. However, previous
works did not consider or only considered a few gradient descent steps under non-
asymptotic manner, resulting in an incomplete characterization of the network’s
stage-wise learning behavior and the evolutionary trajectory of its parameters and
outputs. In this work, we characterize how a network’s feature learning happens
during training in a regression setting. We analyze the dynamics of two quantities
of a two-layer linear network: the projection of the first layer’s weights onto the
feature vector, and the weights in the second layer. The former indicates how well
the network fits the feature vector from the input data, and the latter stands for the
magnitude learned by the network. More importantly, by formulating the dynam-
ics of these two quantities into a non-linear system, we give the precise characteri-
zation of the training trajectory, demonstrating the rich feature learning dynamics
in the linear neural network. Moreover, we establish a connection between the fea-
ture learning dynamics and the neural tangent kernel, illustrating the presence of
feature learning beyond lazy training. Experimental simulations corroborate our
theoretical findings, confirming the validity of our proposed conclusion.

1. Introduction
Deep learning achieves huge accomplishments in solving diverse machine learning problems [1–
3]. Despite the success in practical applications, the underlying mechanism of deep learning is still
not well understood, leaving a gap between fundamental understanding and real-life practice of
deep neural networks. The over-parameterized model, which consists of more parameters than the
number of training samples, can be trained to memorize all the training data (converging to zero
training loss) evenwith the existence of randomnoises. Meanwhile, over-parameterizedmodels can
still exhibit generalization on unseen test data, contradicting classical analysis on the bias-variance
trade-off in statistical learning theory. This phenomenon has been observed in numerous previous
works [4, 5], and intensively studied by the theory community [6–15].
One promising line of research to analyze deep networks is to exploit the connection between over-
parameterized neural networks and kernel machines. People find the similarity between kernel
machines and deep networks: both can memorize and interpolate the training data [16, 17]. Com-
pared with deep neural networks, kernel machines have the advantage of more solid theory in their
training and generalization [18, 19] and better interpretability [20]. Recent studies show that in-
finitely wide neural networks trained with gradient descent can be approximated by its linearized
version in parameter space [21, 22] and thus converging to a kernel regression solutionwith a kernel
called the neural tangent kernel (NTK) in function space [23–27]. However, the exact equivalence
between neural networks and NTKs breaks for finite width networks [28–30] or initialization with
large variance [31, 32]. Furthermore, in the network training regime with an approximately static
kernel, also referred to as the “lazy training” regime [31], network parameters remain close to their
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initialization during training and cannot explain the adaptation of deep networks and its learned
features to the training data [14, 33], which is believed to be the key for deep networks to outperform
kernel methods [34–36].
In thiswork, we establish a novel connection between feature learning and neural network optimiza-
tion through the lens of weight decomposition in the direction of the feature vector, considering a
non-asymptotic perspective. For a linear two-layer network, we analyze the dynamics of two quan-
tities: 1) the projection of the first layer weight to the target feature vector X⊤y (dubbed “feature
alignment”), where X and y are input data and ground truth; 2) the weight magnitude in the sec-
ond layer (dubbed “network magnitude”). Disentangled analysis of these two quantities helps us
precisely characterize the network’s behavior during gradient descent and the reason behind it. The
“feature alignment” indicates how well the network fits the noisy training data, and the “network
magnitude” identifies the magnitude of the network’s output. By formulating these two critical
quantities into a non-linear dynamic system, we successfully track the trajectory of weights during
the gradient descent training in a regression setting, thereby capturing the rich and precise feature
learning dynamics inherent in linear neural networks.
Our results indicate a two-stage dynamics of feature learning. In the early training phase, the net-
work does not actively minimize the loss with its network magnitude staying at a low level. We
find the network actively learns the directions of the target feature vector and increases its “fea-
ture alignment”. In the second phase, the output magnitude increases, and the network follows the
fixed direction of the target feature vector and keeps learning gradient magnitudes. Finally, we es-
tablish a connection between feature learning dynamics and neural tangent kernel (NTK) [23]. In
the initial stage, the neural network predominantly focuses onmastering the direction of the feature
vector, causing the NTK to maintain its norm while evolving towards a kernel that is aligned with
the new target. In the latter stage, while the direction is retained, the network amplifies its magni-
tude, leading to an increase in the NTK’s normwhile maintaining the structure of the target-aligned
kernel. Collectively, the transformations in the NTK underscore that the neural network is engaged
in feature learning, standing in contrast to the dynamics observed in lazy training [31].
Our contributions are summarized below:

• We precisely characterize two training phases in a two-layer network from a non-asymptotic
perspective. The first layer weight learns to align with the target and the loss remains high
in the first phase. After that, the weight amplifies its projection magnitude in the learned
direction and the loss is actively minimized in the second phase.

• We determine the training time step that separates the two training phases by solving the
non-linear system of feature alignment and network magnitude. Based on our analysis of
the stage-wise dynamics, we showcase rich andprecise dynamics of feature learning beyond
lazy training in a regression setting with finite width. A comparison between our work and
existing works can be found in Table 1.

• We conduct experiments on both synthetic and real-world datasets. The simulation results
further verify our theoretical findings.

2. Related Work
Feature learning To explain the gap between kernel machines and networks in practice, people re-
cently started analyzing beyond the lazy-training regime and trying to characterize the network’s
feature learning behavior. Related works in this line can be summarized into three categories: (i)
The first direction is to calculate finite width corrections to the infinite width limit and capture
non-Gaussian processes in practical networks [29, 37–41]. (ii) Secondly, people try to allow feature
learning during gradient descent by altering network parameterizations and learning rates, even at
infinite width. The mean field limit [42–44] emerges as alternative parameterizations where feature
learning is significant. (iii) A third line of works unifies the network parametrizations and proposes
the Maximal Update Parametrization (µP ), which admits maximal feature learning and enables ef-
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ficient hyper-parameter search and transfer [45]. People also study the phase diagram of networks
regarding their initialization variance and learning rates and identify linear/critical/condensed
regimes of different feature learning behaviors [46, 47]. Finally, empirical studies also gain insight
into the gap between lazy training and feature learning regimes of deep networks. These works
observe the evolution of NTK spectrum, kernel similarity, and the network’s output approximated
by kernel regression [32, 48–54].
Phases in training deep networks Behaviors of the deep network during gradient descent train-
ing show phase transitions. The information bottleneck (IB) theory [55, 56] claims the transition
from the initial fitting phase to a subsequent compression phase during gradient descent training.
Recent works [8, 57] demonstrated that in the early phase of training, the curve of a finite-width
neural network can be approximated by a linear model. Moreover, [58] observed that at the end
of the early training phase, gradients span a low-dimensional subspace. [59–61] showed that an
initial large learning rate can benefit late-time generalization performance. Empirical observations
on the evolution of NTK kernel similarities and generalization were also studied by [48, 62]. More
rigorously, [63] tried to explain the different learning phases of NTK alignment and training loss. In
the low-rank matrix recovery, [64] also achieved multiple-phase training dynamics: an early align-
ment phase, followed by a learning onNTK spectral magnitude, and finally refinement phase. Their
results share qualitative similarities with our analysis of linear networks. More recently, [65] con-
ducted a complete theoretical characterization of the training process of a two-layer ReLU network
trained by Gradient Flow on linearly separable data. They revealed four different phases from the
whole training process showing a general simplifying-to-complicating learning trend. In our work,
we give the precise characterization of stage-wise dynamics in a regression setting.

3. Preliminaries

3.1. Notation
We use lower and capital bold-faced letters for vectors and matrices, respectively, otherwise repre-
senting scalar. We use ∥·∥2 to denote the Euclidean norm of a vector or the spectral norm of amatrix
while denoting ∥ · ∥F as the Frobenius norm of a matrix. Moreover, for any positive semi-definite
(PSD) matrix A ∈ Rd×d and any vector v ∈ Rd, we denote ∥v∥A =

√
v⊤Av. Let Id be the identity

matrix with the dimension of Rd×d. We denote [n] = {1, 2, . . . , n}. For a random variable Z, we
denote by ∥Z∥ψ2 and ∥Z∥ψ1 the sub-Gaussian and sub-exponential norms of Z, respectively. Given
two sequences {an} and {bn}, we use standard asymptotic notations O(·), o(·), Ω(·), ω(·), and Θ(·)
to describe the limiting behavior between them. In particular, we denote by an = O(bn) that there
exists a positive real number C1 and a positive integerN such that |an| ≤ C1|bn| for all n ≥ N . Sim-
ilarly, we write an = Ω(bn) if there exists C2 > 0 and N > 0 such that |an| > C2|bn| for all n ≥ N .
As a result, we say an = Θ(bn) if an = O(bn) and an = Ω(bn). Besides, if limn→∞ |an/bn| = 0, we
say an = o(bn); we write an = ω(bn) if limn→∞ |an/bn| = ∞.

3.2. Data Model
We consider a random feature generation model. Define the covariance for data feature Σ =
Ex[xx

⊤] ∈ Rd×d, whereΣ is a positive definite matrix with eigenvalue decompositionΣ = UΛU⊤.
In particular, Λ = diag{λ1, λ2, · · · , λd} ∈ Rd×d and U ∈ Rd×d is an orthogonal matrix consisting
of the eigenvectors of Σ ∈ Rd×d. Then the data is generated by xi = UΛ

1
2 zi, where zi ∈ Rd has

components that are independent σ2
x-subgaussian with zero mean. This ensures that xi ∈ Rd has

mean zero and covariance matrix Σ. We further assume a linear teacher (ground truth) model
yi = f∗(xi) + ϵi = ⟨xi,β⟩+ ϵi, (1)

where β ∈ Rd is some unknown but given feature vector, and ϵi ∈ R is noise term that is i.i.d.
sub-Gaussian with mean zero and variance σ2

y . Then the training set (X,y) ∈ (Rn×d,Rn) of n i.i.d.
sample are generated from Equation (3.2) and Equation (1).
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3.3. Neural Network Model and Gradient Descent
In this work, we consider a two-layer linear neural network f which can be expressed as
f(X,W,v) = 1

m

∑m
r=1 vr ·Xwr,whereX ∈ Rn×d is the input data,W ≡ [w1,w2, · · ·wm]⊤ ∈ Rd×m

is the weight matrix at the first (input) layer, and v ≡ [v1, v2, · · · , vm]⊤ ∈ Rm is the weight vector at
the second (output) layer. The width of the neural network is denoted by m.
We initialize the parameters randomly in this work. In particular, we have, for r ∈ [m], wr ∼
N (0, σ2

0 · Id), vr ∼ v0 · uniform({−1, 1}), where σ0 controls the magnitude of initialization for the
weight in the first layer and v0 controls the magnitude of second layer weight initialization. We
then optimize the weight in both layers through gradient descent on the empirical loss function
L(f(X, t),y) = 1

2n ∥f(X, t)− y∥22 .Given the learning rate η, for r ∈ [m], the gradient descent update
rule of the neural network can be expressed as:

wr(t+ 1) = wr(t) +
η

mn
· vr(t) ·X⊤y − η

m2n
· vr(t) ·X⊤XW(t)v(t),

vr(t+ 1) = vr(t) +
η

mn
·w⊤

r (t)X
⊤y − η

m2n
·w⊤

r (t)X
⊤XW(t)v(t).

(2)

3.4. Neural Tangent Kernel
Given a two-layer linear neural network f , it is found that the output function with gradient flow
admits the following dynamics,

df(X; t)

dt
=

∂L(f(X; t),y)

∂f(X; t)
Θ(X,X; t), (3)

whereL(f(X; t),y) is the empirical loss function, and in this workwe adopt the squared loss. More-
over,Θ(X,X; t) is the neural tangent kernel (NTK) that is defined as follows:
Definition 3.1 (NTK). The tangent kernels associated with the output function f(X; t) at parameters θ ≜
(W,v) can be expressed as

Θ(X,X; t) =
∂f(X,θ; t)

∂θ

(
∂f(X,θ; t)

∂θ

)⊤

∈ Rn×n. (4)

The neural tangent kernel theory [23] states that the NTK will converge to a deterministic kernel at
initialization and during gradient descent training, thus providing a convergence guarantee for the
neural network in the infinite-width limit. In contrast to the neural tangent kernel theory where the
width is set to be disproportionally large, this work studies feature learning and will show that the
neural network will learn a new target-aligned kernel.

4. Main Results
In this section, we demonstrate our main results regarding the optimization of a two-layer neural
network under gradient descent.
Our results are based on the following conditions on dimension d, sample size n, neural network
width m, learning rate η, initialization scale σ0 v0, trace two-norm and F-norm of input covariance
matrix tr(Σ), ∥Σ∥2, ∥Σ∥F , and noise variance σ2

y .
Assumption 4.1. Let ϵ > 0. We assume that

(1) The width of the hidden layer follows m = Ω(log(2n)).

(2) The first layer weight initialization satisfies σ0 ≤ min

{
C1√

nd∥β∥2
2tr(Σ)

,
√
ϵ

n1/4∥β∥1/2
2 tr(Σ)1/4

}
.

(3) The second layer weight initialization satisfies v0 ≤ C2√
n∥β∥2

2tr(Σ)
.
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(4) The learning rate η satisfies η = O(
√
nm√

tr(Σ)∥β∥2

).

(5) The noise variance follows σ2
y ≤ 8n∥β∥22.

(6) tr(Σ) ≥ max{C2,
√
ϵ∥β∥2}σ2

x(n · ∥Σ∥2 +
√
n · ∥Σ∥F ) and tr(Σ)∥β∥22 = Ω(1).

Here we define ∥β∥2 ≜ ∥β∥Σ =

√
β⊤Σβ. Besides, C1, C2, and C3 are absolute constants.

A few remarks on Condition 4.1 are in order. (1) We require the neural network width to be at least
polylogarithmic in the sample size n to ensure some statistical properties of the weight initialization
to holdwith probability at least 1−O(1/n2). This is amild condition compared to the neural tangent
kernel theory [66, 67]. (2,3) The conditions on initialization strength σ0 and v0 are to ensure that
there are two stage dynamics in thewhole training process. (4) The learning rate is chosen such that
the gradient descent can effectively minimize the training loss. (5) The condition on noise variance
is to ensure that the noise is small enough compared to the feature part. (6) The final condition on
tr(Σ) ensures that XX⊤ is close to a scaled identity matrix.

4.1. A Two-Stage Dynamics for Feature Learning
The core of our analyses and results lies in a two-stage behavior of the training dynamics in the two-
layer neural network trained by gradient descent. Intuitively, the initial neural network weights are
small enough so that the output neural network at initialization has a small and negligible magni-
tude compared to its ground truth: f(xi) ≪ yi for all i ∈ [n]. This is guaranteed under Assumption
4.1. Then by the gradient descent update rule (2) with a more compact format, we have

wr(t+ 1) = wr(t) +
η

n
·
(
∂f(X)

∂wr(t)

)⊤

y − η

n
·
(
∂f(X)

∂wr(t)

)⊤

f(X, t),

vr(t+ 1) = vr(t) +
η

n
·
(
∂f(X)

∂vr(t)

)⊤

y − η

n
·
(
∂f(X)

∂vr(t)

)⊤

f(X, t).

(5)

It is observed that in the initial stage, the third term on the right-hand side of Equation (5) is negli-
gible compared to the second term. This observation leads to a simplified, yet insightful, gradient
descent rule for the weights in the neural networkwr(t+ 1) ≈ wr(t) +

η
nm · vr(t) ·X⊤y. This equa-

tion suggests that the gradient descent iteratewr(t) is essentially a linear combination of its random
initialization wr(0) and the feature vector X⊤y derived from the training data in the initial stage.
Motivated by this observation, we define a coefficient to measure the projection of the first-layer
weights onto X⊤y during the gradient descent training:

ρr(t) ≜ ⟨wr(t)−wr(0),X
⊤y⟩, (6)

where ρr(0) = 0. In particular, ρr(t) characterizes the progression of learning the feature vector
X⊤y. Evidently, based on the definition (6), for some iteration t, we observe the following:

1 If all ρr(t) values are sufficiently large and vr(t) values are relatively small such that f(X, t) is
small compared to y, then the neural network effectively learns the features.

2 Conversely, if all ρr(t) values are small but vr(t) values are large such that f(X, t) is comparable
to y, the neural network is performing lazy training, reducing to the neural tangent kernel regime
as discussed in references such as [31] and [23].

Equation (6) offers us an approach to study the dynamics of feature learning. By incorporating it
into the gradient descent update rule (2), we obtain the following updates:

ρr(t+ 1) = ρr(t) +
ηvr(t)

mn
⟨X⊤y,X⊤y⟩ − ηvr(t)

m2n
⟨X⊤XW(t)v(t),X⊤y⟩, (7)

vr(t+ 1) = vr(t) +
ηρr(t)

mn
+

η⟨wr(0),X
⊤y⟩

mn
− η

m2n
⟨wr(t),X

⊤XW(t)v(t)⟩. (8)
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Table 1: Comparisonwith existingworks. We highlight the unique property of our results in color .
Research works Setting Model Data Training dynamics
[13] Classification 2-layer non-linear x = z+ yβ Feature learning
[14] Classification 2-layer CNN x = [yβ, z] 2-stage feature learning
[65] Classification 2-layer ReLU Linear separable 4-stage dynamics
[68] Classification 2-layer ReLU XOR Population loss dynamics
[69] Regression Deep linear λmin(XX⊤) > 0 Lazy training
[70] Regression 2-layer linear Full rank Balance-induced
[71] Regression 2-layer ReLU Sparse coding Infinitesimal initialization & Initial stage
[72] Regression 2-layer ReLU Gaussian isotropic Special gradient descent
[11] Regression 2-layer linear x = UΛ

1
2 z N/A

[73] Regression 2-layer ReLU Correlated inputs Balance-induced
[74] Regression 2-layer ReLU Orthogonal family Gradient flow & balanced initialization
[75] Regression 2-layer non-linear Gaussian isotropic Population loss dynamics
[15] Regression 2-layer non-linear Gaussian One gradient step
This work Regression 2-layer linear x = UΛ

1
2 z Exact non-asymptotic training dynamics

Equations (7) and (8) elucidate how ρr(t) and vr(t) for all r ∈ [m] evolve during the gradient descent
training process; hence, we refer to them as the feature learning dynamics equations.
Based on Assumption 4.1 we present our principal findings on the feature learning dynamics, as
represented by Equations (7) and (8), throughout the entirety of the training process in the subse-
quent theorem.

Theorem 4.1. Suppose ϵ > 0. Under Assumption 4.1, with probability at least 1 − O(1/n2)
over the randomness of training data and weight initialization, for any ϵ > 0, there exists t =

Ω

(
m

√
n log(1/v0)

η
√

tr(Σ)∥β∥2

+ m
√
n

η∥β∥2

√
tr(Σ)

log(n∥β∥2tr(Σ)
ϵ )

)
such that L(t) ≤ 4ϵ. Furthermore, the entire dynam-

ics can be described as a two-stage process:

• In the initial stage, 0 ≤ t ≤ t1 ≜ C1m
√
n log(1/v0)

η
√

tr(Σ)∥β∥2

. By the end of this stage, vr(t1) =

Θ(1/
√
tr(Σ)n∥β∥22) and ρr(t1) = Θ(1), for all r ∈ [m]. Here we denote γ = y⊤XX⊤y.

• From t1, the loss function converges to L(t) ≤ ϵ until t =

Ω

(
m

√
n log(1/v0)

η
√

tr(Σ)∥β∥2

+ m
√
n

η∥β∥2

√
tr(Σ)

log(n∥β∥2tr(Σ)
ϵ )

)
.

Theorem 4.1 demonstrates the convergence of the linear network with gradient descent training
in a non-asymptotic manner. In particular, the training dynamics consist of a two-stage behavior
for feature learning dynamics. In the first stage, the neural network leverages the period when
the output function remains relatively small to capture the data feature vectors effectively. At the
same time, the neural tangent kernel aligns closely with a new target-aligned kernel, facilitating
the transition to the next stage of training. The second stage fully incorporates the exact gradient
descent rules (2). Due to the insights gained in Stage 1, a significant scale difference is maintained
between ρr(t) and vr(t), which is crucial for the analysis. This stage ensures that the neural network
kernel aligns in the direction of the ground truth while its magnitude increases progressively.
In summary, Theorem 4.1 characterizes feature learning dynamics until convergence. It shows that,
under Assumption 4.1, the neural network is able to learn feature from the input and achieve a
small training loss under gradient descent training. To demonstrate the contribution of this work,
we make a comparison with existing related works in Table 1. We emphasize the characterization
of full feature learning dynamics in a regression setting and a non-asymptotic manner.

6



5. Proof Sketch
In this section, we outline the primary challenges encountered in the study of feature learning dy-
namics and discuss the essential techniques employed in our proofs to address these challenges.
Comprehensive proofs of all results are provided in the appendix.

5.1. Iterative Analysis of the Gradient Descent
In order to study the learning process based on non-convex optimization, we propose a key tech-
nique by introducing ρr(t), as illustrated in Equation (6). This approach allows for an iterative
examination of the weight vector’s projection in the direction of the feature vectorX⊤y. As a result,
we transform the dynamics of the weights into the tracking dynamics of ρr(t) and vr(t) governed
by Equations (7) and (8). In particular, we utilize a two-phase analysis approach to disentangle the
intricate dynamics involved in the learning process.
Phases 1: Feature learning In the initial stage of training, when the weights are initialized to be
relatively small (i.e., when σ0 and v0 are sufficiently small), the impacts of the output function
f(xi) and ⟨wr(0),X

⊤y⟩ on the training dynamics are approximately negligible. Consequently, the
feature learning dynamics, as described by Equations (7) and (8), simplify to:

ρr(t+ 1) ≈ ρr(t) +
η

nm
· vr(t) · γ, vr(t+ 1) ≈ vr(t) + ρr(t) +

η⟨wr(0),X
⊤y⟩

mn
. (9)

Here we denote γ ≜ y⊤XX⊤y. Equation (9) is a linear dynamics system which enables us to
obtain an explicit solution of dynamics. It is evident that the signs of ρr(t) and vr(t) for t > 1 are
determined by the initial values of ⟨wr(0),X

⊤y⟩ and vr(0). Consequently, for each r ∈ [m], ρr(t)
and vr(t)maintain consistent signs throughout the training. Furthermore, the projection of the first-
layer weight ρr(t) behaves like a√γ sinh(

η
√
γ

nm t), while the second-layer weight vr(t) aligns with the
function cosh(

η
√
γ

nm t). Over time, the difference between ρr(t) and √
γvr(t) diminishes.

To accurately capture the dynamics in the first stage, we track the dynamics of ρr(t) and vr(t)
governed by Equations (7) and (8). Two techniques are employed to control the randomness
in the initialization of the first-layer weight wr(0), specifically from the term ⟨wr(0),X

⊤y⟩ and
the gradient descent term involving X⊤XW(t)v(t). First, by ensuring a sufficiently small σ0, the
perturbation due to weight initialization can be mitigated. Second, by setting tr(Σ) larger than
σ2
x(n∥Σ∥2+

√
n∥Σ∥F ), we can control the variance of the eigenvalue distribution ofXX⊤ according

to the following Lemma:
Lemma 5.1 (Lemma A.4 in [76]). With probability at least 1 − n−2, we have, ∥XX⊤ − tr(Σ) · I∥2 ≤
Cσ2

x(n∥Σ∥2 +
√
n∥Σ∥F ), where C is an absolute constant.

Therefore, X⊤XW(t)v(t) tends to align closely with the direction of X⊤y when W(t)v(t) suffi-
ciently evolves in the direction of X⊤y. To maintain the influence of X⊤XW(t)v(t) within man-
ageable bounds, we establish a threshold for the first stage, ensuring that ρr(t) reaches Θ(1). The
following lemma summarizes our main conclusion at Stage 1 for feature learning:
Lemma 5.2. Under Assumption 4.1, there exists a time step t1 = C1m

√
n log(1/v0)

η
√

tr(Σ)∥β∥2

, with probability at

least 1 − O(n−2), such that: (i) for all r ∈ [m], we have ρr(t1) = Θ(1). (ii) for all r ∈ [m], we have
vr(t1) = Θ(1/

√
n∥β∥22tr(Σ)). (iii)

∥∥∥Θ(X,X, t1)− 1
mγX

(
I+ 1

γX
⊤yy⊤X

)
X⊤
∥∥∥
2
≤ C2

mn3∥β∥6
2tr(Σ)

.
Here C1 and C2 are absolute constants.

Lemma 5.2 establishes that by the conclusion of Stage 1, all instances of ρr(t) reach Θ(1) and all
instances of vr(t) arrive at Θ(1/

√
n∥β∥22tr(Σ)), here n∥β∥22tr(Σ) ≫ 1. These combined outcomes

signify that the variation in the weight vectors (wr(t)−wr(0)) aligns with X⊤y. Besides, the neu-
ral tangent kernel of the neural network adheres to a specific structure, Θ̂ = X

(
I+ 1

γX
⊤yy⊤X

)
,
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which diverges from the minimum norm solution. This divergence is attributed to the evolution of
(wr(t)−wr(0)), capturing a sufficient extent of the feature vector.
Phases 2: Interpolating phase In this stage, as the output of the neural network increases, terms in
the dynamics described by Equations (7) and (8) such as

(
∂f(X)
∂wr(t)

)⊤
f(X, t) and

(
∂f(X)
∂vr(t)

)⊤
f(X, t)

become substantial and profoundly influence the optimization trajectory. Consequently, wemeticu-
lously assess the precise impact of these terms on the evolution of ρr(t) and vr(t) and show that the
|ρr(t)| will incrementally increase until the training loss achieve ϵ. Thanks to the analysis in phase
1, we know that for r ∈ [m], ρr(t1) is significantly larger than vr(t1) and the ratio ρr(t)

vr(t)
= Θ(

√
γ). By

leveraging unchanged ratio between ρr(t) and vr(t) and the monotonicity of ρr(t)vr(t), we can find
the solution to the dynamics in the second stage.
It approximately holds thatwr(t) ≈ wr(0)+ ρr(t)/γ ·X⊤y for all r ∈ [m]. Then the feature learning
dynamics simplifies to the following expression:

ρr(t+ 1) ≈ ρr(t) +
ηγ

nm
vr(t)−

ηϕ

nmγ
v2r(t)ρr(t), vr(t+ 1) ≈ vr(t) +

η

nm
ρr(t)−

ηϕ

nmγ2
ρ2r(t)vr(t),

(10)
wherewedefineϕ = y⊤XX⊤XX⊤y. FromEquation (10), we observed that ρr(t) and vr(t) correlate
with each other and together they form a two-dimensional nonlinear dynamical system. In the
second stage, non-linear terms become significant. Using the initialization conditions from Lemma
5.2, we find that ρr(t) ≈ √

γvr(t) holds throughout Stage 2. Therefore, plugging ρr(t) =
√
γvr(t)

into Equation (10), we then obtain a unified equation:

ρr(t+ 1) = ρr(t) +
η
√
γ

nm
· ρr(t)−

ηϕ

nmγ2
· ρ3r(t). (11)

Equation (11) implies that |ρr(t)| consistently increases during the second stage, converging towards
a value where ρ2r(t) = γ5/2/ϕ. However, as ρ2r(t) approaches γ5/2/ϕ, the growth rate of |ρr(t)| slows
down, making the dynamics in Equation (11) challenging to track due to its inherent non-linearity.
To characterize the time that ρr(t) will spend in the second stage, a proxy ρ̃r(t) ≜

√
ρ2r(t)

1−ϕ/γ5/2ρ2r(t)
,

is introduced. This proxy is shown to escalate exponentially until it reaches a value of
√

(1−ϵ)∥y∥2
2

nϵϕ/γ5/2 .
The summarized findings are encapsulated in the following lemma:
Lemma 5.3. Under Assumption 4.1, for any ϵ > 0, there exists a time step t2 satisfying t2 − t1 =

Ω

(
m

√
n

η∥β∥2

√
tr(Σ)

log(n∥β∥2tr(Σ)
ϵ )

)
such that L(f(X, t2),y) ≤ 4ϵ. Besides, during the second stage t1 ≤

t ≤ t2, we have

• ∥wr(t)−wr(0)− ρ(t)X⊤y∥2 ≤ 1
2ρr(t)/

√
tr(Σ)n∥β∥22.

• |ρr(t)− vr(t)
√
γ| ≤ 1

2ρr(t).

•
∥∥∥Θ(X,X, t)− v2r(t)

m X
(
I+ 1

γX
⊤yy⊤X

)
X⊤
∥∥∥
2
≤ C

v2r(t)tr(Σ)
m .

Lemma 5.3 demonstrates the learning trajectory during the second stage. Initially,wr(t) aligns with
the direction of X⊤y. As learning progresses, wr(t) continuously evolves in the feature vector’s
direction until the output function approximates the ground truth. Throughout this stage, the mag-
nitude of the neural tangent kernel gradually escalates.

6. Experiment
In this section, we experimentally verify our stage-wise analysis of training dynamics. Specifically,
we target validating three key behaviors: (i) Training loss should be barely optimized in the first
stage, and quickly drop in the second stage. (ii) ρr(t)/vr(t) should increase in the first few steps,
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Figure 1: We verify our two-stage training dynamics with synthetic data. The red vertical line in-
dicates empirical t1, separating the first stage (where loss is barely optimized but model weights
become aligned with the data) and the second stage (where loss is minimized with stable ratio be-
tween ρ(t) and v(t). For the subscript r, we average dimensions over the model’s hidden size.
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Figure 2: We verify our two-stage training dynamics with CIFAR-10 (with MSE regression loss).
The red vertical line indicates empirical t1, separating the first stage (loss remains high but model
weights keep aligningwith the data), and the second stage (loss drops quickly with stable ρ(t), v(t).
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Figure 3: We observe the two-stage training dynamics with CIFAR-10 on a two-layer ReLU network.
The red vertical line indicates empirical t1, separating the first stage (loss remains high but model
weights keep aligning with the data), and the second stage (loss drops quickly with stable ρ(t) and
v(t). For the subscript r, we average all dimensions over the model’s hidden size.

and remain stable in subsequent steps. (iii) NTK Θ(X,X, t) converges to the target-aligned kernel
v2r(t)
m X

(
I+ 1

γX
⊤yy⊤X

)
X⊤ after t1.

Synthetic Data We choose our experimental settings as: model’s hidden size m = 1024, input
dimension d = 10000, learning rate η = 0.1, the number of training samples n = 10, the variance of
the first layer’s weight initialization σ0 = 0.01, the scaling of the second layer v0 = 0.001, and the
variance for the noise term in data σ2

y = 0.01. We sample i.i.d. elements of both x and β from the
standard normal distribution.
As shown in Figure 1, we can empirically verify this two-stage training dynamics. During early
training steps, the loss remains high and is not actively minimized. However, the model weights
quickly align with the data and become stable, as indicated by ρr(t)/vr(t). After this alignment
between weights and data, the loss starts being actively minimized and significantly drops. Mean-
while, the weight’s alignment ρr(t)/vr(t) remains stable. Moreover, the empirical NTK converges
to a target-aligned kernel. The red vertical line marks the empirical t1 that separates the first and
the second training stages.
CIFAR-10 We extended our study of training dynamics to real-world data, as illustrated in Figure 2
for two-layer linear network. Here, we observed similar two-stage training dynamics on the CIFAR-
10 dataset, using a regression loss. During the initial training steps, the loss remains considerably
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high, while the model weights exhibit substantial alignment with the data. In the second training
stage, the loss decreases, and the alignment of the weights, represented as ρr(t)/vr(t), maintains
stability. Furthermore, in this stage, the empirical NTK converges towards a kernel that aligns with
the target.
ReLU network We extended our study of training dynamics to non-linear neural networks, as il-
lustrated in Figure 3, using a two-layer ReLU network. Here, we observed similar two-stage training
dynamics on the CIFAR-10 dataset with a regression loss. During the initial training steps, the loss
remains considerably high, while the model weights exhibit substantial alignment with the data.
In the second training stage, the loss decreases, and the alignment of the weights, represented as
ρr(t)/vr(t), remains stable. Furthermore, during this stage, the empirical NTK converges towards
a kernel that aligns with the target. These findings suggest that our theoretical analysis may be
extendable to non-linear neural networks.

7. Conclusion and Discussion
This paper employs non-linear system analysis to investigate the feature learning dynamics in the
training of a two-layer linear neural network. Unlike the lazy training process, we explicitly define
the conditions under which the neural networkwill primarily concentrate on feature learning. Con-
sequently, we reveal that the network exhibits a rich two-stage dynamics beyond lazy training in the
regression setting. Different from most previous theoretical researches on the two-layer network in
the regression setting, this study presents a full and exact training dynamics of gradient descent
in the interpolation regime. A significant direction for future work involves studying the feature
learning of deep linear neural networks and non-linear networks in a regression setting.
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A. Preliminary Lemmas
In this section, we present some pivotal lemmas that give some important properties of the data and
the neural network parameters at their random initialization.
Lemma A.1. Denote that γ ≜ y⊤XX⊤y. Suppose that m = Ω(log(1/δ)), then with probability at least
1− δ, for all r ∈ [m],

|⟨wr(0),X
⊤y⟩| ≤ σ0

√
2 log(8m/δ)γ,

σ0
√
γ/2 ≤ max

r∈[m]
⟨wr(0),X

⊤y⟩ ≤ σ0

√
2 log(8m/δ)γ.

Proof of Lemma A.1. It is clear that for each r ∈ [m], ⟨wr(0),X
⊤y⟩ is a Gaussian randomvariablewith

mean zero and variance σ2
0γ. Therefore, by Gaussian tail bound and union bound, with probability

at least 1− δ,
|⟨wr(0),X

⊤y⟩| ≤
√

2 log(8m/δ) · σ0∥X⊤y∥2.

Moreover, P (σ0
√
γ/2 > ⟨wr(0),X

⊤y⟩) is an absolute constant, and therefore by the condition on
m, we have

P

(
σ0

√
γ/2 ≤ max

r∈[m]
⟨wr(0),X

⊤y⟩
)

= 1− P (σ0
√
γ/2 > max

r∈[m]
j · ⟨wr(0),X

⊤y⟩
)

= 1− P
(
σ0

√
γ/2 > ⟨wr(0),X

⊤y⟩
)2m

≥ 1− δ/4.

Lemma A.2. Suppose that δ > 0 and d = Ω(log(4m/δ)). Then with probability at least 1 − δ, for all
r ∈ [m],

σ2
0d/2 ≤ ∥wr(0)∥22 ≤ 3σ2

0d/2.

Proof of Lemma A.2. By Bernstein’s inequality, with probability at least 1− δ/(2m)we have∣∣∥wr(0)∥22 − σ2
0d
∣∣ = O(σ2

0 ·
√

d log(4m/δ)).

Therefore, as long as d = Ω(log(4m/δ)), we have
σ2
0d/2 ≤ ∥wr(0)∥22 ≤ 3σ2

0d/2.

LemmaA.3. Suppose thatZ ∈ Rn×d is a randommatrix with i.i.d. sub-Gaussian entries with sub-Gaussian
norm σx and data is generated through X = ZΛ

1
2V⊤. Given a vector α ∈ Rd. Then with probability at

least 1−O(n−2), we have,

n/2∥α∥2Σ ≤ α⊤X⊤Xα ≤ 2n∥α∥2Σ.

Proof of Lemma A.3. We expand the expression by the definition of X:

α⊤X⊤Xα = α⊤VΛ
1
2Z⊤ZΛ

1
2V⊤α

= α̃⊤Z⊤Zα̃

=

n∑
i=1

( d∑
j=1

α̃jZij

)2

,
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where we define ã = Λ
1
2V⊤α. Besides, Zij is an entry of the matrix Z and ãj is an element of

the vector α̃j . Note that Zij is for i ∈ [n] and j ∈ [d] are independent sub-Gaussian vectors with
∥Zij∥ψ2

< σx, Then by Lemma 5.9 in [77],∥∥∥∥ d∑
j=1

α̃jZij

∥∥∥∥
ψ2

≤ c1∥α̃∥2 · σx,

where c1 is an absolute constant. Therefore by Lemma 5.14 in [77], we have∥∥∥∥( d∑
j=1

α̃jZij

)2

− ∥α̃∥22
∥∥∥∥
ψ1

≤ c2∥α̃∥22 · σx,

where c2 is an absolute constant and we merge σx into the constant c2. By Bernstein’s inequality,
with probability at least 1− δ we have,∣∣∣∣∥Zα̃∥22 − E

[
∥Zα̃∥22

]∣∣∣∣ ≤ c3∥α̃∥22
√

log(1/δ)n/2,

where c3 is an absolute constant. Therefore with probability at least 1− n−2 we have

n∥α̃∥22 − c3∥α̃∥22
√
log(n)n ≤ ∥Zα̃∥22 ≤ n∥α̃∥22 + c3∥α̃∥22

√
log(n)n.

Therefore we can further obtain the desired result:
n/2∥α̃∥22 ≤ ∥Zα̃∥22 ≤ 2n∥α̃∥22,

where ∥α̃∥2 = ∥α∥Σ.

Lemma A.4. Suppose that X = ZΛ
1
2V⊤ where Z ∈ Rn×d is a random matrix with i.i.d. sub-Gaussian

entries with sub-Gaussian norm σx. Given that σ2
y ≤ 8n∥β∥22, with probability at least 1−O(n−2) it holds

that
1

2
tr(Σ)n∥β∥22 ≤ y⊤XX⊤y ≤ 3

2
tr(Σ)n∥β∥22.

Proof. Working at the upper bound, we first have
y⊤XX⊤y = y⊤(ZΛZ⊤)y

≤ ∥y∥22 · (tr(Σ) + ϵλ)

= ∥y∥22 · (tr(Σ) + Cσ2
x(n · ∥Σ∥2 +

√
n · ∥Σ∥F )).

The first inequity is by Lemma 5.1. Similarly, by Lemma 5.1, we obtain the lower bound
y⊤XX⊤y = y⊤(ZΛZ⊤)y

≥ ∥y∥22 · (tr(Σ)− ϵλ)

= ∥y∥22 · (tr(Σ)− Cσ2
x(n · ∥Σ∥2 +

√
n · ∥Σ∥F ))

≥ 1

2
tr(Σ)∥y∥22,

where the last inequality is by the condition that tr(Σ) ≥ 2C3σ
2
x(n · ∥Σ∥2 +

√
n · ∥Σ∥F ). Next, we

compute the upper bound of ∥y∥22 as follows
y⊤y = (Xβ + ϵ)⊤(Xβ + ϵ)

≤ 2n∥β̃∥22 + 2ϵ⊤Xβ + ϵ⊤ϵ

≤ 3

2
n∥β̃∥22.
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The first inequality is by Lemma A.3, and the second inequality is by n ≥ 4σ2
y

∥β̃∥2
2

. Similarly, we obtain
the lower bound

y⊤y = (Xβ + ϵ)⊤(Xβ + ϵ)

≥ 1

2
n∥β̃∥22 + 2ϵ⊤Xβ + ϵ⊤ϵ

≥ 1

4
n∥β̃∥22.

The first inequality is by Lemma A.3, and the second inequality is by σ2
y ≤ 8n∥β̃∥22. Together, we

conclude that
y⊤XX⊤y = y⊤(ZΛZ⊤)y

≤ ∥y∥22 · (tr(Σ) + ϵλ)

= ∥y∥22 · (tr(Σ) + Cσ2
x(n · ∥Σ∥2 +

√
n · ∥Σ∥F ))

≤ 3

2
∥y∥22tr(Σ).

B. Stage-wise analysis for gradient descent dynamics
By the definition of feature alignment ρr(t) = ⟨wr(t)−wr(0),X

⊤y⟩, the gradient descent update

wr(t+ 1) = wr(t) +
η

mn
· vr(t) ·X⊤y − η

m2n
· vr(t) ·X⊤XW(t)v(t),

vr(t+ 1) = vr(t) +
η

mn
·w⊤

r (t)X
⊤y − η

m2n
·w⊤

r (t)X
⊤XW(t)v(t).

(12)

will result in:
ρr(t+ 1) = ρr(t) +

η

mn
· vr(t) · ⟨X⊤y,X⊤y⟩ − η

m2n
· vr(t) · ⟨X⊤XW(t)v(t),X⊤y⟩,

vr(t+ 1) = vr(t) +
η

mn
· ρr(t) +

η

mn
· ⟨wr(0),X

⊤y⟩ − η

m2n
· ⟨wr(t),X

⊤XW(t)v(t)⟩.

In the first stage, when we bound the last gradient descent term in Equation (2) and ⟨wr(0),X
⊤y⟩,

then the non-linear dynamics system nearly reduce to a linear system. By this, we characterize the
behavior of neural network.
Lemma B.1 (Restatement of Lemma 5.2). Under assumption 4.1, there exists a time step t1 =
log(1/v0)m

√
n

η
√

tr(Σ)∥β∥2

, with probability at least 1−O(n−2), such that

• for all r ∈ [m], we have ρr(t1) = Θ(1).

• for all r ∈ [m], we have vr(t1) = Θ(1/
√

tr(Σ)n∥β∥22).

•
∥∥∥Θ(X,X, t1)− 1

mγX
(
I+ 1

γX
⊤yy⊤X

)
X⊤
∥∥∥
2
≤ C

mn3tr(Σ)∥β∥6
2

.

where C is an absolute constant.

Proof of Lemma B.1. According to the gradient descent update rule, we know the evolution equation
for ρr(t) and vr(t) follows:

ρr(t+ 1) = ρr(t) +
η

mn
· vr(t) · γ − η

m2n
· vr(t) · ⟨X⊤XW(t)v(t),X⊤y⟩,

vr(t+ 1) = vr(t) +
η

mn
· ρr(t) +

η

mn
· ⟨wr(0),X

⊤y⟩ − η

m2n
· ⟨wr(t),X

⊤XW(t)v(t)⟩.
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First, we adopt an induction method to show during the first stage 0 ≤ t ≤ t1, where t1 =
C log(1/v0)mn

η
√

tr(Σ)n∥β∥2
2

, with probabilities at least 1− n−2, the following inequalities hold for all r ∈ [m]:

ρr(t)vr(0) ≤
(
1 +

η
√
γu

nm

)t(√
γv20
2

)
−
(
1− η

√
γu

nm

)t(√
γv20
2

)
.

ρr(t)vr(0) ≥
(
1 +

η
√
γl

nm

)t(√
γv20
2

)
−
(
1− η

√
γl

nm

)t(√
γv20
2

)
.

vr(t)vr(0) ≤
(
1 +

η
√
γu

nm

)t(
v20
2

)
+

(
1− η

√
γu

nm

)t(
v20
2

)
.

vr(t)vr(0) ≥
(
1 +

η
√
γl

nm

)t(
v20
2

)
+

(
1− η

√
γl

nm

)t(
v20
2

)
.

∥wr(t)−wr(0)− ρr(t)/γ ·X⊤y∥2 ≤ C
tr(Σ)

γ3/2
ρr(t)/

√
γ.

(13)

where γl = γ
(
1− C1

tr(Σ)
γ3/2

)2
and γu = γ

(
1 + C2

tr(Σ)
γ3/2

)2
, with C1 and C2 being absolute constant.

It is straightforward to see that at t = 0 the above inequalities are all satisfied. Given that for t ≤ t1,
we assume all inequalities hold for t.
First claim. Denote that ϵλ = Cσ2

x(n · ∥Σ∥2 +
√
n · ∥Σ∥F ). Then we proceed to the time step of t+1

for the first induction claim in Equation (13):

ρr(t+ 1)vr(0) = ρr(t)vr(0) +
η

mn
· vr(t)vr(0) · γ − η

m2n
· vr(t)vr(0) · ⟨X⊤XW(t)v(t),X⊤y⟩

= ρr(t)vr(0) +
η

mn
· vr(t)vr(0) · γ

(
1− 1

mγ
· y⊤XX⊤XW(t)v(t)

)
≥ ρr(t)vr(0) +

η

mn
· vr(t)vr(0) · γ

(
1− tr(Σ) + ϵλ

mγ
· y⊤XW(t)v(t)

)
= ρr(t)vr(0) +

η

mn
· vr(t)vr(0) · γ

(
1− tr(Σ) + ϵλ

mγ
·
m∑
r′=1

y⊤Xwr′(t)vr′(t)

)

= ρr(t)vr(0) +
η

mn
· vr(t)vr(0) · γ

(
1− tr(Σ) + ϵλ

mγ( m∑
r′=1

ρr′(t)vr′(t) +

m∑
r′=1

⟨wr′(0),X
⊤y⟩vr′(t)

))

≥ ρr(t)vr(0) +
η

mn
vr(t)vr(0)γ

(
1− tr(Σ) + ϵλ

mγ

( m∑
r′=1

ρr′(t)vr′(t) +

m∑
r′=1

0.1vr′(t)

))

≥ ρr(t)vr(0) +
η

mn
· vr(t)vr(0) · γ

(
1− 1.1

tr(Σ) + ϵλ
γ3/2

)
.

The second inequality is by Lemma A.1 and Assumption 4.1 on σ0. Finally, the last inequality is by
the fact that when t ≤ t1, for all r ∈ [m], ρr(t) ≤ 1 and vr(t) ≤ 1/

√
γ. Additionally, we apply the
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induction assumption to vr(t) and ρr(t), yielding the following:

ρr(t+ 1)vr(0)

≥ ρr(t)vr(0) +
η

mn
· vr(t)vr(0) ·

√
γ
√
γl

≥
(
1 +

η
√
γl

nm

)t v2r(0)√γ

2
−
(
1− η

√
γl

nm

)t v2r(0)√γ

2
+

η
√
γl

nm

(
1 +

η
√
γl

nm

)t v2r(0)√γ

2

+
η
√
γl

nm

(
1− η

√
γl

nm

)t v2r(0)√γ

2

=

(
1 +

η
√
γl

nm

)t+1 v2r(0)
√
γ

2
−
(
1− η

√
γl

nm

)t+1 v2r(0)
√
γ

2
.

This concludes the proof of the first induction claim.
Second claim. The next step is to prove the second induction claim:

ρr(t+ 1)vr(0)

= ρr(t)vr(0) +
η

mn
· vr(t)vr(0) · γ − η

m2n
· vr(t)vr(0) · ⟨X⊤XW(t)v(t),X⊤y⟩

= ρr(t)vr(0) +
η

mn
· vr(t)vr(0) · γ

(
1− 1

mγ
· y⊤XX⊤XW(t)v(t)

)
≤ ρr(t)vr(0) +

η

mn
vr(t)vr(0)γ

(
1− y⊤XX⊤X

mγ
(W(t)−W(0))v(t) +

1

mγ
|y⊤XX⊤XW(0)v(t)|

)
≤ ρr(t)vr(0) +

η

mn
· vr(t)vr(0) · γ

(
1− tr(Σ)− ϵλ

mγ
·
m∑
r′=1

y⊤X(wr′(t)−wr′(0))vr′(t)

+
tr(Σ) + ϵλ

mγ

∣∣∣∣∣
m∑
r′=1

⟨wr′(0),X
⊤y⟩vr′(t)

∣∣∣∣∣
)

≤ ρr(t)vr(0) +
η

mn
vr(t)vr(0)γ

(
1− tr(Σ)− ϵλ

mγ

m∑
r′=1

ρr′(1)vr′(1)

+
tr(Σ) + ϵλ

mγ

m∑
r′=1

|⟨wr′(0),X
⊤y⟩|vr′(t)

)

≤ ρr(t)vr(0) +
η

mn
· vr(t)vr(0) · γ

(
1 +

tr(Σ) + ϵλ
mγ

·
m∑
r′=1

0.1vr′(t)

)

≤ ρr(t)vr(0)−
η

mn
· vr(t)vr(0) · γ

(
1 + 0.1

tr(Σ) + ϵλ
γ3/2

)
.

The first inequality arises due to the possibility thaty⊤XX⊤XW(0)v(t) can be negative. The third is
due to that ρr(t)vr(t) ≥ ρr(1)vr(1) for t ≥ 1 and all r ∈ [m]. Besides, we also apply triangle inequality
in the third inequality. The fourth inequality is by the assumption that tr(Σ) > ϵλ, ρr(1)vr(1) > 0
for all r ∈ [m], Lemma A.1 and Assumption 4.1 on σ0. Finally, the last inequality is by the fact that
when t ≤ t1, for all r ∈ [m], vr(t) ≤ 1/

√
γ. By further applying the induction assumption to vr(t)
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and ρr(t), we can conclude the proof of the second claim:

ρr(t+ 1)vr(0)

≤ ρr(t)vr(0) +
η

mn
· vr(t)vr(0) ·

√
γ
√
γl

≤
(
1 +

η
√
γu

nm

)t v2r(0)√γ

2
−
(
1− η

√
γu

nm

)t v2r(0)√γ

2
+

η
√
γu

nm

(
1 +

η
√
γu

nm

)t v2r(0)√γ

2

+
η
√
γu

nm

(
1− η

√
γu

nm

)t v2r(0)√γ

2

=

(
1 +

η
√
γu

nm

)t+1 v2r(0)
√
γ

2
−
(
1− η

√
γu

nm

)t+1 v2r(0)
√
γ

2
.

Third claim. The next step is to prove the third induction claim for vr(t+ 1):

vr(t+ 1)vr(0)

= vr(t)vr(0) +
η

mn
ρr(t)vr(0)−

η

m2n
vr(0)w

⊤
r (t)X

⊤XW(t)v(t) +
η

mn
⟨wr(0),X

⊤y⟩vr(0)

= vr(t)vr(0) +
η

mn
ρr(t)vr(0)

(
1− 1

mρr(t)
w⊤
r (t)X

⊤XW(t)v(t)

)
+

η

mn
⟨wr(0),X

⊤y⟩vr(0)

= vr(t)vr(0) +
η

mn
ρr(t)vr(0)

(
1− 1

mρr(t)

m∑
r′=1

w⊤
r (t)X

⊤Xwr′(t)vr′(t)

)
+

η⟨wr(0),X
⊤y⟩vr(0)

mn

≥ vr(t)vr(0) +
η

mn
ρr(t)vr(0)

(
1− tr(Σ) + ϵλ

mρr(t)

m∑
r′=1

w⊤
r (t)wr′(t)vr′(t)

)
+

η

mn
⟨wr(0),X

⊤y⟩vr(0)

≥ vr(t)vr(0) +
ηρr(t)vr(0)

mn

(
1− tr(Σ) + ϵλ

4mρr(t)

m∑
r′=1

∥wr(t) +wr′(t)∥22vr′(t)
)

+
η⟨wr(0),X

⊤y⟩vr(0)
mn

≥ vr(t)vr(0) +
ηρr(t)vr(0)

mn

(
1− tr(Σ) + ϵλ

ρr(t)
√
γ

(1.01ρr(t)/
√
γ + ∥wr(0)∥2)2

)
+

η⟨wr(0),X
⊤y⟩vr(0)

mn

≥ vr(t)vr(0) +
ηρr(t)vr(0)

mn

(
1− tr(Σ) + ϵλ√

γρr(t)
(1.02ρr(t)/

√
γ)2
)
+

η⟨wr(0),X
⊤y⟩vr(0)

mn

≥ vr(t)vr(0) +
η

mn
· ρr(t)vr(0)

(
1− 1.1

tr(Σ) + ϵλ
γ3/2

)
.

The second inequality is by Cauchy–Schwarz inequality and the polarization identity α⊤Aβ =
1/4(α+β)⊤A(α+β)− 1/4(α−β)⊤A(α−β). The third inequality is by the fifth induction claim.
The fourth inequality is by Lemma A.2 and σ0 < 0.01/

√
γd. Finally, the last inequality is by Lemma

A.1. We further take the induction assumption on vr(t) and ρr(t) can conclude the proof on the
third claim:

vr(t+ 1)vr(0)

≥
(
1 +

η
√
γl

nm

)t v2r(0)√γ

2
−
(
1− η

√
γl

nm

)t v2r(0)√γ

2
+

η
√
γl

nm

(
1 +

η
√
γl

nm

)t v2r(0)√γ

2

+
η
√
γl

nm

(
1− η

√
γl

nm

)t v2r(0)√γ

2

=

(
1 +

η
√
γl

nm

)t+1 v2r(0)
√
γ

2
−
(
1− η

√
γl

nm

)t+1 v2r(0)
√
γ

2
.
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Fourth claim. We then provide proof to the fourth induction claim for vr(t+ 1):
vr(t+ 1)vr(0)

= vr(t)vr(0) +
η

mn
· ρr(t)vr(0)−

η

m2n
vr(0) ·w⊤

r (t)X
⊤XW(t)v(t) +

η

mn
⟨wr(0),X

⊤y⟩vr(0)

= vr(t)vr(0) +
η

mn
· ρr(t)vr(0)

(
1− 1

mρr(t)
w⊤
r (t)X

⊤XW(t)v(t)

)
+

η

mn
⟨wr(0),X

⊤y⟩vr(0)

= vr(t)vr(0) +
ηρr(t)vr(0)

mn

(
1− 1

mρr(t)

m∑
r′=1

w⊤
r (t)X

⊤Xwr′(t)vr′(t)

)
+

η

mn
⟨wr(0),X

⊤y⟩vr(0)

≤ vr(t)vr(0) +
ηρr(t)vr(0)

mn

(
1 +

1

mρr(t)

m∑
r′=1

1/4(w⊤
r (t)−w⊤

r′(t))X
⊤X(w⊤

r (t)−w⊤
r′(t))

)
vr′(t))

+
η

mn
⟨wr(0),X

⊤y⟩vr(0)

≤ vr(t)vr(0) +
ηρr(t)vr(0)

mn

(
1 +

2n

mρr(t)

m∑
r′=1

1/4∥w⊤
r (t)−w⊤

r′(t)∥2Σvr′(t)
)

+
η⟨wr(0),X

⊤y⟩vr(0)
mn

≤ vr(t)vr(0) +
ηρr(t)vr(0)

mn

(
1 +

2n∥Σ∥2
mρr(t)

√
γ

m∑
r′=1

1/4∥w⊤
r (t)−w⊤

r′(t)∥22

)
+

η⟨wr(0),X
⊤y⟩vr(0)

mn

≤ vr(t)vr(0) +
η

mn
· ρr(t)vr(0)

(
1 + 0.1

tr(Σ) + ϵλ
γ3/2

)
.

The first inequality is by the polarization identity α⊤Aβ = 1/4(α + β)⊤A(α + β) − 1/4(α −
β)⊤A(α − β). The second inequality is by Lemma A.3. The third inequality is by quadratic form
expansion. The final inequality is by the condition that tr(Σ) ≥ n∥Σ∥2.
Fifth claim. Finally, we complete the proof of the fifth induction claim for ∥wr(t)−wr(0)−ρr(t)/γ ·
X⊤y∥2:∥∥wr(t+ 1)−wr(0)− ρr(t+ 1)/γ ·X⊤y

∥∥
2

=
∥∥∥wr(t)−wr(0)− ρr(t+ 1)/γX⊤y +

η

mn
· vr(t)X⊤y − η

m2n
· vr(t)X⊤XW(t)v(t)

∥∥∥
2

=

∥∥∥∥wr(t)−wr(0)−
(
ρr(t) +

η

nm
vr(t)γ − η

m2n
· vr(t) · y⊤XX⊤XW(t)v(t)

)
/γ ·X⊤y

+
η

mn
· vr(t) ·

(
X⊤y − 1

m
X⊤XW(t)v(t)

)∥∥∥∥
2

≤
∥∥wr(t)−wr(0)− ρr(t)/γX

⊤y
∥∥
2
+

ηvr(t)

m2n

∥∥y⊤XX⊤XW(t)v(t)/γ ·X⊤y −X⊤XW(t)v(t)
∥∥
2

≤
∥∥wr(t)−wr(0)− ρr(t)/γX

⊤y
∥∥
2
+

ηvr(t)

m2n

∥∥X⊤yy⊤XX⊤X/γ −X⊤X
∥∥
2
∥W(t)v(t)∥2

≤
∥∥wr(t)−wr(0)− ρr(t)/γ ·X⊤y

∥∥
2
+

η

m2n
· vr(t) · ∥X⊤yy⊤X/γ − I∥2∥X⊤X∥2∥W(t)v(t)∥2

≤ 1.5
(tr(Σ) + ϵλ)ρr(t)

γ2
+

2(ϵλ + tr(Σ))mηv2r(t)

m2n

(
1.5

tr(Σ) + ϵλ
γ3/2

ρr(t)/
√
γ + ρr(t)/

√
γ + ∥wr(0)∥2

)
≤ 1.5

tr(Σ) + ϵλ
γ3/2

/
√
γ

(
ρr(t) +

η

mn
· vr(t)(1− 1.1

tr(Σ) + ϵλ
γ3/2

)
≤ 1.5

tr(Σ) + ϵλ
γ3/2

ρr(t+ 1)/
√
γ.

The first inequality is by triangle inequality. The second and third inequalities are by
Cauchy–Schwarz inequality. The forth inequality is by triangle inequality.
At the end of stage 1, we check the distance between neural tangent kernel of the two-layer neural
network and target-aligned kernel:

21



∥∥∥∥Θ(X,X, t1)−
1
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X
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γ
X⊤yy⊤X

)
X⊤
∥∥∥∥
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∥∥∥∥∥ 1
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∥∥∥∥∥
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m∑
r=1

Xwr(t1)w
⊤
r (t1)X

⊤ − 1
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∥∥∥∥∥
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m

(
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1

m

∥∥∥∥∥ 1

m
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⊤ − 1

mγ

m∑
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⊤XX⊤

∥∥∥∥∥
2

+
1

m

∥∥∥∥∥ 1

mγ
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⊤XX⊤ − 1

mγ2
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∥∥∥∥∥
2

= C
1

m

(
ϵλ + tr(Σ)

γ3/2
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+
1

m

∥∥∥∥∥ 1

m

m∑
r=1

Xwr(t1)(w
⊤
r (t)− y⊤X/γ)X⊤

∥∥∥∥∥
2

+
1

m

∥∥∥∥∥ 1

mγ
X

m∑
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(
wr(t1)−X⊤y

)
y⊤XX⊤

∥∥∥∥∥
2

=
C

m

(
ϵλ + tr(Σ)

γ3/2

)2

+

∑m
r=1 w

⊤
r (t1)X

⊤X
(
wr(t)− X⊤y

γ

)
m2

+

∑m
r=1 y

⊤XX⊤X
(
wr(t1)−X⊤y/γ

)
m2γ

≤ C
1

m

(
ϵλ + tr(Σ)

γ3/2

)2

+
ϵλ + tr(Σ)

m
(∥wr(0)∥2 + ρr(t1)/

√
γ)(∥wr(0)∥2 + 1.5

ϵλ + tr(Σ)

γ3/2
ρr(t1)/

√
γ)

+
ϵλ + tr(Σ)

mγ
(
√
γ)(∥wr(0)∥2 + 1.5

ϵλ + tr(Σ)

γ3/2
ρr(t1)/

√
γ)

≤ C
1

m

(
ϵλ + tr(Σ)

γ3/2

)2

.

The first inequality is by triangle inequality. The second inequality is by the first and the second
claim in Equation (13). Finally, by Lemma A.4, we achieve the final result.

After the first stage, the last term in the gradient descent cannot be neglected. Consequently, we
construct the following lemma to elucidate the full dynamics in the second stage:
Lemma B.2 (Restatement of Lemma 5.3). Under Assumption 4.1, there exist a time step t2 satisfying

t2 − t1 = Ω

(
m

√
n

η∥β∥2

√
tr(Σ)

log(n∥β∥2tr(Σ)
ϵ )

)
such that L(f(X, t2),y) ≤ 4ϵ. Besides, during the second

stage t1 ≤ t ≤ t2, we have:

• ∥wr(t)−wr(0)− ρ(t)X⊤y∥2 ≤ 1
2ρr(t)/

√
tr(Σ)n∥β∥22.

• |ρr(t)− vr(t)
√
γ| ≤ 1

2ρr(t).

•
∥∥∥Θ(X,X, t)− v2r(t)X

(
I+ 1

γX
⊤yy⊤X

)
X⊤
∥∥∥
2
≤ C

v2r(t)tr(Σ)
m .

Proof of Lemma B.2. We adopt an induction method to show during the first stage t1 ≤ t ≤ t2, where

t1 = 1
2
C log(1/v0)mn

η
√
γ , and t2 = t1 +

nm
η
√
γ log

(√
1−ϵρ
ϵρ

tr(Σ)

γ3/2

)
, with ϵρ = 1 − tr(Σ)

γ3/2 ρ
2
r(t2) and probabilities

at least 1− n−2, the following inequalities hold for all r ∈ [m]:

• ∥wr(t)−wr(0)− ρr(t)/γX
⊤y∥ ≤ 1

2ρr(t)/
√
γ.

• |ρr(t)− vr(t)
√
γ| ≤ 1

2ρr(t).
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• ρ̃r(t+ 1) ≤ 3
2 ρ̃r(t)(1 +

3
2

η
√
γ

mn ).

• ρ̃r(t+ 1) ≥ ρ̃r(t)(1 +
1
4

η
√
γ

mn ).

It is not hard to check that all the inequalities hold at t = t1. We then assume that all the inequalities
hold at the time step of t1 < t < t2. By the induction method, we have the following derivation:
First claim:∥∥wr(t+ 1)−wr(0)− ρr(t+ 1)/γ ·X⊤y

∥∥
2

=
∥∥∥wr(t)−wr(0)− ρr(t+ 1)/γX⊤y +

η

mn
vr(t)X

⊤y − η

m2n
vr(t)X

⊤XW(t)v(t)
∥∥∥
2

≤
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2
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∥∥
2

≤
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∥∥
2
+
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∥∥
2

≤
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2
+

η
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· vr(t) · 2

∥∥X⊤XW(t)v(t)
∥∥
2
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2
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2

η
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√
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≤ 1

2
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√
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In the last second inequality we have used the following inequality:
1

m

∥∥X⊤XW(t)v(t)
∥∥
2
≤ C

√
γ − 1

m
⟨X⊤XW(t)v(t),X⊤y/

√
γ⟩.

We then confirm the above inequality:
1
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√
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∥∥
2
≤ 2

m
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∥∥∥∥∥
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∥∥∥∥∥
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√
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Second claim:
|ρr(t+ 1)− vr(t+ 1)
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√
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√
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√
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√
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The first inequality is by Cauchy–Schwarz inequality. The second and third inequalities are by the
third induction claim and triangle inequality. The fourth inequality is by the second induction claim.
Third claim

we define ρ̃r(t) =
√

ρ2r(t)

1− tr(Σ)

γ3/2
ρ2r(t)

, then the update rule of ρ̃r(t) can be expressed as follows:
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where we have used the upper bound for ρr(t):

ρr(t+ 1) = ρr(t) +
η
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· vr(t) · γ − η

m2n
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≤ ρr(t) +
3

2

η

mn
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16

η
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where last inequality is by our assumption that ϵλ < tr(Σ). Besides, we show the lower bound for
ρr(t) as follows:
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Fourth claim
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For t1 ≤ t ≤ t2, we have∥∥∥∥Θ(X,X, t)− v2r(t)
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Denote that ϵρ = 1− tr(Σ)
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r(t2). Finally, we calculate the training loss at time step t2:
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