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ABSTRACT

Node labels for graphs are usually generated using an automated process or crowd-
sourced from human users. This opens up avenues for malicious users to compro-
mise the training labels, making it unwise to blindly rely on them. While robustness
against noisy labels is an active area of research, there are only a handful of papers
in the literature that address this for graph-based data. Even more so, the effects of
adversarial label perturbations is sparsely studied. More critically, we reveal that
the literature on label poisoning for GNNs is plagued by evaluation pitfalls. Thus
making it hard to conclude how robust GNNs are against label perturbations. After
course correcting the state of label poisoning attacks with our faithful evaluation,
we identify a discrepancy in attack efficiency of ∼ 9% on average. Additionally,
we introduce two new simple yet effective attacks that are significantly stronger
(up to ∼ 8%) than the previous strongest attack. Our strongest proposed attack can
be efficiently computed1 and is theoretically backed.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool to learn from graph-structured data.
From social network analysis and recommendation systems, to bio-informatics and traffic prediction,
their wide-ranging applications highlight their importance (Wu et al., 2019b). Consequently, we need
to understand their robustness, especially if we aim to integrate them in safety-critical domains. There
is a large body of work showing that GNNs are susceptible to feature and structure perturbations,
which can significantly degrade their performance (see e.g. surveys by Sun et al. (2023), Chen et al.
(2020), and Jin et al. (2021)). This vulnerability exposes them to potential adversarial attacks, thereby
compromising the integrity of their outputs. Even if there is no adversary, we argue that understanding
the worst-case robustness of a model can be highly informative, especially when comparing models.

Among the various attack vectors, label poisoning poses a distinct threat. In many real-world scenarios,
labels for training data are often generated through crowd-sourcing or other non-expert sources. For
example, in a federated learning setting where multiple peers collaboratively train a shared model,
any peer may submit potentially poisoned labels. Similarly, models are often trained on data scraped
from the internet without careful quality control. This opens up an avenue for attackers to implant
poisoned labels, thereby manipulating the learning process of GNNs. Label poisoning attacks can be
subtle and challenging to detect, thereby complicating defenders’ efforts to mitigate them. This is
especially true for graphs since we cannot easily “see” whether the node’s label is correct, unlike for
e.g. images. Such attacks can be specifically crafted to manipulate recommendation or advertising
systems, granting a competitive advantage (Fang et al., 2018; Zhang et al., 2021).

Recent work by Carlini et al. (2023) demonstrates the practicality of data poisoning attacks for
crowd-sourced and publicly-crawled datasets. The strength of the poisoning attack depends on the
data available to the attacker – access to full/partial training labels/graph structure. For illustration
purposes, we compute the optimal label flipping attack for the GCN model (Kipf & Welling, 2017) on
a tiny version of the Cora-ML dataset by exhaustively enumerating all possible label flips (more details
in the § B.1). We observe that only a single adversarial label flip can drop GCN’s test performance
from 81.27±5.64 to 64.36±6.26, a staggering drop of ∼17%.

1https://github.com/VijayLingam95/RethinkingLabelPoisoningForGNNs
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We will show that similar results hold in general – across all datasets and models, a relatively few
flips are enough to significantly affect performance. Despite its potential impact, label poisoning
for GNNs has been relatively under-explored in the research community, leaving a critical gap in
our understanding of their robustness. While label poisoning is better understood for non-graph data
(Biggio et al., 2011; Jin et al., 2021), graphs come with unique challenges due to label sparsity and the
interdependence between nodes. We aim to fill this gap by conducting a comprehensive robustness
analysis of GNNs under label poisoning, making four key contributions.

1. We pinpoint significant pitfalls in the evaluation setup of previous studies on label poisoning.
These pitfalls make it nearly impossible to accurately interpret the results of previous studies,
resulting in a distorted portrayal. The root issue is that prior assessments fail to accurately replicate
the actions of a defender. By rectifying these pitfalls, we establish a more reliable and faithful
evaluation framework for gauging the robustness of GNNs against label poisoning.

2. We propose two simple, yet highly effective, families of baseline attacks that stem from different
approximations of the (NP-hard) bi-level optimization problem associated with label poisoning.
Our two strategies, each with different advantages, rely on linear surrogates and meta learning
respectively. These attacks are significantly stronger than previous ones, affecting both vanilla and
noise-aware models. This demonstrates the pressing demand for more robust defense mechanisms,
especially considering the transferability of our attacks, wherein a strategy devised for one model
can effectively contaminate numerous other models.

3. We shed light on a curious phenomenon where unconstrained attacks perform worse than binary
attacks, where the attacker is constrained to only flip among two classes. In addition to experimental
evidence, we show that random binary flips lead to provably lower accuracy.

4. We show that the mixed integer linear program (MILP) associated with our linear surrogate attack
can be efficiently solved by proving that its LP relaxation is integral. Moreover, we provide a
closed-form optimal solution for the binary variant which can be computed even faster.

2 BACKGROUND: THREAT MODEL, EXISTING ATTACKS & RELATED WORK

We focus on label poisoning attacks for semi-supervised node classification. The adversary can perturb
the labels of a small fraction of training nodes, keeping the features and the structure unperturbed.

Problem setting. We are given a graph represented by its |V| × |V| adjacency matrix A and its
|V| ×D feature matrix X , where V is the set of nodes. The D-dimensional features can be discrete
or continuous, and the graph can be directed, undirected, weighted or unweighted. We represent
the ground-truth labels as one-hot encoded row vectors in a matrix Y ∈ {0, 1}|V|×C where C is
the number of classes. We denote with Yl and Yu the labels corresponding to the subset of training
(labeled) nodes Vl and the test (unlabeled) nodes Vu. Given A,X,Yl we learn the parameters θ∗ of
a model f(θ), e.g. a GNN, by minimizing some loss L (usually cross-entropy).

Threat model. The attacker can perturb the training labels Yl to reduce the performance on the test
nodes. We assume that the attacker has complete knowledge of X . We consider three settings where
the attacker knows: (i) A and all ground-truth labels Y ; (ii) A, the ground-truth labels for the training
nodes Yl only, and predicted labels for the test nodes Ŷu; and (iii) no access to A and all ground-truth
labels Y . We focus on (i) and defer (ii) and (iii) to § B.8. In all settings, the attacker is only allowed to
perturb Yl. The first setting corresponds to the worst-case scenario and is important for understanding
the intrinsic robustness of our models, regardless of whether it is feasible to execute such an attack in
practice. We can write down the label poisoning attack as a bi-level optimization problem:

H∗ = argmax
H

L(θ∗;A,X,Yu)

s.t. θ∗ = argmin
θ

L(θ;A,X,H), ∥Yl −H∥0 ≤ 2ϵ|Vl|
(1)

where H denotes the potentially poisoned training labels, ϵ ∈ (0, 1) is the perturbation budget, and
⌊ϵ|Vl|⌋ is the maximum number of labels that can be flipped. The inner problem corresponds to
training a model with potentially poisoned training node labels, while the outer problem maximizes
the loss on the test nodes, given the optimal parameters θ∗. Optimally solving the bi-level problem in
Eq. 1, or often even just the inner problem itself, is intractable (NP-hard) in general. Attacks differ in
how they construct an approximation to this problem.
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Defense model. The defender is given a dataset with potentially poisoned labels, but does not know
which labels are poisoned. Since we’re dealing with poisoning, the defender trains the model from
scratch. This could be a vanilla model or a noise/poison-aware robust model. Depending on the
model they can use all available labels for training (e.g. label propagation) or split them into training
and validation sets (e.g. GNNs). Often the defender also performs hyper-parameter tuning before
deployment since GNNs are sensitive to h-params (Shchur et al., 2018; Li & King, 2020).

Heuristic-based attacks. The random label-flipping attack (RND) randomly selects a subset of
training nodes within the budget, and then randomly selects incorrect labels for each selected node.
The degree-based label-flipping attack (DEG) selects the highest degree nodes given a budget, and
randomly assigns incorrect labels. As we will show in § 5 even these simple baselines can outperform
some prior attacks under a fair evaluation.

Learning-based attacks. All previous attacks approximately solve Eq. 1 by using a fixed surrogate
model. They all replace the inner problem with a closed-form solution, but differ in how they tackle
the outer problem. The poisoned labels are then applied to a target model.

Liu et al. (2019) propose a gradient-based label propagation attack (LP) for graph-based semi-
supervised learning (G-SSL) models. Note that this attack was primarily designed for binary-class
datasets that are i.i.d in nature, with G-SSL methods applied on top. Nonetheless, it can be adapted to
our graph setting. LP replaces the inner optimization in Eq. 1 with the closed-form solution of label
propagation. They replace the loss in the outer problem with an expectation over learnable Bernoulli
variables that model the probability of flipping the label of a given node. They optimize this new loss
using a reparametrization trick and gradient descent.

Zhang et al. (2020) build on top of the LP attack and propose LAFAK (LFK) that replaces the inner
optimization in Eq. 1 with a regression-based closed-form solution of a linearized GCN. They remove
the non-linearities in a 2-layer GCN (Kipf & Welling, 2017): SOFTMAX(Â RELU(ÂXθ1) θ2) →
SOFTMAX(Â2Xθ), where Â is the symmetric normalized adjacency matrix, and θ1 and θ2 are
reparameterized into a single matrix θ ∈ RD×C . Here, the (implicit) surrogate model is SGC (Wu
et al., 2019a). Next, they replace the cross-entropy loss with a least squares surrogate loss, using
regression to perform classification. That is, θ∗ = argminθ∥X̂lθ − ŷl∥22 + λ∥θ∥22, where ŷl ∈
{−1,+1}|Vl| is the vector of (potentially poisoned) binary training labels, X̂ = Â2X are the diffused
features, (·)l select the subset of rows corresponding to training nodes, and λ is the regularization
strength. Now, θ∗ = (X̂T

l X̂l + λI)−1X̂T
l ŷl. Similar to LP, they substitute the non-differentiable

parts of the outer problem with continuous surrogates and use a gradient descent-based optimizer.

Liu et al. (2022) propose the maximum gradient attack (MG) based on label propagation. Unlike
LP which uses a similarity matrix that is constructed by applying a Gaussian kernel to the feature
matrix, MG proposes multiple ways to construct a propagation matrix Ā (e.g., PageRank matrix,
higher-order adjacency matrix). Then, they greedily select the top nodes within the budget with the
highest gradient w.r.t. the outer loss, and set their label to the false class with the highest index.

Binary vs. multi-class. The default implementation of LFK and LP support only binary labels. Thus,
for multi-class datasets they consider only the subset of the graph whose nodes belong to the two
most frequent classes, restricting their attack to flips among these two classes. Note, this restriction is
only for the attack phase, during evaluation the entire (multi-class) graph is used. It turns out that this
restriction to binary flips may strengthen the attack efficacy, as suggested by our theory in § 4.3. As a
side note, this binary approach may limit the maximum perturbation budget. In § B.6 we discuss this
issue in detail and propose a minor baseline extension to alleviate it.

Discussion. All these attacks have shortcomings. The LP attack was primarily built for G-SSL
datasets that do not contain a graph, limiting its efficacy on message-passing based GNNs. LFK relies
on several continuous surrogates to enable gradient flow. These approximations hurt its performance.
However, coincidentally, restricting to binary flips boosts its attack performance. MG’s greedy
approach can be myopic. While these existing label attacks claim severe degradation in GNNs
performance with minimal label perturbations, we identify serious flaws in their evaluation setup. In
the following section (§ 3), we discuss and fix these pitfalls and perform a faithful evaluation of the
existing label attacks. We provide further discussion of broader related work in § B.2.
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Figure 1: Previous evaluations use class-equalized splits (P4), untuned models (P5), and unpoisoned
(clean) and unreasonably large val set (P1, P6). We fix these pitfalls in (a), (b), and (c) respectively.

3 SIX PITFALLS AND REMEDIES

After careful inspection, we conclude that the evaluation of previous attacks does not simulate the
full potential of a defender. In short, the dataset splits and the training/tuning routine simulated by the
attacker when evaluating the strength of their proposed attacks in the previous works we examined
is not realistic and flawed. In the rest of this section, we carve out the specifics of the pitfalls we
identified, empirically validate them with our experiments, and offer remedies. Here we show results
on the Cora-ML (McCallum et al., 2000) dataset for the GCN (Kipf & Welling, 2017) model. In § B
we provide detailed information on the setup. In § B.17 we provide further experiments on additional
datasets and models which lead to the same conclusions. For the sake of completeness, we sweep the
poisoning budget across the range [5%, 10%, 15%, 20%, 30%] of training dataset. For the Cora-ML
dataset these budgets correspond to [7, 14, 21, 28, 42] training labels out of 2810 in expectation. In
practice, smaller budgets are likely to be more relevant. We plot our findings in Fig. 1.

First three pitfalls. We focus on the common sparsely labeled scenario where the fraction of train
nodes is relatively small, |Vl| ≪ |Vu|. P1. The first pitfall arises since all previous attacks evaluate on
data splits with validation set size much larger than that of the training set (e.g. 500 validation vs 140
train nodes on Cora-ML in the default setting). Oliver et al. (2018) offer an extensive discussion on
this pitfall for general semi-supervised learning (see their P.6). Briefly, in real-world applications the
larger val set would instead be used as the train set. Also, h-params tuning would be noisier when
using a realistically small validation set. P2. The second pitfall is the failure to report the standard
deviation across multiple splits. This is crucial since GNNs are highly sensitive to the split, especially
for sparsely labeled data. We remedy these pitfalls by using a validation and train set of the same
size, and by reporting the mean and standard deviation across 10 splits (more details in § B.8). P3.
The third pitfall, is to only evaluate attacks on undefended models. We find that noise/poison-aware
models can offer some robustness against these attacks. We explore this in detail in § 5.

P4. Class-equalized vs. random split. In the (default) class-equalized setting both the train and val
sets contain equal number of samples per class. This does not preserve the global class distribution
and treats each class equally. Another potential way to split the dataset is to randomly sample nodes
for train and val sets (referred to as random setting). We argue that this is more realistic, as the train/val
class distribution would more closely align with the test/true class distribution. From Fig. 1(a), we
deduce that switching to the random setting significantly degrades the performance of label-poisoning
attacks. Compared to the learning-based attacks which show a difference of up to 17%, the heuristic
attacks (RND and DEG) are less susceptible to changes in data splits. LFK and LP attacks flip
pairs of popular classes, and MG attack always flips to the label with the highest index. The class
distribution in all studied datasets is skewed with 2 or 3 majority classes (see § B.15). Since the
random setting has more samples from popular classes, the model has better chances at learning a
more robust decision boundary and thus weakens the attack’s efficacy.

P5. Hyper-parameter tuning. GNNs are usually highly sensitive to hyper-parameters (h-params).
Even though this is well established (Li & King, 2020), all previous poisoning studies still use the
default h-params to evaluate the effectiveness of their proposed attack. Since the default h-params
were tuned to work with clean (unpoisoned) labels they might be suboptimal. On Fig. 1(b) we show
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Figure 2: Each bar corresponds to an evaluation setup with a subset of pitfalls (LFK, Cora-ML).
Pitfall P2 is fixed since we report standard deviations. P3 is fixed by evaluating the CPGNN defense.

the performance of various attacks with and without tuning. Fine-tuning with only 20 configurations
(see § B) can significantly deteriorate the attack, manifested as increase in test accuracy. The recovery
in performance is more pronounced in learning-based attacks and at higher poison percentages. At
5% and 15% budget the claimed state-of-the-art attack, MG, is as ineffective as the RND baseline.
We observe this anomaly across models and datasets as documented in § B.8. LFK seems to be the
strongest attack followed by LP. Since tuning GNNs is relatively cheap (Table 13) and since the
untuned model performs poorly, it is a reasonable assumption that the defender will tune their models.

P6. Clean validation set. All existing attacks assume in their evaluation that the validation set
labels are clean (not poisoned). We hypothesize that having a clean (and large, see first pitfall)
validation set can aid the model in recovering accuracy by avoiding overfitting on the poisoned train
set. Additionally, it is unrealistic to treat the train and validation sets separately – if the defender has a
clean validation set they can simply ignore the poisoned train set (see § B.10 for a detailed analysis).
Note, unlike e.g. image classification, for semi-supervised node classification both train and val set
are usually small since |Vl| ≪ |Vu|, and often have equal size. To remedy this pitfall, we poison the
available sparse set of labels Vl which the defender can use for training and/or validation as they see
fit.2 Since we train GNNs, we create 10 different train/val sets from the poisoned Vl and report the
average across splits. We refer to this as the CV setting, and on Fig. 1(c) we see that it boosts the
efficacy of all attacks. This is expected, since the defender no longer has a clean validation set.

Cumulative effect of the pitfalls. In Fig. 2, we sequentially apply the series of remedies and plot
LFK’s performance. Moving from class-equalized splits to random splits has the largest impact on
average, followed by hyper-parameter tuning. Comparing the first and last bar for a given budget
shows that the attack performance on average worsens, e.g. for the LFK attack on Cora-ML by ∼9%
across models. Additional comparisons are provided in § B.8 which lead to the same conclusions. We
advocate for using our proposed evaluation procedure as it better reflects real scenarios. In § 4 we
introduce our new attacks, which we compare against these baselines in § 5.

4 LABEL POISONING ATTACKS

Motivated by the results in § 3 where we showed that previous attacks are not as effective as claimed,
we design new simple and effective baseline attacks. These attacks are independent from the pitfalls
but we discuss some connections in § B.18. We propose two different strategies to approximate the
bi-level poisoning problem in Eq. 1 that rely on: (i) linear surrogate models and (ii) meta learning.

4.1 LINEAR SURROGATE ATTACK

We start by replacing the inner optimization problem with a linear surrogate for which we can obtain
the optimal weights θ∗ in closed-form. We explore two different variants. First, similar to Zhang et al.
(2020) we use an SGC (Wu et al., 2019a) surrogate which is equivalent to linearizing a vanilla 2-layer
GCN (Kipf & Welling, 2017). We use SGC, since despite its simplicity it shows similar performance
to its non-linear counterpart across datasets. Second, we use the Neural Tangent Kernel (NTK)

2Some methods, such as label propagation, use all labels for training, while others like GNNs split Vl into
train/val sets and use the latter for early stopping/fine-tuning. Our attacks remain agnostic to this.
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for an infinitely-wide GCN (Sabanayagam et al., 2022). We use the NTK since it is theoretically
well-founded and it has been shown to capture the behavior of its finite-width counterpart.

In both cases, unlike Zhang et al. (2020) which only support binary labels, we replace the inner
problem with θ∗ = argminθ∥X̂lθ −H∥22 + λ∥θ∥22. In this surrogate multi-output ridge regression
problem, θ ∈ RD×C , we regress against the one-hot labels H , thereby supporting multi-class
problems. For the SGC variant X̂ = Â2X , and for the NTK variant X̂ is the kernel matrix derived
by Sabanayagam et al. (2022)(see § B.4 for more detail). The closed-form solution is readily obtained
as θ∗ = X̃lH where X̃ = (X̂T X̂ + λI)−1X̂T is a constant that can be pre-computed once3

for each dataset. Given our insights from pitfall P5 we choose the λ that maximises the validation
accuracy on average across splits, preventing overfitting to a single split. Now, we rewrite the surrogate
variant of Eq. 1 as the following mixed-integer linear program (MILP):

min
H∈{0,1}L×C

L(Yu, Ŷu) (2a)

||H − Yl||0 ≤ 2ϵL (2b)

Ŷu = X̂uX̃lH (2c)
H1C = 1L (2d)

where H is a binary variable, L = |Vl| is the number of training nodes, and 1L is the all-ones
vector of size L. Here, Eq. 2b enforces the budget constraint, Eq. 2c computes the predictions Ŷu for
the test nodes, and Eq. 2d enforces a one-hot encoding. We explore several variants for the loss in
Eq. 2a. One choice is L(Yu, Ŷu) = sum(Yu ⊙ Ŷu) which is equivalent to minimizing the predicted
“probability” for the true class. The benefit of this loss is that it is linear in Yu and Ŷu. Alternatively,
we can compute the most likely label for each node, by computing the argmax over the rows of Ŷu.
This requires additional auxiliary binary variables to encode the argmax, making it inherently less
scalable.

The MILP problem in Eq. 2 finds the optimal subset of nodes to perturb and which labels to perturb
them to (via H). Next, we show that, surprisingly, the optimal poisoned labels can be efficiently
computed by calling any LP solver (we use MOSEK). The proof § A exploits total unimodularity.
Proposition 1. The optimal solution of Eq. 2 is integral, i.e. H∗ ∈ {0, 1}L×C , when relaxing the
MILP to an LP such that H ∈ [0, 1]L×C .

We also explore another variant where we fix the target label, e.g. the false label with the highest
probability as predicted by a clean model (see § B.5 for details). We call the first variant SGC and
the second SGC-FIX. For SGC-FIX we only have to find the optimal subset of nodes which should
be significantly easier. In fact, we have the following closed-form solution.

Proposition 2. Given fixed target labels Ỹl, the optimal nodes to poison are the subset of nodes
corresponding to the smallest ⌊ϵL⌋ negative elements of an L-dimensional vector c, where the l-th
element of c is computed as cl =

∑
ij QilPljRij where Q = X̂uX̃l,P = Ỹl − Yl, and R = Yu.

See § A for a proof. Intuitively, when Ỹl is fixed we can rewrite the MILP in a canonical form as
minb∈{0,1}L cT b subject to bT1L ≤ ϵL where c is a constant, which can be efficiently solved by
returning the ⌊ϵL⌋ smallest (negative) elements in c.

4.2 META ATTACKS

For the second family of attacks we take an orthogonal approach where we directly optimize the
poisoned labels Ŷl via gradient descent. Since Eq. 1 is a bi-level problem we need to differentiate
through the inner optimization. Here, unlike the previous attack the inner problem is w.r.t. the actual
target model (e.g. the non-linear GCN) which is itself trained with gradient descent. Therefore, we
resort to computing meta gradients by unrolling the inner optimization for a fixed number of epochs
and differentiating through it. Unrolled optimization is common in the meta learning literature, where
the goal is e.g. to learn the optimal hyper-parameters (or the structure) of a model (Huang et al., 2020;

3We use numerically stable algorithms to compute X̃ without explicitly computing the matrix inverse.
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Mujkanovic et al., 2022). Intuitively, one can think of Ŷl as “hyper-parameters” to be optimized for
the inner problem. At a high level, most meta-attacks follow a similar procedure by unrolling the
inner-level optimization for K steps during each iteration of the outer loop. However, the attacks
differ precisely in the problem-specific instantiating of this recipe. We explore three different ways
(standard, fixed, expanded) to parameterize the poisoned labels.

Standard meta attack. We first initialize the free parameter matrix Ỹlog ∈ RL×C to learn the
log-probability of flipping to a given target label for each training node. We obtain Ỹ by sampling
proportional to the log-probabilities in Ỹlog using the Gumbel-softmax trick (Jang et al., 2017) on
each row. In the forward pass Ỹlog is “hard“ (one-hot encoding), while using the softmax probabilities
in the backward pass. We also initialize a parameter vector b̃ ∈ RL with the goal of learning which
subset of nodes are a good candidate for poisoning. To enforce the budget we apply soft-top-k
followed by k-subset-selection (Paulus et al., 2020) to obtain b = topk(b̃). We construct the final
poisoned labels by H = diag(b)Ỹ + diag(1L − b)Yl. We feed H into the inner optimization
problem which we train for a fixed number of epochs, and use meta-gradients of b w.r.t. the outer
loss for learning. During the forward pass we used hard top-k for b, sampled proportional to the
respective soft-top-k scores which are used during the backward pass.

Gumbel-softmax loss. The choice of loss function in the outer problem can impact the attack
performance. The loss of interest is the 0-1 loss (i.e. the test accuracy), which is non-differentiable.
There are several options to circumvent this issue by constructing different approximations. The
simplest idea is to just use the cross-entropy loss (which is also used in the inner problem) on the
“soft” predictions Ỹl. Another approach which was shown to perform better for other attacks (see e.g.
(Mujkanovic et al., 2022)) is the margin loss, where we minimize the margin between the true class
and the most probable false class. We propose a third alternative that exploits the Gumbel-Softmax
trick. Specifically, in the forward pass we sample hard predictions from Ŷu using the Gumbel-Softmax
reparametrization trick, while using the soft predictions for the backward pass. That is for node i
we sample a prediction via onehot(argmaxc{gc + pic}) where gc ∼ Gumbel(0, 1) and pic is the
predicted probability for class c obtained from the (i, c)-th entry of Ŷu. Given the one-hot encoded
hard predictions, we can compute the accuracy via the Hadamard product with the ground-truth
Yu. We study the choice of loss functions and their effects in B.8.2, since our newly proposed loss
performs the best on average we use it in the main experiments.

Fixed and expanded meta attacks. We construct a fixed one-hot Ỹ ∈ {0, 1}L×C similar to our
LSA attack by determining a fixed target label for each training node (e.g. the most likely false class
for a clean model). Similar to the standard meta attack, we let b learn to select the subset of poisoned
labels, which now always flip to a fixed target label. We discuss the expanded variant in § B.3

Adaptive attacks. Our meta attacks are an instance of, so-called, adaptive attacks which were shown
to be significantly better than surrogate-based attacks. This bitter lesson was learned for both computer
vision (Carlini & Wagner, 2017; Athalye et al., 2018; Tramer et al., 2020) and GNNs (Mujkanovic
et al., 2022). As we will see in § 5, adaptive attacks are not always superior for label poisoning.

4.3 THE CURIOUS PHENOMENON OF BINARY FLIPS

We explore additional variants of all of our attacks, where instead of allowing the attacker to select
the poisoned labels from the entire training set, we restrict their access only to a subset of labels
corresponding to two classes. We refer to these as -BIN variants. This will allows us to compare the
the prior baselines on their own terms since they do not natively support multi-class attacks. Similar
to LAFAK we choose 2 candidate classes and always flip between them, e.g. the two most frequent
classes. In § 5 we see that in practice the binary variants perform surprisingly well, often even better
than their multi-class variants. This is interesting, since in theory any feasible solution for the binary
variants is also feasible for the multi-class variants, i.e. multi-class is strictly more powerful. Even the
RND and DEG baselines benefit. We investigate this phenomenon experimentally and theoretically.

Surrogate loss gap. We first identify a discrepancy between the binary and multi-class performance
caused by the use of a least squares surrogate loss for the inner problem. We compute the optimal
attacks and compare models trained with least squares (LS) vs. cross-entropy (CE). Then we compute
the difference in accuracy when we switch from LS (the attack’s surrogate) to CE (the defender’s
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Table 1: Difference in performance when
training the model with cross-entropy vs. least
squares loss for Cora-ML. The multi-class at-
tack has significantly higher ∆ in accuracy,
overfitting to the linear regression surrogate.

ϵ ∆bin
acc ∆mul

acc ∆bin
loss ∆mul

loss

5% -0.02 +1.79 +0.76 +0.78
10% +1.55 +3.76 +0.86 +0.88
15% +0.69 +6.01 +0.95 +0.96
20% -0.82 +8.36 +1.09 +1.06
30% -2.18 +9.88 +1.33 +1.27

Table 2: Accuracy comparison between multi-
class and binary SGC attacks without hyper-
parameter tuning, on Cora-ML and GCN. The
multi-class attack is stronger here, but not
after tuning (see Fig. 3) indicating overfitting.

ϵ multi binary
5% 74.49 (2.22) 75.01 (1.13)

10% 67.02 (2.43) 70.35 (1.80)
15% 59.10 (1.81) 65.50 (1.86)
20% 54.76 (1.46) 60.08 (3.04)
30% 47.76 (1.45) 45.78 (4.20)

actual evaluation) denoted with ∆bin
acc for the binary attack (and ∆mul

acc for the multi-class attack).
In Table 1 we see that difference in accuracy is negligible when using the binary attack, and quite
large for the multi-class attack, even growing with increased budget ϵ. The loss shows no significant
difference. Thus, the binary variants perform better since they incur a smaller surrogate loss gap.

Adversarial overfitting. We also identify overfitting to the default h-parameters. In Table 2 we see
that when we run the SGC attack on an untuned model, the multi-class variant is better, however, this
is not true for the tuned model (see Fig. 3). Both findings indicate that the unconstrained multi-class
attacks are more likely to overfit – to either the surrogate or the untuned model – and thus are unable
to find poisons that generalize to the final tuned model used by the defender. Binary attacks are
“regularized”. Finally, for the random heuristic attacks we can prove that the binary variant is optimal.

Proposition 3. Let the adversary flip label p to label q ̸= p with probability ϵ
s · tpq and retain label p

with probability 1− ϵ, where ϵ is the poisoning budget, tpq ∈ {0, 1} indicates whether the adversary
is allowed to flip p to q, and s =

∑
q ̸=p tpq is the number of allowed classes. The test accuracy of the

Bayes optimal classifier trained on randomly flipped labels is minimized for s = 1 (binary flips).

5 EXPERIMENTAL EVALUATION

We conduct a comprehensive comparison between our family of attacks and all baseline methods.
Furthermore, for the first time and in response to one of the identified pitfalls, we assess our attacks
against two defense mechanisms specifically designed to withstand label perturbations: CPGCN
(Zhang et al., 2020) which introduces a clustering-based loss, and RTGNN (Qian et al.), which
uses self-reinforcement and consistency regularization. Label poisoning can also be viewed as an
extreme version of feature perturbation. To account for this, we also evaluate our strongest attack
and the strongest baseline (LFK) against ALBATIONGCN (Scholten et al., 2022), one of the recent
certified defenses against feature perturbations for GNNs (see § B.16). See § B for implementation
and tuning details. In § B.8 we provide additional results, including larger scale graphs and ablations.
The change in homophily due to poisoning is minor (§ B.11). In all experiments, we use the final
evaluation setting (CV) that we propose in § 3 which avoids all of the identified pitfalls.
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Figure 3: Different variants of the attacks that we propose. Binary variants are best on average.
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Figure 4: Our strongest attacks significantly outperform the baselines across various models.

Attack variants. We first study the different variants of our attacks. We denote with -FIX and -BIN
the fixed and binary subset variants respectively. In Fig. 3, we show the difference in the accuracy
of clean vs. poisoned labels for different budgets. We infer that on average linear surrogate attacks
are better than meta-based attacks. One reason is the fact that we are able to solve the MILP in
Eq. 2 exactly (and efficiently). That is, we find the optimal attack (given the surrogate), while the
meta-based attacks suffer from optimization issues. Binary variants are significantly stronger than
multi-class. Similar trends hold for the baselines (see § B.8). We discussed this phenomenon in § 4.3.

Attacks. For ease of comparison, we pick the best performing (on average) attack from each family
that we introduced in § 4, namely: SGC-BIN, NTK-BIN and META-BIN. We compute the difference
in test performance between the clean-accuracy and poisoned accuracy for each budget across attacks,
and plot them on Fig. 4. Higher difference shows a stronger attack. We observe that all our attacks
(in solid), particularly SGC-BIN attack, outperform baseline attacks with maximum gains of up to
∼ 13%. We observe similar trends across different models and datasets as we show in § B.8.

CPGCN and RTGNN are two recent defenses that have been introduced to specifically tackle pairwise
noise in labels – where the flips between classes is fixed. Attacks like LFK, LP, and the binary
variants of our proposed attacks can be viewed as (adversarial) pairwise noise. While RTGNN has
claimed impressive recovery in performance with pairwise noise rate of up to 40%, we find that our
simple attacks can cause a debilitating effect on its performance with as low as 10% noise in labels.

Surprisingly the SGC-based attacks transfer well to a wide range of vanilla GNNs as well as
robust GNNs. Moreover, our simple attack formulation significantly outperforms prior attacks that
use complicated routines. In contrast to the success of meta-gradient attacks for graph/feature
perturbations (Mujkanovic et al., 2022), we observe meta attacks to be inferior on average.

Ablation and limitations. We further examine how each attack performs per split, and also quali-
tatively analyse the effect of poisoning on the learned representations. These results are available
in § B.7. Moreover, our attacks are unsurprisingly even stronger on the default (flawed) setting as
we show in § B.12. While it may not always be easy to implement our threat models in practice,
we still gain significant insights into the inherent resilience of the models. Our theoretical insights
(Proposition 3) apply only to random flips, and extending this to the worst-case is left for future work.

6 DISCUSSION AND CONCLUSION

There are two main messages in our work. First, careful evaluation of poisoning attacks is critical
to accurately assess robustness. All examined previous studies commit serious pitfalls for which
we provide remedies. The crux of the issue is faithfully simulating the defender when testing an
attack, which includes proper tuning and splitting strategies. Second, simple label poisoning attacks
are surprisingly powerful – all examined models, including those designed to be robust, are highly
vulnerable. Interestingly, contrary to popular conceptions, in our setting linear surrogate attacks
outperform adaptive meta attacks. We gave experimental and theoretical insights into a curious
phenomenon of why binary variants perform better compared to their multi-class counterpart. It
would be interesting to study this in more depth in the future. Our findings highlight the urgent need
to further study poisoning attacks, as well as develop robust defenses and certificates against them.
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REPRODUCIBILITY STATEMENT

We offer comprehensive technical descriptions of our proposed attacks in § 4. The hyper-parameter
ranges we explore for both the attack and defense phases are included in the initial section of § B. We
provide proofs for our propositions in § A. Furthermore, we make our code publicly available.
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A PROOFS

When the target labels are fixed we can efficiently obtain the optimal subset of poisoned nodes in
a closed-form solution with Proposition 2. However, even when we optimize over H , i.e. optimize
over both the subset and the target labels, we can still solve the MILP efficiently. We will show that
relaxing H from {0, 1}L×C to [0, 1]L×C in Eq. 2 still results in an integral (i.e. binary) solution.
Therefore, we can solve the MILP by solving the corresponding relaxed LP.

Proof (Proposition 1). Let M = N · C. With L(Yu, Ŷu) = sum(Yu ⊙ Ŷu) we can rewrite Eq. 2 in
the following canonical form

min
x∈{0,1}2·M

cTx

Ax = b

Gx ≤ h

where A = [IN , . . . , IN︸ ︷︷ ︸
C times

,O], IN is the identify matrix, O is an N ×M zero matrix, b = 1N is the

ones vector, G =

−IM −IM

IM −IM

0M 1M

, 0M is the zeros vector, and h = [−vec(Yl), vec(Yl), ϵ2N ], and

c = vec(Y T
u X̂uX̃l). Here, Ax = b implements the one-hot constraint, while Gx ≤ h implements

the L1-norm budget constraint, where we have twice the number of variables to encode the absolute
value. Since b and h are integral (because Yl is one-hot encoded), to show that the optimal solution
is integral we only need to show that A and G are totally unimodular. Since the identity matrix IN is
totally unimodular, the result directly follows given the fact that if T is totally unimodular then so are
−T ,T T , [T , I], and [T ,−T ].

Proof (Proposition 2). When the target labels labels are fixed we can rewrite the MILP from Eq. 2 in
terms of auxiliary variables b that control the subset of poisoned labels. The resulting MILP is:

min
b∈{0,1}L

L(Yu, Ŷu) (3a)

H = diag(b)⊙ Ỹl + diag(1L − b)⊙ Yl (3b)

Ỹu = X̂uX̃lH (3c)

bT1L ≤ ϵL (3d)

Given L(Yu, Ŷu) = sum(Yu ⊙ Ŷu) we can rewrite the MILP in Eq. 3 (and equivalently Eq. 2) as

argmin
b∈{0,1}N

vec(Yu)
Tvec

(
X̂uX̃lH

)
bT1N ≤ ϵN (4)

We can simplify Eq. 4 without changing the minimum by omitting the terms that do not depend on b:

argmin
b∈{0,1}N

vec(Yu)
Tvec

(
X̂uX̃l

(
diag(b)⊙ (Ỹl − Yl)

))
bT1N ≤ ϵN (5)

Now if we define Q = X̂uX̃l,P = Ỹl − Yl and R = Yu we can again rewrite as:

argmin
b∈{0,1}N

cT b bT1N ≤ ϵN

where the l-th element of c is computed as cl =
∑

ij QilPljRij . This follows since the objective in
Eq. 5 equals

∑
ilj(Qil · bl · Plj · Rij). This problem is equivalent to selecting up to ϵN elements

from c such that their sum is minimized. The optimal solution is to select the ⌊ϵN⌋ smallest negative
elements (or all negative elements if the number of negative elements is < ⌊ϵN⌋).
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Proof (Proposition 3). Our proof relies on the theory about robustness to label noise that was recently
derived in Oyen et al. (2022). We denote with Y ∗ the random variable corresponding to the ground-
truth labels, and with Y the random variable for the noisy labels. We define the distribution that
randomly flips ground-truth Y ∗ to noisy Y as:

ηpq =

{
1− ϵ p = q
ϵ
s tpq p ̸= q

From the definition, Y | Y ∗ is a multinomialy distributed and ηpq determines which noisy (poisoned)
label is chosen. Let X denote the random variable for the features.

Denote with f(x)q = Prob[Y = q | X = x] =
∑C

p=1 ηpqf
∗(x)q the noisy posterior of the Bayes

optimal classifier, where f∗(x)q is the analogous clean (unperturbed) posterior. From the definition
of ηpq (and tpq) we see that s controls the number of allowed target classes, and s = 1 corresponds to
binary flips. Technically, for s = 1 each class can choose a different (but single) target class. This
is slightly more generally that our binary variants. For s = C − 1, where C is the total number of
classes, we recover the multi-class variant of the random heuristic baseline.

Oyen et al. (2022) showed that clean accuracy (for class q) depends on s:

E[I(argmax
i

f(x)i = q) | Y ∗ = q] ≈
f̄∗
q

1 + exp s+1
s · (2f̄∗

q − 1) · (ϵ− s
s+1 )

∆
= r(s) (6)

where f̄∗
q = E[f∗(x)q]. They also show that the noisy accuracy (for class q) depends on s:

E[I(argmax
i

f(x)i = q) | Y = q] = f̄∗
q

(
1− ϵ(s+ 1)

s

)2

+
ϵ

s

(
2− ϵ(s+ 1)

s

)
(7)

To prove Proposition 3 we need to show that the clean accuracy (for class q) in Eq. 6 as a function
of s is minimized for s = 1 for each class q. Analogously, one can easily show that Eq. 7 is also
minimized for s = 1, but we focus on Eq. 6 since it is the more relevant quantity for our setting.

We will prove that the function r(s) in Eq. 6 is monotonically increasing for s = 1, 2, . . . , C − 1.
First, we need to find its derivative w.r.t. s and analyze its sign. We have:

∇r(s) =−
f̄∗
q

s
× e

(
(−1+2f̄∗

q )(1+s)(ϵ− s
1+s )

s

)

s

×

 (−1 + 2f̄∗
q )(1 + s)

(
s

(1+s)2 − 1
1+s

)
s

+
(−1 + 2f̄∗

q )
(
ϵ− s

1+s

)
s

−
(−1 + 2f̄∗

q )(1 + s)
(
ϵ− s

1+s

)
s2


× 11 + e

(
(−1+2f̄∗

q )(1+s)(ϵ− s
1+s )

s

)2

(8)

We need to analyze the sign of each component of this expression. Since, 0 ≤ f̄∗
q ≤ 1 the first term is

non-negative. The second term is always positive due to the exponential function. The last term is
positive due to the square in the denominator.

It remains to analyze the sign of the third term inside the largest parentheses. This term expands to:

ϵ

s2
−

2f̄∗
q ϵ

s2
− 1

(1 + s)2
+

2f̄∗
q

(1 + s)2
− s

(1 + s)2
+

2f̄∗
q s

(1 + s)2
+

1

1 + s
−

2f̄∗
q

1 + s

With some algebra we show that the term simplifies to:

(ϵ− 2f̄∗
q ϵ)

s2
(9)
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This means that the sign of the entire expression is determined by the sign of Eq. 9. First, we consider
the case that 1

s < f̄∗
q ≤ 1. Since s is positive we only care about the nominator which we can

rearrange as ϵ(1 − 2f̄∗
q ). Since 0 < ϵ < 1 is positive we need to show 1 − 2f̄∗

q < 0. Given that
f̄∗
q > 1

s , we have that 2f̄∗
q > 2

s . This implies that 2f̄∗
q > 1 since s is positive and s = 1 in the

worst-case. Which means 1− 2f̄∗
q < 0.

Now, combining all the components: the negative sign in front of the derivative and the negative term
(ϵ−2f̄∗

q c)

s2 together make the derivative ∇r(s) positive for all s = 1, . . . , C − 1.

It remains to consider the case where f̄∗
q ≤ 1

s . Similar to Oyen et al. (2022) we argue that in this case
the classification is no better than random chance which would give a vacuous result since in this
case label noise actually would improve (rather than hurt) the performance.

B APPENDIX

The appendix is structured as follows. § B.1 contains additional details on the motivation experiment
we introduced in the main paper. In § B.2, we provide an extended discussion of related work. In § B.3,
we provide details on the expanded meta attack. § B.4 contains details regarding our NTK-based
attacks. In § B.5, we provide additional details on the variants of our LSA attack. In § B.6, we provide
details on extending the baselines to multi-class. In § B.7, we provide qualitative and quantitative
analysis of poisoning attacks. In § B.8, we provide additional experiments along with ablative studies
to offer more insights. § B.9 provides details on dataset statistics. In § B.10, we show how label
poisoning attacks can be thwarted if a clean validation dataset is assumed to be available (unrealistic
setting). § B.11 discusses the effect of label poisoning on graph homophily. In § B.12, we evaluate our
attacks on the previously used (flawed) setting. In § B.13, we study the effectiveness of our attacks
under partial information scenario. § B.13 provides timing analysis for our proposed evaluation
setting. § B.15 provides label frequency analysis for our benchmark datasets. In § B.16, we evaluate
our attacks against a certified defense model. In § B.17, we provide additional ablation studies on
pitfalls. Finally, in § B.18, we provide insights on the connections between the identified pitfalls and
the attacks we devised.

First, we discuss how we tune the hyper-parameters in both the attack and the defense phase of our
evaluation.

Attack phase tuning. For our LSA family of attacks, we fine-tuned the regularisation term λ within
the range [1e-3, 1e3] in logarithmic steps. For the meta attacks, we set the learning rate for the inner
and the outer routine optimization to 1e-2 and 1e-1. The weight decay for both the optimizers are set
to 5e-4. The number of inner optimization iterations (epochs) is set to 15. Additional gains in the
attack strength can be achieved by further fine-tuning these hyper-parameters. We refrain from doing
this due to lack of computational resources, since our evaluation setup is already quite expensive. For
the learning-based baseline attacks (LP, MG, LFK), we sweep through the hyper-parameters ranges
suggested by the authors in their papers.

Defence phase tuning. Post obtaining the poisoned labels, as identified in our of pitfalls § 3, we
perform thorough hyper-parameter tuning of the target model. Specifically, for the shared general
hyper-parameters we sweep the following ranges: [0.1, 0.01, 0.05, 0.08] for the learning rate, [0.0,
0.005, 0.0005, 0.00005] for weight decay, and [0.3, 0.5, 0.7] for dropout. We fix the hidden dimensions
to 64, again due to limited computation resources. Model specific hyper-parameters are tuned in
the ranges suggested by the respective papers. We empirically observe that higher learning rates
allow models to recover better from label poisoning attacks. We use Optuna (Akiba et al., 2019) to
optimize the hyper-parameters search, and set the number of trials to 20. For learning we use the
Adam optimizer (Kingma & Ba, 2015), with 1000 maximum number of epochs and an early stopping
patience of 100. The majority of our experiments are run on an Nvidia k80 GPU with 24GB memory,
and the remaining experiments were run using an A100 GPU with 40GB of memory.
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B.1 MOTIVATION EXPERIMENT

In the motivation experiment discussed in the main paper, we focused on the Cora-ML dataset and
extracted a sub-sample from its largest connected component. This sub-sample is referred to as
Cora-ML-tiny, and consists 93 nodes categorized into 3 classes. To conduct our analysis, we created
10 distinct splits for training, validation, and test sets, each with a size of 19, 19, and 55, respectively.
By exhaustively examining all possible label flips within a budget constraint of 1, we discovered that
a single adversarial label flip could lead to a significant reduction of ∼17% in test performance on
average.

B.2 EXTENDED DISCUSSION OF RELATED WORK

Adversarial attacks for machine learning (ML) is an active and important area of research, especially
with ML applications becoming ubiquitous, and have been studied extensively in the literature (Jin
et al., 2021; Sun et al., 2023; Liang et al., 2022). Attacks can be broadly classified into evasion and
poisoning. For evasion attacks the model is fixed and the attacker perturbs the input at test time.
Evasion attacks are conducted during the testing phase, where the model is fixed and the attacker
perturbs a test instance to degrade model performance (Biggio & Roli, 2018). Poisoning attacks
are conducted before the model is trained, where the attacker can perturb the training data with an
intention to degrade model performance or control model behavior. Poisoning is significantly more
challenging than evasion since it results in a difficult bi-level optimization problem.

Robustness of GNNs. Currently, we have an extensive body of work on the (adversarial) robustness
of GNNs. The overwhelming majority of studies focus on adversarial attacks that add or remove a
small fraction of edges and/or perturb the node features. Consequently, various heuristic defenses
have been developed, as well as certificates to provide provable robustness guarantees. For a detailed
overview of both attacks and defenses we recommend the surveys by Sun et al. (2023), Chen et al.
(2020), and Jin et al. (2021)). Label poisoning attacks, despite their importance and potential impact,
have been surprisingly sparse with only a few exceptions (Liu et al., 2019; Zhang et al., 2020; Liu
et al., 2022). Interestingly, Mujkanovic et al. (2022) recently showed that adaptive attacks – designed
specifically to circumvent a given target model or defense – are still able to manipulate almost all
models. In other words, we have made significantly less progress than it initially appears towards
designing robust models. One conclusion from their work is that we have to carefully think about the
evaluation setup to avoid overly optimistic results. This is echoed in our pitfalls findings.

Poisoning attacks. Most poisoning attack assume that the attacker has access to the training data, and
position the proposed attack as a worst-case robustness analysis. Such attacks have been extensively
studied for classical ML models like SVMs (Biggio et al., 2011), as well as recent (deep learning)
models. Lots of different threat models have been considered, including allowing arbitrary changes
(both features and labels), clean label poisoning (only features), and poisoning only the labels, which
is our focus. See Jagielski et al. (2018) and Tian et al. (2022) for a comprehensive overview.

B.3 EXPANDED META ATTACK

We first construct Ỹ ∈ {0, 1}N×C−1×C by enumerating over all possible false (one-hot) labels
for every node in the training set. Next, we initialize a parameter matrix B ∈ RN×C−1×C from a
uniform distribution. The idea is to learn B to select a good subset of poisoned labels. To enforce
the budget we apply soft-top-k followed by k-subset-selection (Paulus et al., 2020) on top of vec(B)
where vec(·) vectorizes the matrix.4 We construct the final poisoned labels as:

H =

C−1∑
c=0

(B ⊙ Ỹ ):,c,: + ((1−B)⊙ Yl):,c,: (10)

We feed Ỹ into the inner optimization problem which we train for a fixed number of epochs, and use
meta-gradients of B w.r.t. the outer loss for learning. During the forward pass we used hard top-k for
B, sampled proportional to the respective soft-top-k scores which are used during the backward pass.

4We place no additional constraints on B to ensure multiple flips are not selected for the same label. In
practice this is not an issue, since the optimizer learns to use the entire budget and select k-unique label flips.
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B.4 NTK ATTACK

Our variants of the NTK-based attacks are exactly the same as our SGC variants, except in how we
construct X̂ . For the NTK variants, X̂ corresponds to the NTK kernel matrix for a 2 layer ReLU
GCN as derived by Sabanayagam et al. (2022) (see Eq. 5 in their paper). Given X̂ we generate
poisoned labels following the procedure in § 4.1.

B.5 ADDITIONAL DETAILS ON THE MILP FORMULATION OF LSA

In one variation of our LSA attacks instead of learning H , we construct it by selecting a subset of
nodes to poison from preset target false labels Ỹl.

As we showed in Proposition 2 the benefit of fixing Ỹ is that we can obtain a closed-form solution
for the MILP. We explore the following variants:

• Ỹ -MARGIN: we perturb labels to the false label with the highest probability as predicted by
a clean model (trained using ground truth training labels).

• Ỹ -RANDOM: we perturb labels to a randomly chosen false class.

• Ỹ -BINARY+: we sort all classes w.r.t their frequency in a descending order and pair
consecutive classes to flip them.

We compare these variants for Ỹ in § B.8. In the main text we use Ỹ -MARGIN for the -FIX attacks.

B.6 EXTENDING THE BASELINES TO MULTI-CLASS

As a consequence of the binary-class approach, the baselines might have a limit on the maximum
perturbation budget. For example, in the default (previously-used, non-CV) evaluation setting for
the Cora-ML dataset the candidate set of potential flips is of size at most 20% since Cora-ML has 7
classes and the two most frequent classes span up to 20% of the training set depending on the split.
Therefore, LFK and LP by default cannot accommodate higher budgets. To enable this, while not
deviating from the original design of the attack, we propose a minor extension. We first exhaust the
20% budget by perturbing labels of the two most frequent classes and then we fix these perturbed
labels. For the remaining budget, we perturb the clean labels, but by restricting the attack scope to
a candidate set consisting of the next two most frequent classes. This process is repeated until the
budget is completely exhausted. The multi-class setting can be handled better, however, we restrain
from such adaptations to remain true to the original design of the attack. This also means that for the
20% budget, in the previous evaluation setting, LFK and LP become equivalent and deterministic
because all the labels of the nodes in the candidate set are flipped to their counterpart. Note, that this
issue is not present once we apply our remedies from § 3, and is only relevant for the experiments
showing the pitfalls of previous evaluations.

B.7 QUANTITATIVE AND QUALITATIVE ANALYSIS OF POISONING ATTACKS

On Fig. 5 we show how many times a given attack wins, i.e. leads to lowest accuracy, across all splits
and all models (for Cora-ML and Citeseer). Different variants of our linear attacks win most often.

Analysing the poison. Finally, we study how the learned representations change before and after
poisoning with SGC-BIN. On Fig. 6 (left) we see that for the clean model the representations cluster
nicely according to the class shown with different colors. We also see that the subset of poisoned
nodes (shown with a cross) is spread out. The poisoned representations (right) for different classes are
highly overlapping. Moreover, the two target classes that we flip (green and pink) overlap the most.

B.8 ADDITIONAL EXPERIMENTS

B.8.1 ADDITIONAL EXPERIMENTS ON STRONGEST ATTACKS

To extend our main paper analysis on strongest attacks, we provide additional experimental results
for our strongest attacks ( SGC-BIN and META-BIN) on several datasets and models. We plot the
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Figure 6: t-SNE of the logits before and after poisoning.

results in Fig. 9. Our findings from the main paper that our attacks significantly outperform previous
attacks still hold.

B.8.2 EFFECT OF LOSS FUNCTIONS ON PROPOSED META ATTACKS

We study the effect of different loss functions – Cross Entropy, Margin, and the proposed Gumbel
Softmax loss, on the META attack for the Cora-ML dataset. We tabulate the results in Table 3. We
can observe that the proposed Gumbel Softmax based loss function boosts the attack performance in
general.

Table 3: Effect of loss functions for the proposed META attack on the Cora-ML dataset.

Poison Ratio Cross Entropy Loss Margin Loss Gumbel Softmax Loss

5% 78.51±2.18 79.25±1.68 79.80±2.12

10% 75.96±1.39 75.27±1.93 73.35±2.34

15% 67.78±1.81 68.75±3.20 65.81±3.30

20% 63.36±3.56 63.88±2.90 61.60±3.37

30% 56.13±3.05 56.17±2.74 54.53±2.28

B.8.3 SCALING OUR ATTACKS TO LARGER GRAPHS AND LARGER NUMBER OF CLASSES

To further study the efficacy of our proposed attacks, we extend our analysis to two additional datasets.
Specifically, we evaluate on the CoraFull dataset (Bojchevski & Günnemann, 2018) that contains 70
output classes, and the OGBN-ArXiv dataset (Hu et al., 2020) – a medium sized graph with ∼ 169K
nodes. Following Lingam et al. (2023), we apply a dimensionality reduction on the node features of
CoraFull using PCA (top 500 dimensions). The statistics for all 5 datasets are tabulated in Table 7.

Larger number of classes. Since the number of classes for CoraFull is relatively higher compared
to the other datasets, the choice of how we fix Ỹ can be potentially more impactful. Therefore, we
compare the three variants outlined in § B.5 against the baselines. We can infer from Table 4 that our
attacks outperforms existing attacks, and that the -BINARY+ variant is the best on average. These
results signify that our attacks also scale well to datasets with larger number of classes.

Table 4: Comparing different attacks on the CoraFull dataset. The strategy for how to initialize Ỹ can
impact the attack performance. The -MARGIN and -BINARY+ variants outperform -RANDOM.

ϵ Ỹ -MARGIN Ỹ -BINARY+ Ỹ -RANDOM DEG RND LP MG

5% 56.14±0.53 55.96±0.61 57.41±0.52 55.70±0.42 57.01±0.45 57.38±0.26 56.19±0.53

10% 51.27±0.54 50.22±0.84 54.49±0.50 54.02±0.62 55.21±0.59 53.52±0.27 52.15±0.48

15% 46.31±0.57 43.99±0.27 51.67±0.69 52.86±0.66 54.74±0.73 49.66±0.12 47.58±0.53

20% 41.47±0.28 38.10±0.54 48.30±0.93 51.53±0.71 53.56±0.52 49.08±0.08 43.02±0.56

30% 33.29±0.68 27.92±0.30 40.93±1.60 48.56±0.86 51.29±0.75 49.10±0.10 31.71±0.08
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Table 5: Comparing different attacks on OGBN-ArXiv.
Our SGC-BIN attack also scales to large graphs and
still outperforms existing attacks by a significant margin.
The LFK attack, with its current implementation, could
not be executed because of Time Limit Exceeded error.

ϵ SGC-BIN RND DEG LP MG LFK

1% 64.31 67.14 66.56 66.15 67.21 TLE
3% 62.17 67.09 66.36 60.56 66.69 TLE
5% 48.20 66.90 66.12 55.62 66.72 TLE

Table 6: Evaluation of the extended vari-
ant of our meta attack on a GCN model
for different datasets.

ϵ Cora-ML Citeseer Pubmed

5% 80.68±1.65 70.62±1.31 76.15±1.34

10% 79.57±1.86 68.85±0.73 73.20±1.97

15% 77.76±1.30 66.96±1.80 69.02±3.60

20% 75.34±1.74 64.24±3.03 61.28±3.86

30% 71.73±2.13 60.08±3.41 50.51±6.71

Larger graphs. Next, we study the medium-sized OGBN-ArXiv dataset to test scalability to larger
graphs. Since the OGBN-ArXiv dataset contains large number of training nodes, we evaluate the
attacks on budget ranges {1%, 3%, 5%}. We also use the default splits since the data is chronologically
split. In Table 5 we see that our proposed attack, SGC-BIN, outperforms existing attacks.

B.8.4 CONFUSION MATRIX ANALYSIS

To analyse how the test node predictions are affected by the strongest baseline attack (LFK) and
our strongest proposed attack (SGC-BIN), we plot the confusion matrices for the 15% budget
in Fig. 7. Even though both LFK and SGC-BIN poison the training nodes belonging to the same two
classes (class 2 and class 4), after the SGC-BIN attack the model more consistently confuses the test
predictions for these two classes.

B.8.5 EXTENDED META ATTACK

In Table 6 we evaluate the extended variant of our meta attack. Overall, we can conclude that
this variant is weaker compared to the other meta variants (and our surrogate attacks) while still
outperforming some of the baselines. In any case, we include these results for completeness.

B.8.6 ATTACKING WITHOUT ACCESS TO GROUND-TRUTH TEST LABELS

In our main paper, we described a second threat model, where the ground truth labels are only
available for training nodes and only the predictions are available for test nodes (no ground-truth
labels). We evaluate our strongest attacks SGC-BIN and META-BIN in this setting and plot the results
on Fig. 8. We observe that the performance of our attacks in this setting is close to the worst-case
setting where the attacker knows the test ground-truth labels. Especially for SGC-BIN there is almost
no difference between using the ground-truth labels vs. the predictions. Additionally, our attacks that
use predictions also outperform the baselines that use ground-truth labels.

Figure 7: Confusion matrices for test set for a GCN model poisoned with the LFK (left) and SGC-
BIN (right) attacks using a 15% poisoning budget on the Cora-ML dataset.
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B.9 DATASET STATISTICS

In Table 7, we tabulate dataset statistics. We additionally include the train/val/test split statistics for
the default and the proposed CV setting. Note that in the CV setting, the test accuracy is measured
over all the remaining unlabeled nodes, and the train and val set have the same size.

Table 7: Dataset statistics.

Dataset Nodes Features Classes Train/Val/Test Split

Default CV

Cora-ML 2810 2879 7 140/500/1000 140/140/2530
Citeseer 2110 3703 6 120/500/1000 120/120/1870
Pubmed 19717 500 3 60/500/1000 60/60/19597
CoraFull 18800 500 70 - 1400/1400/16000
OGBN-ArXiv 169343 128 40 90941/29799/48603 90941/29799/48603

B.10 TRAINING WITH A CLEAN VALIDATION-SET

As mentioned in the § 3, assuming access to a clean validation dataset is not a realistic scenario,
particularly in the graph domain where we are often interested in sparsely labeled scenarios where both
the training and validation sets are small and typically of the same size. Consequently, the defender
can always exploit the limited clean validation set to train the model and thwart the attacker’s efforts.
To illustrate this further, we demonstrate that the defender can train the model using the clean
validation data while maintaining performance.

In this experiment, we assume access to a small validation set with just 20 labels per class as the
standard choice. This constitutes roughly 5% of Cora-ML, 6% of Citeseer, and 0.3% of Pubmed
datasets. We train a GCN model for 200 epochs using this validation set and discard the potentially
poisoned training set. We perform this experiment across 10 different splits. Table 8 illustrates the
results, demonstrating that all label-poisoning attacks can be effectively neutralized.

B.11 HOW LABEL POISONING INFLUENCES GRAPH HOMOPHILY

While it is a fact that label poisoning attacks can disrupt the smoothness of labels in a graph, these
attacks do not provide the defender with the ability to detect the specific poisoned labels. The defender
is presented with a graph that may contain tainted training labels and starts with no knowledge of the
graph’s homophily rate before the poisoning occurred. Moreover, real-world graphs exhibit varying
levels of homophily, with examples such as OGBN-ArXiv having a 63% homophily rate, and Pubmed
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datasets.
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Table 8: Test accuracy on large clean validation set as training set.

Dataset Test Accuracy (%)

Cora-ML 85.30±0.95

Citeseer 75.62±0.99

Pubmed 82.40±1.00

boasting approximately 80%. However, even if the defender knows about the graph’s homophily,
we demonstrate that label poisoning does not significantly change the graph’s homophily. Table 9
and Table 10 illustrate how the global and local homophily rates change only minimally for different
poison budgets when using the SGC-BINattack:

Table 9: Edge (global) homophily ratio.

Dataset 0 5 10 15 20 30

Cora-ML 0.82 0.80 0.79 0.79 0.78 0.77
Citeseer 0.80 0.78 0.77 0.76 0.75 0.74
Pubmed 0.84 0.84 0.84 0.84 0.84 0.83

Table 10: Node (local) homophily ratio.

Dataset 0 5 10 15 20 30

Cora-ML 0.82 0.83 0.83 0.82 0.81 0.80
Citeseer 0.80 0.80 0.79 0.78 0.77 0.76
Pubmed 0.84 0.86 0.86 0.86 0.86 0.86

B.12 ATTACK PERFORMANCE UNDER THE DEFAULT (FLAWED) SETTING

We also evaluate our proposed attack under the default and flawed evaluation setting to demonstrate
that our attacks outperform the baselines by an even wider margin. The reason for advocating the
new evaluation protocol is to simulate the attack/defense scenario more realistically, not because it
favors our attacks. Table 11 shows the results for the Cora-ML dataset, clearly demonstrating our
attack’s superior performance over baseline attacks.

B.13 ATTACKS UNDER PARTIAL INFORMATION SCENARIO

We further conduct experiments involving partial information to evaluate our poisoning attack. In
this context, we exclusively utilized node features and excluded the graph structure for the attacker.
The attacks were executed on a graph generated from the k-nearest neighbors of the node. Table 12
illustrates our result. Our results reveal that our SGC-BIN KNN attack (with partial information,
considering only node features) closely matches LFK’s performance when it has access to complete
graph information. Additionally, it outperforms LFK by approximately 2% on average under partial
information. This highlights that our proposed attack surpasses the previous state-of-the-art method,
even in scenarios with partial information.

B.14 TIMING ANALYSIS

We compute the average time taken in seconds (over 20 different runs) for a single hyper-parameter
configuration for our proposed evaluation setting and tabulate in Table 13. We can infer that tuning
GNNs is relatively cheap.
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Table 11: Performance comparison of proposed attacks and baselines under default evaluation setting
on the Cora-ML dataset.

Attack 5% 10% 15% 20%

SGC-BIN 66.80±2.73 60.78±2.03 53.88±3.27 49.12±2.16

META 61.80±3.37 59.48±1.96 58.27±2.05 50.30±3.08

LFK 66.43±2.29 67.33±3.68 58.93±2.38 55.94±3.44

RND 80.03±1.39 78.79±2.31 76.21±2.93 74.19±2.84

DEG 79.98±1.57 76.95±2.25 74.28±2.73 70.41±2.54

MG 78.71±2.54 72.08±5.25 63.74±6.87 58.74±7.10

Table 12: SGC-BIN KNN and LFK KNN illustrate attacks with partial information using K-nearest
neighbors (K=20) for graph construction. Meanwhile, SGC-BIN, LFK, and LP demonstrate attack
performance with full information (adjacency matrix and node features).

Cora-ML 5% 10% 15% 20% 30%

SGC-BIN 76.57±1.89 69.50±2.49 59.81±2.23 55.55±1.38 47.47±1.64

LFK 76.38±2.10 73.98±1.03 67.50±2.78 63.49±1.26 52.80±1.95

LP 80.48±0.55 76.40±0.58 68.83±2.50 63.06±2.50 57.57±0.62

SGC-BIN KNN 77.99±1.72 74.83±2.04 67.77±2.10 63.17±1.82 50.43±1.37

LFK KNN 77.49±2.25 75.56±1.54 69.47±2.36 65.54±1.99 53.93±1.84

B.15 LABEL FREQUENCY ANALYSIS

In Fig. 10, we plot the label frequency ratio for the benchmark datasets. We can observe that the
frequency distribution is skewed with one or more popular classes. This reinforces our earlier point
that class-equalized splits do not capture the underlying distribution of labels.

Figure 10: Label frequency ratio for benchmark datasets.

B.16 EVALUATION AGAINST CERTIFIED DEFENSE MODEL

Label poisoning can be considered as an extreme version of feature poisoning. To explore this
implication, we evaluate our strongest attack SGC-BIN and the strongest baseline attack LFK on AB-
LATIONGCN, one of the recently certified defense mechanisms against feature perturbations. We
tabulate our results in Table 14. We can infer that our proposed attack can inflict heavy damage on
the model’s performance.
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Table 13: Timing analysis.

Dataset K-80 GPU A100 GPU

Cora-ML 16.3s 10.2s
Citeseer 18.9s 11.8s
Pubmed 36.4s 12.5s

Table 14: Efficacy of SGC-BIN vs. LFK attacks on AblationGCN, a certified defense against feature
perturbations.

0% 5% 10% 15% 20% 30%

Cora-ML

SGC-BIN 79.17±0.83 71.80±1.65 66.34±1.70 59.77±1.25 54.57±1.25 46.60±1.30

LFK 79.17±0.83 71.63±1.80 68.32±1.65 63.17±1.73 58.93±1.60 50.81±2.16

Citeseer

SGC-BIN 68.25±1.66 62.90±2.32 56.44±3.22 49.64±2.05 44.76±2.32 36.39±1.63

LFK 68.25±1.66 63.10±2.06 59.64±2.02 53.10±2.73 50.86±2.06 40.42±2.68

PubMed

SGC-BIN 78.07±1.17 67.02±1.81 61.38±2.64 56.40±2.81 53.73±1.99 47.77±2.01

LFK 78.07±1.17 67.36±1.43 61.80±4.73 57.07±1.92 55.87±2.74 50.35±2.30

B.17 ABLATION STUDY ON PITFALLS

In this section, we expand upon the experiments conducted in the main paper by including additional
datasets and models. The majority of our observations in Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15
align with the findings reported in the main paper. Specifically, for the Citeseer and Pubmed datasets,
we notice that, in certain budget scenarios, our proposed CV splits appear to be advantageous to the
attacker when compared to the default configuration for the LFK attack.

B.18 CONNECTIONS BETWEEN PITFALLS AND ATTACKS

Our main goal is to establish a principled evaluation protocol to ensure that research on label poisoning
(for ourselves and others) is on a solid ground. We see two equally important parts to this goal:

• Evaluation setup that simulates the full potential of a defender as realistically as possible.
• Simple yet effective baseline attacks to serve as reference point for the future.

These two parts are addressed by the (remedies of the) pitfalls and the attacks. On one hand, you can
definitely see them as two disjoint contributions. On the other hand, having a fair evaluation in mind,
implicitly guided our design of the attacks. For example, pitfalls P3 and P6 can be seen as a form of
overfitting to the splits and default h-params respectively. Therefore, when selecting h-params of the
attacks (e.g. the value of λ for LSA attacks and the learning rate for meta attacks) we choose h-params
that minimize the test accuracy on average across splits, preventing overfitting to a single split.
Moreover, to remedy P6 we poison Vl which implicitly impacts the bi-level optimization. Moreover,
while fixing the identified pitfalls leads to a fairer evaluation it also decreases the effectiveness of
previous attacks. This provided additional motivation to introduce the new baseline attacks. Under
the previous evaluation setting, we observe that META attacks significantly outperform other attacks
(see § B.12). However, in the new fairer setting, META attacks don’t generalize as effectively as linear
attacks. This highlights the need for a careful evaluation.
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(a) GCN - Cora-ML (b) GAT - Cora-ML (c) APPNP - Cora-ML

(d) GCN - CiteSeer (e) GAT - CiteSeer (f) APPNP - CiteSeer

(g) GCN - Pubmed (h) GAT - Pubmed (i) APPNP - Pubmed

Figure 11: Analyzing the effect of each evaluation setting on the performance of the LFKattack
across three models and three datasets.
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(a) GCN - Cora-ML (b) GAT - Cora-ML (c) APPNP - Cora-ML

(d) GCN - CiteSeer (e) GAT - CiteSeer (f) APPNP - CiteSeer

(g) GCN - Pubmed (h) GAT - Pubmed (i) APPNP - Pubmed

Figure 12: Effect of validation set size on the performance of poisoning attacks across three models
and three datasets.
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(a) GCN - Cora-ML (b) GAT - Cora-ML (c) APPNP - Cora-ML

(d) GCN - CiteSeer (e) GAT - CiteSeer (f) APPNP - CiteSeer

(g) GCN - Pubmed (h) GAT - Pubmed (i) APPNP - Pubmed

Figure 13: Effect of data split on the performance of poisoning attacks across three models and three
datasets.
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(a) GCN - Cora-ML (b) GAT - Cora-ML (c) APPNP - Cora-ML

(d) GCN - CiteSeer (e) GAT - CiteSeer (f) APPNP - CiteSeer

(g) GCN - Pubmed (h) GAT - Pubmed (i) APPNP - Pubmed

Figure 14: Analyzing the effect of proper hyper-parameters tuning on the performance of poisoning
attacks across three models and three datasets.
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(a) GCN - Cora-ML (b) GAT - Cora-ML (c) APPNP - Cora-ML

(d) GCN - CiteSeer (e) GAT - CiteSeer (f) APPNP - CiteSeer

(g) GCN - Pubmed (h) GAT - Pubmed (i) APPNP - Pubmed

Figure 15: Analyzing the effect of proper cross-validation on the evaluated performance of poisoning
attacks across three models and three datasets.
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