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ABSTRACT

We consider a dynamic assortment selection and pricing problem in which a seller
has n different items available for sale. In each round, the seller observes d-
dimensional contextual preference information for the user and offers to the user
an assortment of K items at prices chosen by the seller. The user selects at most
one of the products from the offered assortment according to a multinomial logit
choice model whose parameters are unknown. The seller observes which, if any,
item is chosen at the end of each round, with a goal of maximizing cumulative
revenue over a selling horizon of length T . For this problem, we propose an algo-
rithm that learns from user feedback and achieves n-independent revenue regret
of order Õ(d

√
T ). We also show that this regret rate is optimal, up to logarithmic

factors, by obtaining lower bounds for the regret achievable by any algorithm.

1 INTRODUCTION

In online marketplaces, dynamic assortment selection and pricing for sequentially arriving buyers
presents a challenging context for online learning. Since the preferences of buyers are varying and
uncertain, adaptive strategies are essential to meet their needs and maximize the effectiveness of
offers. To address this problem, we investigate the application of online learning techniques for
contextual assortment selection and pricing. Assortment selection involves the seller choosing a
subset of items from a vast catalog to present to buyers, and dynamically assigning prices to the
offered items. The overall goal is to maximize revenue over the course of repeated interactions.

Dynamic assortment selection and pricing strategies are deployed in a variety of online sectors in-
cluding e-commerce (e.g., Amazon, eBay), travel (e.g., Expedia), hospitality (e.g., Airbnb), and
food delivery (e.g., Doordash). With similar systems becoming ubiquitous in our daily lives, there is
a growing opportunity to deliver tailored product recommendations and pricing adjustments. There-
fore, it is crucial to consider data-driven approaches that can enhance user experiences and boost
profitability in today’s highly competitive digital industry.

We consider designing sequential assortment selection and pricing algorithms that offer a sequence
of menus (assortments) of up to K items from a catalog (set) of n possible items. The learning
agent (seller) makes sequential decisions and receives human (user) feedback. The feedback at
each round is the particular item chosen by the user from the offered assortment. We assume that
the item choice follows a multinomial logistic (MNL) model (McFadden, 1978), which is one of
the most widely used models in dynamic assortment optimization literature (Caro & Gallien, 2007;
Rusmevichientong et al., 2010; Sauré & Zeevi, 2013; Agrawal et al., 2017; Aouad et al., 2018;
Agrawal et al., 2019). Because assortment-based offers are relevant to many industries that involve
access to additional information about users, contextual assortment selection models have gained
significant traction in recent years (Chen et al., 2020; Oh & Iyengar, 2021). In alignment with this
approach, we assume that the utility parameters in the MNL choice model are linear functions of
d-dimensional context vectors that are revealed at each round.

To faithfully address a range of real-world scenarios where price optimization is essential for maxi-
mal revenue, we incorporate the pricing of items in the offered assortment as a second component of
the seller’s problem. This differs from most, if not all, previous literature on sequential assortment
selection, wherein prices (or revenues) are assumed to be predetermined for each item in the catalog.
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Figure 1: A seller has access to a set (catalog) of n = 6 distinct items, from which it can advertise
to sequentially arriving users. In each round, the seller offers an assortment of K = 3 items at
well-chosen prices. The user selects one of the products from the offered assortment (represented
with a green background), or rejects all offered items (represented with a red background).

In the process of offering a sequence of assortments with judiciously chosen prices, the seller’s goal
is to maximize the expected revenue accumulated over a time horizon of T rounds. However, since
the seller does not have knowledge of the parameters of the contextual choice model ahead of time,
it encounters the dilemma of exploration vs. exploitation. In particular, the seller’s decisions involve
a trade-off between learning the choice model in order to increase long-term revenues and earning
short-term revenues by leveraging the already-acquired information.

We tackle this challenge by developing an upper confidence bound (UCB) based algorithm that
computes tight upper bounds for the utility parameters in the MNL model. Then, using these upper
bounds, it calculates optimistic allocations and pricing vectors that strike a balance between explo-
ration and exploitation. Consistent with the sequential decision-making literature, we measure the
performance of algorithms using a relevant notion of regret, defined as the difference between the
expected revenue generated by the algorithm and the offline optimal expected revenue when all pa-
rameters are known. We show that our algorithm enjoys a revenue regret of order Õ(d

√
T ), which,

as we show, is the best possible up to logarithmic factors in d and T .

1.1 RELATED WORKS

Generalized Linear Bandits: For sequential decision-making with contextual information, linear
bandits, generalized linear bandits, and their variants have been widely studied (Rusmevichientong
& Tsitsiklis, 2010; Abbasi-Yadkori, 2011; Chu et al., 2011; Li et al., 2017). Nonetheless, these
methods are limited to modeling the single-item selection scenario, which is becoming less common
in practice compared to the multiple-item offering scenarios that we focus on in this work. There
is a line of literature that considers combinatorial variants of the contextual bandit problem mostly
with semi-bandit or cascading feedback (Chen et al., 2013; Qin et al., 2014; Kveton et al., 2015;
Zong et al., 2016). However, these methods fail to capture the substitution effects since they do not
take the user choice model into account. In contrast, the item choice (feedback) that we consider
under the multinomial logit (MNL) model is a function of all items in the offered assortment as well
as their prices.

MNL Bandits: There has been an emerging body of literature on multinomial logit (MNL) bandits
in both non-contextual (Cheung & Simchi-Levi, 2017; Agrawal et al., 2017; 2019) and contextual
settings (Chen et al., 2020; Oh & Iyengar, 2021). While these studies address the sequential assort-
ment selection problem under the MNL choice model, their algorithms exclusively operate based on
the assumption of fixed prices (or revenues) for the items. Consequently, they do not account for the
potential effects of price optimization strategies that could be employed when presenting items to
consumers.
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Table 1: Comparison of related works and provided regret bounds. T is the number of rounds, K is
the assortment size, n is the total number of items, d is the feature dimension. The big-O and big-Ω
notations denote the regret upper and lower bounds, respectively. To the best of our knowledge, we
are the first to jointly address the problems of contextual assortment selection and pricing.

Context Assortment Pricing Regret

Agrawal et al. (2019) No Yes No Õ(
√
nT ), Ω(

√
nT/K)

Chen et al. (2020) Yes Yes No Õ(d
√
T ), Ω(d

√
T/K)

Oh & Iyengar (2021) Yes Yes No Õ(
√
dT )

Javanmard et al. (2020) Yes No Yes O(log(Td)
√
T )

Perivier & Goyal (2022) Yes No Yes Õ(d
√
T ) 1

This Work (Algorithm 2) Yes Yes Yes Õ(d
√
T ), Ω(d

√
T )

Bandits for Dynamic Pricing: The problem of dynamic pricing has been typically modeled as
a variant of the multi-armed bandit problem that aims to maximize revenue from selling copies of
a single good to sequentially arriving users (Kleinberg & Leighton, 2003; Besbes & Zeevi, 2009;
Bubeck et al., 2019; Paes Leme & Schneider, 2018; Xu & Wang, 2021). However, all of these works
address the pricing problem of offering a single item in each round. Our contribution stands out by
considering the combinatorial aspect of the assortment selection problem faced in simultaneously
offering multiple items, a factor that was not taken into account in most of the prior literature on dy-
namic pricing. A recent study by Javanmard et al. (2020) considers the problem of pricing multiple
items that are offered under the MNL choice model. However, in contrast to our work, their frame-
work assumes that all available items are offered to the buyer and hence the seller does not need to
decide on an assortment as a part of its actions. In their work, they propose an almost-optimal al-
gorithm that can achieveO(log(Td)

√
T ) regret for their pricing-only setting. Comparing this result

with the regret lower bound of order Ω(d
√
T ) for our problem, we see that the problem of dynamic

assortment selection and pricing is fundamentally harder. Another recent study by Perivier & Goyal
(2022) also considers the problem of pricing multiple items that are offered under the MNL choice
model with the additional assumption of an adversarial arrival model for users. Similarly, they also
do not consider assortment selection decisions while optimizing the prices of the items.

Reinforcement Learning with Human Feedback: The framework of reinforcement learning with
human feedback (RLHF) has recently gained popularity through its empirical success in aligning hu-
man values with machine learning systems, including InstructGPT (Ouyang et al., 2022). The central
goal of RLHF is to learn the rewards of different actions using human feedback that is received in
the form of pairwise or K-wise comparisons between actions. Notably, in many deployments of
RLHF, the human feedback is modeled through the Plackett-Luce (PL) model which is equivalent to
the multinomial logit (MNL) choice model that we employ in our analysis (Luce, 2012; Liu, 2009;
Christiano et al., 2017; Ouyang et al., 2022; Zhu et al., 2023).

1.2 OUR CONTRIBUTIONS

To the best of our knowledge, we are the first to address the problem of dynamic contextual assort-
ment selection and pricing. Our contributions are as follows:

• We introduce and formalize the problem of sequential assortment selection and pricing under
contextual MNL choice probabilities.

• We develop an upper confidence bound (UCB) based algorithm for the contextual assortment
selection and pricing problem (Algorithm 2). We show that it achieves n-independent Õ(d

√
T )

regret in T rounds where d is the dimension of the context vectors.
• We further improve the time and space complexity of our algorithm by leveraging online Newton

step (ONS) techniques for parameter estimation.
• We show that for any algorithm, there exists an adversarial problem instance such that it incurs
Ω(d
√
T ) regret. Therefore, Algorithm 2 enjoys optimal regret up to logarithmic terms in d and T .

1Their work considers an adversarial arrival model.
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2 PROBLEM DEFINITION

Notation: We use bold lowercase font for vectors x and uppercase font for matrices X . For a
vector x, we denote its i-th entry by xi and we use ∥x∥ to denote its ℓ2-norm. For two vectors x
and y, we use (x;y) to denote their concatenation and use ⟨x,y⟩ to denote their inner product. For
a vector x and a positive semi-definite matrix W , we use ∥x∥W to denote the weighted ℓ2-norm.
For any positive integer n, we use [n] to denote the set {1, 2, . . . , n}.
We consider the problem of online assortment selection and pricing for selling items to sequentially
arriving buyers. We denote the set of available items by [n] and consider that the seller is constrained
to offer at most K items to each buyer. Accordingly, we let SK := {S ⊆ [n] : |S| ≤ K} denote the
set of all possible assortments that the seller can choose to offer.

At each time t ∈ [T ], the seller observes random feature vectors xti ∈ Rd for each item i ∈ [n].
Given this contextual information, the seller offers an assortment of items St ∈ SK and chooses a
price pti ∈ R+ for each offered item i ∈ St. At the end of each round t, the seller observes only
the purchase decision it ∈ St ∪ {0} of the buyer and obtains revenue ptit . Here, {0} represents the
no-purchase option (or outside option), which indicates that the user did not choose any item offered
in St, resulting in revenue pt0 = 0.

For convenience, we let pt ∈ Rn
+ denote the collection of prices chosen for all items where the

prices are set to pti = 0 for items that are not offered, i.e. i /∈ St.

For a given assortment St and price vector pt, the buyer’s decision it is a categorical random variable
with support St ∪ {0}. We model this decision via the widely used multinomial logit (MNL) choice
model (McFadden, 1978) under a linear utility function. Formally, the choice probability for each
item i ∈ St (and the no-purchase option) is assumed to be given as in the following assumption.

Assumption 1 (Multinomial logit choice under linear utility). The utility of the buyer at time t for
item i is given by the linear model

uti(p) = ⟨ψ∗,xti⟩ − ⟨ϕ∗,xti⟩ · p

where ψ∗ ∈ Rd and ϕ∗ ∈ Rd are time-invariant parameter vectors unknown to the seller agent.
In this model, the αti := ⟨ψ∗,xti⟩ term represents the buyer’s base valuation of the item while the
βti := ⟨ϕ∗,xti⟩ term represents the buyer’s price sensitivity.

Then, given an assortment St with prices pt, the probability that the buyer selects item i ∈ St is

qt(i|St,pt) :=
exp{uti(pti)}

1 +
∑

j∈St
exp{utj(ptj)}

, i ∈ St.

Consequently, the probability of no purchase is

qt(0|St,pt) :=
1

1 +
∑

j∈St
exp{utj(ptj)}

.

Under the MNL model, the expected revenue at time t is given by

Rt(St,pt) :=
∑
i∈St

pti · qt(i|St,pt) (1)

for any selection of assortment St ∈ SK and price vector pt ∈ Rn
+. Thus, for a sequence of

assortments St ∈ SK and price vectors pt ∈ Rn
+ chosen for each time t ∈ [T ], the cumulative

expected revenue can be written as
∑T

t=1 Rt(St,pt).

After the seller decides on the assortment St ∈ SK and prices pt ∈ Rn
+ to offer to the user at each

time t, the user reports the item it ∈ St ∪ {0} that they have decided to purchase. We denote by
Ht the history {{xτi}i∈[n], Sτ ,pτ , iτ}t−1

τ=1 of observations available to the seller when choosing the
next set of assortment St ∈ SK along with the next price vector pt. Then, the seller agent employs
a policy π = {πt|t ∈ [T ]}, which is a sequence of functions, each mapping the history Ht and the
context vectors {xti}i∈[n] to an action (St,pt) ∈ SK × Rn

+.
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Given the contextual information at every round t, the task of the seller is to sequentially offer the
items to users at well-chosen prices such that it can achieve maximal revenue. To evaluate policies
in achieving this objective, we define the regret metric that measures the gap between the expected
revenue of policy π and that of the offline optimal sequence of assortments and prices. The regret
RT for a time horizon of T periods is defined as

RT :=

T∑
t=1

Rt(S
∗
t ,p

∗
t )−

T∑
t=1

Rt(St,pt),

where (S∗
t ,p

∗
t ) denotes an offline optimal assortment and price selection that satisfies

(S∗
t ,p

∗
t ) ∈ argmax

S∈SK
p∈Rn

+

Rt(S,p). (2)

Based on this definition of the regret metric, we see that regret minimization is equivalent to maxi-
mizing the cumulative expected revenue.

3 OPTIMAL ASSORTMENT SELECTION AND PRICING

As stated in Assumption 1, we assume that buyers’ purchase decisions are given by a multinomial
logit (MNL) model. Therefore, the assortment and price optimization at time t can be formulated as

max
St∈SK
pt∈Rn

+

Rt(St,pt) = max
St∈SK
pt∈Rn

+

∑
i∈St

pti · qt(i|St,pt) (3)

= max
St∈SK
pt∈Rn

+

∑
i∈St

pti exp{uti(pti)}
1 +

∑
j∈St

exp{utj(ptj)}
. (4)

We also recall that the utility functions are given by linear form uti(p) = αti − βtip where αti =
⟨ψ∗,xti⟩ and βti = ⟨ϕ∗,xti⟩.
Next, we make the following regularity assumption.

Assumption 2. There exists a constant L0 > 0 such that price sensitivity βti = ⟨ϕ∗,xti⟩ satisfies
βti ≥ L0 for all t ∈ [T ] and i ∈ [n], almost surely.

This assumption ensures that the utility function uti(p) is decreasing in price and hence infinity is
a so-called null price, i.e. limp→∞ peuti(p) = 0 for all i ∈ [n]. This property is crucial in ensuring
that the objective function in equation 4 has a finite maximum. Because if we had ⟨ϕ∗,xti⟩ ≤ 0 for
some i ∈ St, we would have limp→∞ peuti(p) = ∞ and hence, letting pti → ∞ would cause the
objective function (i.e., expected revenue) to increase without bound. To avoid this complication,
we make the regularity assumption given in Assumption 2.

Under the MNL choice model with known linear utility functions, Wang (2013) shows that the
optimum assortment and prices can be characterized as in the following proposition.

Proposition 1 (Optimum assortments and prices). Under linear utility functions uti(p) = αti−βtip
with βti > 0 for all i ∈ [n], the optimum prices are given by

p∗ti =
1

βti
+Bt,

where Bt is defined to be the unique solution of the fixed point equation

B = max
S∈SK

∑
i∈S

vti(B) (5)

for vti(B) := eαti−βtiB−1/βti. Furthermore, the optimum assortment S∗
t is the assortment S that

achieves the maximum in the optimization problem in equation 5, and the optimum revenue achieved
by (S∗

t ,p
∗
t ) is equal to Bt.
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To solve the fixed point equation given in equation 5, we observe that vti(B) is a strictly decreasing
function in B for any i ∈ [n]. Hence, we can show that the right-hand side of equation 5 is a strictly
decreasing function in B, implying that it has a unique fixed point.

As we will show in Lemma 1, our regularity assumptions ensure that this fixed point lies in the
interval [0, P0] for some finite P0. Therefore, we can appeal to a binary search algorithm over the
interval [0, P0] to find the fixed point. Since each iteration of this binary search algorithm requires
us to compute vti(B) value for all i ∈ [n], it has a computational complexity of O(n). For the sake
of completeness and future reference, we describe this procedure in Algorithm 1.

Algorithm 1 Assortment selection and pricing for linear utility functions

1: Input: Accuracy parameter ϵ, search interval [0, P0], utility parameters αti and βti for i ∈ [n]
2: Bℓ = 0, Br = P0

3: while Br −Bℓ > ϵ do
4: B ← (Br +Bℓ)/2
5: if B > maxS∈SK

∑
i∈S vti(B) then Br ← B else Bℓ ← B

6: Output: B

4 METHODOLOGY

In this section, we discuss how to estimate parameters based on user choices, introduce our assort-
ment selection and pricing algorithms, and provide their regret bounds.

4.1 MLE FOR MULTINOMIAL LOGISTIC REGRESSION

Since the seller does not have access to problem parameters ψ∗ ∈ Rd and ϕ∗ ∈ Rd, it cannot
directly compute the optimum assortments and prices given by Proposition 1. Therefore, it needs to
construct an estimate of the parameters based on the history Ht of observations. In this work, we
consider a policy that uses the maximum likelihood estimate (MLE) of the parameters as we briefly
describe in this section.

For convenience, we let θ = (ψ;ϕ) and x̃ti = (xti;−ptixti) denote the extended parameter and
feature vectors such that

⟨θ, x̃ti⟩ = ⟨ψ,xti⟩ − ⟨ϕ,xti⟩ · pti.

Then, we write the MNL choice probabilities under parameter θ = (ψ;ϕ) using the notation

qt(i|St,pt;θ) =
exp{⟨ψ,xti⟩ − ⟨ϕ,xti⟩ · pti}

1 +
∑

j∈St
exp{⟨ψ,xtj⟩ − ⟨ϕ,xtj⟩ · ptj}

=
e⟨θ,x̃ti⟩

1 +
∑

j∈St
e⟨θ,x̃τj⟩

.

Based on the observations up to time t, the negative log-likelihood function is given by

ℓt(θ) := −
t−1∑
τ=1

log qτ (iτ |Sτ ,pτ ;θ),

which is also known as the cross-entropy error function for the multi-class classification problem.
Then, as we formalize in the next proposition, the maximum likelihood estimate is given as the
minimizer of the negative log-likelihood function.

Proposition 2. The maximum likelihood estimator is any parameter θ̂t that minimizes the negative
log-likelihood function over the parameter space, that is

θ̂t ∈ argmin
θ

ℓt(θ). (6)

The negative log-likelihood function ℓt(θ) is convex over θ ∈ R2d. Therefore, any parameter θ̂t
that satisfies the first order optimality condition∇θℓt(θ̂t) = 0 is a maximum likelihood estimate.

Furthermore, if the Gram matrix Vt−1 =
∑t−1

τ=1

∑
i∈Sτ

x̃τix̃
⊤
τi is positive definite, then ℓt(θ) is

strongly convex and thus admits a unique minimizer.

Since the negative log-likelihood function is convex over θ ∈ R2d, we can use gradient-based convex
optimization methods to find an MLE solution (Boyd & Vandenberghe, 2004).
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Algorithm 2 DASP-MNL: Dynamic Assortment Selection and Pricing under MNL Model

1: Input: initialization rounds T0, confidence parameters {αt}t∈[T ], minimum price sensitivity L0

2: V0 ← 0 ∈ R2d×2d

3: for t = 1, 2, . . . , T0 do ▷ initialization rounds
4: Choose St uniformly at random from {S ⊆ [n] : |S| ≤ K}
5: Choose pti independently and uniformly at random from [1, 2] for all i ∈ St

6: Offer assortment St at price pt and observe it
7: Vt ← Vt−1 +

∑
i∈St

x̃tix̃
⊤
ti

8: for t = T0 + 1, T0 + 2, . . . , T do
9: Compute gti := αt∥(xti,xti)∥V −1

t
for all i ∈ [n] ▷ Confidence bonus

10: Compute θ̂t = (ψ̂t, ϕ̂t) by solving equation 6 ▷ MLE
11: Let hti(p) = min{⟨ψ̂t,xti⟩+ gti, 1} −max{⟨ϕ̂t,xti⟩ − gti, L0} · p for all i ∈ [n]

12: Choose (St,pt) using Algorithm 1 with linear functions hti(p)
13: Offer assortment St at price pt and observe it
14: Vt ← Vt−1 +

∑
i∈St

x̃tix̃
⊤
ti

4.2 ALGORITHM

The basic idea of our algorithm is to construct an upper confidence bound for the revenue function
Rt(S,p). The upper confidence bound (UCB) techniques and the optimism in the face of uncertainty
(OFU) principle have been widely known to be effective in balancing the exploration and exploita-
tion in many bandit problems, including multi-armed bandits (Lattimore & Szepesvári, 2020), linear
bandits (Dani et al., 2008; Abbasi-Yadkori, 2011) and generalized linear bandits (Li et al., 2017).

At each round t, our algorithm determines the assortments and prices according to the OFU principle
in order to ensure low regret. In particular, we construct a pointwise confidence upper bound hti(p)
for each utility function uti(p), i.e., hti(p) ≥ uti(p) for all p ∈ R+ with high probability.

In this construction, we use the maximum likelihood estimate θ̂t = (ψ̂t, ϕ̂t) calculated by solv-
ing the maximum likelihood problem described above in equation 6. Then, given the MLE of the
parameters, the obtained upper bound is of the form

hti(p) = min{⟨ψ̂t,xti⟩+ gti, 1} −max{⟨ϕ̂t,xti⟩ − gti, L0} · p,

where gti = αt∥(xti,xti)∥V −1
t

is the confidence bonus for some confidence radius αt. As a result,
we can replace each uti(p) in equation 1 with hti(p) to obtain the revenue function upper bound

R̃t(S,p) :=

∑
i∈St

pti exp{hti(pti)}
1 +

∑
j∈St

exp{htj(ptj)}
. (7)

As we verify in proving our regret bounds, this estimate satisfies R̃t(S,p) ≥ Rt(S,p) for any
S ∈ SK and any p ∈ Rn

+. Using R̃t as a proxy for Rt, we choose the assortments and prices
according to

(St,pt) ∈ argmax
S∈SK
p∈Rn

+

R̃t(S,p). (8)

As discussed in Section 3, we can solve this optimization problem using the binary search method
described in Algorithm 1 with estimated linear functions hti(p).

4.3 REGRET ANALYSIS

Our main result presented in Theorem 3 concerns the regret upper bound for Algorithm 2. We show
this result under the following assumption on the context process which is a standard assumption
made in the generalized linear bandit (Li et al., 2017) and MNL contextual bandit (Chen et al., 2020;
Oh & Iyengar, 2021) literature.
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Assumption 3 (Stochastic and bounded features). Each feature vectorxti is an independent random
variable with unknown distribution; they satisfy ∥xti∥ ≤ 1, and there exists a constant σ0 > 0 such
that E[xtix

⊤
ti ] ≽ σ0I . Furthermore, parameter vectors satisfy ∥(θ∗,ϕ∗)∥ ≤ 1.

Accordingly, we can demonstrate in Theorem 3 that Algorithm 2 enjoys Õ(d
√
T ) regret bound in

terms of key problem primitives n, d and T . This regret rate is independent of the number of items
n, and is thus applicable in settings with a very large number of candidate items. Even though our
regret upper bound does not capture the dependency with respect to the assortment size parameter K,
the maximum assortment size is typically small (i.e., K = O(1)) in many real-world applications.
Theorem 3. Suppose Assumptions 1, 2, and 3 hold and we run DASP-MNL (Algorithm 2) with
confidence width αt given in equation 12 and initialization length T0 given in equation 10. Then,
the expected regret for a sufficiently large time horizon T is upper-bounded as

RT ≤ C1 · d
√
T log T log(T/d)

for some constant C1 independent of n, d and T .

Proof. (Sketch) In proving our regret bounds, we first show that the fixed point Bt defined in Propo-
sition 1 lies within [0, P0] for some P0, allowing us to constrain our search for the fixed point into
a bounded interval. This result also implies that the optimum prices p∗ti are bounded within [1, P ]
for some P . Then, we show that T0 = Θ(d + log T ) rounds of random initialization is enough to
ensure that Θ(σ−2

0 (d + log T + P 2)) is invertible at the end of the initialization phase with high
probability. Similar to Li et al. (2017) and Oh & Iyengar (2021), the independence assumption
(Assumption 3) on the feature vectors xti is only needed to ensure that VT0

is invertible at the end
of the initialization phase. We do not require this stochasticity assumption in the rest of the regret
analysis. Therefore, after the random initialization period of the first T0 rounds, the context vectors
xti can even be chosen adversarially as long as their norms ∥xti∥ are bounded and they satisfy the
minimum price sensitivity condition ⟨ϕ∗,xti⟩ ≥ L0.

In the next step, we show that the assortments St and prices pt chosen at any round t give rise to
a sufficiently large probability of selection for any item i ∈ St under any parameter θ sufficiently
close to θ∗. This condition is central in showing that the maximum likelihood estimator is consistent
and satisfies a finite-sample normality-type estimation error bound. Based on these error bounds,
we construct optimistic utility estimate functions hti(p) that provide tight upper bounds for the true
utility functions uti(p) with high probability. This result in turn implies that R̃t(S,p) ≥ Rt(S,p)
for any S ∈ SK and any p ∈ Rn

+. Finally, we decompose the regret into two parts where some
suitable defined good event holds (with high probability) and it does not. We defer the additional
details to Appendix B.

4.4 EXTENSION TO ONLINE PARAMETER UPDATE

Algorithm 2 is simple to implement and enjoys provable regret bounds as shown in Theorem 3.
However, the computation of the MLE at each round of Algorithm 2 requires access to all feature
vectors corresponding to previous assortments. To reduce both the time and space complexities of
our algorithm and improve its efficiency, we can instead use an online parameter update rule. The
online version presented as Algorithm 3 in Appendix C finds an approximate MLE solution only
using the context vectors corresponding to the last assortment. To achieve this, we use the fact that
the negative log-likelihood function is strongly convex after initialization and apply a variant of the
online Newton step discussed in Hazan et al. (2014); Zhang et al. (2016); Oh & Iyengar (2021). We
show that the modified algorithm still enjoys Õ(d

√
T ) even with the online update.

Theorem 4. Suppose Assumptions 1, 2, and 3 hold and we run DASP-MNL with online parameter
updates (Algorithm 3) with confidence width αt given in equation 18 and initialization length T0

given in equation 10. Then, the expected regret for a sufficiently large time horizon T is upper-
bounded as

RT ≤ C2 · d
√

T log T log(T/d)

for some constant C2 independent of n, d and T .

Proof. See Appendix C for the proof.
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4.5 REGRET LOWER BOUNDS FOR ASSORTMENT SELECTION AND PRICING PROBLEM

In this section, we establish a regret lower bound of order Ω(d
√
T ) in terms of key problem prim-

itives n, d, and T for the problem of assortment selection and pricing under the contextual MNL
choice model. This result demonstrates that the proposed algorithm DASP-MNL (Algorithm 2) and
its online version (Algorithm 3) are optimal, up to logarithmic terms in d and T .

Theorem 5. There exists a universal constant C3 such that for any maximum assortment size K ≥ 1,
any minimum price sensitivity L0 > 0, any context dimension d divisible by 4, and any policy π,
there exists a worst-case problem instance with n = Θ(K · 2d) items, bounded context vectors (i.e.,
∥xti∥ ≤ 1 for all i ∈ [n]), and bounded feature vectors (i.e., ∥(θ∗;ϕ∗)∥ ≤ 1) such that the regret of
π is lower bounded by C3 · d

√
T/L0.

Proof. (Sketch) At a high level, we prove this theorem in three steps. In the first step, we construct
an adversarial set of parameters and reduce the task of lower bounding the worst-case regret of any
policy to lower bounding the Bayes risk over the constructed parameter set. In the second step, we
use a counting argument similar to the one used in Chen & Wang (2018) and Chen et al. (2020)
to provide an explicit lower bound on the Bayes risk of the constructed adversarial parameter set.
Finally, we apply Pinsker’s inequality to complete the proof. We defer the details of the proof to
Appendix D.

5 NUMERICAL EXPERIMENTS

In this section, we demonstrate the efficacy of our proposed algorithms: DASP-MNL presented
in Algorithm 2 and its online version Algorithm 3. We numerically evaluate our algorithms over
independently generated problem instances and provide our results in Figure 2. In each instance,
we generate problem parameters (ψ∗;ϕ∗) and context vectors xti by sampling their entries from
uniform distributions such that we satisfy Assumptions 2 and 3. See Appendix E for further details.
For various assortment sizes K and various numbers of feature dimensions d, we run 20 independent
problem instances with n = 100 items.
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DASP-MNL DASP-MNL (Online Newton Step) M3P (Javanmard et al., 2020) DBL-MNL (Oh & Iyengar, 2021)

Figure 2: Cumulative regret of DASP-MNL (Algorithm 2), its online version (Algorithm 3), M3P
(Javanmard et al., 2020), and DBL-MNL (Oh & Iyengar, 2021). The center lines show the mean
across the runs while the error bars indicate two standard deviations. Results demonstrate the effi-
cacy of our algorithms in achieving diminishing regret per round as our theoretical results predict.

We compare the performances of our proposed algorithms with those of a state-of-the-art MNL as-
sortment selection algorithm DBL-MNL (Oh & Iyengar, 2021) and an MNL pricing algorithm M3P
(Javanmard et al., 2020). Since DBL-MNL is only designed for assortment selection in settings with
fixed prices, we consider the price as a hyper-parameter and run the algorithm with the best selection
of fixed pricing. On the other hand, M3P is designed to optimize prices under the assumption that
all n items can be offered without any need for assortment selection. To account for the assortment
size limitations of our experimental setting, we consider a version of this algorithm that only offers
top K items (based on their estimated utility value) under the prices chosen by M3P. Figure 2 il-
lustrates that our algorithms, which simultaneously address both assortment selection and pricing,
outperform methods that concentrate solely on either assortment selection or pricing.
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A PROOF OF PROPOSITION 2

For each item i ∈ St ∪ {0}, we define the choice response variables yti = 1{it = i} ∈ {0, 1}.
Furthermore, let us denote qti(θ) = qt(i|St,pt;θ) as the St and pt dependency is clear from the
context throughout the proof. Then, the gradient of these probabilities with respect to θ can be
written as

∇θqti(θ) = qti(θ)

x̃ti −
∑
j∈St

qtj(θ)x̃tj

 .

On the other hand, we can write the negative log-likelihood function at time t as

ℓt(θ) := −
t−1∑
τ=1

∑
i∈Sτ∪{0}

yti log qτi(θ).

Calculating the gradient of this negative log-likelihood with respect to θ we obtain

∇θℓt(θ) =

t−1∑
τ=1

∑
i∈Sτ

(qτi(θ)− yτi)x̃τi

On the other hand, the Hessian of the negative log-likelihood is given by

∇2
θℓt(θ) =

t−1∑
τ=1

∑
i∈Sτ

qτi(θ)x̃τi

x̃τi −
∑
j∈St

qτj(θ)x̃τj

⊤

=

t−1∑
τ=1

∑
i∈Sτ

qti(θ)x̃τix̃
⊤
τi −

∑
i∈Sτ

∑
j∈St

qti(θ)qτj(θ)x̃τix̃
⊤
τj

 .

Now, let qt(θ) denote the vector of probabilities qti(θ) and let X̃t be the matrix with columns x̃ti

for i ∈ St, we can write

∇2
θℓt(θ) =

t−1∑
τ=1

X̃τΣτ (θ)X̃
⊤
τ .

where Σt(θ) = diag(qt(θ)) − qt(θ)qt(θ)⊤. Since we have qti(θ)qt0(θ) > 0 for all θ ∈ R2d, we
conclude that Σt(θ)) ≻ 0 for all θ ∈ R2d.

Therefore, ∇2
θℓt(θ) ≽ 0 for all θ ∈ R2d. Hence, the negative log-likelihood is convex with respect

to θ. As a result, any θ that satisfies the first-order optimality condition∇θℓt(θ) = 0 is a minimizer.

Furthermore, if we are given that feature covariance matrix Vt−1 =
∑t−1

τ=1

∑
i∈Sτ

x̃tix̃
⊤
ti is positive

definite, i.e. Vt−1 ≻ 0, the negative log-likelihood function becomes strongly convex with respect
to θ. Consequently, we have a unique MLE solution.
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B PROOF OF THEOREM 3

We start by recalling Proposition 1 which defines Bt as the unique solution of

B = max
S∈SK

∑
i∈S

vti(B). (9)

and asserts that the optimum prices are p∗ti = 1/βti + Bt. Our first lemma shows that this fixed
point Bt lies within [0, P0] for some P0 under our assumptions, allowing us to constrain our search
for the fixed point into a bounded interval. This result also implies that the optimum prices p∗ti are
bounded within [1, P ] for some P .
Lemma 1 (Bounded optimum prices). Consider that the utility function for each item i ∈ [n] is
given by uti(p) = αti − βti · p for some αti ≤ 1 and L0 ≤ βti ≤ 1. Then, Bt ∈ [0, P0] and
p∗ti ∈ [1, P ] for constants P0 and P that only depend on K and L0.

Recall that T0 is the length of random initialization. At each round t ≤ T0, the algorithm chooses
a subset St uniformly at random from {S ⊆ [n] : |S| ≤ K} and sets pti ∈ [1, 2] uniformly at
random for all i ∈ St. Then, using the assumption that there exists a constant σ0 > 0 such that
E[xtix

⊤
ti ] ≽ σ0I , we can show the following lemma regarding initialization.

Lemma 2 (Initialization). Define VT0 =
∑T0

t=1

∑
i∈St

x̃tix̃
⊤
ti . There exist some positive, universal

constants C1 and C2 such that if the length of random initialization satisfies

T0 ≥
1

K

(
C1

√
d+ C2

√
log T

σ0

)2

+
2B

Kσ0
,

then λmin(VT0
) ≥ B with probability at least 1− 1

T 2 .

Lemma 2 implies that we can have λmin(VT0
) ≥ K(1 + P 2) with a high probability if we run

the random initialization for O(σ−2
0 (d + log T + P 2)) rounds. Similar to Li et al. (2017) and Oh

& Iyengar (2021), the independence assumption (Assumption 3) on the feature vectors xti is only
needed to ensure that VT0

is invertible at the end of the initialization phase. We do not require this
stochasticity assumption in the rest of the regret analysis. Therefore, after the random initialization
period of the first T0 rounds, the context vectors xti can even be chosen adversarially as long as their
norms ∥xti∥ are bounded and they satisfy the minimum price sensitivity condition ⟨ϕ∗,xti⟩ ≥ L0.

The following lemma shows that the assortments St and prices pt offered by Algorithm 2 at any
round t results in a sufficiently large probability of selection for any item i ∈ St under any pa-
rameter θ sufficiently close to θ∗. This condition is central in showing that the maximum likelihood
estimator is consistent (Lemma 4) and satisfies a finite-sample normality-type estimation error bound
(Lemma 5).
Lemma 3. Let θ be some parameter such that ∥θ − θ∗∥ ≤ 1. Then, there exists some constant
κ > 0 that depends only on K and L0 such that

qt(i|St,pt;θ)qt(0|St,pt;θ) ≥ κ

for all i ∈ St at any round t ∈ [T ].

Lemma 4 (Consistency of MLE). Let T0 be any round such that

λmin(VT0) ≥ max

{
16

κ2
(4d+ 2 log(T )),K(1 + P 2)

}
.

Then for any t ≥ T0, P(∥θ̂t − θ∗∥ > 1) ≤ 1− 1
T 2 .

Combining the results of Lemma 2 and Lemma 4, we can show that the condition ∥θ̂t − θ∗∥ ≤ 1 is
satisfied for any t ≥ T0 with probability 1−O(T−2) if we select

T0 = Θ

(
d+ log T + P 2

σ2
0κ

2

)
. (10)

13



Thus, we can define a good event

E0 =
{
∥θ̂t − θ∗∥ ≤ 1,∀t ≥ T0

}
and show that it holds with probability 1−O(T−1).

Lemma 5 (Normality of MLE). Suppose ∥θ̂t − θ∗∥ ≤ 1 for t ≥ T0. Then

∥θ̂t − θ∗∥Vt
≤ 2

κ

√
d log

(
t

2d

)
+ 2 log t (11)

with probability at least 1− t−2.

For the selection of T0 given in equation 10, we already showed that E0 holds with probability
1 − O(T−1). Therefore, conditioned on E0 happens, we can further ensure that ∥θ̂t − θ∗∥Vt

≤ αt

holds with probability at least 1− t−2 if we choose the confidence radius as

αt =
2

κ

√
d log

(
t

2d

)
+ 2 log t. (12)

In other words, for any t ≥ T0, we can define another good event Et = {∥θ̂t − θ∗∥Vt
≤ αt} that

holds with probability at least 1− t−2 conditioned on E0.

Next, the following lemma establishes important properties for the optimistic utility functions con-
structed in Algorithm 2.

Lemma 6. Assume that ∥θ̂t − θ∗∥Vt
≤ αt holds for some αt and let hti : R → R be the linear

function defined as

hti(p) = min{⟨ψ̂t,xti⟩+ gti, 1} −max{⟨ϕ̂t,xti⟩ − gti, L0} · p,

where θ̂t = (ψ̂t, ϕ̂t) and gti := αt∥(xti,xti)∥V −1
t

. Then, hti(p) satisfies

hti(p) ≥ uti(p), ∀p ≥ 0 (13)
hti(p)− uti(p) ≤ 3Pgti, ∀p ∈ [1, P ]. (14)

We note that Algorithm 2 chooses the assortment St and prices pt by solving

(St,pt) ∈ argmax
S∈SK
p∈Rn

+

R̃t(S,p)

where R̃t(S,p) denotes the optimistic estimate of the revenue function as defined in equation 7.
Then, using the properties of the optimistic estimate of the utility functions hti(p), we can show the
following lemma.
Lemma 7. Assume good event E occurs. Then, for any t ∈ [T ], it holds that

(a) Rt(S
∗
t ,p

∗
t ) ≤ R̃t(St,pt), and

(b) R̃t(St,pt)−Rt(St,pt) ≤ 3P 2 maxi∈St
gti.

Now, we break the regretRT into the initialization phase and the learning phase:

RT = E

[
T0∑
t=1

(Rt(S
∗
t ,p

∗
t )−Rt(St,pt))

]
+ E

[
T∑

t=T0+1

(Rt(S
∗
t ,p

∗
t )−Rt(St,pt))

]

≤ PT0 + E

[
T∑

t=T0+1

(
R̃t(St,pt)−Rt(St,pt)

)]
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where the last inequality follows from property (a) in Lemma 7. Now, we decompose the expectation
term into two parts where the high probability event E0 holds and it does not.

RT ≤ PT0 + E

[
T∑

t=T0+1

(
R̃t(St,pt)−Rt(St,pt)

)
1(E0)

]
+ E

[
T∑

t=T0+1

(
R̃t(St,pt)−Rt(St,pt)

)
1(¬E0)

]

≤ PT0 +

T∑
t=T0+1

E
[(

R̃t(St,pt)−Rt(St,pt)
)
1(E0)

]
+O(P ).

For each expectation term in the remaining summation, we can split it into two parts where the high
probability event Et holds and it does not:

E
[(

R̃t(St,pt)−Rt(St,pt)
)
1(E0)

]
= E

[(
R̃t(St,pt)−Rt(St,pt)

)
1(E0)1(Et)

]
+ E

[(
R̃t(St,pt)−Rt(St,pt)

)
1(E0)1(¬Et)

]
≤ 3P 2αt max

i∈St

∥(xti,xti)∥V −1
t

+O(P · t−2).

where the last inequality follows from property (b) in Lemma 7. As a result,

RT ≤ PT0 + 3P 2
T∑

t=1

αt max
i∈St

∥(xti,xti)∥V −1
t

+

T∑
t=1

O(P · t−2) +O(P )

≤ PT0 + 3P 2
T∑

t=1

αt max
i∈St

∥(xti,xti)∥V −1
t

+O(P )

Applying Cauchy-Schwarz inequality in the second term, it follows that

RT ≤ PT0 + 3P 2αT

√√√√T

T∑
t=1

max
i∈St

∥(xti,xti)∥V −1
t

+O(P ).

Applying Lemma 10 and plugging in the value for αT , we obtain

RT ≤ PT0 +
12P 2

κ

√
Td log(T/d)

(
d log

(
T

2d

)
+ 2 log T

)
+O(P ).

B.1 PROOFS FOR TECHNICAL LEMMAS

Lemma 1 (Bounded optimum prices). Consider that the utility function for each item i ∈ [n] is
given by uti(p) = αti − βti · p for some αti ≤ 1 and L0 ≤ βti ≤ 1. Then, Bt ∈ [0, P0] and
p∗ti ∈ [1, P ] for constants P0 and P that only depend on K and L0.

Proof. Let Bu be the unique solution of the fixed point equation

B =
K

L0
e−L0B . (15)

Given the bounds on αti and βti, we notice that the right-hand side of equation 15 is an upper bound
for the right-hand side of equation 5, hence Bt ≤ Bu.

In equation 15, the left-hand side is increasing and the right-hand side is decreasing in B. Addi-
tionally, for B = 1 + 2max{1, log(K)}/L0, the left-hand side of equation 15 is greater than the
right-hand side. Hence, the fixed point satisfies 0 ≤ Bt ≤ Bu ≤ P0 = 1 + 2max{1, log(K)}/L0.

Furthermore, we have 1 ≤ 1/βti ≤ 1/L0. Therefore, 1 ≤ p∗ti ≤ 1 + (1 + 2max{1, log(K)})/L0.
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Lemma 2 (Initialization). Define VT0
=
∑T0

t=1

∑
i∈St

x̃tix̃
⊤
ti . There exist some positive, universal

constants C1 and C2 such that if the length of random initialization satisfies

T0 ≥
1

K

(
C1

√
d+ C2

√
log T

σ0

)2

+
2B

Kσ0
,

then λmin(VT0
) ≥ B with probability at least 1− 1

T 2 .

Proof. Let Σ = E[xtix
⊤
ti ] and Σ̃ = E[x̃tix̃

⊤
ti ]. Then, noting that pti is uniformly distributed, we

have

Σ̃ =

[
Σ − 3

2Σ

− 3
2Σ

7
3Σ

]
.

Then, using Schur’s formula, each eigenvalue λ̃ of Σ̃ are given by solutions of the equation

0 = det(Σ̃− λ̃I)

= det(Σ− λ̃I) det

(
7

3
Σ− λ̃I − 9

4
Σ(Σ− λ̃I)−1Σ

)
.

Since the inverse of the matrix Σ− λ̃I appears on the right-hand side, we must have det(Σ− λ̃I) ̸=
0. Hence, all eigenvalues must satisfy

det

(
7

3
Σ− λ̃I − 9

4
Σ(Σ− λ̃I)−1Σ

)
= 0.

Letting Σ = V ΛV ⊤ be the eigen-decomposition of Σ with {λj}dj=1 denoting the eigenvalues.
Then, we can write

0 = det

(
7

3
V ΛV ⊤ − λ̃I − 9

4
V ΛV ⊤(V ΛV ⊤ − λ̃I)−1V ΛV ⊤

)
= det(V )2 det

(
7

3
Λ− λ̃I − 9

4
Λ(Λ− λ̃I)−1Λ

)
=

d∏
j=1

(
7

3
λj − λ̃− 9

4

λ2
j

λj − λ̃

)
.

Consequently, the eigenvalues of Σ̃ are given by

λ̃j,1 = (20 + 2
√
97)λj and λ̃j,2 = (20− 2

√
97)λj , ∀j ∈ [d].

Since λj ≥ σ0 for all j by Assumption 3, λmin(Σ̃) ≥ Cσ0 for some positive, universal constant
C.

Lemma 3. Let θ be some parameter such that ∥θ − θ∗∥ ≤ 1. Then, there exists some constant
κ > 0 that depends only on K and L0 such that

qt(i|St,pt;θ)qt(0|St,pt;θ) ≥ κ

for all i ∈ St at any round t ∈ [T ].

Proof. Note that for all t ≤ T0, we have 1 ≤ pti ≤ 2. Additionally, by Lemma 1, the prices at all
rounds t > T0 satisfy 1 ≤ pti ≤ P for some constant P that depends only on L0 and K. Therefore,
we can conclude that 1 ≤ pti ≤ max{2, P} for all t ∈ [T ] and i ∈ St.

Next, we let θ = (ψ,ϕ) and ϵ = θ − θ∗ with ∥ϵ∥ ≤ 1. As a result, we can show that

−2 ≤ ⟨ψ,xti⟩ ≤ 2 and
−1 ≤ ⟨ϕ,xti⟩ ≤ 2.

16



As a result, we can write

qt(i|St,pt;θ)qt(0|St,pt;θ) =
exp(⟨ψ,xti⟩ − ⟨ϕ,xti⟩pti)(

1 +
∑

j∈St
exp(⟨ψ,xtj⟩ − ⟨ϕ,xtj⟩ptj)

)2
≥ e−2(1+max{2,P})

(1 +Ke3)
2

to show that qt(i|St,pt;θ)qt(0|St,pt;θ) is lower bounded by some constant κ > 0 that depends
only on L0 and K.

Lemma 4 (Consistency of MLE). Let T0 be any round such that

λmin(VT0
) ≥ max

{
16

κ2
(4d+ 2 log(T )),K(1 + P 2)

}
.

Then for any t ≥ T0, P(∥θ̂t − θ∗∥ > 1) ≤ 1− 1
T 2 .

Proof. Calculating the gradient of this negative log-likelihood with respect to θ we obtain

∇θℓt(θ) =

t−1∑
τ=1

∑
i∈Sτ

(qτi(θ)− yτi)x̃τi.

Then, let us denote the expectation of∇θℓt(θ) over the user choices it by

Gt(θ) :=

t−1∑
τ=1

∑
i∈Sτ

(qτ (i|Sτ ,pτ ;θ)− qτ (i|Sτ ,pτ ;θ
∗)) x̃τi,

and we have

Gt(θ
∗) = 0 and Gt(θ̂n) =

t−1∑
τ=1

∑
i∈Sτ

ϵτix̃τi.

where ϵti = yti − qt(i|St,pt;θ
∗) are sub-Gaussian random variables with parameter 1. Note that

collections of variables {yti}i∈St are independent over t, but the variables within each collection are
not independent.

For brevity, we will denote qti(θ) := qt(i|St,pt;θ) when it is clear that St and pt are selected
assortment and prices at time t.

For any θ1,θ2 ∈ Rd, mean value theorem implies that there exists some θ = λθ1 + (1− λ)θ2 with
0 < λ < 1, such that

G(θ1)−G(θ2) = F (θ)(θ1 − θ2)

where we defined

F (θ) :=

[
t−1∑
τ=1

∑
i∈Sτ

x̃τi∇θqτi(θ)

]
.
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Let Hτ :=
∑

i∈Sτ
x̃τi∇θqτi(θ) and notice that

Hτ =
∑
i∈Sτ

qτi(θ)x̃τix̃
⊤
τi −

∑
i∈Sτ

∑
j∈Sτ

qτi(θ)qτj(θ)x̃τix̃
⊤
τj

=
∑
i∈Sτ

qτi(θ)x̃τix̃
⊤
τi −

1

2

∑
i∈Sτ

∑
j∈Sτ

qτi(θ)qτj(θ)(x̃τix̃
⊤
τj + x̃τjx̃

⊤
τi)

≽
∑
i∈Sτ

qτi(θ)x̃τix̃
⊤
τi −

1

2

∑
i∈Sτ

∑
j∈Sτ

qτi(θ)qτj(θ)(x̃τix̃
⊤
τi + x̃τjx̃

⊤
τj)

=
∑
i∈Sτ

qτi(θ)x̃τix̃
⊤
τi −

∑
i∈Sτ

∑
j∈Sτ

qτi(θ)qτj(θ)x̃τix̃
⊤
τi

=
∑
i∈Sτ

qτi(θ)

1−
∑
j∈Sτ

qτj(θ)

 x̃τix̃
⊤
τi

=
∑
i∈Sτ

qτi(θ)qτ0(θ)x̃τix̃
⊤
τi.

DefineHt(θ) =
∑t−1

τ=1

∑
i∈Sτ

qτi(θ)qτ0(θ)x̃τix̃
⊤
τi and observe that

G(θ1)−G(θ2) = F (θ)(θ1 − θ2) ≥ Ht(θ)(θ1 − θ2).

Now, define Bη := {θ : ∥θ − θ∗∥ ≤ η} and κη := infθ∈Bη
qτi(θ)qτ0(θ) > 0. Since we have

Ht(θ) ≽ κηVt for any θ ∈ Bη , and G(θ) is an injection from R2d to R2d; Lemma A of Chen et al.
(1999) implies that {

θ : ∥G(θ)∥V −1
t
≤ κηη

√
λmin(Vt)

}
⊆ Bη.

In addition, Lemma 15 of Oh & Iyengar (2021) shows that

EG := ∥G(θ̂n)∥V −1
t
≤ 2
√
4d+ log(1/δ)

holds with probability at least 1− δ. Suppose EG holds for the rest of the proof. Then, λmin(Vt) ≥
16

κ2η2 (4d+ log(1/δ)) implies that θ̂n ∈ Bη .

Since κ = κ1, we have κη ≥ κ for all η ≤ 1. Thus, we have ∥θ̂n − θ∗∥ ≤ 1 when λmin(Vt) ≥
16
κ2 (4d+ log(1/δ)).

Lemma 5 (Normality of MLE). Suppose ∥θ̂t − θ∗∥ ≤ 1 for t ≥ T0. Then

∥θ̂t − θ∗∥Vt
≤ 2

κ

√
d log

(
t

2d

)
+ 2 log t (11)

with probability at least 1− t−2.

Proof. Following the proof of Lemma 4, we obtain

∥G(θ̂t)∥2V −1
t
≥ κ2∥θ̂t − θ∗∥2Vt

for any θ̂t ∈ {θ : ∥θ − θ∗∥ ≤ 1}. Then, we use Theorem 1 in Abbasi-Yadkori (2011), which states
if the noise ϵti is sub-Gaussian with parameter 1, then

∥G(θ̂t)∥2V −1
t
≤ 2 log

(
det(Vt)

1/2 det(VT0
)−1/2

δ

)
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with probability at least 1− δ. Then we combine with Lemma 8 to obtain

∥G(θ̂t)∥2V −1
t
≤ 2

[
d log

(
tK(1 + P 2)

2d

)
− 1

2
log det(VT0) + log

1

δ

]
≤ 2

[
d log

(
t

2d

)
+ log

1

δ

]
where the second inequality is from λmin(VT0

) ≥ K(1 + P 2). Combining these inequalities and
setting δ = t−2 gives the result.

Lemma 6. Assume that ∥θ̂t − θ∗∥Vt ≤ αt holds for some αt and let hti : R → R be the linear
function defined as

hti(p) = min{⟨ψ̂t,xti⟩+ gti, 1} −max{⟨ϕ̂t,xti⟩ − gti, L0} · p,

where θ̂t = (ψ̂t, ϕ̂t) and gti := αt∥(xti,xti)∥V −1
t

. Then, hti(p) satisfies

hti(p) ≥ uti(p), ∀p ≥ 0 (13)
hti(p)− uti(p) ≤ 3Pgti, ∀p ∈ [1, P ]. (14)

Proof. Recall the definition of the utility function
uti(p) = ⟨ψ∗,xti⟩ − ⟨ϕ∗,xti⟩ · p.

Now, to construct the upper bound for uti(p), we define the function

h̃ti(p) = ⟨ψ̂t,xti⟩+ gti − (⟨ϕ̂t,xti⟩ − gti) · p
and recall the definition x̃ti = (xti,−pxti) to write

|⟨θ̂t, x̃ti⟩ − ⟨θ∗, x̃ti⟩| =
∣∣∣⟨V 1/2

t (θ̂t − θ∗), V −1/2
t x̃ti⟩

∣∣∣
≤ ∥V 1/2

t (θ̂t − θ∗)∥∥V −1/2
t x̃ti∥

≤ ∥θ̂t − θ∗∥Vt
∥x̃ti∥V −1

t

≤ ∥θ̂t − θ∗∥Vt
∥(xti,−pxti)∥V −1

t

Hence,

|⟨θ̂t, x̃ti⟩ − ⟨θ∗, x̃ti⟩| ≤ (1 + p)gti, ∀p ≥ 0

|⟨θ̂t, x̃ti⟩ − ⟨θ∗, x̃ti⟩| ≤ Pgti, ∀p ∈ [1, P ].

Then, for all p ∈ [1, P ], we can write

hti(p)− uti(p) ≤ h̃ti(p)− uti(p)

= ⟨θ̂t, x̃ti⟩+ (1 + p)gti − ⟨θ∗, x̃ti⟩
≤ 3Pgti

where the first inequality follows by noticing hti(p) ≤ h̃ti(p) for all p ≥ 0.

Then, for all p ≥ 0, we can write

uti(p)− h̃ti(p) = ⟨θ∗, x̃ti⟩ − ⟨θ̂t, x̃ti⟩ − (1 + p)gti

= ⟨ψ∗,xti⟩ − ⟨ψ̂t,xti⟩ − gti −
(
⟨ϕ∗,xti⟩ − ⟨ϕ̂t,xti⟩+ gti

)
p ≤ 0

which implies that

⟨ψ∗,xti⟩ − ⟨ψ̂t,xti⟩ − gti ≤ 0, and

⟨ϕ∗,xti⟩ − ⟨ϕ̂t,xti⟩+ gti ≥ 0

Using the properties of uti(p) and combining the last two inequalities, we obtain
uti(p)− hti(p) ≤ 0

for all p ≥ 0, proving the result.

19



Lemma 7. Assume good event E occurs. Then, for any t ∈ [T ], it holds that

(a) Rt(S
∗
t ,p

∗
t ) ≤ R̃t(St,pt), and

(b) R̃t(St,pt)−Rt(St,pt) ≤ 3P 2 maxi∈St
gti.

Proof. Inequality (a): Fix some t and define revenue functions RA : 2[n] × Rn
+ → R given by

RA(S,p) =

∑
i∈S\A pi exp(uti(pi)) +

∑
i∈S∩A pi exp(hti(pi))

1 +
∑

i∈S\A exp(uti(pi)) +
∑

i∈S∩A exp(hti(pi))

for any A ⊆ [n]. Note that this definition leads to R∅(S,p) = Rt(S,p) and RS(S,p) = R̃t(S,p).
We also define

(SA,pA) = argmax
S⊆[n]:|S|≤K

p∈Rn
+

RA(S,p).

which satisfies (S∅,p∅) = (S∗
t ,p

∗
t ) and (S[n],p[n]) = (St,pt).

By the optimality of (SA,pA) for any revenue function RA, we have pAj ≥ RA(SA,pA) for all
j ∈ SA. We can write this inequality as pAj ≥ a/b where

a =
∑

i∈SA\A

pAi exp(uti(p
A
i )) +

∑
i∈SA∩A

pAi exp(hti(p
A
i )) and

b = 1 +
∑

i∈SA\A

exp(uti(p
A
i )) +

∑
i∈SA∩A

exp(hti(p
A
i )).

Letting δ = exp(htj(p
A
j ))− exp(utj(p

A
j )), we have ab+ bδpAj ≥ ab+ aδ which implies

a+ pAj δ

b+ δ
≥ a

b
.

Hence, we have RA∪{j}(SA,pA) ≥ RA(SA,pA) for all j ∈ SA.

We also have RA∪{j}(SA,pA) = RA(SA,pA) for any j /∈ SA. Therefore, RA∪{j}(SA,pA) ≥
RA(SA,pA) for any j ∈ [n]. Using the optimality of (SA∪{j},pA∪{j}) for function RA∪{j}, we
can write

RA∪{j}(SA∪{j},pA∪{j}) ≥ RA(SA,pA)

for any j ∈ [n]. Therefore, by induction, we can show that

R̃t(St,pt) = R[n](S[n],p[n]) ≥ R∅(S∅,p∅) = Rt(S
∗
t ,p

∗
t ).

Inequality (b): Let uti := uti(pti) and hti := hti(pti) with 3Pgti ≥ hti − uti ≥ 0 because
pti ∈ [1, P ]. By the mean value theorem, for all i, there exists uti := (1 − c)uti + chti for some
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c ∈ (0, 1) with

R̃t(St,pt)−Rt(St,pt) =

∑
i∈St

pti exp(hti)

1 +
∑

j∈St
exp(htj)

−
∑

i∈St
pti exp(uti)

1 +
∑

j∈St
exp(utj)

=
(
∑

i∈St
pti exp(uti)(hti − uti))(1 +

∑
i∈St

exp(uti))

(1 +
∑

i∈St
exp(uti))2

−
(
∑

i∈St
pti exp(uti))(

∑
i∈St

exp(uti)(hti − uti))

(1 +
∑

i∈St
exp(uti))2

=
∑
i∈St

ptiqt(i|ut)(hti − uti)

−

(∑
i∈St

ptiqt(i|ut)

)(∑
i∈St

qt(i|ut)(hti − uti)

)

=
∑
i∈St

(
pti −

∑
i∈St

ptiqt(i|ut)

)
qt(i|ut)(hti − uti)

≤ P ·max
i∈St

(hti − uti)

≤ 3P 2 max
i∈St

gti

where the first inequality follows from |pti| ≤ P and qt(i|ut) is a categorical distribution.

Lemma 8. Suppose ∥xti∥ ≤ 1 and 1 ≤ pti ≤ P for all i and t. Then det(Vt) is increasing with
respect to t and

det(Vt) ≤
(
tK(1 + P 2)

2d

)2d

Proof. Let λ1, . . . , λ2d be the eigenvalues of Vt. Then, using the AM-GM inequality we can write

det(Vt) =

2d∏
i=1

λi

≤

(∑2d
i=1 λi

2d

)2d

=

(
trace(Vt)

2d

)2d

=

(∑t
τ=1

∑
i∈Sτ
∥x̃τi∥22

2d

)2d

≤
(
tK(1 + P 2)

2d

)2d

.

Lemma 9. Suppose ∥xti∥ ≤ 1 and pti ≤ P for all i and t. If λmin(VT0
) ≥ 2PK, then

n∑
t=T0+1

∑
i∈St

∥x̃ti∥2V −1
t
≤ 2 log

(
det(Vn)

det(VT0
)

)
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Proof. Let λ1, . . . , λ2d be the eigenvalues of
∑

i∈St
x̃tix̃

⊤
ti . Since

∑
i∈St

x̃tix̃
⊤
ti is positive semi-

definite, λj ≥ 0 for all j. Then, we have

det

(
I +

∑
i∈St

x̃tix̃
⊤
ti

)
=

2d∏
i=1

(1 + λj)

≥ 1 +

2d∑
i=1

λj

= 1− 2d+

2d∑
i=1

(1 + λj)

= 1− 2d+ trace

(
I +

∑
i∈St

x̃tix̃
⊤
ti

)
= 1 +

∑
i∈St

∥x̃ti∥22

Now, to lower bound det(Vn+1), we write

det(Vn+1) = det

(
Vn +

∑
i∈Sn

x̃tix̃
⊤
ti

)

= det(Vn)

(
I +

∑
i∈Sn

V −1/2
n x̃ti(V

−1/2
n x̃ti)

⊤

)

≥ det(Vn)

(
1 +

∑
i∈Sn

∥x̃ti∥2V −1
n

)

≥ det(VT0
)

n∏
t=T0

(
1 +

∑
i∈St

∥x̃ti∥2V −1
t

)

Notice that ∑
i∈St

∥x̃ti∥2V −1
t
≤ ∥x̃ti∥2

λmin(Vt)
≤ (1 + P )

λmin(Vt)
≤ (1 + P )

2PK
≤ 1

K
.

Hence,
∑

i∈St
∥x̃ti∥2V −1

t

≤ 1 for all t ≥ T0. Then, using the fact that z ≤ 2 log(1 + z) for any

z ∈ [0, 1], we have
n∑

t=T0+1

∑
i∈St

∥x̃ti∥2V −1
t
≤ 2

n∑
t=T0+1

log

(
1 +

∑
i∈St

∥x̃ti∥2V −1
t

)

= 2 log

n∏
t=T0+1

(
1 +

∑
i∈St

∥x̃ti∥2V −1
t

)

≤ 2 log

(
det(Vn)

det(VT0)

)

Lemma 10. If λmin(VT0) ≥ K(1 + P 2), then we have

T∑
t=1

max
i∈St

∥x̃ti∥2V −1
t
≤ 4d log(T/d).
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Noting that pti ≥ 1 for all i and t, we also have

T∑
t=1

max
i∈St

∥(xti,xti)∥2V −1
t
≤ 4d log(T/d).

Proof. Combining Lemma 8 and Lemma 9, we obtain

T∑
t=1

max
i∈St

∥x̃ti∥2V −1
t
≤ 2 log

(
det(VT )

det(VT0
)

)
≤ 2 log

(
TK(1 + P 2)

2dλmin(VT0
)

)2d

≤ 4d log(T/d)

where the last inequality is by λmin(VT0
) ≥ K(1 + P 2).

C PROOF OF THEOREM 4

Similar to Algorithm 2, we run T0 initialization round with random assortment and price selections
to obtain an initial MLE θ0 := θ̂T0

. Using the results of Lemma 2 and Lemma 4, we can show that
the condition ∥θ0 − θ∗∥ ≤ 1/2 is satisfied with probability 1−O(T−2) if we select

T0 = Θ

(
d+ log T + P 2

σ2
0κ

2

)
. (16)

Then, we apply the following parameter update at each time step t.

θ̂t = argmin
θ:∥θ−θ0∥≤1/2

{
∥θ − θ̂t−1∥2Vt

+
4

κ
(θ − θ̂t−1)

⊤gt(θ̂t−1)

}
(17)

which ensures that ∥θ̂t − θ∗∥ ≤ 1 for all t ≥ T0 with probability 1 − O(T−2). For this parameter
update, only the Θ(K) context vector in the last offered assortment is needed per each round, com-
pared to Θ(tK) in Algorithm 2 which grows linearly with each round t. Then, using this update
rule, we modify our algorithm and present it in the next algorithm block.

Algorithm 3 DASP-MNL with online parameter updates

1: Input: initialization rounds T0, confidence parameters {αt}t∈[T ], minimum price sensitivity L0

2: V0 ← 0 ∈ R2d×2d

3: for t = 1, 2, . . . , T0 do ▷ initialization rounds
4: Choose St uniformly at random from {S ⊆ [n] : |S| ≤ K}
5: Choose pti independently and uniformly at random from [1, 2] for all i ∈ St

6: Offer assortment St at price pt and observe it
7: Vt ← Vt−1 +

∑
i∈St

x̃tix̃
⊤
ti

8: Compute MLE θ̂T0 by solving equation 6 and set θ0 = θ̂T0 .
9: for t = T0 + 1, T0 + 2, . . . , T do

10: Compute gti := αt∥(xti,xti)∥V −1
t

for all i ∈ [n] ▷ Confidence bonus

11: Compute θ̂t by solving equation 17 ▷ Online parameter update
12: Let hti(p) = min{⟨ψ̂t,xti⟩+ gti, 1} −max{⟨ϕ̂t,xti⟩ − gti, L0} · p for all i ∈ [n]

13: Choose (St,pt) using Algorithm 1 with linear functions hti(p)
14: Offer assortment St at price pt and observe it
15: Vt ← Vt−1 +

∑
i∈St

x̃tix̃
⊤
ti

To analyze the regret of Algorithm 3, we first define a per-round negative log-likelihood function
ft(θ) and its gradient∇θft(θ) as

ft(θ) = −qt(it|St,pt;θ)

gt(θ) = ∇θft(θ) =
∑
i∈St

qt(i|St,pt;θ)x̃ti − x̃tit .
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We note that negative log-likelihood ft(θ) for MNL model at each round t is a strongly convex
function over a bounded domain, which enables us to apply a variant of online Newton updates
(Hazan et al., 2014) that was also used in Hazan et al. (2014); Zhang et al. (2016); Oh & Iyengar
(2021) which proposed online algorithms for the logistic models.

To prove the regret rate for our algorithm with online parameter updates, we construct a new utility
function upper-bound estimate h̃ti(p) using a new confidence radius α̃t specified in the following
lemma.
Lemma 11. Let T0 be any round such that λmin(VT0

) ≥ KP 2. Then, for any t > T0, we have
∥θ̂t − θ∗∥Vt ≤ α̃t with probability at least 1− t−2 for confidence radius

α̃t =

√
T0 +

64

κ2
d log

(
t

d

)
+

4

κ

(
4

κ
+

8

3

)
log (⌈2 log2(tK/2)⌉t4) + 8

κ
+ 1. (18)

Then, similar to the proof of Theorem 3, we define a good event Ẽt = {∥θ̂t − θ∗∥Vt ≤ α̃t} for
t ≥ T0 that holds with probability at least 1 − t−2. Consequently, following steps similar to the
proof of Theorem 3, we can write the regret as

RT ≤ PT0 +

T∑
t=T0+1

E
[(

R̃t(St,pt)−Rt(St,pt)
)
1(Et)

]
+ E

[(
R̃t(St,pt)−Rt(St,pt)

)
1(¬Et)

]

≤ PT0 +

T∑
t=T0+1

3P 2αt max
i∈St

∥(xti,xti)∥V −1
t

+O(P )

Finally, using Lemma 10, we show that

RT ≤ PT0 + 6P 2α̃T

√
Td log(T/d) +O(P ).

for α̃T given in Lemma 11. Note that α̃T = O(
√

d log(T )) for the selection of T0 given in equa-
tion 10.

C.1 PROOF OF LEMMA 11

The proof of Lemma 11 depends on a few technical results we present next. First, we define the
matrix Wt =

∑
i∈St

x̃τix̃
⊤
τi.

We start by showing that following bound holds true over B := {θ : ∥θ − θ∗∥ ≤ 1}.
Lemma 12. For any θ1,θ2 ∈ B, we have

ft(θ2) ≥ ft(θ1) + gt(θ1)
⊤(θ2 − θ1) +

κ

2
(θ2 − θ1)⊤Wt(θ2 − θ1).

Proof. Using the Taylor’s expansion, there exists some c ∈ [0, 1] such that

ft(θ2) = ft(θ1) + gt(θ1)
⊤(θ2 − θ1) + (θ2 − θ1)⊤H(θ)(θ2 − θ1)

where θ = cθ2 + (1− c)θ1 and H(θ) is the Hessian of ft at θ.

Following the proof of Proposition 2, the Hessian matrix can be lower bounded as

H(θ) =
∑
i∈St

qti(θ)x̃tix̃
⊤
ti −

∑
i∈St

∑
j∈St

qti(θ)qtj(θ)x̃tix̃
⊤
tj

≽
∑
i∈St

qti(θ)qt0(θ)x̃tix̃
⊤
ti

≽ κWt

where the last step follows from Lemma 3. Consequently, the result follows.
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Next, we prove the following lemma that shows the dependency between the error (θ̂t−θ∗) at time
t and the error (θ̂t+1 − θ∗) at time t+ 1.

Lemma 13. For any t,

gt(θ̂t)
⊤(θ̂t − θ∗) ≤

1

κ
∥gt(θ̂t)∥2V −1

t+1

+
κ

4
∥θ̂t − θ∗∥2Vt+1

− κ

4
∥θ̂t+1 − θ∗∥2Vt+1

.

Proof. Note that

θ̂t+1 = argmin
θ:∥θ−θ0∥≤1/2

{
1

2
∥θ − θ̂t∥2Vt+1

+
2

κ
(θ − θ̂t)⊤gt(θ̂t)

}
.

Hence, from the first-order optimality condition, we have(
2

κ
gt(θ̂t) + Vt+1(θ̂t+1 − θ̂t)

)⊤

(θ − θ̂t+1) ≥ 0

for any θ such that ∥θ − θ0∥ ≤ 1/2. We can rewrite this inequality as

θ⊤Vt+1(θ̂t+1 − θ̂t) ≥ θ̂⊤
t+1Vt+1(θ̂t+1 − θ̂t)−

2

κ
gt(θ̂t)

⊤(θ − θ̂t+1).

Then, we can write

∥θ̂t − θ∗∥2Vt+1
− ∥θ̂t+1 − θ∗∥2Vt+1

= θ̂⊤t Vt+1θ̂t − θ̂⊤t+1Vt+1θ̂t+1 + 2θ∗⊤Vt+1(θ̂t+1 − θ̂t)

≥ θ̂⊤t Vt+1θ̂t − θ̂⊤t+1Vt+1θ̂t+1 + 2θ̂⊤t+1Vt+1(θ̂t+1 − θ̂t)−
4

κ
gt(θ̂t)

⊤(θ∗ − θ̂t+1)

= θ̂⊤t Vt+1θ̂t + θ̂
⊤
t+1Vt+1θ̂t+1 − 2θ̂⊤t+1Vt+1θ̂t −

4

κ
gt(θ̂t)

⊤(θ∗ − θ̂t+1)

= ∥θ̂t+1 − θ̂t∥2Vt+1
+

4

κ
gt(θ̂t)

⊤(θ̂t+1 − θ̂t) +
4

κ
gt(θ̂t)

⊤(θ̂t − θ∗)

≥ − 4

κ2
∥gt(θ̂t)∥2V −1

t+1

+
4

κ
gt(θ̂t)

⊤(θ̂t − θ∗)

where the last inequality follows from

∥θ̂t+1 − θ̂t∥2Vt+1
+

4

κ
gt(θ̂t)

⊤(θ̂t+1 − θ̂t) ≥ min
θ:∥θ−θ0∥≤1/2

{
∥θ − θ̂t∥2Vt+1

+
4

κ
(θ − θ̂t)⊤gt(θ̂t)

}
≥ min

θ

{
∥θ − θ̂t∥2Vt+1

+
4

κ
(θ − θ̂t)⊤gt(θ̂t)

}
= − 4

κ2
∥gt(θ̂t)∥2V −1

t+1

Lemma 14. For any positive definite matrix V ,

∥gt(θ)∥2V ≤ 4max
i∈St

∥x̃ti∥2V .

Proof. Let yti be a binary variable such that yti = 1 if it = i and yti = 0 otherwise. For con-
venience also denote qti = qt(i|St,pt;θ). Then, we note that

∑
i∈St

qti ≤ 1 and
∑

i∈St
yti ≤ 1.
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Consequently, we can write

∥gt(θ)∥2V =
∑
i∈St

∑
j∈St

(qti − yti)(qtj − ytj) x̃
⊤
tiV x̃tj

≤
∑
i∈St

∑
j∈St

(qtiqtj + ytiytj + qtiytj + qtjyti) |x̃⊤
tiV x̃tj |

≤ 4 max
i,j∈St

|x̃⊤
tiV x̃tj |

≤ 4max
i∈St

|x̃⊤
tiV x̃ti|

= 4max
i∈St

∥x̃ti∥2V .

Next, we let Ft denote the filtration up to time t and define the conditional expected values for the
per-round negative log-likelihood ft(θ) and its gradient gt(θ) as follows.

f t(θ) = Eit [ft(θ)|Ft]

gt(θ) = Eit [gt(θ)|Ft].

Then, we show that f t(θ) is minimized at θ∗. Formally, we prove the following lemma.

Lemma 15. For any θ ∈ R2d, we have f t(θ) ≥ f t(θ
∗).

Proof. For any θ ∈ R2d,

f t(θ)− f t(θ
∗) =

∑
i∈St

qt(i|St,pt;θ
∗)[log qt(i|St,pt;θ

∗)− log qt(i|St,pt;θ)]

≥ 0

since it is equal to the Kullback-Leibler (KL) divergence between distributions qt(i|St,pt;θ
∗) and

qt(i|St,pt;θ).

Lemma 16 (Lemma 14 of Oh & Iyengar (2021)). With probability at least 1− δ,
t∑

τ=T0+1

(
gτ (θ̂τ )− gτ (θ̂τ )

)⊤
(θ̂τ − θ∗)

≤ κ

4

t∑
τ=T0+1

∥θ̂τ − θ∗∥2Wτ
+

(
4

κ
+

8

3

)
log

(
⌈2 log2 tK

2 ⌉t
2

δ

)
+ 2.

Now, we prove Lemma 11 by using the previous results. First, we note that θ̂t,θ∗ ∈ B for t ≥ T0

and use Lemma 12 to write

ft(θ̂t) ≤ ft(θ
∗) + gt(θ̂t)

⊤(θ̂t − θ∗)−
κ

2
(θ̂t − θ∗)⊤Wt(θ̂t − θ∗).

Then, by taking the expectation over it on both sides, we obtain

f t(θ̂t) ≤ f t(θ
∗) + gt(θ̂t)

⊤(θ̂t − θ∗)−
κ

2
(θ̂t − θ∗)⊤Wt(θ̂t − θ∗).

Since f t(θ) ≥ f t(θ
∗) by Lemma 15, we have

0 ≤ f t(θ̂t)− f t(θ
∗)

≤ gt(θ̂t)
⊤(θ̂t − θ∗)−

κ

2
∥θ̂t − θ∗∥2Wt

≤ gt(θ̂t)
⊤(θ̂t − θ∗)−

κ

2
∥θ̂t − θ∗∥2Wt

+
(
gt(θ̂t)− gt(θ̂t)

)⊤
(θ̂t − θ∗).
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Using Lemma 13 and Lemma 14, we have

0 ≤ 1

κ
∥gt(θ̂t)∥2V −1

t+1

+
κ

4
∥θ̂t − θ∗∥2Vt+1

− κ

4
∥θ̂t+1 − θ∗∥2Vt+1

− κ

2
∥θ̂t − θ∗∥2Wt

+
(
gt(θ̂t)− gt(θ̂t)

)⊤
(θ̂t − θ∗)

≤ 4

κ
max
i∈St

∥x̃ti∥2V −1
t+1

+
κ

4
∥θ̂t − θ∗∥2Vt+1

− κ

4
∥θ̂t+1 − θ∗∥2Vt+1

− κ

2
∥θ̂t − θ∗∥2Wt

+
(
gt(θ̂t)− gt(θ̂t)

)⊤
(θ̂t − θ∗)

≤ 4

κ
max
i∈St

∥x̃ti∥2V −1
t+1

+
κ

4
∥θ̂t − θ∗∥2Vt

− κ

4
∥θ̂t+1 − θ∗∥2Vt+1

− κ

4
∥θ̂t − θ∗∥2Wt

+
(
gt(θ̂t)− gt(θ̂t)

)⊤
(θ̂t − θ∗).

where the last inequality follows by noting that we have

∥θ̂t − θ∗∥2Vt+1
= ∥θ̂t − θ∗∥2Vt

+ ∥θ̂t − θ∗∥2Wt
.

for Vt+1 = Vt +Wt.

Hence, we have

∥θ̂t+1 − θ∗∥2Vt+1
≤ ∥θ̂t − θ∗∥2Vt

+
16

κ2
max
i∈St

∥x̃ti∥2V −1
t+1

− ∥θ̂t − θ∗∥2Wt

+
4

κ

(
gt(θ̂t)− gt(θ̂t)

)⊤
(θ̂t − θ∗).

Summing over τ = T0 + 1, . . . , t, we obtain

∥θ̂t+1 − θ∗∥2Vt+1
≤ ∥θ̂t − θ∗∥2VT0+1

+
16

κ2

t∑
τ=T0+1

max
i∈Sτ

∥x̃τi∥2V −1
τ+1

−
t∑

τ=T0+1

∥θ̂τ − θ∗∥2Wτ

+
4

κ

t∑
τ=T0+1

(
gτ (θ̂τ )− gτ (θ̂τ )

)⊤
(θ̂τ − θ∗).

Then, Lemma 16 shows with a probability at least 1− δ,

∥θ̂t+1 − θ∗∥2Vt+1

≤ ∥θ̂t − θ∗∥2VT0+1
+

16

κ2

t∑
τ=T0+1

max
i∈Sτ

∥x̃τi∥2V −1
τ+1

+
4

κ

(
4

κ
+

8

3

)
log

(
⌈2 log2 tK

2 ⌉t
2

δ

)
+

8

κ

≤ λmax(VT0+1) +
64

κ2
d log

(
t

d

)
+

4

κ

(
4

κ
+

8

3

)
log

(
⌈2 log2 tK

2 ⌉t
2

δ

)
+

8

κ

≤ T0 +
64

κ2
d log

(
t

d

)
+

4

κ

(
4

κ
+

8

3

)
log

(
⌈2 log2 tK

2 ⌉t
2

δ

)
+

8

κ
+ 1

where we apply Lemma 10 to bound
∑t

τ=T0+1 maxi∈Sτ
∥x̃τi∥2V −1

τ+1

.

D PROOF OF THEOREM 5

At a high level, we prove Theorem 5 in three steps. In the first step, we construct an adversarial set
of parameters and reduce the task of lower bounding the worst-case regret of any policy to lower
bounding the Bayes risk over the constructed parameter set. In the second step, we use a counting
argument similar to the one used in Chen & Wang (2018) and Chen et al. (2020) to provide an
explicit lower bound on the Bayes risk of the constructed adversarial parameter set. Finally, we
apply Pinsker’s inequality to complete the proof. The following sections provide the details for each
of these steps.
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D.1 ADVERSARIAL CONSTRUCTION AND THE BAYES RISK

Let ϵ ∈ (0, (1 − L2
0)/d
√
d) be a small positive parameter to be specified later. For every subset

W ⊆ [d], define the corresponding parameterψW ∈ Rd as [ψW ]i = ϵ for all i ∈W , and [ψW ]i = 0

for all i /∈ W . Next, define ϕ∗ ∈ Rd as [ϕ∗]i = L0

√
1/d for all i ∈ [d]. Finally, for any W ⊆ [d],

define the concatenated parameter vectors θW ∈ R2d as θW = (ψW ,ϕ∗). The parameter set that
we consider is

θ ∈ Θ := {θW : W ∈ Wd/4}

where Wd/4 := {W ⊆ [d] : |W | = d/4} denotes the set of all subsets of [d] whose size is d/4.
Note that d/4 is a positive integer because d is divisible by 4. It is also easy to check that with the
condition ϵ ∈ (0, (1− L2

0)/
√
d), we satisfy ∥θ∥ ≤ 1 for any θ ∈ Θ.

The feature vectors {xti} are constructed to be invariant over time iterations t. For each t and
U ∈ Wd/4, K identical feature vectors xU are constructed as [xU ]i = 2/

√
d for all i ∈ U , and

[xU ]i = 0 for all i /∈ U . Furthermore, it is straightforward to verify that ∥xU∥ ≤ 1 for any
U ∈ Wd/4.

Hence, the worst-case regret of any policy π can be lower bounded by the worst-case regret of
parameters belonging to Θ, which can be further lower bounded by the average regret over a uniform
prior over Θ. Formally,

sup
θ

Eπ
x,θ

T∑
t=1

R(S∗
θ,p

∗
θ)−R(St,pt) = max

θ∈Θ
Eπ
x,θ

T∑
t=1

R(S∗
θ,p

∗
θ)−R(St,pt) (19)

=
1

|Wd/4|
∑

W∈Wd/4

Eπ
x,θW

R(S∗
θW

,p∗θW
)−R(St,pt) (20)

Here, the R(·) function refers to the expected revenue function Rt(·) defined in equation 1. Since
both the context vectors and the feature vectors are invariant over time by construction, we drop
the time subscript t to simplify the notation. Additionally, S∗

θW
and p∗θW

refer to the optimal size-
K assortment and pricing that maximizes expected revenue under the feature parameter θW . By
construction, it is easy to verify that S∗

θW
consists of all K items corresponding to feature xW .

For any fixed assortment S ∈ SK , let p∗(S) denote the revenue-maximizing price vector to offer
with assortment S. That is,

p∗(S) ∈ max
p∈Rn

+

R(S,p)

with entries p∗i (S). Then, the optimum prices p∗θW
= p∗(S∗

θW
) can be characterized using the

following proposition which is a special case of the Proposition 1.

Proposition 6. Consider that items in an assortment S of size K have utility functions ui(p) =
αi − βi · p. Then, the revenue-maximizing prices for offering assortment S are given by

p∗i (S) =
1

βi
+B0(S)

where B0(S) is the unique fixed point solution B of the equation

B =
∑
i∈S

1

β
eαi−βiB−1.

Furthermore, the revenue achieved by offering (S,p∗(S)) is equal to B0(S).

In particular, if all items in an assortment S have the same utility function ui(p) = α − β · p, then
we can write B0(S) as the fixed point solution of

B =
K

β
eα−βB−1.
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D.2 THE COUNTING ARGUMENT

In this section, we derive an explicit lower bound on the Bayes risk in equation 20. For any sequence
{(St,pt)}Tt=1 produced by the policy π, we first describe an alternative sequence {(S̃t, p̃t)}Tt=1 that
provably enjoys less regret under the feature parameter θW .

Let {xU1 , . . . ,xUM
} be the set of context vectors of items contained in assortment St (if St = ∅,

then choose an arbitrary feature vector xU ). Let Ũt be the subset among U1, . . . , UM that maximizes
⟨xŨt

,ψW ⟩, where θW = (ψW ,ϕ∗) is the underlying parameter. Let S̃t be the assortment consisting

of all K items corresponding to the feature xŨt
and let p̃t = p∗(S̃t) be the optimum prices for

assortment S̃t according to Proposition 6. Then, the following lemma holds true.

Lemma 17. R(St,pt) ≤ R(S̃t, p̃t) for feature parameter θW = (ψW ,ϕ∗).

Proof. First, from the optimality of prices p∗(St) under St, we have R(St,pt) ≤ R(St,p
∗(St)).

Then, by Proposition 6, R(St,p
∗(St)) is equal to the unique fixed point solution for

B =
∑
i∈S

1

β
eαi−βiB−1.

Note that the expression on the right-hand side of this equation is monotonically increasing in each
αi. Therefore, by replacing all i ∈ St with i ∈ S̃t, the αi values do not decrease and therefore the
fixed point does not increase. That is, the fixed-point solution for

B =
∑
i∈S̃t

1

β
eαi−βiB−1. (21)

is greater than or equal to R(St,p
∗(St)). Since the unique fixed point solution of equation 21 is

equal to R(S̃t, p̃t), we have R(St,p
∗(St)) ≤ R(S̃t, p̃t), completing the proof.

To simplify notation, we use EW to denote the expectations under parameter θW and policy π. The
following lemma gives a lower bound for R(S∗

θW
,p∗θW

)−R(S̃t, p̃t).

Lemma 18. Suppose ϵ ∈ (0, 1/d
√
d) and define δ := d/4− |Ũt ∩W |. Then,

R(S∗
θW

,p∗θW
)−R(S̃t, p̃t) ≥

δϵ

15L0

√
d

Define random variables Ñi :=
∑T

t=1 1{i ∈ Ũt}. Lemma 18 immediately implies

EW

[
R(S∗

θW
,p∗θW

)−R(S̃t, p̃t)
]
≥ ϵ

15L0

√
d

(
dT

4
−
∑
i∈W

EW [Ñi]

)
,∀W ∈ Wd/4.

Summing both sides of this equation over all W ∈ Wd/4 gives

∑
W∈Wd/4

EW

[
R(S∗

θW
,p∗θW

)−R(S̃t, p̃t)
]
≥ ϵ

15L0

√
d

∑
W∈Wd/4

(
dT

4
−
∑
i∈W

EW [Ñi]

)
.

Next, we will upper-bound the term
∑

W∈Wd/4

∑
i∈W EW [Ñi]. First, define

W(i)
d/4 := {W ∈ Wd/4 : i ∈W}.
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Then, we swap the order of summation to write∑
W∈Wd/4

∑
i∈W

EW [Ñi] =
∑
i∈[d]

∑
W∈W(i)

d/4

EW [Ñi]

=
∑
i∈[d]

∑
W∈Wd/4−1

EW∪{i}[Ñi]

≤ |Wd/4−1| max
W∈Wd/4−1

∑
i∈[d]

EW∪{i}[Ñi]

= |Wd/4−1| max
W∈Wd/4−1

∑
i∈[d]

(
EW [Ñi] + EW∪{i}[Ñi]− EW [Ñi]

)

≤ |Wd/4−1|

 max
W∈Wd/4−1

∑
i∈[d]

(
EW∪{i}[Ñi]− EW [Ñi]

)
+

dT

4


where the last step follows from the fact that

∑
i∈[d] EW [Ñi] ≤ dT/4 for any fixed W ∈ Wd/4−1.

Next, we note that

|Wd/4−1|
|Wd/4|

=

(
d

d/4−1

)(
d

d/4

) =
d/4

3d/4 + 1
≤ 1

3

to write
1

|Wd/4|
∑

W∈Wd/4

EW

[
R(S∗

θW
,p∗θW

)−R(S̃t, p̃t)
]

≥ 1

|Wd/4|
ϵ

15L0

√
d

∑
W∈Wd/4

(
dT

4
−
∑
i∈W

EW [Ñi]

)

≥ ϵ

15L0

√
d

dT

4
− 1

|Wd/4|
∑

W∈Wd/4

∑
i∈W

EW [Ñi]


≥ ϵ

45L0

√
d

dT

2
− max

W∈Wd/4−1

∑
i∈[d]

∣∣∣EW∪{i}[Ñi]− EW [Ñi]
∣∣∣


D.3 PINSKER’S INEQUALITY

In this section, we upper bound
∣∣∣EW∪{i}[Ñi]− EW [Ñi]

∣∣∣ for any fixed W ∈ Wd/4−1. Let PW and
PW∪{i} to denote the probability law under parameter θW and θW∪{i}, respectively. Then,∣∣∣EW∪{i}[Ñi]− EW [Ñi]

∣∣∣ ≤ T∑
n=0

n ·
∣∣∣PW [Ñi = n]− PW∪{i}[Ñi = n]

∣∣∣
≤ T ·

T∑
n=0

∣∣∣PW [Ñi = n]− PW∪{i}[Ñi = n]
∣∣∣

≤ 2T · ∥PW − PW∪{i}∥TV

≤ T
√
2 ·KL(PW ||PW∪{i})

where ∥P − Q∥TV = supA |P (A) − Q(A)| is the total variation distance between laws P and Q;
KL(P ||Q) =

∫
(log dP/dQ)dP is the Kullback-Leibler (KL) divergence between P and Q; and the

inequality ∥P −Q∥TV ≤
√

1
2KL(P ||Q) is the Pinsker’s inequality.
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Recall that {xU1
, . . . ,xUM

} denotes the set of context vectors of items contained in assortment St.
Then, for every i ∈ [d], define a new random variable Ni :=

1
K

∑T
t=1

∑M
j=1 1{i ∈ Uj}. The next

lemma is used to upper bound the KL divergence term KL(PW ||PW∪{i}).

Lemma 19 (Lemma 6 in Chen et al. (2020)). For any W ∈ Wd/4−1 and i ∈ [d],

KL(PW ||PW∪{i}) ≤ CKL · EW [Ni] · ϵ2/d

for some universal constant CKL > 0.

Combining Lemma 19 with the final result of the previous subsection, we obtain

1

|Wd/4|
∑

W∈Wd/4

EW

[
R(S∗

θW
,p∗θW

)−R(S̃t, p̃t)
]

≥ ϵ

45L0

√
d

dT

2
− T

∑
i∈[d]

√
2CKL · EW [Ni] · ϵ2/d


≥ ϵ

45L0

√
d

dT

2
− Tϵ

√
2CKL

∑
i∈[d]

EW [Ni]


≥ ϵ

45L0

√
d

(
dT

2
− Tϵ

√
C ′

KLdT

)
where C ′

KL = CKL/2. Setting ϵ =
√
d/16C ′

KLT ∈ (0, (1− L2
0)/d
√
d) for sufficiently large T , we

obtain

sup
θ

Eπ
x,θ

T∑
t=1

R(S∗
θ,p

∗
θ)−R(St,pt) ≥ C0d

√
T/L0

for some universal constant C0, completing the proof of the theorem.

D.4 PROOFS FOR TECHNICAL LEMMAS

Lemma 18. Suppose ϵ ∈ (0, 1/d
√
d) and define δ := d/4− |Ũt ∩W |. Then,

R(S∗
θW

,p∗θW
)−R(S̃t, p̃t) ≥

δϵ

15L0

√
d

Proof. The optimum revenue from offering K identical items with utility functions u(p) = α− βp
is equal to the unique fixed point solution B of the equation

B =
K

β
eα−βB−1. (22)

Using the product logarithm function W (·), we can express the optimum revenue as

W (eα−1K)

β
(23)

Let fK(x) := W (ex−1K) and denote its first derivative with f ′
K(x) for any K ≥ 1. Then, by

Lemma 20, there exists a constant CK < 2
3f

′
K(0) such that

fK(0) + f ′
K(0) · x ≤ fK(x) ≤ fK(0) + f ′

K(0) · x+ CK · x2

for all 0 ≤ x ≤ 1. For the remainder of this proof, let x = xW , x̃ = xŨt
, and θ = θW . Then, we

can write

R(S∗
θW

,p∗θW
) = fK(x⊤θ) and R(S̃t, p̃t) = fK(x̃⊤θ).
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Putting it all together, we can show that

R(S∗
θW

,p∗θW
)−R(S̃t, p̃t) ≥

1

L0

[
(fK(0) + f ′

K(0)x⊤θ)−
(
fK(0) + f ′

K(0)x̃⊤θ + CK(x̃⊤θ)2
)]

=
1

L0

[
f ′
K(0)(x− x̃)⊤θ − CK(x̃⊤θ)2

]
≥ f ′

K(0)

L0

[
(x− x̃)⊤θ − 2

3
(x̃⊤θ)2

]
≥ f ′

K(0)

L0

[
δϵ√
d
− 2dϵ2

3

]
≥ f ′

K(0)δϵ

3L0

√
d

where the last three inequalities use the inequality 0 < f ′′(0) < f ′
K(0), the definition of δ, and

the inequality dϵ2 ≤ δϵ/
√
d provided that ϵ ∈ (0, 1/d

√
d). Lastly, noting that f ′

K(0) > 1/5 by
Lemma 20 for any K ≥ 1, we conclude the proof.

Lemma 20. Let fK(x) := W (ex−1K) and denote its first derivative with f ′
K(x). Then, for any

K ≥ 1,

(a) f ′
K(x) > 1/5 for all 0 ≤ x ≤ 1, and

(b) there exists a constant CK < 2
3f

′
K(0) such that

fK(0) + f ′
K(0) · x ≤ fK(x) ≤ fK(0) + f ′

K(0) · x+ CK · x2

for all 0 ≤ x ≤ 1.

Proof. Let f ′′
K(x) and f

(3)
K (x) denote the second and third derivatives of fK(x) respectively. Using

the properties of the product logarithm function, it is easy to show that

f ′
K(x) =

fK(x)

1 + fK(x)
, f ′′

K(x) =
fK(x)

(1 + fK(x))3
, f

(3)
K (x) =

(1− 2fK(x))fK(x)

(1 + fK(x))5
.

For any K ≥ 1, fK(x) is a positive and increasing function of x. Hence, min0≤x≤1 f
′
K(x) = f ′

K(0).
Furthermore, we can show that

min
K≥1

f ′
K(0) = min

K≥1

W (K/e)

1 +W (K/e)
=

W (1/e)

1 +W (1/e)
> 1/5

proving the first part of the lemma.

To prove the second part of the lemma, we use Taylor’s Theorem to write

fK(x) = fK(0) + f ′
K(0) · x+

f ′′
K(0)

2
· x2 +RK(ζ;x)

RK(ζ;x) =
f
(3)
K (ζ)

6
x3

for some ζ between 0 and x. For any K ≥ 3, we can easily show that fK(x) ≥ 1/2 for all
0 ≤ x ≤ 1. Therefore, RK(ζ;x) ≤ 0 for all 0 ≤ ζ ≤ x ≤ 1 and we can set CK = f ′′

K(0)/2 to
satisfy the upper bound inequality.

On the other hand, for K = 1 and K = 2, we can numerically show that

max
0≤ζ≤1

f
(3)
K (ζ) = f

(3)
K (0).

and f
(3)
K (0) ≤ f ′′

K(0). Therefore, we have

RK(ζ;x) ≤ f ′′
K(0)

6
· x2
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for all 0 ≤ ζ ≤ x ≤ 1 when K = 1 or K = 2. As a result, we can set CK = 2f ′′
K(0)/3 to satisfy

the upper bound inequality.

Since f ′′
K(0) < f ′

K(0) for any K ≥ 1, the selected constant CK also satisfies CK < 2
3f

′
K(0).

E EXPERIMENTAL DETAILS

We numerically evaluate our algorithms over 20 independently generated problem instances and
provide our results in Figure 2. We run experiments with n = 100 items for various assortment sizes
K and various numbers of feature dimensions d. In each instance, the parameter ψ∗ is uniformly
chosen from {ψ : ∥ψ∥2 = 1/2}. On the other hand, price sensitivity parameter ϕ∗ is generated
by independently drawing its entries from a uniform distribution over [

√
L0/
√
d, 1/
√
2d] for some

parameter L0 > 0. Each context vector xti is generated by independently drawing its entries over
[
√
L0/
√
d, 1/
√
2d]. This construction ensures that we satisfy both Assumptions 2 and 3.
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