
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COLLABORATIVE COMPRESSORS IN DISTRIBUTED
MEAN ESTIMATION WITH LIMITED COMMUNICATION
BUDGET

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributed high dimensional mean estimation is a common aggregation routine used
often in distributed optimization methods (e.g. federated learning). Most of these ap-
plications call for a communication-constrained setting where vectors, whose mean
is to be estimated, have to be compressed before sharing. One could independently
encode and decode these to achieve compression, but that overlooks the fact that these
vectors are often similar to each other. To exploit these similarities, recently Suresh et
al., 2022, Jhunjhunwala et al., 2021, Jiang et al, 2023, proposed multiple correlation-
aware compression schemes. However, in most cases, the correlations have to be
known for these schemes to work. Moreover, a theoretical analysis of graceful degra-
dation of these correlation-aware compression schemes with increasing dissimilarity
is limited to only the ℓ2-error in the literature. In this paper, we propose four different
collaborative compression schemes that agnostically exploit the similarities among
vectors in a distributed setting. Our schemes are all simple to implement and computa-
tionally efficient, while resulting in big savings in communication. We do a rigorous
theoretical analysis of our proposed schemes to show how the ℓ2, ℓ∞ and cosine
estimation error varies with the degree of similarity among vectors. In the process,
we come up with appropriate dissimilarity-measures for these applications as well.

1 INTRODUCTION

We study the problem of estimating the empirical mean, or average, of a set of high-dimensional
vectors in a communication constrained setup. We assume a distributed problem setting, where m
clients, each with a vector gi ∈ Rd, are connected to a single server (see, Fig. 1a). Our goal is to
estimate their mean g on the server, where

g≜
1

m

∑
i∈[m]

gi. (1)

We use [m] to denote the set {1, 2, ... ,m}. The clients can communicate with the server via a
communication channel which allows limited communication. The server does not have access to
data but has relatively more computational power than individual clients.

This problem, referred to as distributed mean estimation (DME), is an important subroutine in several
distributed learning applications. Two common scenarios for these applications are distributed training,
when different clients correspond to different processors inside a datacenter or federated learning McMa-
han et al. (2016); McMahan & Ramage (2017), when different clients correspond to different edge
devices, for instance mobile phones. In distributed training, the communication channel is the network
inside the datacenter, while in federated learning, the communication channel can be the internet.

The typical learning task for DME is supervised learning via gradient-based methods Bottou &
Bousquet (2007); Robbins & Monro (1951). The vectors gi then correspond to the gradient updates
for each client i computed on its local training data and g is the average gradient over all clients. On
the other hand, distributed mean estimation is also used in unsupervised learning problems such as
distributed KMeans Liang et al. (2013) and distributed PCA Liang et al. (2014) or distributed power
iteration Li et al. (2021). In distributed KMeans and distributed power iteration, gi corresponds to
estimates of cluster center and the top eigenvector respectively, on the ith client.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Independent Compression (b) Collaborative Compression

Figure 1: Compression for Distributed Mean Estimation

The naive strategy of clients sending their vectors gi to the server for DME incurs no error, however, has
a high communication cost, rendering it useless in most of the real-world network applications. A princi-
pled way to tackle this is to use compression: each client i∈ [m] compresses its vector gi into an efficient
encoding b̃i∈Bi which can then be sent to the server; The server forms an estimate g̃ of the mean g using
the encodings {b̃i}i∈[m]. We can then compute the error of the estimate g̃ and the number of bits required
to communicate b̃i (i.e., log2|Bi|) to analyze the efficiency of the compression scheme. As opposed to
distributed statistical inference Braverman et al. (2016); Garg et al. (2014), we do not assume that gi are
sampled from a distribution, and instead the estimation error of these schemes is computed in terms of gi.

One way to approach this compression paradigm is when each client compresses its vector oblivious
to others, and the server separately decodes the vectors before aggregating (Figure 1a). We call this
independent compression and several existing works Konečný & Richtárik (2018); Suresh et al. (2017);
Safaryan et al. (2021); Gandikota et al. (2022); Vargaftik et al. (2021) use such a compression scheme.
The simplest example of this scheme is RandK Konečný & Richtárik (2018), where each client sends
only K∈N coordinates as b̃i, and the server estimates g̃ as the average of K-sparse vectors from each
client. As K<d, this scheme requires less communication than sending the full vector gi from each
client i∈ [m]. Note that independent compressors are a specific class among the more general possible
compressors.

However, independent compressors suffer from a significant drawback, especially when the vectors to be
aggregated are similar/not-too-far, which is often the case for gradient aggregation in distributed learn-
ing. Consider the case when two distinct clients i,j∈ [m] have different vectors gi ̸=gj , but they differ in
only one coordinate. Then, independent compressors like RandK will end up sending b̃i and b̃j which are
very similar (in fact, same with high probability) to each other, and therefore wasting communication.

Collaborative compressors Suresh et al. (2022); Szlendak et al. (2021); Jhunjhunwala et al. (2021);
Jiang et al. (2023) can alleviate this problem. Figure 1b describes a collaborative compressor, where
the encodings {g̃i}i∈[m] may not be independent of each other and a decoding function jointly decodes
all encodings to obtain the mean estimate g̃. Clearly, this opens up more possibilities to reduce
communication - but also the error of collaborative compressors can be made to scale as the variance
of the vectors instead of their norms. Whereas, in independent compression a lot of communication
is also spent in figuring out their norms separately.

The amount of required communication also depends on the metric for estimation error. Among
the existing schemes for collaborative compressors, most provide guarantees on the ℓ2 error
||g̃ − g||22 Suresh et al. (2022); Szlendak et al. (2021); Jhunjhunwala et al. (2021); Jiang et al.
(2023). Also, in collaborative compressors, the error must ideally be dependent on some measure
of correlation/distance among the vectors, which is indeed the case for all of these schemes. In this
paper, the measure of such a distance is denoted with ∆, with some subscript signifying the exact
measure; the vectors in question have high similarity as ∆→0. The estimation error naturally grows
with the dimension d, and decays with the number of clients m (due to an averaging). One of our major
contributions is to design a compression scheme that has significantly improved dependence on the
number of clients m to counter the effect of growing dimension d.

If one were to estimate the unit vector in the direction of the average vector 1
m

∑m
i=1gi, which is often

important for gradient descent applications, using an estimate of the mean with low ℓ2 error can be

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Compressor Error metric Error # Bits/client

NoisySign
(Algorithm 1) ||g̃−g||∞

(
1−∆Φ+

√
logm
m

(
√

∆Φ+
√

α(||g||∞))

α(||g||∞)

)−1

−1 d

HadamardMultiDim
(Algorithm 3) E[||g̃−g||∞] B

2m−1 +∆Hadamard d

SparseReg
(Algorithm 4) E[||g̃−g||22] B2exp

(
− 2mlogL

d

)
+∆reg

logL
(L≥1 tunable)

OneBit
(Algorithm 5) arccos⟨g̃,g⟩ π(∆corr+

d
mt

)
t

(t≥1 tunable)

Table 1: Theoretical results for our proposed collaborative compression schemes. ∆Φ,∆Hadamard,∆reg and
∆corr are measures of average dissimilarity between vectors {gi}i∈[m] defined in Theorems 4, 1, 2 and Lemma 1
respectively. For NoisySign, α(x) = 1−Φσ(x) for any x ∈ R, where Φσ(x) = erf(t√

2σ
) with erf being the

error function Glaisher (1871) and σ > 0 is an algorithm parameter. For HadamardMultiDim, we assume
||gi||∞ ≤B,∀i∈ [m]. For SparseReg, we assume ||gi||2 ≤B,∀i∈ [m] and L is an algorithm parameter. For
OneBit, g is the unit vector along the average 1

m

∑m
i=1gi and g̃ is also a unit vector.

highly sub-optimal as the ℓ2 error might be large even if all the vectors point in the same direction
but have different norms. For this the cosine distance arccos(⟨g̃,g⟩

∥g̃∥∥g∥) is a better measure, which has
not been studied in the literature. We also give a compression scheme specifically tailored for this
error metric. Another interesting metric is the ℓ∞-error which has also not been studied except for
in Suresh et al. (2022). There as well, we give an improved dependence of the estimation error on m.

Further drawback of existing collaborative compressors such as, Jhunjhunwala et al. (2021); Jiang
et al. (2023) is that they require the knowledge of correlation between vectors before employing their
compression. Without this knowledge, their error guarantees do not hold.

Notation. Let [n]≡{1,2,...,n}. We use g(j) to denote the jth coordinate of a vector g∈Rd,j∈ [d].
For a permutation ρ on [m], ρ(i) denotes mapping of i∈ [m] under ρ.

Our contributions. We provide four different collaborative compressors, which are communication-
efficient, give error guarantees for different error metrics (ℓ2 error, ℓ∞ error and cosine distance), and
exhibit optimal dependence on the number of clients m and the diameter of ambient space B. To
see the advantage of collaboration, we define few natural similarity metrics. All our schemes show
graceful degradation of error with the similarity metric between different clients. Our schemes have
three subroutines: Initwhich corresponds to initial steps, Encodewhich is performed individually
at each client to obtain their encoding b̃i and Decode which is performed at the server on all the
encodings to obtain estimate of mean g̃.

We now provide our main contributions. The theoretical guarantees for our algorithms are summarized
in Table 1.

1. We provide a simple collaborative scheme based on the popular signSGD Bernstein et al. (2018a)
scheme, NoisySign (Algorithm 1), where sign of each coordinate of a vector is sent after adding
Gaussian noise. An advantage of this scheme, compared to others is that we can infer the vector g
with an ℓ∞ error guarantee increasing with ||g||∞ and decreasing with m, without the knowledge of
||g||∞ itself. The dissimilarity is ∆Φ=O(1

mσ

∑m
i=1||g−gi||∞), where σ is the variance of the noise

added (Theorem 4). The details of this scheme is delegated to Appendix A.

2. (ℓ∞-guarantee) For vectors with ℓ∞ norm bounded by B, we propose a collaborative compression
scheme, HadamardMultiDim (Algorithm 3) which performs coordinate-wise collaborative binary
search. We obtain the best dependence on m and B for the ℓ∞ error (O(B ·exp(−m))) while suffering
from an extra error term ∆Hadamard, which is a measure of average dissimilarity between compressed
vectors. ∆Hadamard lies in the range [∆∞,∆∞,max] where ∆∞ = maxj∈[d]

1
m

∑m
i=1|g

(j)
i − g(j)|

and ∆∞,max = maxj∈[d],i∈[m]|g
(j)
i − g(j)| (Theorem 1). In Section 2.3, we provide a practical

example where value of ∆Hadamard can be approximated and use it compare theoretical guarantees
of HadamardMultiDim with those of baselines in Table 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3. (ℓ2-guarantee) For vectors with ℓ2 norm bounded by B, we provide a collaborative compression
scheme SparseReg (Algorithm 4) based on Sparse Regression Codes Venkataramanan et al. (2014b;a).
We obtain the best dependence on B and m for the ℓ2 error (O(Bexp(−m/d))) while compressing to
much less than d bits (in fact, to a constant number of bits) per client. The error consists of a penalty for
the dissimilarity, ∆reg, the average dissimilarity between compressed vectors which lies in the range
[∆2,∆2,max] where ∆2=

1
m

∑m
i=1||g−gi||22 and ∆2,max=maxi∈[m]||g−gi||22 (see, Theorem 2).

4. (cosine-guarantee) For unit norm vectors {gi}i∈[m], we estimate the unit vector g in the direction
of the average 1

m

∑m
i=1gi. For this, motivated by one-bit compressed sensing Boufounos & Baraniuk

(2008), our collaborative compression scheme, OneBit (Algorithm 5), sends the sign of the inner
product between the vector gi and a random Gaussian vector. By establishing an equivalence to
halfspace learning with malicious noise, we propose two decoding schemes: the first one is based on
Shen (2023) which is optimal for halfspace learning but harder to implement and a second one, based
on Kalai et al. (2008) which is easy to implement. Both schemes are computationally efficient, and
have an extra dissimilarity term in the error, ∆corr=

1
mπ

∑m
i=1cos

−1(⟨g,gi⟩), which is the appropriate
dissimilarity between unit vectors (see Theorem 3).
5. (Experiments) We perform a simulation for DME with our schemes as the dissimilarities vary
and compare the three different error metrics from above with various existing baselines (Fig 2a-2c).
We also used our DME subroutines in the downstream tasks of KMeans, power iteration, and linear
regression on real (and federated) datasets (Fig 2d-2i). Our schemes have lowest error in all metrics
for low dissimilarity regime.

Algorithm 1 NoisySign
Encode(gi)
Sample ξi∼N (0,σ2Id)
b̃i=sign(gi+ξi)

return b̃i.
Decode({b̃i}i∈[m])

g̃(j)←Φ−1
σ (1

m

∑m
i=1b̃i

(j)
),j=1,...,d

return g̃

Algorithm 2 Hadamard1DEnc

Input: Scalar s, Level K
S−
K=∪K−1

k=0 [−B+ 2kB
2K−1 ,−B+ (2k+1)B

2K−1]

return −1 if s∈S−
K else +1

Algorithm 3 HadamardMultiDim
Init()
Clients and server share ρ, a random
permutation on [m].
Encode(gi)
for j∈ [d] do

b̃i
(j)
←Hadamard1DEnc(g

(j)
i ,ρ(i))

end for
return b̃i
Decode({b̃i}i∈[m])

for j∈ [d] do
g̃(j)=

∑m
i=1b̃i

(j)
· B

2ρ
(i)−1

end for
return g̃

Organization. In the next subsection, we present related works in distributed mean estimation.
The NoisySign algorithm is given in Algorithm 1, and its analysis can be found in Appendix A. In
Section 2, we present the two schemes obtaining optimal dependence on m, HadamardMultiDim in
Subsection 2.1 and SparseReg in Subsection 2.2. In Section 3, we analyze the OneBit compression
scheme. Finally, in Section 4, we provide experimental results for our schemes.

1.1 RELATED WORKS

Compressors in Distributed Learning. Starting from Konečnỳ et al. (2016) most compression
schemes in distributed learning involve either quantization or sparsification. In quantization schemes,
the real valued input space is quantized to specific levels, and each input is mapped to one of these quan-
tization levels. A theoretical analysis for unbiased quantization was provided in Alistarh et al. (2017).
Subsequently, the distributed mean estimation problem with limited communication was formulated
in Suresh et al. (2017) where two schemes, stochastic rotated quantization (SRQ) and variable length
coding, were proposed. These schemes matched the lower bound for communication and ℓ2 error
in terms of B̃2= 1

m

∑m
i=1||gi||22. Performing a coordinate-wise sign is also a quantization operation,

introduced in Bernstein et al. (2018b). Further advances in quantization include multiple quantization

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Compressor Error # Bits/client Notes

RandK Konečný & Richtárik (2018) O(d
K
B̃2) 32K+Klogd Independent

SRQ Suresh et al. (2017) O(logd
m(K−1)2

B̃2) Kd Independent

Kashin Safaryan et al. (2021) O(
(

10
√
λ√

λ−1)

)4

B̃2) 31+λd Independent

Drive Vargaftik et al. (2021) O(B̃2) 32+d Independent
PermK Szlendak et al. (2021) O((1−max{0,m−d

m−1
})∆2) 32K+Klogd Collaborative

RandKSpatial Jhunjhunwala et al. (2021) O(d
mK

∆2) 32K+Klogd Needs Correlation
RandKSpatialProj Jiang et al. (2023) O(d

mK
∆2) 32K+Klogd Needs Correlation

Correlated SRQ Suresh et al. (2022) O
(

1
m
min{

√
d∆d

∞B

K
, dB

2

K2 }
)

2dlogK+Klogd ||gi||2≤B,∀i∈ [m]

Table 2: Comparison of existing independent and collaborative compressors in terms of ℓ2 error and bits commu-
nicated. K is the number of coordinates communicated for sparsification methods(RandK, PermK, RandKSpatial,
RandKSpatialProj) and the number of quantization levels for quantization methods (SRQ, vqSGD, Correlated
SRQ). The constantλ is a parameter of the Kashin scheme. Further, B̃2= 1

m

∑m
i=1||gi||

2
2,∆2=

1
m

∑m
i=1||gi−g||22,

and ∆∞ =maxj∈[d]
1
m

∑m
i=1|g

(j)
i − g(j)|. It is also assumed that a real is equivalent to 32 bits, which is an

informal norm in this literature.

levels Wen et al. (2017), probabilistic quantization with noise Chen et al. (2020); Jin et al. (2021);
Safaryan & Richtarik (2021), vector quantization Gandikota et al. (2022), and applying structured
rotation before quantization Vargaftik et al. (2021); Safaryan et al. (2021). Sparsification involves
selecting only a subset of coordinates to communicate. Common examples include RandK Konečný &
Richtárik (2018), TopK Stich et al. (2018) and their combinations Beznosikov et al. (2022). Note, for
all independent compressors, the ℓ2 error scales as B̃2.

Collaborative Compressors. PermK Szlendak et al. (2021) was the first collaborative compressor,
where each client would send a different set of K coordinates. Their error scales with the empirical
variance, ∆2=

1
m

∑m
i=1||gi−g||22. If ∆2 is known, or one of the vectors gi is known, the lattice-based

quantizer in Davies et al. (2021) and correlated noise based quantizer in Mayekar et al. (2021) obtains
ℓ2 error in terms of ∆2. Further, RandKSpatial Jhunjhunwala et al. (2021) and RandKSpatialProj Jiang
et al. (2023) utilize the correlation information to obtain the correct normalization coefficients for
RandK with rotations, obtaining guarantees in terms of ∆2. In absence of correlation information, they
propose a heuristic. A quantizer also based on correlated noise, was proposed in Suresh et al. (2022)
which achieves the lower bound for scalars. However, for d-dimensional vectors of ℓ2-norm at most B,
their dependence on dimension d and number of clients m can be improved by our schemes.

We provide a summary of existing compressors in Table 2, along with their error guarantees.

2 OPTIMAL DEPENDENCE ON m

If ||g||∞ or ||g||2 is bounded, we can obtain an almost optimal exponential decay with m. We provide
two schemes that obtain optimal ℓ∞ (by modifying the sign compressor) and ℓ2 error dependence
in terms of m and the diameter of the space B.

2.1 HADAMARDMULTIDIM

When the vectors have bounded ℓ∞ norm, instead of obliviously using the sign compressor on every
coordinate on every client, one may be able to divide their range and cleverly select bits to encode
the most information. We call our algorithm Hadamard scheme, because the binary-search method
involved is akin to the rows of a Hadamard-type matrix.
Assumption 1 (Bounded domain). ||gi||∞≤B,∀i∈ [m].

This would imply that for any j ∈ [d], g(j)i ∈ [−B,B],∀i∈ [m]. Now, consider the ith client and the
scalar g(j)i and assume that we are allowed to encode this using m bits. The best error that we can
achieve is B

2m−1 , by performing a binary search on the range [−B,B] for g(j)i , sending one bit per level
of the binary search. However, this scheme is not collaborative. To obtain a collaborative scheme,
for some permutation ρ on the set of clients [m], the ith client can perform binary search until level ρ(i)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and sends its decision at level ρ(i). In this case, each client sends only 1 bit per coordinate. To decode
g̃(j), we take a weighted sum of the signs obtained from different clients weighed by their coefficients

B

2ρ
(i)−1

. This is the core subroutine (Algorithm 2). The full compression scheme for d coordinates
applies this coordinate-wise in Algorithm 3. Note that, the clients and the server should share the
permutation ρ before encoding and decoding, which need not change over different instantiations
of the mean estimation problem. To understand the core idea of the scheme, consider the case when
all vectors gi=g. Then, sending a different level from a different client is equivalent to doing a full
binary search to quantize g. As long as gis are close to g, we hope that this scheme should give us
a good estimate of g. Suppose, b̃(j)i,k denotes the encoding of g(j)i at level k ∀i,k∈ [m],j∈ [d].
Theorem 1 (HadamardMultiDim Error). Under Assumptions 1, the estimation error for Algorithm 3 is

E[||g̃−g||∞]≤ B

2m−1
+min{∆Hadamard,∆∞,max}, (2)

where ∆Hadamard ≡ maxr∈[d]

√
1

m2

∑∑
1≤i ̸=j≤m

∑m
k=1

(
B(b̃

(r)
i,k−b̃

(r)
j,k)

2k−1

)2

, and ∆∞,max ≡

maxr∈[d],i∈[m]|g
(r)
i −g(r)|.

We provide the proof for this theorem in Appendix D.1. The first term corresponds to the error for
binary search, and has an exponential decay with number of clients. In contrast, all previous schemes
give poly(1/m) dependence (see, Table 2). The second term is the price we pay for dissimilarity
between the vectors. The term ∆Hadamard is the average of the pairwise difference between the
encodings at each level. As long as vectors gi and gj are similar and their encodings do not differ on
a lot of levels, ∆Hadamard is small. The following is an interpretable bound on ∆Hadamard.

∆Hadamard≥
1√
3
∆∞−

√
2(m−1)

m

B

2m−1
, (3)

where ∆∞≡maxr∈[d]
1
m

∑m
i=1|g

(r)
i −g(r)|. The proof of this is provided in Appendix D.2. As we

allow full collaboration between clients, in the worst case, we might have to incur a cost ∆∞,max

which is the worst case dissimilarity among clients. However, if client vectors are close, we might
end up paying a much lower cost.

Algorithm 4 SparseReg
Init()
Clients and server share A∈RmL×d, and ρ, a
random permutation on [m]
Encode(gi)
g′i←gi
for j∈ [ρ(i)] do
b̃i,j←argmaxr∈[L]⟨A(j−1)L+r,g

′
i⟩

g′i←g′i−cjA(j−1)L+b̃i,j

end for
b̃i← b̃i,ρ(i)

return b̃i
Decode({b̃i}i∈[m])

g̃←
∑

i∈[m]cρ(i)A(ρ(i)−1)L+b̃i

ci=B

√
2logL

d2

(
1− 2logL

d

)i−1

(4)

Algorithm 5 OneBit
Init()
Clients and server share unit vectors {zi}i∈[m].
Encode(gi)

b̃i←sign(⟨gi,zi⟩)
return b̃i
Decode({b̃i}i∈[m])

g′←
{

(Shen, 2023, Algorithm 1)(Tech. I)
1
m

∑m
i=1zib̃i(Tech. II)

g̃←g′/||g′||2

2.2 SPARSE REGRESSION CODING

In this part, we extend the coordinate-wise guarantee of the HadamardMultiDim to ℓ2 error between
d-dimensional vectors of bounded ℓ2-norm.
Assumption 2 (Norm Ball). ||gi||2≤B,∀i∈ [m].

To extend the idea of binary search and full collaboration from HadmardMultiDim, we first need a
compression scheme which performs binary search on d dimensional vectors with ℓ2 error guarantees.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Sparse Regression codes Venkataramanan et al. (2014b;a), which are known to achieve rate-distortion
function for a Gaussian source, fit our requirements. Let A∈RmL×d for some parameter L>0, where
each element of A is sampled iid fromN (0,1) and Ak denotes the kth row of A. The full algorithm
SparseReg is presented in Algorithm 4. To compress a single vector g usingmlogL bits, we find the clos-
est vector to g in the firstL rows ofA; say the index of this vector is b̃1. Similar to binary search, we sub-
tract c1Ab̃1

from g, where c1 is given in (4) to obtain an updated g. We repeat the process using the next
set ofL rows. Here, each set ofL rows corresponds to a single level of binary search, with the coefficients
ci obtained from Eq (4) having a decaying exponent. By carefully selecting the parameters in the proof of
(Venkataramanan et al., 2014b, Theorem 1), we can show that this scheme obtains ℓ2 error Bexp(−m).
We extend this scheme to all clients to allow full collaboration in a manner similar to HadamardMulti-
Dim. Each client i∈ [m] encodes at level ρ(i) where ρ is a permutation on [m] and the server computes
the weighted sum of the encodings from each client with corresponding coefficients cρ(i) .
Theorem 2 (SparseReg Error). Under Assumption 2, there exists a matrix A and constants δ1,δ2>0,
such that the estimation error of Algorithm 4 is

Eρ[||g−g̃||22]≤B2(1+
10logL

d
exp

(
mlogL

d

)
(δ1+δ2))

2

(
1− 2logL

d

)m

+min{∆reg,∆2,max}

where, ∆reg≡
1

m2

∑∑
i,j∈[m],i̸=j

m∑
k=1

c2k||A(k−1)L+b̃i,k
−A(k−1)L+b̃j,k

||22, ∆2,max≡max
i∈[m]
||g−gi||22.

In fact, a Gaussian matrix A satisfy this with probability 1−2m2Lexp(−dδ21/8)−m
(

L2δ2

logL

)−m

.

For d=Ω(logm), the probability above can be made arbitrarily close to 1 for large m. The proof is
provided in Appendix D.3. Similar to HadmardMultiDim, the first term has an exponential dependence
in m and is obtained from the existing results of Sparse Regression Codes from Venkataramanan
et al. (2014b). In terms of ℓ2 error this dependence on m is better than all the prior methods.

The dissimilarity term ∆reg has a similar structure to ∆Hadamard as it is the pairwise difference
between encodings of two different vectors at all levels. As long as the vectors are close to each other,
this term is not large. Similar to Equation (3), we can interpret ∆reg with the following lower bound
for Gaussian matrices with the probability given above.

∆reg≥
1

3
∆2−2B2

(
1+

10logL

d
exp

(
mlogL

d

)
(δ1+δ2)

)2(
1− 2logL

d

)m

, (5)

where ∆2≡ 1
m

∑m
i=1||gi−g||22. The proof of this is provided in Appendix D.4. If the vectors are close

to each other we might incur the worst possible error ∆2,max, but if they are close, we will pay an
average price in terms of ∆reg.

While both the HadmardMultiDim and SparseReg schemes achieve very low communication rate,
that comes at the price of O(m) computing in the Encode step. This higher cost in computing is to
be expected when one wants to exploit the full potential of collaborative compression (e.g., Jiang et al.
(2023), where the Decode step takes O(m2) time).

2.3 MOTIVATING EXAMPLE

We now provide a example to show that for practical scenarios, the error terms ∆reg and ∆Hadamard

are much smaller than their worst case values. Consider the scenario of Theorem 1 (ℓ∞ error) and set
d=1. Assume that the first c vectors are g′1 and the remaining m−c vectors are g′2, for some constant
c≪m. In this case, ∆∞,max=(1− c

m)|g′1−g′2|≈|g′1−g′2|, while ∆∞≈ c
m |g

′
1−g′2|. In this scenario,

if the compressed values b̃ for g′1 and g′2 according to the HadamardMultiDim differ at k∈K⊆ [m]

levels , then,∆Hadamard≈
√

c
m

∑
k∈K(B/2k−1)2≤

√
c
mmink∈K

B
2k−1 . As∆Hadamard averages over

all machines, it decreases with m similar to ∆2 and should be much smaller than ∆∞,max. The only
case when it is not smaller than∆∞,max is when g′1 and g′2 are very close, so that∆∞,max=O(

√
m−1),

but the first level where they differ (mink∈Kk) is very small. One such example is when the quantized
values of g′1 in the set K sorted by the levels in increasing order are (+1,−1,−1,−1) and that of g′2
are (−1,+1,+1,+1). As the vectors are extremely close in this case, the estimation error with ∆∞,max

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

is not very large. Further, if we assume a distributional assumption on the vectors gi, similar to how
we generate Figure 2b, obtaining vectors where ∆Hadamard>∆∞,max, happens with low probability.
Note that a similar example can be constructed for the SparseReg scheme.

We use this example to further compare the error of our proposed schemes to baselines mentioned in
Table 2. Consider any ℓ2 compressor whose error is either proportional to ΛB̃2 or Λ∆2 and it sends λ
bits/client for someλ,Λ>0. The ℓ2 error is defined asE[||g̃−g||22] and the ℓ∞ error is defined asE[||g̃−
g||∞], therefore the corresponding ℓ∞ error of these compressors is

√
ΛB̃ or

√
Λ∆2. Now, consider the

example which we just presented with d>1 and all coordinates being equal for each vector. Therefore,

∆2 ≈ cd
m |g

′
2 − g′1|2, and plugging this in, the ℓ2 error of the schemes is

√
ΛB̃ or

√
Λ cd

m |g
′
2 − g′1|.

HadamardMultiDim sends d bits/client, therefore, to compare with any of these schemes, we set λ=d.

For RandK, this would mean setting K = d
32+logd . Now, if |g′1|,|g′2| ≈ B but |g′2− g′1| ≪ B, then

B̃ ≈
√
dB. Using these approximations, the error of RandK is

√
(32+logd)dB, as Λ= 32+logd.

This is much larger than the ℓ∞ error of HadamardMultiDim, as the first term is B ·2m−1 and the
second term ∆Hadamard≈

√
c
m |g

′
2−g′1|. A similar argument holds for all independent compression

schemes, as their ℓ∞ error scales as B̃ which in the worst case is
√
dB.

For compressors whose error scales as Λ∆2 (PermK, RandKSpatial, RandKSpatialProj), by setting
K = d

32+logd , we obtain the same number of bits/client as HadamardMultiDim scheme. Consider

RandKSpatialProj, where Λ= 32+logd
m , and the error for our example is

√
c (32+logd)d

m2 |g′2−g′1|. As
long as d>m, this error is larger than ∆Hadamard by constant terms. A similar argument holds for
RandKSpatial and PermK. Additionally, note that the theoretical guarantees for RandKSpatial and
RandKSpatialProj do not hold if the correlation is not known, as it is required in the algorithm. Without
this information, the heuristics they use do not result in theoretical guarantees and their error might
become similar to the error of RandK.

The CorrelatedSRQ compressor achieves the lower bound for collaborative compressors for d=1,
and is based on a coordinate-wise scheme, hence the ∆∞ in its error guarantees. However, for d≫1,
its error scales poorly. For the example described above, ||gi||2≤

√
dB, therefore, the ℓ∞ error for

CorrelatedSRQ is
√

1
mmin{d∆

d
∞B
K ,d

2B2

K2 }. Note that even for K=2, correlated SRQ requires double
the number of bits/client as HadamardMultiDim. Note that the first term of HadamardMultiDim
is B · 2m−1 which is much smaller than any of these terms, while ∆Hadamard ≈

√
m
c ∆∞ for our

example. Therefore, as long as
(

m2K
cdB

)1/(2d−1)

<∆∞<
√
cdB
mK , ∆Hadamard is smaller than ℓ∞ error

of CorrelatedSRQ. The size of this interval for ∆∞ increases as d increases.

With the above example and analysis, we have specified the exact scenarios when HadamardMultiDim
outperforms baselines and this can be easily extended to SparseReg.

3 ONE-BIT SCHEMES

In this section, our vectors are assumed to belong on the unit sphere Sd−1. Further, our goal is to
recover the unit vector in the direction of the average vector g=(1

m

∑
i∈[m]gi)/||

1
m

∑
i∈[m]gi||2.

Assumption 3 (Unit vectors). gi∈Sd−1,∀i∈ [m].

Consider the collaborative compressor where each client has sample zi ∼ Unif(Sd−1) (which are
also available to the server apriori). Client i sends the single bit b̃i =sign(⟨gi,zi⟩) to the server. To
recover g, consider the trivial case when all vectors gis were equal. Then, each b̃i = sign(⟨g,zi⟩),
and to recover g, the server needs to learn the halfspace corresponding to g from a set of m labeled
datapoints. Applying the same method to when gis are not all the same, we can estimate g by solving
the following optimization problem.

min
g̃∈Sd−1

1

m
1(b̃i ̸=sign(⟨zi,g̃⟩)). (6)

Here, 1(·) denotes the indicator function. We can intuitively view (6) as a halfspace learning problem
with a groundtruth g, but in the presence of noise, as gi ̸= g. Learning halfspaces in the presence of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

noise is hard in general Guruswami & Raghavendra (2006). In our setting, if we sample zi from the
intersection of the halfspaces with normal vectors g and gi, then the label is sign(⟨g,zi⟩), otherwise,
it is−sign(⟨g,zi⟩). We can consider this to be under the malicious noise model, wherein a fraction
of datapoints are corrupted.

Lemma 1 (Malicious Noise). If zi ∼ Unif(Sd−1) and b̃i = sign(⟨zi, gi⟩), ∀i ∈ [m], then, with
probability 1−O(exp(−m∆corr)), ζ, the fraction of the set of datapoints {(zi,b̃i)}i∈[m] satisfying
sign(⟨zi,gi⟩) ̸=sign(⟨g,zi⟩) is equal to Θ(∆corr), where ∆corr≜ 1

mπ

∑m
i=1arccos(⟨gi,g⟩).

The proof of the lemma is provided in Appendix E.1. Our methods will use ∆corr to measure the
deviation between clients. For small ∆corr, we obtain better performance. If ⟨g,gi⟩≥0,∀i∈ [m], then

cos(π∆corr)≥
√

1

m
+

2

m2

∑∑
1≤i<j≤m

⟨gi,gj⟩. (7)

The proof of the above remark is provided in Appendix E.3.

As long as the corruption level, ζ < 1
2 , we can hope to recover the halfspace g. We provide two

techniques – Techniques I and II, to recover g, thus yielding two corresponding Decode procedures.

The first decoding procedure (Technique I) is a linear time algorithm for halfspace learning in
the presence of malicious noise (Shen, 2023, Theorem 3) that provides obtaining optimal sample
complexity and noise tolerance.
Theorem 3 (Error of Technique I). If ζ defined in Lemma 1 is less than 1

2 , after running Algorithm 5
with Technique I, with probability 1−δ−O(exp(−m∆corr)), we obtain a hyperplane g̃ such that,
⟨g̃,g⟩≥cos(π(∆corr+

d
m)).

The algorithm itself is fairly complicated. It assigns weights to different points based on how likely they
are to be corrupted. The algorithm proceeds in stages, wherein each stage decreases the weights of the
corrupted points and solves the weighted version of (6). The key technique is to use matrix multiplica-
tive weights update (MMWU) Arora et al. (2012) to yield linear time implementation of both these
steps, instead of Awasthi et al. (2017) which used polynomial time linear programs for this purpose.

Technique II is the simple average algorithm of Servedio (2002), which obtains suboptimal error
guarantees. We defer the details of this to Appendix B and the proofs are provided in Appendix E.

4 EXPERIMENTS

Setup. To compare the performance of our proposed algorithms, we perform DME for three
different distributions which correspond to the three error metrics covered by our schemes – ℓ2,ℓ∞ and
cosine distance. Then, we run our algorithms as the DME subroutine for three different downstream
distributed learning tasks – KMeans, power iteration and linear regression. KMeans and power
iteration are run on MNIST LeCun & Cortes (2010) and FEMNIST Caldas et al. (2018) datasets and
we report the KMeans cost and top eigenvalue as the metrics. For linear regression, we run gradient
descent on UJIndoorLoc Torres-Sospedra et al. (2014) and a Synthetic mixture of regressions dataset,
with low dissimilarity between the mixture components, and report the test MSE. We compare against
all baselines in Table 2 for 3 random seeds and report the methods which perform the best in Fig 2.
Additional details for our experimental setup are deferred to Appendix F.

Results. Distributed Mean Estimation. From Fig 2a and 2b, HadamardMultiDim and SparseReg,
whose error is optimal in m, obtain the best performance in terms of ℓ∞ and ℓ2 error for low
dissimilarity. Especially, for HadamardMultiDim in Fig 2b, the gap in ℓ∞ error to next best scheme
is very large. NoisySign obtains competitive performance to other baselines as we use a large σ.
The performance of OneBit for cosine distance metric (Fig 2c) shows that compressors with ℓ2 error
guarantees perform poorly in terms of cosine distance. For all collaborative compression schemes,
including our proposed schemes, performance degrades as dissmilarity increases. From Fig 2a and 2b,
the rate of this decrease is more severe for SparseReg than HadamardMultiDim. For large dissimilarity,
HadamardMultiDim and SparseReg can perform worse than certain baselines.

KMeans and Power iteration. For MNIST dataset, where dissimilarity is low, HadamardMultiDim
performs best for KMeans and close to the best baseline for power iteration (Fig 2d and 2e). Most of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) DME with ℓ2 error. (b) DME with ℓ∞ error. (c) DME for cosine distance.

(d) KMeans on MNIST. (e) Power iteration on MNIST. (f) Lin. Reg. on UJIndoorLoc.

(g) KMeans on FEMNIST. (h) Power iteration on FEMNIST. (i) Lin. Reg. on Synthetic.

Figure 2: Performance of DME(Distributed Mean Estimation), KMeans, Power iteration and linear regression
for the same communication budget. For each experiment, we report the best compressors. Lin. Reg. refer to
Linear Regression. For power iteration, higher top eigenvalue is better. For all other experiments, we report the
error, so lower is better.

our collaborative compression schemes do not perform as well as RandK on FEMNIST, due to higher
client dissimilarity. OneBit is very communication-efficient, so running it for the same communication
budget as our baselines ensures that it still remains competitive for KMeans(Fig 2g).

Linear Regression. From Fig 2f and2i, all collaborative compressors perform better than independent
compressors as UJIndoorLoc and synthetic datasets have low dissimilarity among clients as compared
to FEMNIST. Our schemes can take full advantage of this low dissimilarity, so HadamardMultiDim
and OneBit outperform baselines on both datasets. As the Synthetic dataset has lower dissimilarity
than UJIndoorLoc, even the NoisySign performs better than other baselines, and SparseReg obtains
best performance.

5 CONCLUSION

We proposed four communication-efficient collaborative compression schemes to obtain error
guarantees in ℓ2-error (SparseReg), ℓ∞-error (NoisySign, HadamardMultiDim) and cosine distance
(OneBitAvg). The estimation error of our schemes improves with number of clients, and degrades with
dissimilarity between clients. Our schemes are biased and our dissimilarity metrics (∆reg, ∆Hadamard)
depend on the quantization levels. However, these can be improved by using existing techniques for
converting biased compressors to unbiased ones Beznosikov et al. (2022) and adding noise before
quantization Tang et al. (2023); Chzhen & Schechtman (2023). Lower bounds for collaborative
compressors in terms of their dissimilarity metrics will allow us to assess the optimality of our schemes.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Error feedback Karimireddy et al. (2019) reduces the error of independent compressors and it will
be interesting to check if it works for our collaborative compressors.

REFERENCES

Ahmad Ajalloeian and Sebastian U. Stich. Analysis of SGD with biased gradient estimators. CoRR,
abs/2008.00051, 2020. URL https://arxiv.org/abs/2008.00051.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-Efficient SGD via Gradient Quantization and Encoding. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
6c340f25839e6acdc73414517203f5f0-Abstract.html.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory Comput., 8:121–164, 2012. URL
https://api.semanticscholar.org/CorpusID:1443048.

Pranjal Awasthi, Maria Florina Balcan, and Philip M. Long. The power of localization for
efficiently learning linear separators with noise. J. ACM, 63(6), jan 2017. ISSN 0004-5411. doi:
10.1145/3006384. URL https://doi.org/10.1145/3006384.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018a.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 560–569. PMLR, 10–15 Jul 2018b. URL
https://proceedings.mlr.press/v80/bernstein18a.html.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On Biased Compression
for Distributed Learning, December 2022. URL http://arxiv.org/abs/2002.12410.
arXiv:2002.12410 [cs, math, stat].

Léon Bottou and Olivier Bousquet. The Tradeoffs of Large Scale Learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems, volume 20.
Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/paper_
files/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf.

Petros T Boufounos and Richard G Baraniuk. 1-bit compressive sensing. In 2008 42nd Annual
Conference on Information Sciences and Systems, pp. 16–21. IEEE, 2008.

Mark Braverman, Ankit Garg, Tengyu Ma, Huy L. Nguyen, and David P. Woodruff. Com-
munication lower bounds for statistical estimation problems via a distributed data process-
ing inequality. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory
of Computing, STOC ’16, pp. 1011–1020, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450341325. doi: 10.1145/2897518.2897582. URL
https://doi.org/10.1145/2897518.2897582.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends Mach.
Learn., 8(3–4):231–357, November 2015. ISSN 1935-8237. doi: 10.1561/2200000050. URL
https://doi.org/10.1561/2200000050.

Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia Smith, and
Ameet Talwalkar. LEAF: A benchmark for federated settings. CoRR, abs/1812.01097, 2018. URL
http://arxiv.org/abs/1812.01097.

Xiangyi Chen, Tiancong Chen, Haoran Sun, Steven Z. Wu, and Mingyi Hong. Distributed
Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms. In
Advances in Neural Information Processing Systems, volume 33, pp. 21616–21626. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/f629ed9325990b10543ab5946c1362fb-Abstract.html.

11

https://arxiv.org/abs/2008.00051
https://proceedings.neurips.cc/paper/2017/hash/6c340f25839e6acdc73414517203f5f0-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6c340f25839e6acdc73414517203f5f0-Abstract.html
https://api.semanticscholar.org/CorpusID:1443048
https://doi.org/10.1145/3006384
https://proceedings.mlr.press/v80/bernstein18a.html
http://arxiv.org/abs/2002.12410
https://proceedings.neurips.cc/paper_files/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf
https://doi.org/10.1145/2897518.2897582
https://doi.org/10.1561/2200000050
http://arxiv.org/abs/1812.01097
https://proceedings.neurips.cc/paper/2020/hash/f629ed9325990b10543ab5946c1362fb-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f629ed9325990b10543ab5946c1362fb-Abstract.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Evgenii Chzhen and Sholom Schechtman. SignSVRG: fixing SignSGD via variance reduction, May
2023. URL http://arxiv.org/abs/2305.13187. arXiv:2305.13187 [math, stat].

Peter Davies, Vijaykrishna Gurunanthan, Niusha Moshrefi, Saleh Ashkboos, and Dan Alistarh. New
bounds for distributed mean estimation and variance reduction. In International Conference on Learn-
ing Representations, 2021. URL https://openreview.net/forum?id=t86MwoUCCNe.

Venkata Gandikota, Daniel Kane, Raj Kumar Maity, and Arya Mazumdar. vqsgd: Vector quantized
stochastic gradient descent. IEEE Transactions on Information Theory, 68(7):4573–4587, 2022.
doi: 10.1109/TIT.2022.3161620.

Ankit Garg, Tengyu Ma, and Huy Nguyen. On Communication Cost of Distributed Statistical
Estimation and Dimensionality. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/
paper/2014/file/46771d1f432b42343f56f791422a4991-Paper.pdf.

James Whitbread Lee Glaisher. Xxxii. on a class of definite integrals. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 42(280):294–302, 1871.

Venkatesan Guruswami and Prasad Raghavendra. Hardness of learning halfspaces with noise. In
2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 543–552,
2006. doi: 10.1109/FOCS.2006.33.

Divyansh Jhunjhunwala, Ankur Mallick, Advait Gadhikar, Swanand Kadhe, and Gauri Joshi.
Leveraging spatial and temporal correlations in sparsified mean estimation. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 14280–14292. Curran Associates, Inc., 2021.
URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
77b88288ebae7b17b7c8610a48c40dd1-Paper.pdf.

Shuli Jiang, Pranay Sharma, and Gauri Joshi. Correlation aware sparsified mean estimation using
random projection. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=VacSQpbI0U.

Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. Stochastic-Sign
SGD for Federated Learning with Theoretical Guarantees, September 2021. URL
http://arxiv.org/abs/2002.10940. arXiv:2002.10940 [cs, stat].

Richeng Jin, Xiaofan He, Caijun Zhong, Zhaoyang Zhang, Tony Quek, and Huaiyu Dai. Mag-
nitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification in the Presence
of Data Heterogeneity, February 2023. URL http://arxiv.org/abs/2302.09634.
arXiv:2302.09634 [cs].

Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio. Agnostically Learn-
ing Halfspaces. SIAM Journal on Computing, 37(6):1777–1805, January 2008. ISSN 0097-5397.
doi: 10.1137/060649057. URLhttps://epubs.siam.org/doi/10.1137/060649057.
Publisher: Society for Industrial and Applied Mathematics.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes SignSGD and other gradient compression schemes. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 3252–3261. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/karimireddy19a.html.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5132–5143. PMLR, 13–18
Jul 2020. URL https://proceedings.mlr.press/v119/karimireddy20a.html.

Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

12

http://arxiv.org/abs/2305.13187
https://openreview.net/forum?id=t86MwoUCCNe
https://proceedings.neurips.cc/paper_files/paper/2014/file/46771d1f432b42343f56f791422a4991-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/46771d1f432b42343f56f791422a4991-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/77b88288ebae7b17b7c8610a48c40dd1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/77b88288ebae7b17b7c8610a48c40dd1-Paper.pdf
https://openreview.net/forum?id=VacSQpbI0U
http://arxiv.org/abs/2002.10940
http://arxiv.org/abs/2302.09634
https://epubs.siam.org/doi/10.1137/060649057
https://proceedings.mlr.press/v97/karimireddy19a.html
https://proceedings.mlr.press/v119/karimireddy20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jakub Konečný and Peter Richtárik. Randomized Distributed Mean Estimation: Accuracy vs.
Communication. Frontiers in Applied Mathematics and Statistics, 4, 2018. ISSN 2297-4687. URL
https://www.frontiersin.org/articles/10.3389/fams.2018.00062.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL
http://yann.lecun.com/exdb/mnist/.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HJxNAnVtDS.

Xiang Li, Shusen Wang, Kun Chen, and Zhihua Zhang. Communication-efficient distributed svd via
local power iterations. In International Conference on Machine Learning, pp. 6504–6514. PMLR,
2021.

Yingyu Liang, Maria-Florina Balcan, and Vandana Kanchanapally. Distributed pca and k-means
clustering. 2013. URL https://api.semanticscholar.org/CorpusID:14820691.

Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and David Woodruff. Improved dis-
tributed principal component analysis. Advances in neural information processing systems, 27, 2014.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, 1982. doi: 10.1109/TIT.1982.1056489.

Prathamesh Mayekar, Ananda Theertha Suresh, and Himanshu Tyagi. Wyner-Ziv Estimators: Efficient
Distributed Mean Estimation with Side-Information. In Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, pp. 3502–3510. PMLR, March 2021. URL
https://proceedings.mlr.press/v130/mayekar21a.html. ISSN: 2640-3498.

Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learning
without centralized training data. https://research.googleblog.com/2017/04/
federated-learning-collaborative.html, 2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. arXiv preprint
arXiv:1602.05629, 2016.

Jorge Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto, and Xavier Parra. Human
Activity Recognition Using Smartphones. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C54S4K.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL
https://doi.org/10.1214/aoms/1177729586.

Mher Safaryan and Peter Richtarik. Stochastic Sign Descent Methods: New Algorithms and Better
Theory. In Proceedings of the 38th International Conference on Machine Learning, pp. 9224–9234.
PMLR, July 2021. URL https://proceedings.mlr.press/v139/safaryan21a.
html. ISSN: 2640-3498.

Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication
compression in distributed and federated learning and the search for an optimal compressor.
Information and Inference: A Journal of the IMA, 11(2):557–580, 04 2021. ISSN 2049-8772. doi:
10.1093/imaiai/iaab006. URL https://doi.org/10.1093/imaiai/iaab006.

Rocco A. Servedio. Perceptron, winnow, and pac learning. SIAM Journal on Com-
puting, 31(5):1358–1369, 2002. doi: 10.1137/S0097539798340928. URL https:
//doi.org/10.1137/S0097539798340928.

Jie Shen. Pac learning of halfspaces with malicious noise in nearly linear time. In Fran-
cisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th
International Conference on Artificial Intelligence and Statistics, volume 206 of Pro-
ceedings of Machine Learning Research, pp. 30–46. PMLR, 25–27 Apr 2023. URL
https://proceedings.mlr.press/v206/shen23a.html.

13

https://www.frontiersin.org/articles/10.3389/fams.2018.00062
http://yann.lecun.com/exdb/mnist/
https://openreview.net/forum?id=HJxNAnVtDS
https://api.semanticscholar.org/CorpusID:14820691
https://proceedings.mlr.press/v130/mayekar21a.html
https://research.googleblog.com/2017/04/federated-learning-collaborative.html
https://research.googleblog.com/2017/04/federated-learning-collaborative.html
https://doi.org/10.1214/aoms/1177729586
https://proceedings.mlr.press/v139/safaryan21a.html
https://proceedings.mlr.press/v139/safaryan21a.html
https://doi.org/10.1093/imaiai/iaab006
https://doi.org/10.1137/S0097539798340928
https://doi.org/10.1137/S0097539798340928
https://proceedings.mlr.press/v206/shen23a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with Mem-
ory. In Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://papers.nips.cc/paper_files/paper/2018/hash/
b440509a0106086a67bc2ea9df0a1dab-Abstract.html.

Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan. Dis-
tributed Mean Estimation with Limited Communication. In Proceedings of the 34th
International Conference on Machine Learning, pp. 3329–3337. PMLR, July 2017. URL
https://proceedings.mlr.press/v70/suresh17a.html. ISSN: 2640-3498.

Ananda Theertha Suresh, Ziteng Sun, Jae Ro, and Felix Yu. Correlated Quantization for
Distributed Mean Estimation and Optimization. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, pp. 20856–20876. PMLR, June 2022. URL
https://proceedings.mlr.press/v162/suresh22a.html. ISSN: 2640-3498.

Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster
distributed nonconvex optimization, 2021.

Zhiwei Tang, Yanmeng Wang, and Tsung-Hui Chang. z-SignFedAvg: A Unified
Stochastic Sign-based Compression for Federated Learning. February 2023. URL
https://openreview.net/forum?id=ykql_wKavL.

Joaqun Torres-Sospedra, Raul Montoliu, Adolfo Martnez-Us, Tomar Arnau, and Joan Avariento.
UJIIndoorLoc. UCI Machine Learning Repository, 2014. DOI: https://doi.org/10.24432/C5MS59.

Shay Vargaftik, Ran Ben-Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben-Itzhak, and
Michael Mitzenmacher. DRIVE: One-bit Distributed Mean Estimation. In Advances
in Neural Information Processing Systems, volume 34, pp. 362–377. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
0397758f8990c1b41b81b43ac389ab9f-Abstract.html.

Ramji Venkataramanan, Antony Joseph, and Sekhar Tatikonda. Lossy Compression via Sparse Linear
Regression: Performance Under Minimum-Distance Encoding. IEEE Transactions on Information
Theory, 60(6):3254–3264, June 2014a. ISSN 1557-9654. doi: 10.1109/TIT.2014.2313085. URL
https://ieeexplore.ieee.org/document/6777349.

Ramji Venkataramanan, Tuhin Sarkar, and Sekhar Tatikonda.
Lossy Compression via Sparse Linear Regression: Compu-
tationally Efficient Encoding and Decoding. IEEE Trans-
actions on Information Theory, 60(6):3265–3278, June
2014b. ISSN 1557-9654. doi: 10.1109/TIT.2014.
2314676. URL https://ieeexplore.ieee.org/abstract/
document/6781602?casa_token=vvV4Ub9GTrMAAAAA:
MSmuzdHnx2Tuj3O3AUFQhDTOBanqMojCut3qSXSzhoWjL1t-dbuAxnBWZu2gD3rnr9nvlUtSOg.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
ternary gradients to reduce communication in distributed deep learning. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, pp. 1508–1518,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

A NOISYSIGN FOR UNBOUNDED ||gi||∞

The sign-compressor Bernstein et al. (2018a) applies the sign function coordinate-wise, where
sign(x) = +1 if x ≥ 0 and −1 otherwise. For this section, we will focus on a single coordinate
j ∈ [d]. Note that for any i∈ [m], sign(g(j)i) does not have information about |g(j)i |. Existing com-
pressors Karimireddy et al. (2020) remedy this by sending |g(j)i | separately, or assuming that |g(j)i | is
bounded by some constant B Safaryan & Richtarik (2021); Chzhen & Schechtman (2023); Jin et al.
(2023); Tang et al. (2023). In the second case, the maximum error that can be incurred is B

2 . This can be
improved by adding uniform symmetric noise before taking signs Chen et al. (2020); Chzhen & Schecht-
man (2023). However, if no information is available about |g(j)i |, we cannot provide an estimate of g(j)i .

14

https://papers.nips.cc/paper_files/paper/2018/hash/b440509a0106086a67bc2ea9df0a1dab-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/b440509a0106086a67bc2ea9df0a1dab-Abstract.html
https://proceedings.mlr.press/v70/suresh17a.html
https://proceedings.mlr.press/v162/suresh22a.html
https://openreview.net/forum?id=ykql_wKavL
https://proceedings.neurips.cc/paper/2021/hash/0397758f8990c1b41b81b43ac389ab9f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0397758f8990c1b41b81b43ac389ab9f-Abstract.html
https://ieeexplore.ieee.org/document/6777349
https://ieeexplore.ieee.org/abstract/document/6781602?casa_token=vvV4Ub9GTrMAAAAA:MSmuzdHnx2Tuj3O3AUFQhDTOBanqMojCut3qSXSzhoWjL1t-dbuAxnBWZu2gD3rnr9nvlUtSOg
https://ieeexplore.ieee.org/abstract/document/6781602?casa_token=vvV4Ub9GTrMAAAAA:MSmuzdHnx2Tuj3O3AUFQhDTOBanqMojCut3qSXSzhoWjL1t-dbuAxnBWZu2gD3rnr9nvlUtSOg
https://ieeexplore.ieee.org/abstract/document/6781602?casa_token=vvV4Ub9GTrMAAAAA:MSmuzdHnx2Tuj3O3AUFQhDTOBanqMojCut3qSXSzhoWjL1t-dbuAxnBWZu2gD3rnr9nvlUtSOg

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We utilize the concept of adding noise before taking signs, however, to accommodate possibly un-
bounded |g(j)i |, we add symmetric noise with unbounded support. One choice for such noise is the Gaus-
sian distributionN (0,σ2). For ξ(j)i ∼N (0,σ2), we send b̃

(j)
i =sign(g

(j)
i +ξ

(j)
i) as the encoding. Note

thatE[b̃(j)i]=Φσ(g
(j)
i), whereΦσ(t)=2Prx∼N (0,σ2)[x≥−t]−1=erf(t√

2σ
), and erf is the error func-

tion for the unit normal distribution. A single b̃ji gives us information about g(j)i , however, using it to de-
code g(j)i might incur a very large variance. However, assuming that all g(j)i are close to g(j) for i∈ [m],
1
m

∑m
i=1b̃

(j)
i is a good estimator forΦσ(g

(j)). So, to estimate g(j), we can useΦ−1
σ (1

m

∑m
i=1b̃

(j)
i). This

scheme performed coordinate-wise is the NoisySign algorithm described in Algorithm 1.

We provide estimation error for recovering g̃ using this scheme.
Theorem 4 (Estimation error of noisy sign). With probability 1−2dm−c, for some constant c> 0,
the estimation error of Algorithm 1 is

||g̃−g||∞≤
√

π

2


1−

∆Φ+
√

8clogm
m (

√
∆Φ+

√
α(||g||∞))

α(||g||∞)

−1

−1

, (8)

where ∆Φ≜maxj∈[d]| 1m
∑m

i=1Φσ(g
(j)
i)−Φσ(g

(j))| and α(u)≜1−Φσ(u).

The proof is provided in Appendix C.1. Applying Φ−1
σ to estimate g makes our scheme collaborative.

To gain insight into the error, note that (1−x)−1−1≈ x, for small x. The error increases with the
increase in ||g||∞ as we are compressing unbounded variables gi into the bounded domain [−1,1]
which is the range of the function Φσ. The number of clients m determines the resolution with which
we can measure on this domain, as the value 1

m

∑m
i=1 b̃i can only be in multiples of 1

m . Therefore,
increasing m decreases the error. As m→∞, the ℓ∞-error approaches ∆Φ

α(||g||∞) .

Note that ∆Φ determines the average separation between vectors in terms of the Φσ operator. If vectors
gi are similar to each other, ∆Φ is small and error is small as a result. Further, ∆Φ can be bounded
by more interpretable quantities if the average separation between gi and g is small:

∆Φ≤
√

2

π

1

mσ

∑
i∈[m]

||gi−g||∞. (9)

Proof of this is provided in Appendix C.2. Note that ∆Φ is always≤1, so if the average error in terms
ℓ∞ norm is much smaller than σ, then the above bound makes sense. Additionally, one can tune the
value of σ if additional information about ||g||∞ or 1

m

∑m
i=1||gi−g||∞ is known.

Vanilla sign compression without the gradient information will yield a constant error of
O(maxi∈[m]||gi||∞), as each sign would need to be accurate. However, for large m and
small ∆Φ our collaborative compressor performs much better.

B ANALYSIS OF ONEBIT TECHNIQUE II

Technique II : Servedio (2002) (Shen, 2023, Algorithm 1) might be difficult to implement in
practice as it involves several subroutines and the knowledge of ∆corr. Technique II uses the average
of the vectors zi scaled by their signs b̃i is used as an estimator for the unit vector g
Theorem 5 (Error of Technique II). If ζ defined in in Lemma 1 is less than 1

2 , after running Algorithm 5
with Technique II, with probability 1−δ−O(exp(−m∆corr)), we obtain a hyperplane g̃ such that,
⟨g̃,g⟩≥cos(π(

√
d∆corr+

d√
m
)).

The proofs for Theorems 3 and 5 are provided in Appendix E.2.

The performance of both techniques improves with decrease in ∆corr. Since we have only m bits to
infer a d-dimensional vector, we require m>d, with Technique II requiring m>d2. If we send t bits
per client in OneBit, then the number of samples for the halfspace learning is mt, thus obtaining the
guarantee in Table 1. The main benefit of OneBit schemes is their extreme communication efficiency.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Existing quantization and sparsification schemes require sending at least logK or logd, where K is
the number of quantization levels.

Note that, we can use compressor for ℓ2 error to first decode the mean and then normalize it to obtain
its unit vector. If such a scheme uses t bits and has ℓ2 error either Λ∆2 or ΛB̃2 then its cosine similarity

⟨g,g̃⟩
||g′||2||g̃||2 ≥ 1− Λ

2||g′||22
for ||g′||2 ≈ ||g̃||2, where g′ = 1

m

∑m
i=1 gi and g̃ is the estimate of g′. To

compare this with OneBit Technique I, we send λ bits per client to obtain the same communication
budget. The cosine similarity of this scheme is cos(π(∆corr+

d
tm)). We can lower bound this similarity

by 1−2π2∆2
corr+2π2 d2

m2t2 as cos(x)≥1− x2

2 . Comparing this cosine similarity with that obtained
for ℓ2-compressor, as long as 2π2∆2

corr+2π2 d2

m2β2 <Λ, OneBit Technique I performs better. For any
sparsification scheme sending K coordinates, Λ is at least d

mK . If we set t=32K+K logd, OneBit
Technique I outerperforms the sparsification scheme as long as ∆corr is small.

C PROOFS FOR APPENDIX A

C.1 PROOF OF THEOREM 4

As all operations are coordinate-wise, we restrict our focus to only a single dimension j∈ [d].

Eξi [b̃
(j)
i]=Φσ(g

(j)
i),∀i∈ [m]

Note that Φσ(t) = erf(t√
2σ

) and Φ−1
σ (t) =

√
2σ erf−1(t). Further, if Var(b̃(j)i − Φσ(g

(j)
i)) =

1−Φ2
σ(g

(j)
i). Therefore, by Hoeffding’s inequality for random variables with bounded variance, we

have,

Pr[| 1
m

m∑
i=1

(b̃i
(j)
−Φσ(g

(j)
i))|≥ t]≤2exp

(
− mt2

4(1− 1
m

∑m
i=1Φ

2
σ(g

(j
i)))

)

If we set t =
√

4clog(m)
m (1− 1

m

∑m
i=1Φ

2
σ(g

(j)
i)), for some c > 0 in the above inequality, then with

probability 1−2m−c, we have,

| 1
m

m∑
i=1

(b̃i
(j)
−Φσ(g

(j)
i))|≤ t

We can represent 1
m

∑m
i=1b̃i=Φσ(g̃), as Φσ is an invertible function. To find the difference between

g̃ and g, we find the difference Φσ(g̃)−Φσ(g). With probability 1−2m−c, we have,

|Φσ(g̃
(j))−Φσ(g

(j))|≤ 1

m

m∑
i=1

|Φσ(g
(j)
i)−Φσ(g

(j))|+t

To remove the terms of Φσ, we can apply the function Φ−1
σ on g̃(j). As Φ−1

σ is not Lipschitz, we
need to perform its Taylor’s expansion around Φσ(g

(j)) to account for the linear terms in the error.
If ∆Φ= 1

m

∑m
i=1|Φσ(g

(j)
i)−Φσ(g

(j))|, then we obtain,

|g̃(j)−g(j)|≤ max
u∈[Φσ(g(j))−∆Φ−t,Φσ(g(j))+∆Φ+t]

|(Φ−1
σ)′(u)|(∆Φ+t) (10)

We now obtain an appropriate upper bound on (Φ−1
σ)′(u) as we do not have a closed-form expression

for it. We will use the properties of erf to obtain a suitable bound. First, note that Φσ and Φ−1
σ are

both odd functions, therefore, |Φ−1(u)|= |Φ−1(|u|)|, so we consider the bound for u>0. Note that

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(Φ−1)′(u)= 1
Φ′(Φ−1(u)) . For u>0, we have,

1−erf(u)≤exp(−u2)

erf(u)≥1−exp(−u2)

erf−1(u)≤
√
−log(1−u)

Φ−1
σ (u)=

√
2σerf−1(u)≤σ

√
−2log(1−u)

(Φ−1
σ)′(u)=

√
π

2
exp((Φ−1

σ (u))2/(2σ2))≤
√

π

2
exp(−2log(1−u)/2)=

√
π

2

1

1−u
For the first step, we use an upper bound on the complementary error function. For the third step, we
use the fact that if f(x)≤g(x), then f−1(y)≥g−1(y).

Using the following upper bound in Eq (10), we obtain,

|g̃(j)−g(j)|≤ max
u∈[Φσ(g(j))−∆Φ−t,Φσ(g(j))+∆Φ+t]

√
π

2

∆Φ+t

1−|u|

≤
√

π

2

∆Φ+t

1−max{|Φσ(g(j))−∆Φ−t|,|Φσ(g(j))+∆Φ+t|}

We use max{|Φσ(g
(j))−∆Φ−t|,|Φσ(g

(j))+∆Φ+t|}≤Φσ(|g(j)|)+∆Φ+t, as Φσ is an increasing
odd function.

|g̃(j)−g(j)|≤
√

π

2

((
1− ∆Φ+t

1−Φσ(|g(j)|)

)−1

−1

)

We first obtain an upper bound for t.

t=

√
4clogm

m

√√√√1− 1

m

m∑
i=1

Φ2
σ(g

(j)
i)=

√
4clogm

m

√√√√1−Φ2
σ(g

(j))+
1

m

m∑
i=1

(Φ2
σ(g

(j)
i)−Φ2

σ(g
(j)))

≤
√

4clogm

m

√1−Φ2
σ(g

(j))+

√√√√ 1

m
|
m∑
i=1

(Φ2
σ(g

(j)
i)−Φ2

σ(g
(j)))|


≤
√

4clogm

m

(√
(1−Φσ(|g(j)|))(1+Φσ(|g(j)|))

+

√√√√| 1
m

m∑
i=1

(Φσ(g
(j)
i)−Φσ(g(j)))(Φσ(g

(j)
i)+Φσ(g(j)))|

)

≤
√

8clogm

m

(√
1−Φ2

σ(|g(j)|)+
√
∆Φ

)

We extend the bound to d dimensions by taking a union bound, yielding a probability of error 2dm−c.

C.2 PROOF OF EQUATION (9)

The proof follows from using the triangle inequality and a Taylor’s expansion for each Φσ(g
(j)
i) around

g(j). Note that, for some u(j)
i between g(j) and g

(j)
i , we have,

Φσ(g
(j)
i)=Φσ(g

(j))+

√
2

π

(g(j)−g(j)i)exp(− (u
(j)
i)2

2σ2)

σ

|Φσ(g
(j)
i)−Φσ(g

(j))|≤
√

2

π

|g(j)−g(j)i |
σ

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We use the fact that exp(− (u
(j)
i)2

2σ2)≤ 1. By using triangle inequality for any coordinate j ∈ [m], we
obtain,

∆Φ≤max
j∈[d]

1

m

∑
i∈[m]

|Φσ(g
(j)
i)−Φσ(g

(j))|≤ 1

m

∑
i∈[m]

max
j∈[d]
|Φσ(g

(j)
i)−Φσ(g

(j))|

≤
√

2

π

1

m

∑
i∈[m]

max
j∈[d]

|g(j)−g(j)i |
σ

≤
√

2

π

1

m

∑
i∈[m]

||g−gi||∞
σ

D PROOFS OF SECTION 2

D.1 PROOF OF THEOREM 1

Consider a single dimension j ∈ [d]. Let g(j)i be the jth coordinate of gi and ρj be the permutation
selected for the coordinate j. We omit j from g

(j)
i and ρj to simplify the notation. Let b̃i,p be the

estimate of gi after decoding it for p levels where p∈ [m]. Therefore, the estimator g̃=
∑m

i=1
b̃i,ρiB

2ρi−1 .

Let g̃i=
∑m

k=1
b̃i,kB
2k−1 be the decoded value of gi till level m and ḡ= 1

m

∑m
i=1g̃i=

∑m
k=1

b̄kB
2k−1 , where

b̄k=
1
m

∑m
i=1b̃i,k.

We compute the expected error for coordinate j, where the expectation is wrt the permutation ρj . Note
that Eρ[g̃i]= ḡ.

Eρ[|g−g̃|]=
√
(Eρ[|g−g̃|])2≤

√
Eρ|g−g̃|2≤

√
Eρ|g̃−ḡ|2+|g−ḡ|2

≤
√
Eρ|g̃−ḡ|2+|g−ḡ|≤

1

m

m∑
i=1

|gi−g̃i|+
√
Eρ|g̃−ḡ|2

≤ B

2m−1
+
√
Eρ|g̃−ḡ|2

We use Jensen’s inequality for the first inequality. For the second inequality, we use bias-variance
decomposition for the random variable g̃, where the first term is its variance, and the second term is
its bias wrt the term g. We then use

√
a+b≤

√
a+
√
b for any a,b≥0. To handle the term |g−ḡ|, we

expand both terms as a summation over m clients, followed by a triangle inequality. As each estimator
g̃i is at least B

2m−1 away from gi, each term in the difference |gi−g̃i| has the upperbound B
2m−1 .

We now bound the variance term separately. Note that

Eρ|g̃−ḡ|2=Eρ|g̃|2−ḡ2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

We first evaluate the second moment Eρ|g̃|2.

Eρ|g̃|2=Eρ

∣∣∣∣∣
m∑
i=1

b̃i,ρi

2ρi−1

∣∣∣∣∣
2

=

m∑
i=1

Eρ

[
b̃2i,ρi

]B2

22ρi−2

]
+B2

∑∑
1≤i ̸=j≤m

Eρ

[
b̃i,ρi

2ρi−1

b̃j,ρj

2ρj−1

]

=

m∑
k=1

B2

22k−2
+B2

∑∑
1≤i ̸=j≤m

Eρi

[
Eρ

[
b̃i,ρi

2ρi−1

b̃l,ρj

2ρj−1
|ρi

]]

=

m∑
k=1

B2

22k−2
+B2

∑∑
1≤i ̸=j≤m

Eρi

 b̃i,ρi

2ρi−1

1

m−1

m∑
l=1,l ̸=ρi

b̃j,l
2l−1


=

m∑
k=1

B2

22k−2
+

B2

m(m−1)
∑∑

1≤i̸=j≤m

m∑
k=1

 b̃i,k
2k−1

m∑
l=1,l ̸=k

b̃j,l
2l−1


=

m∑
k=1

B2

22k−2
+

1

m(m−1)
∑∑

1≤i̸=j≤m

(
m∑

k=1

b̃i,kB

2k−1

)(
m∑
l=1

b̃j,lB

2l−1

)

− 1

m(m−1)
∑∑

1≤i̸=j≤m

m∑
k=1

B2b̃i,k b̃j,k
22k−2

=

m∑
k=1

B2

22k−2
+

1

m(m−1)
∑∑

1≤i̸=j≤m

g̃ig̃j−
1

m(m−1)
∑∑

1≤i ̸=j≤m

m∑
k=1

B2b̃i,k b̃j,k
22k−2

=
m2|ḡ|2−

∑m
i=1|g̃i|2

m(m−1)
+

1

m(m−1)
∑∑

1≤i̸=j≤m

m∑
k=1

B2(|b̃i,k|2+| ˜bj,k|2−2b̃i,k b̃j,k)
22k−1

=
m

m−1
|ḡ|2−

∑m
i=1|g̃i|2

m(m−1)
+

1

2m(m−1)
∑∑

1≤i̸=j≤m

m∑
k=1

(
B(b̃i,k−b̃j,k)

2k−1

)2

Note that we expand the square of the sum of terms where b̃2i,j=1. For the second term, we use the law
of total expectation by conditioning on the value of ρi. To evaluate the inner expectation, we note that ρj
can take any value other than that ofρi with equal probability. To evaluate the outer expectation, note that
ρi can take any value in [m] with equal probability. In the fourth equation, we subtract the term where
l=k. Then, we can factorize the remaining terms to obtain g̃i and g̃j . Note that the sum of the product
terms g̃ig̃j can be expressed as |

∑m
i=1g̃i|2, with the square terms subtracted. Further, we express the

term B2

22k−2 =
∑∑

1≤i ̸=j≤m

B2(|b̃i,k|2+|b̃j,k|2
22k−1 as |b̃i,k|2=1. Finally, we complete the squares for each term k.

Using the above value of second moment Eρ|g̃|2, we can compute the variance,

Eρ|g̃−ḡ|2=Eρ|g̃|2−|ḡ|2=
|ḡ|2− 1

m

∑m
i=1|g̃i|2

m−1
+

1

2m(m−1)
∑∑

1≤i ̸=j≤m

m∑
k=1

(
B(b̃i,k−b̃j,k)

2k−1

)2

=
1

2m2

∑∑
1≤i ̸=j≤m

m∑
k=1

(
B(b̃i,k−b̃j,k)

2k−1

)2

We use ḡ2≤ 1
m

∑m
i=1|g̃i|2=

1
2m2

∑∑
1≤i̸=j≤m

(g̃i−g̃j)2≥ 1
2m2

∑∑
1≤i ̸=j≤m

∑m
k=1

(
B(b̃i,k−b̃j,k)

2k−1

)2
.

To simplify this bound, we need to incorporate difference in the actual gradient vectors. For this
purpose, we try to bound the differences |b̃i,k−b̃j,k| in terms of ∆ij≜ |gi−gi|. If

Note that if ∆ij= |gi−gj |, then b̃i,k= b̃j,k,∀k≥ log
(

B
∆ij

)
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.2 PROOF FOR EQUATION (3)

For this section, we consider a single coordinate r∈ [d].

1

m

m∑
i=1

|g(r)i −g
(r)|=

√√√√(1

m

m∑
i=1

|g(r)i −g(r)|

)2

≤

√√√√ 1

m

m∑
i=1

(g
(r)
i −g(r))2

≤

√√√√√ 1

m

m∑
i=1

 1

m

m∑
j=1,j ̸=i

(g
(r)
i −g

(r)
j)

2

≤
√

1

m2

∑∑
1≤i ̸=j≤m

(g
(r)
i −g

(r)
j)2

≤

√√√√ 3

m2

∑∑
1≤i̸=j≤m

(g̃
(r)
i −g̃

(r)
j)2+

6(m−1)
m2

m∑
i=1

(g
(r)
i −g̃

(r)
i)2

≤

√√√√ 3

m2

∑∑
1≤i̸=j≤m

(g̃
(r)
i −g̃

(r)
j)2+

6(m−1)
m

B2

22m−2

max
r∈[d]

1

m

m∑
i=1

|g(r)i −g
(r)|≤

√
3∆Hadamard+

√
6(m−1)

m

B

2m−1

∆Hadamard≥
1√
3
max
r∈[d]

1

m

m∑
i=1

|g(r)i −g
(r)|−

√
2(m−1)

m

B

2m−1

For the first inequality, we use (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i ,∀ai ∈ R, i ∈ [m]. For the second line,

we write down the definition of g(r), and use the above identity again. We then add and subtract
g̃
(r)
i and g̃

(r)
j and separate the square terms. For each pair i,j, we get two terms (g(r)i − g̃

(r)
i)2 and

(g
(r)
j − g̃

(r)
j)2. By summing them up, we get the coefficient of 6(m−1). Since |g(r)j − g̃

(r)
j |≤ B

2m−1 ,
and
√
a+b≤

√
a+
√
b,∀a,b>0, we get the fourth line. Finally, we take a max over the coordinates

r∈ [d] to get the term ∆Hadamard.

D.3 PROOF FOR THEOREM 2

To obtain the coefficients ci, we replace set L=m,n=d,R=logL and σ2= B2

d in (Venkataramanan
et al., 2014a, Eq 2). The proof of this Theorem is same as Theorem 1 for a single dimension, with
the coefficients B

2j−1 replaced by cj and b̃
(r)
i,k replaced by A(k−1)L+b̃i,k

. Following Appendix D.2,
we can write down the ℓ2 error.

Eρ[||g̃−g||22]=Eρ[||g−Eρ[g̃]||22]+Epi[||g̃−Eρ[g̃]||22]

E[g̃] = ḡ = 1
m

∑m
i=1 ḡi, where ḡi =

∑m
j=1 cjA(j−1)L+b̃i,j

. By triangle inequality, the first

term is 1
m

∑m
i=1||gi − ḡi||22, which is bounded individually by B2(1 + 10logL

d exp
(

mlogL
d

)
(δ1 +

δ2))
2
(
1− 2logL

d

)m
by setting L=m,n=d,R=logL,σ2= B2

d and δ0=0 in (Venkataramanan et al.,
2014a, Theorem 1).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For the second term, we need to bound E[||g̃||22].

E[||g̃||22]=
1

m

m∑
i=1

m∑
j=1

c2i ||A(j−1)L+b̃i,j
||22

+
∑∑

1≤i̸=j≤m

Eρ

[
cπ(i)cπ(j)⟨A(π(i)−1)L+b̃i,π(i)

,A(π(j)−1)L+b̃j,π(j)
⟩
]

=
1

m

m∑
i=1

m∑
j=1

c2i ||A(j−1)L+b̃i,j
||22

+
1

m(m−1)
∑∑

1≤i ̸=j≤m

Eρ

[
cπ(i)cπ(j)⟨A(π(i)−1)L+b̃i,π(i)

,A(π(j)−1)L+b̃j,π(j)
⟩
]

=
m2||ḡ||22−

∑m
i=1||g̃i||22

m(m−1)
+

1

m(m−1)
∑∑

1≤i̸=j≤m

m∑
k=1

c2k||A(k−1)L+b̃j,k
−A(k−1)L+b̃i,k

||22

The remainder of the proof follows proof of Theorem 1 with |·|2 replaced by ||·||22.

D.4 PROOF OF EQ (5)

The proof follows that of Eq (3) from Appendix D.2.

∆2=
1

m

m∑
i=1

||gi−g||22≤
1

m2

∑∑
1≤i ̸=j≤m

||gi−gj ||22

≤

√√√√ 3

m2

∑∑
1≤i ̸=j≤m

||g̃i−g̃j ||22+
6(m−1)

m2

m∑
i=1

||gi−g̃i||22

≤3∆reg+6B2(1+
10logL

d
exp

(
mlogL

d

)
(δ1+δ2))

2

(
1− 2logL

d

)m

E PROOFS FOR SECTION 3 AND APPENDIX B

E.1 PROOF OF LEMMA 1

To prove this Lemma, note that b̃i = sign(⟨gi,zi⟩) ̸= sign(⟨g,zi⟩) only if zi is sampled from the
symmetric difference of gi and g. The probability that a zi sampled uniformly from Sd−1 lies in this
symmteric difference is given by arccos(⟨g,gi⟩)/π. If we set ∆corr=

1
mπ

∑
i∈[m]arccos(⟨g,gi⟩)

Let ζ be the fraction of zi such that b̃i ̸=sign(⟨g,zi⟩). Then, by Chernoff bound, we have,

Pr[ζ≥(1+γ)∆corr]≤exp(−γ2m∆corr

2+γ
)

By setting γ to be any small constant, we obtain, with probability 1−O(exp(−m∆corr)), atmost
ζ=Θ(∆corr) fraction of datapoints are not generated from the halfspace with normal g and are thus
corrupted.

E.2 PROOFS OF THEOREM 3 AND 5

To prove Theorem 3, we utilize the guarantees of (Awasthi et al., 2017, Theorem 1), where the sample
complexity requirement ensures that the error is Õ(d

m). Further, (Awasthi et al., 2017, Theorem 1)
obtains error guarantee linear in the noise rate of the samples which is obtained from Lemma 1. The
error guarantee is in terms of the symmetric difference between g̃ and g wrt the uniform distribution
on the unit sphere. Since this is equal to the angle between these two vectors divided by π, this gives
us a bound on the inner product of these two unit vectors.

To prove Theorem 5, from (Kalai et al., 2008, Theorem 12), the sample complexity provides the term
d√
m

while the noise tolerance provides the term
√
d∆corr.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.3 PROOF OF EQUATION (7)

To prove this remark, note that arccos(x) is concave for x ≥ 0. Therefore, by applying Jensen’s
inequality, we obtain,

∆corr=
1

mπ

∑
i∈[m]

arccos(⟨gi,g⟩)≤
1

π
arccos

(
⟨ 1
m

m∑
i=1

gi,g⟩

)
=

1

π
arccos

(
|| 1
m

m∑
i=1

gi||2⟨g,g⟩

)

≤ 1

π
arccos

√√√√|| 1
m

∑
i∈[m]

gi||22

=
1

π
arccos

√√√√||∑i∈[m]⟨gi,gi⟩
m2

+
2

m2

∑∑
1≤i<j≤m

⟨gi,gj⟩||


=
1

π
arccos

√ 1

m
+

2

m2

∑∑
1≤i<j≤m

⟨gi,gj⟩


F ADDITIONAL EXPERIMENT DETAILS

Baselines We implement all the baselines mentioned in Table 2. As all these baselines are suited
to ℓ2 error, for the DME experiment on gaussians, where ℓ2 error is the correct metric, compare
SparseReg (Algorithm 4) to all these baselines. For ℓ∞ error uniform distribution, we implement
NoisySign (Algorithm 1) and HadamardMultiDim (Algorithm 3) and compare it to Correlated
SRQ Suresh et al. (2022), as it’s guarantees hold in single dimensions. We also add comparisons to
its independent variant, SRQ Suresh et al. (2017), and Drive Vargaftik et al. (2021), which performs
coordinate-wise signs. For the unit vector case, we implement OneBit (Algorithm 5 Technique II)
and SparseReg(Algorithm 4) and compare it with one independent compressor (SRQ Suresh et al.
(2017)) and one collaborative compressor (RandKSpatialProj Jiang et al. (2023)). Note that we set
d=512 throughout our experiments and tune the parameters (number of coordinates sent Konečný
& Richtárik (2018); Jhunjhunwala et al. (2021) or the quantization levels in Suresh et al. (2017; 2022))
so that all compressors have the same number of bits communicated. For compressors without tunable
parameters, we repeat them to match the communication budget.

Datasets For the distributed mean estimation task, we generate d dimensional vectors on m=100
clients. To compare ℓ2 error, we generate g with ||g||2=100. Then, each client generates gi from a
N (0,∆2

2), where ∆2∈ [0.001,100]. To compare ℓ∞ error, we generate g uniformly from a hypercube
[−B,B]d where B=100. Each client generates gi from a smaller hypercube [−∆∞,∆∞]d centered at
g where ∆∞∈ [10−3,102]. To compare cosine distance, we generate g uniformly from the unit sphere,
and each client generates gi uniformly from the set of unit vectors at a cosine distance ∆corr from
the g, Here, ∆corr∈ [0.01,0.4].
For KMeans and power iteration, we set m=50. FEMNIST is a real federated dataset where each
client has handwritten digits from a different person. We apply dimensionality reduction to set d=512.
We run 20 iterations of Lloyd’s algorithm Lloyd (1982) for KMeans and 30 power iterations. For
distributed linear regression, the Synthetic dataset is a mixture of linear regressions, with one mixture
component per client. The true model wi∈Rd for each component is obtained from DME setup for
gaussians with ∆2=4. Then, we generate n=1000 datapoints on each client, where the features x
are sampled from standard normal, while the labels y are generated as y= ⟨wi,x⟩+ξ, where ξ is the
zero-mean gaussian noise with variance 10−2. For UJIndoorLoc, we use the first d=512 of the 520
features following Jiang et al. (2023). The task for UJIndoorLoc dataset is to predict the longitude
of a phone call. For both the linear regression datasets, we run 50 iterations of GD. For MNIST and
UJIndoorLoc, we split the dataset uniformly into m chunks one per client.

Metrics With the same number of bits, we can directly compare the error of baselines. For mean
estimation, we measure ℓ2 error, ℓ∞ error and cosine distance for gaussian, uniform and unit vectors
respectively. For KMeans, we report the KMeans objective. For power iteration, we report the
top eigenvalue. For linear regression, we provide the mean squared error on a test dataset. All
the experiments for distributed learning are provided in Figure 2 for the best compressors. For all
experiments except power iteration, lower implies better performance. For power iteration, higher
implies better performance, as we need to find the eigenvector corresponding to the top eigenvalue.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We provide the code in the supplementary material and all the experiments took 5 days to run on a
single 20 core machine with 25 GB RAM.

F.1 LOGISTIC REGRESSION

In this section, we perform additional experiments to compare our methods to logistic regression on the
HAR dataset Reyes-Ortiz et al. (2012). The HAR dataset has6 classes of which we select the last two and
label them with±1. This converts the dataset into a binary classification problem. We split the dataset
into m=20 clients iid. HAR dataset has 561 features which we reduce by PCA to d=512. We perform
logistic regression on this dataset, where the logistic loss for any data point (x,y)∈Rd×{±1} is defined
as ℓ(w,(x,y))=log(1+exp(−⟨w,x⟩·y) for any weight w∈Rd. We report the training loss and test ac-
curacy for different baselines after running distributed Gradient Descent with learning rate0.001 forT =
200 iterations in Figure 3. Following earlier plots, we report the best-performing compressors in the plot.

(a) Training Logistic loss. (b) Test Accuracy.

Figure 3: Performance of compressors for Logistic regression on HAR Reyes-Ortiz et al. (2012) dataset

From the above figure, the best, second best and fourth best compressors in terms of training loss and
test accuracy are our compressors, OneBit, SparseReg and HadamardMultDim respectively. Further,
among the top 4 best-performing schemes only one baseline, RandKSpatialProj, comes in the third.
This shows the benefit of using collaborative compressors.

G DISTRIBUTED GRADIENT DESCENT WITH SPARSEREG COMPRESSOR

This section uses our ℓ2 compressor, SparseReg, for running FedAvg. Each client i∈ [m] contains a lo-
cal objective function fi :W→R. We define the global objective function f(w)= 1

m

∑m
i=1fi(w),∀w∈

W⊂Rd. The goal is to find w⋆∈argminw∈Wf(w). Note that∇f(w)= 1
m

∑m
i=1∇fi(w), therefore,

in our case, the vector gi correspond to∇fi(w). We describe the algorithm in Algorithm 6

We first state the assumptions required for applying the SparseReg compressor.
Assumption 4 (Bounded Gradient). For all w∈W,i∈ [m], we assume that ||∇fi(w)||2≤B.

By this assumption, we ensure that for each iteration t in Algorithm 6, ||gi||2 = ||∇fi(wt)||2 is
bounded. Further, bounded gradients imply that each fi is Lipschitz. By triangle inequality, we can
also establish the following corollary.
Corollary 1. The objective function f(w) is B-Lipschitz, ∀w∈W .

From the above assumptions, it is clear that local objective functions need to be Lipschitz. From
(Bubeck, 2015, Theorem 3.2), if the domain of iterates,W is bounded and f(w) is also convex, then
gradient descent can converge at a rate O(1/

√
T). We use these two assumptions, and establish a

O(1/
√
T) rate along with a error obtained from Theorem 2. We define ∆reg(t) and ∆2,max(t) from

Theorem 2 to be the corresponding errors for gi=∇fi(wt),∀i∈ [m] for any t>0.
Assumption 5 (Bounded domain). The setW is closed and convex with diameter R2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 6 Distributed Projected Gradient Descent with SparseReg compressor

Require: Initial iterate w0∈W , Step size γ>0
Server
SparseReg-Init()
for t=0 to T−1 do

Send wt to all clients i∈ [m].
Receive b̃i

t
from clients i∈ [m].

g̃t← SparseReg-Decode({b̃ti}i∈[m])
wt+1←projW(wt−ηtg̃t)

end for
Client(i) at iteration t
Receive wt from server.
b̃i← SparseReg-Encode(∇fi(wt))
Send b̃ti to server.

Assumption 6 (Convexity). The objective function f(w) is convex ∀w∈W .

We now state our convergence result.
Theorem 6. Under Assumptions 4, 5, 6, running Algorithm 6 for T iterations with step size ηt= R

B
√
T

,

with probability 1−2m2LT exp(−dδ21/8)−mT
(

L2δ2

logL

)−m

we have,

E[f(w̄T)]−f(w⋆)≤ R(2B2+Γ1)

2B
√
T

+
√

Γ1R, where, w̄T =
1

T

T−1∑
t=0

wt

Γ1=B2

(
1+

10logL

d
exp

(
mlogL

d

)
(δ1+δ2)

)2(
1− 2logL

d

)m

,

Γ2= max
t∈{0,1,...,T−1}

min{∆reg(t),∆2,max(t)}

(11)

From the above theorem, we can see that the high probability terms and Γ1 and Γ2 are obtained from
Theorem 2. Note thatΓ=O(B2exp(−m/d)), therefore, for largem, the additional bias term ofR

√
Γ1

is very small. Further, the termΓ2≤B2, therefore,Γ2 only affects constant terms in the convergence rate
due to

√
T in the denominator. If exp(−m/d)=O(1/

√
T) or m=Ω(dlogT), the final convergence

rate of Algorithm 6 isO(RB/
√
T) which is the rate for distributed GD without compression.

We provide the proof for the above theorem, which modifies the proof of (Bubeck, 2015, Theorem 3.2)
to handle a biased gradient oracle. We can also extend our analysis to other function classes, for
instance strongly convex functions, by using existing works on biased gradient oracles Ajalloeian
& Stich (2020). Extending the proof to FedAvg from distributed GD would require using biased
gradient oracles in Li et al. (2020). Further, these proofs can also be extended to HadamardMultiDim
compressor, with an additional

√
d factor in the corresponding error terms from Theorem 1 to account

for conversion from ℓ∞ to ℓ2 norm.

G.1 PROOF OF THEOREM 6

At any iteration t > 0, we use g̃t to denote the estimate of ∇f(wt). From the proof of Theorem 2,
||Et[g̃

t]−∇f(wt)||2≤
√
Γ1, and Vart(g̃t|wt)≤Γ2,∀t > 0, where Et and Vart are the expectation

and variance wrt the randomness in the SparseReg compressor at iteration t. We take a union bound
over the high probability terms in Theorem 2 over all iterations t=0 to T−1.

We can write the following equation by convexity of f(wt).

f(wt)−f(w⋆)≤⟨∇f(wt),wt−w⋆⟩=⟨g̃t,wt−w⋆⟩+⟨∇f(wt)−g̃t,wt−w⋆⟩

≤ 1

2η
(||wt−w⋆||22−||wt−ηg̃t−w⋆||22)+η||g̃t||22/2+⟨∇f(wt)−g̃t,wt−w⋆⟩

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

In the second line, we use 2⟨a, b⟩ = ||a||22 + ||b||22 − ||a− b||22. Now, taking expectation wrt the
randomness in SparseReg at iteration t, we obtain,

Et[f(w
t)]−f(w⋆)≤ 1

2η
(||wt−w⋆||22−Et[||wt−ηg̃t−w⋆||22])+ηEt[||g̃t||22]/2

+⟨∇f(wt)−Et[g̃
t],wt−w⋆⟩

≤ 1

2η
(||wt−w⋆||22−Et[||wt+1−w⋆||22])+η(||Et[g̃

t]||22+Vart(g̃t))/2

+||∇f(wt)−Et[g̃
t]||2 ·||wt−w⋆||2

≤ 1

2η
(||wt−w⋆||22−Et[||wt+1−w⋆||22])+η(B2+Γ2)/2+

√
Γ1R

In the second line, we use the non-expansiveness of projections on a convex set,
||wt − ηg̃t − w⋆||2 ≥ ||projW(wt − ηg̃t − w⋆)||2, the decomposition of 2nd moment into
square of mean and variance, and cauchy-schwartz inequality. In the third line, we plug in bounds of
Γ1,Γ2, diameter of the set and by triangle inequality, argue that E[g̃t] also lies in an ℓ2 ball of radius B.

Finally, we take expectations wrt all random variables, unroll the recursion from t=0 to T , and divide
both sides by T .

1

T

T∑
t=0

E[f(wt)]−f(w⋆)≤ R2

2ηT
+
η(B2+Γ2)

2
+
√

Γ1R≤
R(2B2+Γ1)

2B
√
T

+
√
Γ1R

We obtain the final inequality by plugging in the step size η = R
B
√
T

. By convexity of f , for

w̄T =
∑T−1

t=0 wt, we obtain,

E[f(w̄T)]−f(w⋆)≤ 1

T

T−1∑
t=0

E[f(wt)]−f(w⋆)≤ R(2B2+Γ1)

2B
√
T

+
√
Γ1R

25

	Introduction
	Related Works

	Optimal Dependence on m
	HadamardMultiDim
	Sparse regression coding
	Motivating Example

	One-bit Schemes
	Experiments
	Conclusion
	NoisySign for unbounded gi
	Analysis of OneBit Technique II
	Proofs for Appendix A
	Proof of lem:signerror
	Proof of rem:noisysigndelta

	Proofs of sec:optimalm
	Proof of lem:hadamarderror
	Proof for rem:deltahadamard
	Proof for lem:sparsereg
	Proof of Eq (5)

	Proofs for sec:onebit and sec:onebitadd
	Proof of lem:label flip
	Proofs of lem:onebitoptimalbias and 5
	Proof of rem:deltacorr

	Additional Experiment Details
	Logistic Regression

	Distributed Gradient Descent with SparseReg Compressor
	Proof of Theorem 6

