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Abstract

Dialog Structure Induction (DSI) is the task001
of inferring the latent dialog structure (i.e., a002
set of dialog states and their temporal transi-003
tions) of a given goal-oriented dialog. It is a004
critical component for modern dialogue system005
design and discourse analysis. Existing DSI ap-006
proaches are often purely data-driven, deploy007
models that infer latent states without access008
to domain knowledge, underperform when the009
training corpus is limited/noisy, or have diffi-010
culty when test dialogs exhibit distributional011
shifts from the training domain. In this work012
explores a neural-symbolic approach as a poten-013
tial solution to these problems. We introduce014
Neural Probabilistic Soft Logic Dialogue Struc-015
ture Induction (NEUPSL DSI), a principled016
approach that injects symbolic knowledge into017
the latent space of a generative neural model.018
We conduct a thorough empirical investigation019
on the effect of NEUPSL DSI learning on hid-020
den representation quality, few-shot learning,021
and out-of-domain generalization performance.022
Over three dialog structure induction datasets023
and across unsupervised and semi-supervised024
settings for standard and cross-domain general-025
ization, the injection of symbolic knowledge us-026
ing NEUPSL DSI provides a consistent boost027
in performance over the canonical baselines.028

1 Introduction029

The seamless integration of prior domain knowl-030

edge into the neural learning of language structure031

has been an open challenge in the machine learn-032

ing and natural language processing communities.033

In this work, we inject symbolic knowledge into034

the neural learning process of a two-party dialog035

structure induction (DSI) task (Zhai and Williams,036

2014; Shi et al., 2019). This task aims to learn037

a graph, known as the dialog structure, capturing038

the potential flow of states occurring in a dialog039

dataset for a specific task-oriented domain, e.g.,040

Figure 1 represents a possible dialog structure for041

the goal-oriented task of booking a hotel. Nodes in042

Figure 1: Example dialog structure for the goal-oriented
task booking a hotel.

the dialog structure represent conversational topics 043

or dialog acts that abstract the intent of individual 044

utterances, and edges represent transitions between 045

dialog acts over successive turns of the dialog. 046

Traditionally, dialog structure is hand-crafted 047

by human domain experts. This process is labor- 048

intensive and, in most situations, does not gener- 049

alize easily to new domains. Previous work has 050

used supervised methods to learn this dialog struc- 051

ture from labeled data, starting from (Jurafsky, 052

1997). However, since structure annotation is ex- 053

pensive and subject to low inter-rater agreements, 054

these methods are constrained by small training 055

datasets and low label quality (Zhai and Williams, 056

2014). Therefore, recent work studies unsupervised 057

DSI; e.g., hidden Markov models (Chotimongkol, 058

2008; lan Ritter et al., 2010; Zhai and Williams, 059

2014) and more recently Variational Recurrent 060

Neural Networks (VRNN) (Chung et al., 2015; Shi 061

et al., 2019). Being purely data-driven, these ap- 062

proaches have difficulty with limited/noisy data and 063

cannot easily exploit domain-specific or domain- 064

independent constraints on dialog (e.g. Greet utter- 065

ances are typically made in the first couple of turns) 066

that may be readily provided by human experts. 067

In this work, we propose Neural Probabilistic 068

Soft Logic Dialogue Structure Induction (NEUPSL 069

DSI). This practical neuro-symbolic approach im- 070

proves the quality of learned dialog structure by 071

infusing domain knowledge into the end-to-end, 072

gradient-based learning of a neural model. We 073

leverage Probabilistic Soft Logic (PSL), a well- 074

studied soft logic formalism, to express domain 075
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knowledge as soft rules in succinct and inter-076

pretable first-order logic statements that can be in-077

corporated easily into differentiable learning (Bach078

et al., 2017; Pryor et al., 2022). This leads to a sim-079

ple method for knowledge injection with minimal080

change to the SGD-based training pipeline of an081

existing neural generative model.082

Our key contributions are: 1) We propose NE-083

UPSL DSI, which introduces a novel smooth re-084

laxation of PSL constraints tailored to ensure a rich085

gradient signal during back-propagation; 2) We086

evaluate NEUPSL DSI over synthetic and realis-087

tic dialog datasets under three settings: standard088

generalization, domain generalization, and domain089

adaptation. We show quantitatively that injecting090

domain knowledge provides a boost over unsuper-091

vised and few-shot methods; and 3) We comprehen-092

sively investigate the effect of soft logic-augmented093

learning on different aspects of the learned neural094

model by examining its quality in representation095

learning and structure induction.096

2 Related Work097

Dialog Structure Induction (DSI) refers to the task098

of inferring latent states of a dialog without full099

supervision of the state labels. Earlier work fo-100

cus on building advanced clustering methods, e.g.,101

topic models, HMM, GMM (Zhai and Williams,102

2014), which are later combined with pre-trained103

or task-specific neural representations (Nath and104

Kubba, 2021; Lv et al., 2021; Qiu et al., 2022).105

Another line of work focuses on inferring latent106

states using neural generative models, most notably107

Direct-Discrete Variational Recurrent Neural Net-108

works (DD-VRNN) (Shi et al., 2019), with later im-109

provements including BERT encoder (Chen et al.,110

2021), GNN-based latent-space model (Sun et al.,111

2021; Xu et al., 2021), structured-attention decoder112

(Qiu et al., 2020), and database query modeling113

(Hudeček and Dušek, 2022). Finally, Zhang et al.114

(2020); Wu et al. (2020) explored DSI in a semi-115

supervised and few-shot learning context. No work116

has explored DSI with domain knowledge as weak117

supervision or conducted a comprehensive evalu-118

ation of model performance across different gen-119

eralization settings (i.e., unsupervised, few-shot,120

domain generalization, and domain adaptation).121

A related field of work, Neuro-Symbolic com-122

puting (NeSy), is an active area of research that123

aims to incorporate logic-based reasoning with neu-124

ral computation. This field contains a plethora of125

different neural symbolic methods and techniques. 126

The methods that closely relate to our line of work 127

seek to enforce constraints on the output of a neural 128

network (Hu et al., 2016; Donadello et al., 2017; 129

Diligenti et al., 2017; Mehta et al., 2018; Xu et al., 130

2018; Nandwani et al., 2019). For a more in-depth 131

introduction, we refer the reader to these excellent 132

recent surveys: Besold et al. (2017) and De Raedt 133

et al. (2020). These methods, although powerful, 134

are either: specific to the domain they work in, do 135

not use the same soft logic formulation, have not 136

been designed for unsupervised systems, or have 137

not been used for dialog structure induction. 138

Finally, our method is most closely related to the 139

novel NeSy approaches of Neural Probabilistic Soft 140

Logic (NeuPSL) (Pryor et al., 2022), DeepProbLog 141

(DPL) (Manhaeve et al., 2021), and Logic Tensor 142

Networks (LTNs) (Badreddine et al., 2022). LTNs 143

instantiate a model which forwards neural network 144

predictions into functions representing symbolic 145

relations with real-valued or fuzzy logic seman- 146

tics, and DeepProbLog uses the output of a neural 147

network to specify probabilities of events. The 148

mathematical formulation of LTNs and DPL dif- 149

fers from our underlying soft logic distribution. 150

NeuPSL unites state-of-the-art symbolic reasoning 151

with the low-level perception of deep neural net- 152

works through a Probabilistic Soft Logic (PSL). 153

Our method uses a NeuPSL formulation; however, 154

we introduce a novel variation to the soft logic for- 155

mulation, develop theory for unsupervised tasks, 156

introduce the whole system in Tensorflow, and ap- 157

ply it to dialog structure induction. 158

3 Background 159

Our neuro-symbolic approach to dialog structure 160

induction combines the principled formulation of 161

probabilistic soft logic (PSL) rules with a neural 162

generative model. In this work, we use the state-of- 163

the-art Direct-Discrete Variational Recurrent Neu- 164

ral Network (DD-VRNN) as the base model (Shi 165

et al., 2019). We start by introducing the syntax 166

and semantics for DD-VRNN and PSL. 167

3.1 Direct Discrete Variational Recurrent 168

Neural Networks 169

A Direct Discrete Variational Recurrent Neural Net- 170

works (DD-VRNN) (Shi et al., 2019) is an expan- 171

sion to the popular Variational Recurrent Neural 172

Networks (VRNN) (Chung et al., 2015), which 173

constructs a sequence of VAEs and associates them 174

with states of an RNN. The main difference be- 175

tween the DD-VRNN and a traditional VRNN is 176
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Figure 2: The high-level pipeline of the NEUPSL DSI learning procedure.

the priors of the latent states zt. They directly177

model the influence of zt−1 on zt, which models178

the transitions between different latent (i.e., dialog)179

states. To fit the prior into the variational inference180

framework, an approximation of p(zt|x<t, z<t) is181

made which changes the distribution to p(zt|zt−1):182

p(x≤T , z≤T ) =

T∏
t=1

p(xt|z≤t, x<t)p(zt|x<t, zt−1)

≈
T∏
t=1

p(xt|z≤t, x<t)p(zt|zt−1)

(1)

183

zt is modeled as zt ∼ softmax(ϕpriorτ (zt−1)) for184

a feature extraction neural network for the prior185

ϕpriorτ . Lastly, the objective function used in the186

DD-VRNN is a timestep-wise variational lower187

bound (Chung et al., 2015) augmented with a bag-188

of-word (BOW) loss and Batch Prior Regulariza-189

tion (BPR) (Zhao et al., 2017, 2018), i.e.:190

LV RNN = Eq(z≤T |x≤T )[log p(xt|z≤t, x<t)+191

T∑
t=1

−KL(q(zt|x≤t, z<t)||p(zt|x<t, z<t))] (2)192

so that the full objective function is193

LDD−V RNN = LV RNN + λ ∗ Lbow (3)194

where λ is a tunable weight and Lbow is the BOW195

loss. For further details on Lbow see Section 4.3196

and Shi et al. (2019). To expand this to a semi-197

supervised domain, the objective is augmented as:198

LDD−V RNN =199

LV RNN + λ ∗ Lbow + Lsupervised (4)200

where Lsupervised is the loss between the labels and201

predictions, e.g., cross-entropy.202

3.2 Probabilistic Soft Logic203

This work introduces soft constraints in a declar-204

ative fashion, similar to Probabilistic Soft Logic205

(PSL). PSL is a declarative statistical relational 206

learning (SRL) framework for defining a particular 207

probabilistic graphical model, known as a hinge- 208

loss Markov random field (HL-MRF) (Bach et al., 209

2017). PSL models relational dependencies and 210

structural constraints using first-order logical rules, 211

referred to as templates with arguments known as 212

atoms. For example, the statement “the first ut- 213

terance in a dialog is likely to belong to the greet 214

state" can be expressed as: 215

FIRSTUTT(U) → STATE(U, greet) (5) 216

Where (FIRSTUTT(U), STATE(U, greet)) are the 217

atoms (i.e., atomic boolean statements) indicating, 218

respectively, whether an utterance U is the first ut- 219

terance of the dialog, or if it belongs to the state 220

greet. The atoms in a PSL rule are grounded 221

by replacing the free variables (such as U above) 222

with concrete instances from a domain of interest 223

(e.g., the concrete utterance ’Hello!’); we call these 224

the grounded atoms. The observed variables and 225

target/decision variables of the probabilistic model 226

correspond to ground atoms constructed from the 227

domain, e.g., FIRSTUTT(′Hello!′) may be an ob- 228

served variable and STATE(′Hello!′, greet) may 229

be a target variable. 230

PSL performs inference over soft logic con- 231

straints by allowing the originally Boolean-valued 232

atoms to take continuous truth values in the in- 233

terval [0, 1]. Using this relaxation, PSL replaces 234

logical operations with a form of soft logic called 235

Lukasiewicz logic (Klir and Yuan, 1995): 236

A ∧B = max(0.0, A+B − 1.0)

A ∨B = min(1.0, A+B)

¬A = 1.0−A (6)

237

where A and B represent either ground atoms or 238

logical expressions over atoms and take values in 239

[0, 1]. For example, PSL will convert the statement 240
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from Equation 5, into the following:241

min{1, 1− FIRSTUTT(U)+STATE(U, greet))}
(7)

242

sinceA→ B ≡ ¬A∨B. In this way, we can create243

a collection of functions {ℓi}mi=1, called templates,244

that map data to [0, 1]. Using the templates, PSL245

defines a conditional probability density function246

over the unobserved random variables y given the247

observed data x known as the Hinge-Loss Markov248

Random Field (HL-MRF):249

P (y|x) ∝ exp(−
m∑
i=1

λi · ϕi(y,x)) (8)250

Here λi is a non-negative weight and ϕi a potential251

function based on the templates:252

ϕi(y,x) = max{0, ℓi(y,x)} (9)253

Then, inference for the model predictions y pro-254

ceeds by Maximum A Posterior (MAP) estimation,255

i.e., by maximizing the objective function P (y|x)256

(eq. 8) with respect to y.257

4 Neural Probabilistic Soft Logic258

Dialogue Structure Induction259

In this section, we describe our approach to integrat-260

ing domain knowledge and neural network-based261

dialog structure induction. Our approach integrates262

an unsupervised neural generative model with di-263

alog rules using soft constraints. We refer to our264

approach as Neural Probabilistic Soft Logic Di-265

alogue Structure Induction (NEUPSL DSI). In266

the following, we define the dialog structure learn-267

ing problem, describe how to integrate the neu-268

ral and symbolic losses, and highlight essential269

model components that address optimization and270

representation-learning challenges under gradient-271

based neuro-symbolic learning.272

Problem Formulation Given a goal-oriented di-273

alog corpus D, we consider the DSI problem of274

learning a graph G underlying the corpus. More275

formally, a dialog structure is defined as a directed276

graph G = (S, P ), where S = {s1, . . . , sm} en-277

codes a set of dialog states, and P a probability278

distribution p(st|s<t) representing the likelihood279

of transition between states (see Figure 1 for an280

example). Given the underlying dialog structure G,281

a dialog di = {x1, . . . , xT } ∈ D is a temporally-282

ordered set of utterances xt. Assume xt is defined283

according to an utterance distribution conditional 284

on past history p(xt|s≤t, x<t), and the state st is 285

defined according to p(st|s<t). Given a dialog cor- 286

pus D = {di}ni=1, the task of DSI is to learn a 287

directed graphical model G = (S, P ) as close to 288

the underlying graph as possible. 289

4.1 Integrating Neural and Symbolic 290

Learning under NEUPSL DSI 291

We now introduce how the NEUPSL DSI approach 292

formally integrates the DD-VRNN with the soft 293

symbolic constraints to allow for end-to-end gra- 294

dient training. To begin, we define the relaxation 295

of the symbolic constraints to be the same as de- 296

scribed in Section 3.2. With this relaxation, we 297

can build upon the foundations developed by Pryor 298

et al. (2022) on Neural Probabilistic Soft Logic (Ne- 299

uPSL) by augmenting the standard unsupervised 300

DD-VRNN loss with a constraint loss. Figure 2 301

provides a graphical representation of this integra- 302

tion of the DD-VRNN and the symbolic constraints. 303

Intuitively, NEUPSL DSI can be described in three 304

parts: instantiation, inference, and learning. 305

Instantiation of a NEUPSL DSI model uses a set 306

of first-order logic templates to create a set of po- 307

tentials that define a loss used for learning and eval- 308

uation. Let pw be the DD-VRNN’s predictive func- 309

tion of latent states with hidden parameters w and 310

input utterances x. The output of this function, de- 311

fined as pw(x), will be the probability distribution 312

representing the likelihood of each latent class for 313

a given utterance. Given a first-order symbolic rule 314

ℓi(y,x) where the decision variable y = pw(x) is 315

the latent state prediction from the neural model 316

pw(x), we can instantiate a set of deep hinge-loss 317

potentials of the form: 318

ϕw,i(x) = max(0, ℓi(pw(x),x)) (10) 319

For example, in reference to Equation 7, the de- 320

cision variable y = pw(x) is associated with the 321

STATE(x, greet) random variables, leading to: 322

ℓi(pw(x),x) = 323

min{1, 1− FIRSTUTT(U)+pw(x)} (11) 324

With the instantiated model described above, the 325

NEUPSL DSI inference objective is broken into 326

a neural inference objective and a symbolic in- 327

ference objective. The neural inference objective 328

is computed by evaluating the DD-VRNN model 329

predictions with respect to the standard loss func- 330

tion for DSI. Given the deep hinge-loss potentials 331
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{ϕw,i}mi=1, the symbolic inference objective is the332

HL-MRF likelihood (Equation 8) evaluated at the333

decision variables y = pw(x):334

Pw(y|x, λ) = exp
(
−

m∑
i=1

λi · ϕw,i(x)
)

(12)335

Under the NEUPSL DSI, the decision variables336

y = pw(x) are implicitly controlled by neural net-337

work weights w, therefore the conventional MAP338

inference in symbolic learning for decision vari-339

ables y∗ = argminy P (y|x) can be done simply340

via neural weight minimization argminw Pw(y|x).341

As a result, NEUPSL DSI learning minimizes a342

constrained optimization objective:343

w∗ = argmin
w

[
LDD−V RNN + λ ∗ Lconstraint

]
(13)

344

where we define the constraint loss to be the log-345

likelihood of the HL-MRF distribution (12):346

LConstraint = −logPw(y|x, λ). (14)347

4.2 Improving soft logic constraints for348

gradient learning349

The straightforward linear soft constraints used by350

the classic Lukasiewicz relaxation fail to pass back351

gradients with a magnitude and instead pass back a352

direction (e.g., ±1). Formally, the gradient of a po-353

tential ϕw(x) = max(0, ℓ(pw(x),x)) with respect354

to w is:355

∂

∂w
ϕw =

∂

∂w
ℓ(pw, x) · 1ϕw>0356

=
[ ∂

∂pw
ℓ(pw,x)

]
· ∂

∂w
pw · 1ϕw>0 (15)357

Here ℓ(pw(x),x) = a · pw(x) + b where a, b ∈358

R and pw(x) ∈ [0, 1], which leads to the gra-359

dient ∂
∂pw

ℓ(pw,x) = a. Observing the three360

Lukasiewicz operations described in Section 3.2, it361

is clear that a will always result in ±1 unless there362

are multiple pw(x) per constraint.363

As a result, this classic soft relaxation leads to a364

naive, non-smooth gradient:365

∂

∂w
ϕw =

[
a1ϕw>0

]
· ∂

∂w
pw (16)366

that is mostly consists of the predictive probabil-367

ity gradient ∂
∂wpw. It barely informs the model of368

the degree to which pw satisfies the symbolic con-369

straint ϕw (other than the non-smooth step function370

1ϕw>0), thereby creating challenges in gradient- 371

based learning. 372

In this work, we propose a novel log-based relax- 373

ation that provides smoother and more informative 374

gradient information for the symbolic constraints: 375

ψw(x) = log
(
ϕw(x)

)
= log

(
max(0, ℓ(pw(x),x))

)
(17)

376

This seemingly simple transformation brings a non- 377

trivial change to the gradient behavior: 378

∂

∂w
ψw =

1

ϕw(x)
· ∂

∂w
ϕw =

[ a
ϕw

1ϕw>0

]
· ∂

∂w
pw

(18)

379

As shown, the gradient from the symbolic con- 380

straint now contains a new term 1
ϕw(x) . It informs 381

the model of the degree to which the model predic- 382

tion satisfies the symbolic constraint ℓ so that it is 383

no longer a discrete step function with respect to 384

ϕw. As a result, when the satisfaction of a rule ϕw is 385

non-negative but low (i.e., uncertain), the gradient 386

magnitude will be high, and when the satisfaction 387

of the rule is high, the gradient magnitude will 388

be low. In this way, the gradient of the symbolic 389

constraint terms ϕi now guides the neural model 390

to more efficiently focus on learning the challeng- 391

ing examples that don’t obey the existing symbolic 392

rules. This leads to more effective collaboration 393

between the neural and the symbolic components 394

during model learning and empirically leads to im- 395

proved generalization performance (Section 5). 396

4.3 Stronger control of posterior collapse via 397

weighted bag of words 398

It is essential to avoid a collapsed VRNN solution, 399

where the model puts all of its predictions in just a 400

handful of states. This problem has been referred 401

to as the vanishing latent variable problem (Zhao 402

et al., 2017). Zhao et al. (2017) address this by 403

introducing a bag-of-word (BOW) loss to VRNN 404

modeling which requires a network to predict the 405

bag-of-words in response x. They separate x into 406

two variables: xo (word order) and xbow (no word 407

order), with the assumption that they are condition- 408

ally independent given z and c: 409

p(x, z|c) = p(xo|z, c)p(xbow|z, c)p(z|c). (19) 410

Here, c is the dialog history: the preceding utter- 411

ances, conversational floor (1 if the utterance is 412

from the same speaker and 0 otherwise), and meta- 413

features (e.g., the topic). Let f be the output of a 414
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multilayer perception with parameters z, x, where415

f ∈ RV with V the vocabulary size. Then the416

BOW probability is defined as log p(xbow|z, c) =417

log
∏|x|

t=1

efxt∑V
j e

fj
, where |x| is the length of x and418

xt is the word index of the tth word in x.419

To impose robust regularization against the pos-420

terior collapse, we use a tf-idf-based re-weighting421

scheme using the tf-idf weights computed from422

the training corpus. Intuitively, this re-weighting423

scheme helps the model focus on reconstructing424

non-generic terms that are unique to each dialog425

state, which encourages the model to “pull" the sen-426

tences from different dialog states further apart in427

its representations space to minimize the weighted428

BOW loss better. In comparison, a model under the429

uniformly-weighted BOW loss may be distracted430

by reconstructing the high-prevalence terms (e.g.,431

"what is," "can I," and "when") that are shared by432

all dialog states. As a result, we specify the tf-idf433

weighted BOW probability as:434

log p(xbow|z, c) = log

|x|∏
t=1

wxie
fxt∑V

j e
fj
, (20)435

wherewxt =
(1− α)

N
+αw′

xt
,N is the corpus size,436

w′
xt

is the tf-idf word weight for the xt index, and α437

is a hyperparameter. In Section 5, we explore how438

this alteration affects the performance and observe439

if the PSL constraints still provide a boost.440

5 Experimental Evaluation441

We evaluate the performance of NEUPSL DSI on442

three task-oriented dialog corpuses in both unsu-443

pervised and highly constrained semi-supervised444

settings. Further, we provide an extensive ablation445

on different aspects of the learned neural model.446

We investigate the following questions: Q1) How447

does NEUPSL DSI perform in an unsupervised448

setting when soft constraints are incorporated into449

the loss? Q2) When introducing few-shot labels450

to DD-VRNN training, do soft constraints provide451

a boost? Q3) How do design choices such as log452

relaxation and re-weighted bag-of-words loss (in-453

troduced in Section 4.2-4.3) impact performance?454

Datasets These questions are explored using455

three goal-oriented dialog datasets: MultiWoZ 2.1456

synthetic (Campagna et al., 2020) and two ver-457

sions of the Schema Guided Dialog (SGD) dataset;458

SGD-synthetic (where the utterance is generated by459

a template-based dialog simulator) and SGD-real 460

(which replaces the machine-generated utterances 461

of SGD-synthetic with its human-paraphrased 462

counterparts) (Rastogi et al., 2020). For the SGD- 463

real dataset, we evaluate over three unique data set- 464

tings, standard generalization (train and test over 465

the same domain), domain generalization (train 466

and test over different domains), and domain adap- 467

tation (train on (potentially labeled) data from the 468

training domain and unlabeled data from the test 469

domain, and test on evaluation data from the test 470

domain). Appendix C describes further details. 471

Constraints In the synthetic MultiWoZ setting, 472

we introduce a set of 11 structural domain agnostic 473

dialog rules. An example of one of these rules can 474

be seen in Equation 5. These rules are introduced to 475

represent general facts about dialogs, with the goal 476

of showing how the incorporation of a few expert- 477

designed rules can drastically improve generaliza- 478

tion performance. For SGD settings, we introduce 479

a single dialog rule that encodes the concept that 480

dialog acts should contain utterances with corre- 481

lated tokens, e.g., utterances containing ’hello’ are 482

likely to belong to the greet state. This rule is de- 483

signed to show the potential boost in performance 484

a model can achieve from a simple source of prior 485

information. Appendix C contains further details. 486

Metrics and Methodology The experimental 487

evaluation examines two aspects: correctness of 488

the learned latent dialog structure and quality of 489

the learned hidden representation. 490

Structure Induction. To evaluate the model’s abil- 491

ity in correctly learning the latent dialog structure, 492

we adapt the Adjusted Mutual Information (AMI) 493

metric from clustering literature (see Appendix 494

D.1 for details). AMI allows for a comparison 495

between ground truth labels1 (e.g., "greet", "initial 496

request", etc.) and latent state predictions (e.g., 497

State1, · · ·, Statek). 498

Hidden Representation Learning. A standard 499

technique for evaluating the quality of unsuper- 500

vised representation is linear probing, i.e., train 501

a lightweight linear probing model on top of the 502

frozen learned representation, and evaluate the lin- 503

ear model’s generalization performance for super- 504

vised tasks (Tenney et al., 2019). To evaluate the 505

quality of the learned DD-VRNN, we train a su- 506

pervised linear classifier on top of input features 507

1These labels were only used for final evaluation, not for
training or hyperparameter tuning.
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Dataset Setting Method
Hidden Representation Learning

Structure Induction
Full Few-Shot

( Class-Balanced Accuracy ) ( Class-Balanced Accuracy ) ( AMI )

MultiWoZ Standard
Generalization

DD-VRNN 0.804 ± 0.037 0.643 ± 0.038 0.451 ± 0.042
NEUPSL DSI 0.806 ± 0.051 0.689 ± 0.038 0.618 ± 0.028

SGD
Synthetic

Standard
Generalization

DD-VRNN 0.949 ± 0.005 0.598 ± 0.019 0.553 ± 0.017
NEUPSL DSI 0.941 ± 0.009 0.765 ± 0.012 0.826 ± 0.006

SGD
Real

Standard
Generalization

DD-VRNN 0.661 ± 0.015 0.357 ± 0.015 0.448 ± 0.019
NEUPSL DSI 0.663 ± 0.015 0.517 ± 0.021 0.539 ± 0.048

Domain
Generalization

DD-VRNN 0.268 ± 0.012 0.320 ± 0.029 0.476 ± 0.029
NEUPSL DSI 0.299 ± 0.009 0.528 ± 0.026 0.541 ± 0.036

Domain
Adaptation

DD-VRNN 0.308 ± 0.011 0.505 ± 0.015 0.514 ± 0.028
NEUPSL DSI 0.297 ± 0.025 0.541 ± 0.023 0.559 ± 0.045

Table 1: Test set performance on all datasets. All reported results are averaged over 10 splits. The highest-performing
methods per dataset and learning setting are bolded. A random baseline has AMI zero and class-balanced accuracy
equal to inverse class size (all less than 10%, see Appendix Tables 4, 5, 7).

Figure 3: Average AMI for MultiWoZ, SGD Synthetic, and SGD Real (Standard Generalization, Domain General-
ization, and Domain Adaptation) on three constrained few-shot settings: 1-shot, proportional 1-shot, and 3-shot.
Hidden representation learning graphs are included in the Appendix.

extracted from the penultimate layer of the DD-508

VRNN. We evaluate with both full supervision and509

few-shot supervision. Full supervision averages510

the class-balanced accuracy of two separate mod-511

els that classify dialog acts (e.g., "greet", "initial512

request", etc.) and domains ("hotel", "restaurant",513

etc.) respectively. Few-shot averages the class-514

balanced accuracy of models classifying dialog acts515

with 1-shot, 5-shot, and 10-shot settings.516

5.1 Main Results517

Table 1 summarizes the results of NEUPSL DSI518

and DD-VRNN in strictly unsupervised settings.519

NEUPSL DSI outperforms the strictly data-driven520

DD-VRNN on AMI by 4%-27% depending on the521

setting while maintaining or improving the hidden522

representation quality. To reiterate, this improve-523

ment is achieved without supervision in the form524

of labels, but rather a few selected structural con-525

straints. Comparing AMI performance on SGD-526

real across different settings (standard generaliza-527

tion v.s. domain generalization/adaptation), we see528

the NEUPSL DSI consistently improves over DD-529

VRNN, albeit with the advantage slightly dimin-530

ished in the non-standard generalization settings.531

To further understand how the constraints affect532

the model, we examine three highly constrained533

few-shot settings (1-shot, 3-shot, and proportional 534

1-shot) trained using the loss described in Equation 535

4. The 1-shot and 3-shot settings are given one and 536

three labels per class, while proportional 1-shot is 537

provided the same number of labels as 1-shot with 538

the distribution of labels proportional to the class 539

size (classes below 1% are not provided labels). 540

The results in Figure 3 show that in all settings, 541

the introduction of labels improves performance. 542

This demonstrates that the soft constraints do not 543

overpower learning but enable a trade-off between 544

generalizing to priors and learning over labels. In 545

the SGD settings, however, as the number of labels 546

increases, the pure data-driven approach performs 547

as well or better than NEUPSL DSI. 548

5.2 Ablation Study 549

We provide an ablation on the SGD real dataset 550

over three major method axes: parameterization 551

of the constraint loss (linear v.s. log constraint 552

loss, Section 4.2), weighting scheme for the bag- 553

of-words loss (uniform v.s. tf-idf weights, Section 554

4.3), and the choice of underlying utterance embed- 555

ding (BERT (Devlin et al., 2019) v.s. GloVe (Pen- 556

nington et al., 2014)) leading to a total of 23 = 8 557

settings (Appendix D.3 presents a further analy- 558

sis for the MultiWoZ and SGD Synthetic datasets). 559
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Setting
Bag-of-Words

Weights
Constraint

Loss Embedding
Hidden Representation Learning

Structure Induction
Full Few-Shot

( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

Standard
Generalization

Uniform Linear Bert 0.588 ± 0.016 0.517 ± 0.021 0.539 ± 0.048
Uniform Linear GloVe 0.620 ± 0.023 0.428 ± 0.021 0.458 ± 0.024
Uniform Log Bert 0.600 ± 0.022 0.517 ± 0.023 0.520 ± 0.033
Uniform Log GloVe 0.650 ± 0.011 0.456 ± 0.014 0.532 ± 0.009

tf-idf Linear Bert 0.573 ± 0.022 0.521 ± 0.018 0.522 ± 0.024
tf-idf Linear GloVe 0.595 ± 0.014 0.379 ± 0.015 0.533 ± 0.048
tf-idf Log Bert 0.578 ± 0.021 0.510 ± 0.022 0.507 ± 0.060
tf-idf Log GloVe 0.653 ± 0.014 0.460 ± 0.009 0.534 ± 0.033

Domain
Generalization

Uniform Linear Bert 0.597 ± 0.018 0.528 ± 0.026 0.541 ± 0.036
Uniform Linear GloVe 0.597 ± 0.012 0.391 ± 0.018 0.441 ± 0.030
Uniform Log Bert 0.598 ± 0.032 0.512 ± 0.021 0.517 ± 0.036
Uniform Log GloVe 0.608 ± 0.014 0.438 ± 0.017 0.508 ± 0.006

tf-idf Linear Bert 0.536 ± 0.026 0.518 ± 0.034 0.511 ± 0.018
tf-idf Linear GloVe 0.579 ± 0.033 0.360 ± 0.016 0.486 ± 0.057
tf-idf Log Bert 0.573 ± 0.018 0.516 ± 0.035 0.501 ± 0.064
tf-idf Log GloVe 0.599 ± 0.025 0.430 ± 0.020 0.505 ± 0.005

Domain
Adaptation

Uniform Linear Bert 0.554 ± 0.135 0.492 ± 0.124 0.538 ± 0.107
Uniform Linear GloVe 0.667 ± 0.022 0.547 ± 0.025 0.419 ± 0.073
Uniform Log Bert 0.593 ± 0.049 0.541 ± 0.023 0.559 ± 0.045
Uniform Log GloVe 0.638 ± 0.024 0.555 ± 0.022 0.511 ± 0.045

tf-idf Linear Bert 0.584 ± 0.035 0.546 ± 0.023 0.494 ± 0.033
tf-idf Linear GloVe 0.593 ± 0.039 0.529 ± 0.022 0.463 ± 0.041
tf-idf Log Bert 0.597 ± 0.034 0.554 ± 0.025 0.549 ± 0.038
tf-idf Log GloVe 0.583 ± 0.029 0.534 ± 0.027 0.451 ± 0.044

Table 2: Average performance for SGD real (Standard Generalization, Domain Generalization, and Domain Adapta-
tion) over eight model settings (uniform/tf-idf bag-of-words weights, linear/log constraint loss, and BERT/GloVe
embedding). The highest-performing settings are highlighted in bold.

Figure 4: Average AMI performance for SGD Real (Standard Generalization, Domain Generalization, and Domain
Adaptation) on three highly constrained few-shot settings: 1 shot, proportional 1 shot, and 3 shot.

Table 2 summarizes the results for the SGD data560

set. Highlighted in bold are the highest-performing561

setting or methods within a standard deviation of562

the highest-performing setting. For structure in-563

duction, using a BERT embedding and uniform564

bag-of-words-weights generally produces the best565

AMI performance, while there is no significant dif-566

ference between linear and log constraints. How-567

ever, when examining the hidden representation568

it is clear that the log relaxation outperforms or569

performs as well as its linear counterpart. Addi-570

tionally, Figure 4 summarizes the few-shot training571

results for the SGD data settings when training572

with 1-shot, proportional 1-shot, and 3-shots. We573

see three methods generally on top in performance:574

uniform-log-bert, tf-idf-linear-bert, and uniform-575

linear-bert. There seems to be no clear winner576

between uniform/tf-idf and linear/log; however, all577

three of these settings use BERT embeddings.578

6 Discussion and Conclusions 579

This paper introduces NEUPSL DSI, a novel neuro- 580

symbolic learning framework that guides latent dia- 581

log structure learning using differentiable symbolic 582

knowledge. Through extensive empirical evalu- 583

ations, we illustrate how the injection of just a 584

few domain knowledge rules significantly improves 585

both correctness and hidden representation quality 586

in this challenging unsupervised NLP task. 587

While NEUPSL DSI sees outstanding success 588

in the unsupervised settings, the introduction of 589

additional labels highlights a potential limitation 590

of NEUPSL DSI. If the domain knowledge intro- 591

duced is weak or noisy (as in the SGD setting), 592

when the model is provided with more substan- 593

tial evidence, this additional noisy supervision 594

can at times hurt generalization. Therefore, en- 595

abling models to perform weight learning, where 596

the model adaptively weights the importance of 597

symbolic rules as stronger evidence is introduced 598

is an interesting future direction (Karamanolakis 599

et al., 2021). 600
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# Token Constraint

w1 : HASWORD(Utt, Class) → STATE(Utt, Class)

Figure 5: SGD Structure Induction Constraint Model

A Model Details786

This section provides additional details on the NE-787

UPSL DSI models for the Multi-WoZ and SGD788

settings. Throughout these subsections, we cover789

the symbolic constraints and the hyperparameters790

used. All unspecified values for the constraints791

or the DD-VRNN model were left at their default792

values. The code is under the Apache 2.0 license.793

A.1 SGD Constraints794

The NEUPSL DSI model uses a single constraint795

for all SGD settings (synthetic, standard, domain796

generalization, and domain adaptation). Figure797

5 provides an overview of the constraint, which798

contains the following two predicates:799

1. STATE(Utt,Class)800

The STATE continuous valued predicate is801

the probability that an utterance, identified802

by the argument Utt, belongs to a dialog803

state, identified by the argument Class. For804

instance, the utterance hello world ! for805

the greet dialog state would create a predi-806

cate with a value between zero and one, i.e.,807

STATE(hello world !greet) = 0.7.808

2. HASWORD(Utt,Class)809

The HASWORD binary predicate indicates810

if an utterance, identified by the argu-811

ment Utt, contains a known token for812

a particular class, identified by the argu-813

ment Class. For instance if a known814

token associated with the greet class is815

hello, then the utterance hello world !816

would create a predicate with value one, i.e.817

HASWORD(hello world !, greet) = 1.818

This token constraint encodes the prior knowl-819

edge that utterances’ are likely to belong to dia-820

log states when an utterance contains tokens repre-821

senting that state. For example, if a known token822

associated with the greet class is hello, then the823

utterance hello world ! is likely to belong to the824

greet state. The primary purpose of incorporating825

this constraint into the model is to show how even826

a small amount of prior knowledge can aid pre- 827

dictions. To get the set of tokens associated with 828

each state, we trained a supervised linear classifier 829

where the input is an utterance, and the label is the 830

class. After training, every token is individually 831

run through the trained model to get a set of logits 832

over each class. These logits represent the relative 833

importance that each token has over every class. 834

Sparsity is introduced to this set of logits, leaving 835

only the top 0.1% of values and replacing the others 836

with zeros. This sparsity reduces the set of 261,651 837

logits to 262 non-zero logits. 838

A.2 Multi-WoZ Constraints 839

The NEUPSL DSI model for the Multi-WoZ set- 840

ting uses a set of dialog constraints, which can be 841

broken into dialog start, middle, and end. Figure 842

6 provides an overview of the constraints, which 843

contains the following 11 predicates: 844

1. STATE(Utt,Class) 845

The STATE continuous valued predicate is 846

the probability that an utterance, identified 847

by the argument Utt, belongs to a dialog 848

state, identified by the argument Class. For 849

instance, the utterance hello world ! for 850

the greet dialog state would create a predi- 851

cate with a value between zero and one, i.e., 852

STATE(hello world !greet) = 0.7. 853

2. FIRSTUTT(Utt) 854

The FIRSTUTT binary predicate indicates if 855

an utterance, identified by the argument Utt, 856

is the first utterance in a dialog. 857

3. LASTUTT(Utt) 858

The LASTUTT binary predicate indicates if 859

an utterance, identified by the argument Utt, 860

is the last utterance in a dialog. 861

4. PREVUTT(Utt1, Utt2) 862

The PREVUTT binary predicate indicates if an 863

utterance, identified by the argument Utt2, 864

is the previous utterance in a dialog of another 865

utterance, identified by the argument Utt1. 866
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# Dialog Start

w1 : ¬FIRSTUTT(Utt) → ¬STATE(Utt, greet)

w2 : FIRSTUTT(Utt) ∧ HASGREETWORD(Utt) → STATE(Utt, greet)

w3 : FIRSTUTT(Utt) ∧ ¬HASGREETWORD(Utt) → STATE(Utt, init_request)

# Dialog Middle

w4 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, greet) → STATE(Utt1, init_request)

w5 : PREVUTT(Utt1, Utt2) ∧ ¬STATE(Utt2, greet) → ¬STATE(Utt1, init_request)

w6 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, init_request) → STATE(Utt1, second_request)

w7 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, second_request) ∧ HASINFOQUESTIONWORD(Utt1) → STATE(Utt1, info_question)

w8 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, second_request) ∧ HASSLOTQUESTIONWORD(Utt1) → STATE(Utt1, slot_question)

w9 : PREVUTT(Utt1, Utt2) ∧ STATE(Utt2, end) ∧ HASCANCELWORD(Utt1) → STATE(Utt1, cancel)

# Dialog End

w10 : LASTUTT(Utt) ∧ HASENDWORD(Utt) → STATE(Utt, end)

w11 : LASTUTT(Utt) ∧ HASACCEPTWORD(Utt) → STATE(Utt, accept)

w12 : LASTUTT(Utt) ∧ HASINSISTWORD(Utt) → STATE(Utt, insist)

Figure 6: MultiWoZ Structure Induction Constraint Model

5. HASGREETWORD(Utt)867

The HASGREETWORD binary predicate indi-868

cates if an utterance, identified by the argu-869

ment Utt, contains a known token for the870

greet class. The list of known greet words is871

[′hello′,′ hi′].872

6. HASINFOQUESTIONWORD(Utt)873

The HASINFOQUESTIONWORD binary pred-874

icate indicates if an utterance, identified by875

the argument Utt, contains a known token876

for the info question class. The list of known877

info question words is [′address′,′ phone′].878

7. HASSLOTQUESTIONWORD(Utt)879

The HASSLOTQUESTIONWORD binary pred-880

icate indicates if an utterance, identified by881

the argument Utt, contains a known token882

for the slot question class. The list of known883

slot question words is [′what′,′ ?′].884

8. HASINSISTWORD(Utt)885

The HASINSISTWORD binary predicate indi-886

cates if an utterance, identified by the argu-887

ment Utt, contains a known token for the888

insist class. The list of known insist words is889

[′sure′,′ no′].890

9. HASCANCELWORD(Utt)891

The HASCANCELWORD binary predicate in-892

dicates if an utterance, identified by the ar-893

gument Utt, contains a known token for the894

cancel class. The list of known cancel words895

is [′no′].896

10. HASACCEPTWORD(Utt) 897

The HASACCEPTWORD binary predicate in- 898

dicates if an utterance, identified by the ar- 899

gument Utt, contains a known token for the 900

accept class. The list of known accept words 901

is [′yes′,′ great′]. 902

11. HASENDWORD(Utt) 903

The HASENDWORD binary predicate indi- 904

cates if an utterance, identified by the argu- 905

ment Utt, contains a known token for the 906

end class. The list of known end words is 907

[′thank′,′ thanks′]. 908

The dialog start constraints take advantage of 909

the inherent structure built into the beginning of 910

task-oriented dialogs. In the same order as the 911

dialog start rules in Figure 6: 1) If the first turn 912

utterance does not contain a known greet word, 913

then it does not belong to the greet state. 2) If the 914

first turn utterance contains a known greet word, 915

then it belongs to the greet state. 3) If the first turn 916

utterance does not contain a known greet word, 917

then it belongs to the initial request state. 918

The dialog middle constraints exploit the tempo- 919

ral dependencies within the middle of a dialog. In 920

the same order as the dialog middle rules in Figure 921

6: 1) If the previous utterance belongs to the greet 922

state, then the current utterance belongs to the 923

initial request state. 2) If the previous utterance 924

does not belong to the greet state, then the current 925

utterance does not belong to the initial request 926

state. 3) If the previous utterance belongs to the 927

initial request state, then the current utterance be- 928

12



longs to the second request state. 4) If the previ-929

ous utterance belongs to the second request state930

and it has a known info question token, then the931

current utterance belongs to the info question932

state. 5) If the previous utterance belongs to the933

second request state and it has a known slot ques-934

tion token, then the current utterance belongs to the935

slot question state. 4) If the previous utterance936

belongs to the end state and it has a known can-937

cel token, then the current utterance belongs to the938

cancel state.939

The dialog end constraints take advantage of the940

inherent structure built into the end of task-oriented941

dialogs. In the same order as the dialog end rules942

in Figure 6: 1) If the last turn utterance contains a943

known end word, then it belongs to the end state.944

2) If the last turn utterance contains a known accept945

word, then it belongs to the accept state. 3) If the946

last turn utterance contains a known insist word,947

then it belongs to the insist state.948

B Additional Model Details949

B.1 Symbolic-rule Normalization in the950

Multi-class Setting951

In the multi-class setting (e.g., multiple latent952

states), some soft logic operation on the model953

probability pw will lead to a probability that no954

longer normalizes to 1. For example, the negation955

operation on the probability vector pw will lead956

to !pw = 1 − pw; then in the multi-class setting,957

the norm of !pw is
∑|C|

i (1 − pi) = |C| − 1 > 1,958

where |C| is the number of classes. To address the959

above concern, we re-normalize after every soft960

logic operation:961

fw(y,x) = fw(y,x)/||fw(y,x)||,962

where fw(y,x) is the output of a soft logical oper-963

ation.964

B.2 Model Hyperparameters965

The DD-VRNN uses an LSTM (Hochreiter and966

Schmidhuber, 1997) with 200-400 units for the967

RNNs, and fully-connected highly flexible feature968

extraction functions with a dropout of 0.4 for the969

input x, the latent vector z, the prior, the encoder970

and the decoder. The input to the DD-VRNN is971

the utterances with a 300-dimension word embed-972

ding created using a GloVe embedding (Pennington973

et al., 2014) and a Bert embedding (Devlin et al.,974

2019). The maximum utterance word length was975

set to 40, the maximum length of a dialog was976

set to 10, and the tunable weight, γ (Equation 3), 977

was set to 0.1. The total number of parameters is 978

26,033,659 for the model with GloVe embedding 979

and 135,368,227 with Bert embedding. The exper- 980

iments are run in Google TPU V4, and the total 981

GPU hours for all finetuning are 326 GPU hours. 982

C Datasets 983

This section provides additional information on the 984

SGD, SGD synthetic, and MultiWoZ 2.1 synthetic 985

datasets. 986

C.1 SGD 987

The Schema-Guided Dialog (SGD) (Rastogi et al., 988

2020) is a task-oriented conversation dataset involv- 989

ing interactions with services and APIs covering 990

20 domains. There are overlapping functionalities 991

over many APIs, but their interfaces differ. One 992

conversion may involve multiple domains. The 993

train set contains conversions from 16 domains, 994

with four held-out domains only present in test 995

sets. This gives 34,308 in-domain and 5,441 out- 996

of-domain test examples. To evaluate the model’s 997

generalization, we evaluate the model performance 998

on both test sets. In specific, we establish three 999

different evaluation protocols. 1000

• SGD Standard Generalization We train the 1001

model using the SGD train set and evaluate it 1002

on the in-domain test set. 1003

• SGD Domain Generalization We train the 1004

model using the SGD train set and evaluate it 1005

on the out-of-domain test set. 1006

• SGD Domain Adaptation We train the model 1007

using the SGD train set and label-wiped in- 1008

domain and out-of-domain test sets and evalu- 1009

ate it on the out-of-domain test set. 1010

C.2 SGD Synthetic 1011

Using the template-based generator from the SGD 1012

developers Kale and Rastogi (2020), we generate 1013

10,800 synthetic dialogs using the same APIs and 1014

dialog states as the official SGD data. We split 1015

the examples with 75% train and 25% test. The 1016

schema-guided generator code is under Apache 2.0 1017

license: https://github.com/google-research/task- 1018

oriented-dialogue/blob/main/LICENSE. 1019

C.3 MulitWoZ 2.1 Synthetic 1020

MultiWoZ 2.1 synthetic (Campagna et al., 2020) 1021

is a multi-domain goal-oriented dataset cover- 1022
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Figure 7: Ground truth dialog structure used to generate the MultiWoZ 2.1 dataset. The transition graph shows
transitions over 0.05%.

ing five domains (Attraction, Hotel, Restau-1023

rant, Taxi, and Train) and nine dialog acts1024

(greet, initial request, second request, insist,1025

info question, slot question, accept, cancel,1026

and end). Following Campagna et al. (2020),1027

we generate 104 synthetic dialogs from a known1028

ground-truth dialog structure. Figure 7 provides1029

an overview of the ground truth dialog structure,1030

which is based on the original MultiWoz 2.1 dataset1031

(Eric et al., 2019), used through the generative1032

process. These 104 synthetic dialogs are ran-1033

domly sampled without replacement to create ten1034

splits with 80% train, 10% test, and 10% vali-1035

dation. The MultiWoZ 2.1 synthetic code is un-1036

der the MIT License: https://github.com/stanford-1037

oval/zero-shot-multiwoz-acl2020. The Multi-1038

WoZ 2.1 code uses genie under the MIT1039

License: https://github.com/stanford-oval/genie-1040

k8s/blob/master/LICENSE.1041

D Extended Experimental Evaluation1042

In this section, we provide extended experimental1043

evaluations on the NEUPSL DSI models for all1044

settings. We split the extended evaluation into eval-1045

uation metrics, main results, ablation results, and1046

additional experiments. Details describing changes1047

to the models are provided in each subsection.1048

D.1 Evaluation Metrics1049

Adjusted Mutual Information (AMI) - AMI1050

evaluates dialog structure prediction by evaluating1051

the correctness of the dialog state assignments. Let1052

U∗ = {U∗
1 , . . . , U

∗
C∗} be the ground-truth assign-1053

ment of dialog states for all utterances in the corpus,1054

and U = {U1, . . . , UC} be the predicted assign-1055

ment of dialog states based on the learned dialog1056

structure model. U∗ and U are not directly compa-1057

rable because they draw from different base sets of1058

states (U∗ from the ground truth set of states and1059

U from the collection of states induced by the DD- 1060

VRNN) that may even have different cardinalities. 1061

We address this problem using Adjusted Mutual 1062

Information (AMI), a metric developed initially to 1063

compare unsupervised clustering algorithms. Intu- 1064

itively, AMI treats each assignment as a probability 1065

distribution over states and uses Mutual Informa- 1066

tion to measure their similarity, adjusting for the 1067

fact that larger clusters tend to have higher MI. 1068

AMI is defined as follows: 1069

AMI(U,U∗) = 1070

MI(U,U∗)− E(MI(U,U∗))

Avg(H(U), H(U∗))− E(MI(U,U∗))
1071

Where MI(U,U∗) is the mutual information 1072

score, E(MI(U,U∗)) is the expected mutual 1073

information over all possible assignments, and 1074

Avg(H(U), H(U∗)) is the average entropy of the 1075

two clusters (Vinh et al., 2010). 1076

Purity - Let U∗ = {U∗
1 , . . . , U

∗
C∗} be the 1077

ground-truth assignment of dialog states for all 1078

utterances in the corpus, and U = {U1, . . . , UC} 1079

be the predicted assignment of dialog states based 1080

on the learned dialog structure model. Each cluster 1081

is assigned to the class which is most frequent in 1082

the cluster. This assignment then calculates accu- 1083

racy by summing together the total correct of each 1084

cluster and dividing by the total number of clusters. 1085

Purity is defined as follows: 1086

Purity(U,U∗) =
1

N

K∑
k=1

Count(U,U∗, Ak) 1087

whereK is the number of unique clusters predicted, 1088

N is the total number of predicted utterances,Ak is 1089

the most frequent underlying ground truth in cluster 1090

k, and Count(U,U∗, Ak) is the total number of 1091

correctly labeled utterances within that assigned 1092

cluster. 1093
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Metric Method
SGD

SGD Synthetic MultiWoZ
Standard Domain Generalization Domain Adaptation

Purity
Random 0.098 ± 0.000 0.098 ± 0.000 0.098 ± 0.000 0.094 ± 0.001 0.480 ± 0.000

DD-VRNN 0.341 ± 0.019 0.425 ± 0.016 0.443 ± 0.015 0.447 ± 0.024 0.701 ± 0.042
NEUPSL DSI 0.463 ± 0.039 0.468 ± 0.039 0.425 ± 0.056 0.810 ± 0.005 0.762 ± 0.015

Table 3: Test set performance on MultiWoZ Synthetic, SGD, and SGD Synthetic. These values correlate with the
results reported in Table 1.

Figure 8: Average Purity and Class Balanced Accuracy on MultiWoZ Synthetic, SGD, and SGD Synthetic for
varying amounts of supervision. These values correlate with the results reported in Figure 3.

D.2 Main Results1094

This section provides additional experimental re-1095

sults for the structure induction and hidden repre-1096

sentation learning performance. Table 3 summa-1097

rizes the extended evaluation of the main results1098

for the NEUPSL DSI model and DD-VRNN base-1099

line on an additional metric: purity. These values1100

correlate with the reported results in Table 1, i.e.,1101

these are not the best-performing results but are1102

calculated using the model that produced the best1103

AMI results. Purity follows a similar trend as AMI,1104

where NEUPSL DSI outperforms the DD-VRNN1105

in most settings. In addition, Figure 8 summarizes1106

the few-shot results for purity and each hidden rep-1107

resentation setting (full and few-shot). Similar to1108

the AMI, the introduction of labels improves per-1109

formance across all settings.1110

D.3 Ablation Results 1111

This section provides an extended ablation for the 1112

SGD real setting and full ablations for the SGD 1113

synthetic and MultiWoZ datasets. Each ablation 1114

analysis studies structure induction and hidden rep- 1115

resentation learning (Section 5) over various neural 1116

settings. 1117

Table 4 summarizes the unsupervised results for 1118

the MulitWoZ data setting over four major method 1119

axes: parameterization of the constraint loss (linear 1120

v.s. log constraint loss, Section 4.2), weighting 1121

scheme for the bag-of-words loss (uniform v.s. tf- 1122

idf weights, Section 4.3), constraint normalization 1123

(standard v.s. normalized, Section B.1), and the 1124

choice of underlying utterance embedding (BERT 1125

(Devlin et al., 2019) v.s. GloVe (Pennington et al., 1126

2014)) leading to a total of 24 = 16 settings. 1127
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Figure 9: Average performance for SGD Real (Standard Generalization, Domain Generalization, and Domain
Adaptation) on three highly constrained few-shot settings: 1-shot, proportional 1-shot, and 3-shot. Results are split
into Hidden Representation Learning with class-balanced accuracy and Structure Induction with adjusted mutual
information.

Table 5 summarizes the unsupervised results1128

for the SGD synthetic data setting over two ma-1129

jor method axes: parameterization of the constraint1130

loss (linear v.s. log constraint loss, Section 4.2),1131

and weighting scheme for the bag-of-words loss1132

(uniform v.s. tf-idf weights, Section 4.3) leading to1133

a total of 22 = 4 settings.1134

Figure 9, Figure 10, and Figure 11 summarize1135

the few-shot training results for the MultiWoZ,1136

SGD synthetic, and SGD real (Standard General-1137

ization, Domain Generalization, and Domain Adap-1138

tation) data settings when training with 1 shot, pro-1139

portional 1 shot, and 3 shots.1140

D.4 Additional Experiments1141

Throughout this section, we provide additional di-1142

alog structure experiments to understand further1143

when injecting common-sense knowledge as struc-1144

tural constraints is beneficial. The additional exper-1145

iments are broken into 1) A study of the sparsity1146

introduced into the tokens in the SGD synthetic1147

setting and 2) An exploration of an alternative soft1148

logic formulation.1149

D.4.1 Sparsity 1150

In this experiment, we explore varying the sparsity 1151

introduced to the token weights, as described in 1152

Appendix A.1. Table 6 shows the performance for 1153

the hidden representation and structure induction 1154

tasks. When the percent of non-zero word weights 1155

is 100.00%, this implies the model is trained on 1156

full supervision, while the non-zero word weights 1157

at 0.00% represent the unsupervised DD-VRNN re- 1158

sults. Surprisingly, we see substantial improvement 1159

in all data settings. Even when the non-zero word 1160

weight percentage is 0.02%, resulting in 54 non- 1161

zero weights, we still see approximately a 20% im- 1162

provement to the AMI. Note 54 non-zero weights 1163

are equivalent to about two identifiable tokens per 1164

class. 1165

D.4.2 Alternative Soft Logic Approximation 1166

In this experiment, we explore an alternative soft 1167

logic formulation, Product Real logic, which is 1168

used in another principled NeSy framework called 1169

Logic Tensor Networks (Badreddine et al., 2022). 1170

Similar to the Lukasiewicz logic, Product Real logic 1171
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Bag-of-Words
Weights

Constraint
Loss

Constraints
Normalized Embedding

Hidden Representation Learning
Structure Induction

Full Few-Shot
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

Random 0.111 ± 0.007 0.111 ± 0.007 0.000 ± 0.000
Uniform Linear Standard Bert 0.941 ± 0.010 0.667 ± 0.030 0.529 ± 0.040
Uniform Linear Standard GloVe 0.919 ± 0.015 0.672 ± 0.060 0.589 ± 0.050
Uniform Linear Normalized Bert 0.949 ± 0.008 0.645 ± 0.028 0.550 ± 0.018
Uniform Linear Normalized GloVe 0.934 ± 0.009 0.748 ± 0.057 0.516 ± 0.010
Uniform Log Standard Bert 0.944 ± 0.005 0.624 ± 0.039 0.586 ± 0.038
Uniform Log Standard GloVe 0.906 ± 0.008 0.711 ± 0.050 0.571 ± 0.011
Uniform Log Normalized Bert 0.944 ± 0.006 0.695 ± 0.027 0.505 ± 0.029
Uniform Log Normalized GloVe 0.918 ± 0.023 0.680 ± 0.057 0.612 ± 0.081

tf-idf Linear Standard Bert 0.943 ± 0.010 0.675 ± 0.035 0.574 ± 0.064
tf-idf Linear Standard GloVe 0.881 ± 0.016 0.744 ± 0.052 0.607 ± 0.061
tf-idf Linear Normalized Bert 0.947 ± 0.021 0.705 ± 0.021 0.511 ± 0.027
tf-idf Linear Normalized GloVe 0.925 ± 0.013 0.721 ± 0.051 0.544 ± 0.039
tf-idf Log Standard Bert 0.943 ± 0.007 0.705 ± 0.030 0.587 ± 0.027
tf-idf Log Standard GloVe 0.921 ± 0.016 0.747 ± 0.042 0.604 ± 0.012
tf-idf Log Normalized Bert 0.943 ± 0.005 0.689 ± 0.038 0.618 ± 0.028
tf-idf Log Normalized GloVe 0.913 ± 0.015 0.762 ± 0.070 0.545 ± 0.053

Table 4: Test set performance on MultiWoZ Synthetic data setting.

Bag-of-Words
Weights

Constraint
Loss

Hidden Representation Learning
Structure Induction

Full Few-Shot
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

Random 0.026 ± 0.001 0.026 ± 0.001 0.000 ± 0.000
Uniform Linear 0.983 ± 0.003 0.717 ± 0.021 0.754 ± 0.032
Uniform Log 0.992 ± 0.003 0.758 ± 0.015 0.811 ± 0.005

Supervised Linear 0.988 ± 0.004 0.714 ± 0.021 0.746 ± 0.035
Supervised Log 0.993 ± 0.004 0.741 ± 0.019 0.820 ± 0.005

Table 5: Test set performance on SGD Synthetic data setting.

Non-Zero Non-Zero Hidden Representation Learning
Structure Induction

Word Weight Word Weight Full Few-Shot
Percentage Count ( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

100.00% 261651 0.9997 ± 0.0006 0.9527 ± 0.0083 0.9999 ± 0.0001
3.25% 8499 0.9995 ± 0.0005 0.9636 ± 0.0028 0.9962 ± 0.0006
0.92% 2418 0.9995 ± 0.0002 0.9475 ± 0.0074 0.9616 ± 0.0010
0.42% 1111 0.9955 ± 0.0010 0.9213 ± 0.0053 0.9450 ± 0.0020
0.19% 504 0.9954 ± 0.0016 0.8591 ± 0.0082 0.7954 ± 0.0018
0.10% 262 0.9904 ± 0.0025 0.8241 ± 0.0243 0.8071 ± 0.0056
0.02% 54 0.9848 ± 0.0019 0.8193 ± 0.0111 0.6607 ± 0.0014
0.00% 0 0.9443 ± 0.0107 0.7283 ± 0.0127 0.5527 ± 0.0171

Table 6: Test set performance on the SGD Synthetic data setting over varying sparsity in the token weights.

approximates logical clauses with linear inequali-1172

ties:1173

A ∧B = A ∗B1174

A ∨B = A+B −A ∗B1175

¬A = 1.0−A1176

where A and B are either ground atoms or logical1177

expressions over atoms. In either case, they have1178

values between [0,1].1179

Table 7 summarizes the unsupervised results for 1180

the MulitWoZ data setting over three major method 1181

axes: the soft logic approximation (Lukasiewicz 1182

v.s. Product Real), parameterization of the con- 1183

straint loss (linear v.s. log constraint loss, Section 1184

4.2), and weighting scheme for the bag-of-words 1185

loss (uniform v.s. tf-idf weights, Section 4.3) lead- 1186

ing to a total of 23 = 8 settings. Surprisingly, 1187

in all settings of structure induction, Lukasiewicz 1188

logic outperforms Product Real logic by over 15%. 1189
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Figure 10: Average performance for MultiWoZ Synthetic on three highly constrained few-shot settings: 1-shot,
proportional 1-shot, and 3-shot. Results are split into Hidden Representation Learning with class-balanced accuracy
and Structure Induction with adjusted mutual information.

Figure 11: Average performance for SGD Synthetic on three highly constrained few-shot settings: 1-shot, propor-
tional 1-shot, and 3-shot. Results are split into Hidden Representation Learning with class-balanced accuracy and
Structure Induction with adjusted mutual information.

Soft Logic
Bag-of-Words

Weights
Constraint

Loss

Hidden Representation Learning
Structure Induction

Full Few-Shot
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) ( AMI )

Random 0.0261 ± 0.0013 0.0261 ± 0.0013 0.0000 ± 0.0004

Lukasiewicz

Uniform Linear 0.9188 ± 0.0150 0.6320 ± 0.0290 0.5892 ± 0.0496
Uniform Log 0.9060 ± 0.0083 0.6574 ± 0.0184 0.5707 ± 0.0105

tf-idf Linear 0.8807 ± 0.0164 0.6761 ± 0.0289 0.6066 ± 0.0605
tf-idf Log 0.9210 ± 0.0160 0.6579 ± 0.0204 0.6037 ± 0.0120

Product Real

Uniform Linear 0.9151 ± 0.0566 0.6194 ± 0.0529 0.3928 ± 0.1881
Uniform Log 0.8807 ± 0.0502 0.6174 ± 0.0525 0.4579 ± 0.1897

tf-idf Linear 0.9176 ± 0.0369 0.6741 ± 0.0411 0.4392 ± 0.1903
tf-idf Log 0.9232 ± 0.0147 0.6479 ± 0.0367 0.5202 ± 0.0455

Table 7: Test set AMI and standard deviation on MulitWoZ data set on two soft logic relaxations.

Interestingly, the hidden representation learning1190

performance is roughly equivalent between the two1191

soft logic formulations.1192

Figure 12 summarizes the few-shot training re-1193

sults for the MultiWoZ synthetic data settings when1194

training with 1 shot, proportional 1 shot, and 31195

shots. Noticeably, the Product Real logic closes the1196

gap with the introduction of labels. However, the1197

Lukasiewicz logic still has an edge when observing 1198

the largest semi-supervised setting. 1199
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Figure 12: Average performance for MultiWoZ Synthetic for two soft logic relaxations (Real-Product and
Lukasiewicz) on three highly constrained few-shot settings: 1-shot, proportional 1-shot, and 3-shot. Results
are split into Hidden Representation Learning with class-balanced accuracy and Structure Induction with adjusted
mutual information.
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