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Abstract

Dialog Structure Induction (DSI) is the task
of inferring the latent dialog structure (i.e., a
set of dialog states and their temporal transi-
tions) of a given goal-oriented dialog. It is a
critical component for modern dialogue system
design and discourse analysis. Existing DSI ap-
proaches are often purely data-driven, deploy
models that infer latent states without access
to domain knowledge, underperform when the
training corpus is limited/noisy, or have diffi-
culty when test dialogs exhibit distributional
shifts from the training domain. In this work
explores a neural-symbolic approach as a poten-
tial solution to these problems. We introduce
Neural Probabilistic Soft Logic Dialogue Struc-
ture Induction (NEUPSL DSI), a principled
approach that injects symbolic knowledge into
the latent space of a generative neural model.
We conduct a thorough empirical investigation
on the effect of NEUPSL DSI learning on hid-
den representation quality, few-shot learning,
and out-of-domain generalization performance.
Over three dialog structure induction datasets
and across unsupervised and semi-supervised
settings for standard and cross-domain general-
ization, the injection of symbolic knowledge us-
ing NEUPSL DSI provides a consistent boost
in performance over the canonical baselines.

1 Introduction

The seamless integration of prior domain knowl-
edge into the neural learning of language structure
has been an open challenge in the machine learn-
ing and natural language processing communities.
In this work, we inject symbolic knowledge into
the neural learning process of a two-party dialog
structure induction (DS]) task (Zhai and Williams,
2014; Shi et al., 2019). This task aims to learn
a graph, known as the dialog structure, capturing
the potential flow of states occurring in a dialog
dataset for a specific task-oriented domain, e.g.,
Figure 1 represents a possible dialog structure for
the goal-oriented task of booking a hotel. Nodes in
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Figure 1: Example dialog structure for the goal-oriented
task booking a hotel.

the dialog structure represent conversational topics
or dialog acts that abstract the intent of individual
utterances, and edges represent transitions between
dialog acts over successive turns of the dialog.

Traditionally, dialog structure is hand-crafted
by human domain experts. This process is labor-
intensive and, in most situations, does not gener-
alize easily to new domains. Previous work has
used supervised methods to learn this dialog struc-
ture from labeled data, starting from (Jurafsky,
1997). However, since structure annotation is ex-
pensive and subject to low inter-rater agreements,
these methods are constrained by small training
datasets and low label quality (Zhai and Williams,
2014). Therefore, recent work studies unsupervised
DSI; e.g., hidden Markov models (Chotimongkol,
2008; lan Ritter et al., 2010; Zhai and Williams,
2014) and more recently Variational Recurrent
Neural Networks (VRNN) (Chung et al., 2015; Shi
et al., 2019). Being purely data-driven, these ap-
proaches have difficulty with limited/noisy data and
cannot easily exploit domain-specific or domain-
independent constraints on dialog (e.g. Greet utter-
ances are typically made in the first couple of turns)
that may be readily provided by human experts.

In this work, we propose Neural Probabilistic
Soft Logic Dialogue Structure Induction (NEUPSL
DSI). This practical neuro-symbolic approach im-
proves the quality of learned dialog structure by
infusing domain knowledge into the end-to-end,
gradient-based learning of a neural model. We
leverage Probabilistic Soft Logic (PSL), a well-
studied soft logic formalism, to express domain



knowledge as soft rules in succinct and inter-
pretable first-order logic statements that can be in-
corporated easily into differentiable learning (Bach
etal., 2017; Pryor et al., 2022). This leads to a sim-
ple method for knowledge injection with minimal
change to the SGD-based training pipeline of an
existing neural generative model.

Our key contributions are: 1) We propose NE-
UPSL DSI, which introduces a novel smooth re-
laxation of PSL constraints tailored to ensure a rich
gradient signal during back-propagation; 2) We
evaluate NEUPSL DSI over synthetic and realis-
tic dialog datasets under three settings: standard
generalization, domain generalization, and domain
adaptation. We show quantitatively that injecting
domain knowledge provides a boost over unsuper-
vised and few-shot methods; and 3) We comprehen-
sively investigate the effect of soft logic-augmented
learning on different aspects of the learned neural
model by examining its quality in representation
learning and structure induction.

2 Related Work

Dialog Structure Induction (DSI) refers to the task
of inferring latent states of a dialog without full
supervision of the state labels. Earlier work fo-
cus on building advanced clustering methods, e.g.,
topic models, HMM, GMM (Zhai and Williams,
2014), which are later combined with pre-trained
or task-specific neural representations (Nath and
Kubba, 2021; Lv et al., 2021; Qiu et al., 2022).
Another line of work focuses on inferring latent
states using neural generative models, most notably
Direct-Discrete Variational Recurrent Neural Net-
works (DD-VRNN) (Shi et al., 2019), with later im-
provements including BERT encoder (Chen et al.,
2021), GNN-based latent-space model (Sun et al.,
2021; Xu et al., 2021), structured-attention decoder
(Qiu et al., 2020), and database query modeling
(Hudecek and Dusek, 2022). Finally, Zhang et al.
(2020); Wu et al. (2020) explored DSI in a semi-
supervised and few-shot learning context. No work
has explored DSI with domain knowledge as weak
supervision or conducted a comprehensive evalu-
ation of model performance across different gen-
eralization settings (i.e., unsupervised, few-shot,
domain generalization, and domain adaptation).

A related field of work, Neuro-Symbolic com-
puting (NeSy), is an active area of research that
aims to incorporate logic-based reasoning with neu-
ral computation. This field contains a plethora of

different neural symbolic methods and techniques.
The methods that closely relate to our line of work
seek to enforce constraints on the output of a neural
network (Hu et al., 2016; Donadello et al., 2017;
Diligenti et al., 2017; Mehta et al., 2018; Xu et al.,
2018; Nandwani et al., 2019). For a more in-depth
introduction, we refer the reader to these excellent
recent surveys: Besold et al. (2017) and De Raedt
et al. (2020). These methods, although powerful,
are either: specific to the domain they work in, do
not use the same soft logic formulation, have not
been designed for unsupervised systems, or have
not been used for dialog structure induction.

Finally, our method is most closely related to the
novel NeSy approaches of Neural Probabilistic Soft
Logic (NeuPSL) (Pryor et al., 2022), DeepProbLog
(DPL) (Manhaeve et al., 2021), and Logic Tensor
Networks (LTNs) (Badreddine et al., 2022). LTNs
instantiate a model which forwards neural network
predictions into functions representing symbolic
relations with real-valued or fuzzy logic seman-
tics, and DeepProbLog uses the output of a neural
network to specify probabilities of events. The
mathematical formulation of LTNs and DPL dif-
fers from our underlying soft logic distribution.
NeuPSL unites state-of-the-art symbolic reasoning
with the low-level perception of deep neural net-
works through a Probabilistic Soft Logic (PSL).
Our method uses a NeuPSL formulation; however,
we introduce a novel variation to the soft logic for-
mulation, develop theory for unsupervised tasks,
introduce the whole system in Tensorflow, and ap-
ply it to dialog structure induction.

3 Background

Our neuro-symbolic approach to dialog structure
induction combines the principled formulation of
probabilistic soft logic (PSL) rules with a neural
generative model. In this work, we use the state-of-
the-art Direct-Discrete Variational Recurrent Neu-
ral Network (DD-VRNN) as the base model (Shi
et al., 2019). We start by introducing the syntax
and semantics for DD-VRNN and PSL.

3.1 Direct Discrete Variational Recurrent

Neural Networks
A Direct Discrete Variational Recurrent Neural Net-

works (DD-VRNN) (Shi et al., 2019) is an expan-
sion to the popular Variational Recurrent Neural
Networks (VRNN) (Chung et al., 2015), which
constructs a sequence of VAEs and associates them
with states of an RNN. The main difference be-
tween the DD-VRNN and a traditional VRNN is
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Figure 2: The high-level pipeline of the NEUPSL DSI learning procedure.

the priors of the latent states z;. They directly

model the influence of z;_1 on z;, which models

the transitions between different latent (i.e., dialog)

states. To fit the prior into the variational inference

framework, an approximation of p(z;|x <, z<¢) is

made which changes the distribution to p(z¢|z;—1):
T

pla<r, z<r) = [ [ p(zilz<t, v<o)p(zelw<r, 21)
t=1
T
~ Hp(l“t|zgt, T<t)P(2e|2i-1)
t=1

(D
2 is modeled as z; ~ softmaz(¢P" (z_1)) for

a feature extraction neural network for the prior
¢P"°" . Lastly, the objective function used in the
DD-VRNN is a timestep-wise variational lower
bound (Chung et al., 2015) augmented with a bag-
of-word (BOW) loss and Batch Prior Regulariza-
tion (BPR) (Zhao et al., 2017, 2018), i.e.:

LvrnN = Eq<rje<r)llog p(@e|z<t, v<1)+
T

Z —KL(q(zt|lz<t, 2<e)|[p(2t|r<t; 2<1))] (2)
=1

so that the full objective function is

Lpp-vRNN = LVRNN + A * Lypow  (3)

where A is a tunable weight and Lp,,, is the BOW
loss. For further details on Ly, see Section 4.3
and Shi et al. (2019). To expand this to a semi-
supervised domain, the objective is augmented as:

Lpp-vRNN =
EVRNN + A ['bow + Esupe'rm’sed (4)

where Ly pervised 19 the loss between the labels and
predictions, e.g., cross-entropy.

3.2 Probabilistic Soft Logic

This work introduces soft constraints in a declar-
ative fashion, similar to Probabilistic Soft Logic

(PSL). PSL is a declarative statistical relational
learning (SRL) framework for defining a particular
probabilistic graphical model, known as a hinge-
loss Markov random field (HL-MRF) (Bach et al.,
2017). PSL models relational dependencies and
structural constraints using first-order logical rules,
referred to as templates with arguments known as
atoms. For example, the statement “the first ut-
terance in a dialog is likely to belong to the greet
state" can be expressed as:

FIRSTUTT(U) — STATE(U, greet)  (5)

Where (FIRSTUTT(U), STATE(U, greet)) are the
atoms (i.e., atomic boolean statements) indicating,
respectively, whether an utterance U is the first ut-
terance of the dialog, or if it belongs to the state
greet. The atoms in a PSL rule are grounded
by replacing the free variables (such as U above)
with concrete instances from a domain of interest
(e.g., the concrete utterance "Hello!”); we call these
the grounded atoms. The observed variables and
target/decision variables of the probabilistic model
correspond to ground atoms constructed from the
domain, e.g., FIRSTUTT('Hello!") may be an ob-
served variable and STATE('Hello!', greet) may
be a target variable.

PSL performs inference over soft logic con-
straints by allowing the originally Boolean-valued
atoms to take continuous truth values in the in-
terval [0, 1]. Using this relaxation, PSL replaces
logical operations with a form of soft logic called
Lukasiewicz logic (Klir and Yuan, 1995):

AN B =maz(0.0, A+B — 1.0)
AV B =min(1.0, A+B)
~A=10-A ©6)
where A and B represent either ground atoms or

logical expressions over atoms and take values in
[0, 1]. For example, PSL will convert the statement



from Equation 5, into the following:

min{l, 1 — FIRSTUTT(U)+STATE(U, greet))}
(7

since A — B = = AV B. In this way, we can create
a collection of functions {¢;}7" ,, called templates,
that map data to [0, 1]. Using the templates, PSL
defines a conditional probability density function
over the unobserved random variables y given the
observed data x known as the Hinge-Loss Markov
Random Field (HL-MRF):

P(y|x) < ezp(— > Ai- di(y,x)) (8

=1

Here )\; is a non-negative weight and ¢; a potential
function based on the templates:

¢i(yax) = max{O,Ei(y,X)} (9)

Then, inference for the model predictions y pro-
ceeds by Maximum A Posterior (MAP) estimation,
i.e., by maximizing the objective function P(y|x)
(eq. 8) with respect to y.

4 Neural Probabilistic Soft Logic
Dialogue Structure Induction

In this section, we describe our approach to integrat-
ing domain knowledge and neural network-based
dialog structure induction. Our approach integrates
an unsupervised neural generative model with di-
alog rules using soft constraints. We refer to our
approach as Neural Probabilistic Soft Logic Di-
alogue Structure Induction (NEUPSL DSI). In
the following, we define the dialog structure learn-
ing problem, describe how to integrate the neu-
ral and symbolic losses, and highlight essential
model components that address optimization and
representation-learning challenges under gradient-
based neuro-symbolic learning.

Problem Formulation Given a goal-oriented di-
alog corpus D, we consider the DSI problem of
learning a graph GG underlying the corpus. More
formally, a dialog structure is defined as a directed
graph G = (S, P), where S = {s1,...,sm} en-
codes a set of dialog states, and P a probability
distribution p(s;|s<;) representing the likelihood
of transition between states (see Figure 1 for an
example). Given the underlying dialog structure G,
a dialog d; = {x1,...,z7} € D is a temporally-
ordered set of utterances x;. Assume x; is defined

according to an utterance distribution conditional
on past history p(x¢|s<¢, <), and the state s; is
defined according to p(s¢|s<¢). Given a dialog cor-
pus D = {d;}}_,, the task of DSI is to learn a
directed graphical model G = (.9, P) as close to
the underlying graph as possible.

4.1 Integrating Neural and Symbolic
Learning under NEUPSL DSI

We now introduce how the NEUPSL DSI approach
formally integrates the DD-VRNN with the soft
symbolic constraints to allow for end-to-end gra-
dient training. To begin, we define the relaxation
of the symbolic constraints to be the same as de-
scribed in Section 3.2. With this relaxation, we
can build upon the foundations developed by Pryor
et al. (2022) on Neural Probabilistic Soft Logic (Ne-
uPSL) by augmenting the standard unsupervised
DD-VRNN loss with a constraint loss. Figure 2
provides a graphical representation of this integra-
tion of the DD-VRNN and the symbolic constraints.
Intuitively, NEUPSL DSI can be described in three
parts: instantiation, inference, and learning.

Instantiation of a NEUPSL DSI model uses a set
of first-order logic templates to create a set of po-
tentials that define a loss used for learning and eval-
uation. Let py, be the DD-VRNN’s predictive func-
tion of latent states with hidden parameters w and
input utterances x. The output of this function, de-
fined as py(x), will be the probability distribution
representing the likelihood of each latent class for
a given utterance. Given a first-order symbolic rule
¢;(y,x) where the decision variable y = py(x) is
the latent state prediction from the neural model
pw(x), we can instantiate a set of deep hinge-loss
potentials of the form:

dw,i(x) = max(0, {;(pw(x),x)) (10)

For example, in reference to Equation 7, the de-
cision variable y = py(x) is associated with the
STATE(X, greet) random variables, leading to:

li(pw(x), %) =
min{l,1 — FIRSTUTT(U)+pw(x)} (11)

With the instantiated model described above, the
NEUPSL DSI inference objective is broken into
a neural inference objective and a symbolic in-
ference objective. The neural inference objective
is computed by evaluating the DD-VRNN model
predictions with respect to the standard loss func-
tion for DSI. Given the deep hinge-loss potentials



{¢w,i}i" . the symbolic inference objective is the
HL-MREF likelihood (Equation 8) evaluated at the
decision variables y = py(z):

ZA (X

Under the NEUPSL DSI, the decision variables
y = pw(x) are implicitly controlled by neural net-
work weights w, therefore the conventional MAP
inference in symbolic learning for decision vari-
ables y* = argmin, P(y[x) can be done simply
via neural weight minimization arg min,, Py(y|xX).
As a result, NEUPSL DSI learning minimizes a
constrained optimization objective:

Py(ylx, A) = exp( (12)

w' = arg min Lpp-VENN + X * Leonstraint
w
(13)

where we define the constraint loss to be the log-
likelihood of the HL-MREF distribution (12):

EConstraint = —long()”Xv A) (14)

4.2 TImproving soft logic constraints for
gradient learning

The straightforward linear soft constraints used by
the classic Lukasiewicz relaxation fail to pass back
gradients with a magnitude and instead pass back a
direction (e.g., +=1). Formally, the gradient of a po-
tential oy (x) = max(0, £(pw(x), X)) with respect
to w is:

0 0
%(ZSW = %g(pwﬂ() “Lpy>0

0 0
= 5,0 tow )] - e Taso (9

Here ¢(pw(x),x) = a - pw(x) + b where a,b €
R and pw(x) € [0, 1], which leads to the gra-
dient ap%f (pw,x) = a. Observing the three
Lukasiewicz operations described in Section 3.2, it
is clear that a will always result in -1 unless there
are multiple py (x) per constraint.

As a result, this classic soft relaxation leads to a

naive, non-smooth gradient:

0 0

(97W¢W = [al¢w>0] : (97pr (16)
that is mostly consists of the predictive probabil-
ity gradient % Pw- It barely informs the model of
the degree to which py, satisfies the symbolic con-
straint ¢y (other than the non-smooth step function

14,>0), thereby creating challenges in gradient-
based learning.

In this work, we propose a novel log-based relax-
ation that provides smoother and more informative
gradient information for the symbolic constraints:

w(x) = log (QSW(X)) = log (max((), L(pw(x), x)))
(17)

This seemingly simple transformation brings a non-
trivial change to the gradient behavior:

9 19

awin = (5100 3

87pr
(13)

As shown, the gradient from the symbolic con-
straint now contains a new term —-—. It informs
the model of the degree to which the model predic-
tion satisfies the symbolic constraint ¢ so that it is
no longer a discrete step function with respect to
¢w. As aresult, when the satisfaction of a rule ¢y is
non-negative but low (i.e., uncertain), the gradient
magnitude will be high, and when the satisfaction
of the rule is high, the gradient magnitude will
be low. In this way, the gradient of the symbolic
constraint terms ¢; now guides the neural model
to more efficiently focus on learning the challeng-
ing examples that don’t obey the existing symbolic
rules. This leads to more effective collaboration
between the neural and the symbolic components
during model learning and empirically leads to im-
proved generalization performance (Section 5).

4.3 Stronger control of posterior collapse via
weighted bag of words

It is essential to avoid a collapsed VRNN solution,
where the model puts all of its predictions in just a
handful of states. This problem has been referred
to as the vanishing latent variable problem (Zhao
et al., 2017). Zhao et al. (2017) address this by
introducing a bag-of-word (BOW) loss to VRNN
modeling which requires a network to predict the
bag-of-words in response x. They separate = into
two variables: z, (word order) and xy,,, (no word
order), with the assumption that they are condition-
ally independent given z and c:

(19)

p(:L', Z|C) = p(l‘o|2, C)p(xbow|z> c)p(z|c).

Here, c is the dialog history: the preceding utter-
ances, conversational floor (1 if the utterance is
from the same speaker and 0 otherwise), and meta-
features (e.g., the topic). Let f be the output of a



multilayer perception with parameters z, x, where

f € RY with V the vocabulary size. Then the

BOW probability is defined as log p(Zpow |2, ¢) =

log H‘till e‘fit, where |z| is the length of = and
> j eli

x; is the word index of the t;;, word in x.

To impose robust regularization against the pos-
terior collapse, we use a tf-idf-based re-weighting
scheme using the tf-idf weights computed from
the training corpus. Intuitively, this re-weighting
scheme helps the model focus on reconstructing
non-generic terms that are unique to each dialog
state, which encourages the model to “pull" the sen-
tences from different dialog states further apart in
its representations space to minimize the weighted
BOW loss better. In comparison, a model under the
uniformly-weighted BOW loss may be distracted
by reconstructing the high-prevalence terms (e.g.,
"what is," "can I," and "when") that are shared by
all dialog states. As a result, we specify the tf-idf
weighted BOW probability as:

||

log p(@pow|z, ¢) = log H
t=1

wy, el

Z;/ efj ’

(20)

(1-a)

!
+awy,,

where w,, = N is the corpus size,
Tt

w, is the tf-idf word weight for the x; index, and «
is a hyperparameter. In Section 5, we explore how
this alteration affects the performance and observe
if the PSL constraints still provide a boost.

5 [Experimental Evaluation

We evaluate the performance of NEUPSL DSI on
three task-oriented dialog corpuses in both unsu-
pervised and highly constrained semi-supervised
settings. Further, we provide an extensive ablation
on different aspects of the learned neural model.
We investigate the following questions: Q1) How
does NEUPSL DSI perform in an unsupervised
setting when soft constraints are incorporated into
the loss? Q2) When introducing few-shot labels
to DD-VRNN training, do soft constraints provide
a boost? Q3) How do design choices such as log
relaxation and re-weighted bag-of-words loss (in-
troduced in Section 4.2-4.3) impact performance?

Datasets These questions are explored using
three goal-oriented dialog datasets: MultiWoZ 2.1
synthetic (Campagna et al., 2020) and two ver-
sions of the Schema Guided Dialog (SGD) dataset;
SGD-synthetic (where the utterance is generated by

a template-based dialog simulator) and SGD-real
(which replaces the machine-generated utterances
of SGD-synthetic with its human-paraphrased
counterparts) (Rastogi et al., 2020). For the SGD-
real dataset, we evaluate over three unique data set-
tings, standard generalization (train and test over
the same domain), domain generalization (train
and test over different domains), and domain adap-
tation (train on (potentially labeled) data from the
training domain and unlabeled data from the test
domain, and test on evaluation data from the test
domain). Appendix C describes further details.

Constraints In the synthetic MultiWoZ setting,
we introduce a set of 11 structural domain agnostic
dialog rules. An example of one of these rules can
be seen in Equation 5. These rules are introduced to
represent general facts about dialogs, with the goal
of showing how the incorporation of a few expert-
designed rules can drastically improve generaliza-
tion performance. For SGD settings, we introduce
a single dialog rule that encodes the concept that
dialog acts should contain utterances with corre-
lated tokens, e.g., utterances containing ’hello’ are
likely to belong to the greet state. This rule is de-
signed to show the potential boost in performance
a model can achieve from a simple source of prior
information. Appendix C contains further details.

Metrics and Methodology The experimental
evaluation examines two aspects: correctness of
the learned latent dialog structure and quality of
the learned hidden representation.

Structure Induction. To evaluate the model’s abil-
ity in correctly learning the latent dialog structure,
we adapt the Adjusted Mutual Information (AMI)
metric from clustering literature (see Appendix
D.1 for details). AMI allows for a comparison
between ground truth labels' (e.g., "greet", "initial
request”, etc.) and latent state predictions (e.g.,
Stateq, - - -, Statey,).

Hidden Representation Learning. A standard
technique for evaluating the quality of unsuper-
vised representation is linear probing, i.e., train
a lightweight linear probing model on top of the
frozen learned representation, and evaluate the lin-
ear model’s generalization performance for super-
vised tasks (Tenney et al., 2019). To evaluate the
quality of the learned DD-VRNN, we train a su-
pervised linear classifier on top of input features

!These labels were only used for final evaluation, not for
training or hyperparameter tuning.



Hidden Representation Learning Structure Induction
Dataset Setting Method Full Few-Shot
( Class-Balanced Accuracy ) ( Class-Balanced Accuracy ) (AMI)

MultiWoZ Standard DD-VRNN 0.804 + 0.037 0.643 +0.038 0.451 +£0.042
WHWOZ - Generalization  NguPSL DSI 0.806 + 0.051 0.689 + 0.038 0.618 + 0.028
SGD Standard DD-VRNN 0.949 + 0.005 0.598 £0.019 0.553 £0.017
Synthetic ~ Generalization NgyPSL DSI 0.941 +£0.009 0.765 + 0.012 0.826 + 0.006
Standard DD-VRNN 0.661 + 0.015 0.357 £0.015 0.448 £0.019
Generalization NgyPSL DSI 0.663 + 0.015 0.517 £ 0.021 0.539 + 0.048
ab Domain  DD-VRNN 0.268 +0.012 0.320 £0.029 0.476 0,029
Generalization  NgyPSL DSI 0.299 + 0.009 0.528 + 0.026 0.541 + 0.036
Domain DD-VRNN 0.308 + 0.011 0.505 £ 0.015 0.514 £0.028
Adaptation  NguPSL DSI 0.297 + 0.025 0.541 = 0.023 0.559 + 0.045

Table 1: Test set performance on all datasets. All reported results are averaged over 10 splits. The highest-performing
methods per dataset and learning setting are bolded. A random baseline has AMI zero and class-balanced accuracy
equal to inverse class size (all less than 10%, see Appendix Tables 4, 5, 7).
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Figure 3: Average AMI for MultiWoZ, SGD Synthetic, and SGD Real (Standard Generalization, Domain General-
ization, and Domain Adaptation) on three constrained few-shot settings: 1-shot, proportional 1-shot, and 3-shot.
Hidden representation learning graphs are included in the Appendix.

extracted from the penultimate layer of the DD-
VRNN. We evaluate with both full supervision and
few-shot supervision. Full supervision averages
the class-balanced accuracy of two separate mod-
els that classify dialog acts (e.g., "greet", "initial
request"”, etc.) and domains ("hotel", "restaurant”,
etc.) respectively. Few-shot averages the class-
balanced accuracy of models classifying dialog acts

with 1-shot, 5-shot, and 10-shot settings.

5.1 Main Results

Table 1 summarizes the results of NEUPSL DSI
and DD-VRNN in strictly unsupervised settings.
NEUPSL DSI outperforms the strictly data-driven
DD-VRNN on AMI by 4%-27% depending on the
setting while maintaining or improving the hidden
representation quality. To reiterate, this improve-
ment is achieved without supervision in the form
of labels, but rather a few selected structural con-
straints. Comparing AMI performance on SGD-
real across different settings (standard generaliza-
tion v.s. domain generalization/adaptation), we see
the NEUPSL DSI consistently improves over DD-
VRNN, albeit with the advantage slightly dimin-
ished in the non-standard generalization settings.
To further understand how the constraints affect
the model, we examine three highly constrained

few-shot settings (1-shot, 3-shot, and proportional
1-shot) trained using the loss described in Equation
4. The 1-shot and 3-shot settings are given one and
three labels per class, while proportional 1-shot is
provided the same number of labels as 1-shot with
the distribution of labels proportional to the class
size (classes below 1% are not provided labels).
The results in Figure 3 show that in all settings,
the introduction of labels improves performance.
This demonstrates that the soft constraints do not
overpower learning but enable a trade-off between
generalizing to priors and learning over labels. In
the SGD settings, however, as the number of labels
increases, the pure data-driven approach performs
as well or better than NEUPSL DSIL.

5.2 Ablation Study

We provide an ablation on the SGD real dataset
over three major method axes: parameterization
of the constraint loss (linear v.s. log constraint
loss, Section 4.2), weighting scheme for the bag-
of-words loss (uniform v.s. tf-idf weights, Section
4.3), and the choice of underlying utterance embed-
ding (BERT (Devlin et al., 2019) v.s. GloVe (Pen-
nington et al., 2014)) leading to a total of 23 = 8
settings (Appendix D.3 presents a further analy-
sis for the MultiWoZ and SGD Synthetic datasets).



. Bag-of-Words  Constraint . Hidden Representation Learning Structure Induction
Setting Weights Loss Embedding Full Few-Shot
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) (AMI)
Uniform Linear Bert 0.588 +0.016 0.517 + 0.021 0.539 +0.048
Uniform Linear GloVe 0.620 + 0.023 0.428 +0.021 0.458 + 0.024
Uniform Log Bert 0.600 + 0.022 0.517 + 0.023 0.520 + 0.033
Standard Uniform Log GloVe 0.650 + 0.011 0.456 £ 0.014 0.532 + 0.009
Generalization tf-idf Linear Bert 0.573 +0.022 0.521+0.018 0.522 +0.024
tf-idf Linear GloVe 0.595 +0.014 0.379 £ 0.015 0.533 +0.048
tf-idf Log Bert 0.578 £ 0.021 0.510 + 0.022 0.507 + 0.060
tf-idf Log GloVe 0.653 + 0.014 0.460 + 0.009 0.534 +0.033
Uniform Linear Bert 0.597 £ 0.018 0.528 + 0.026 0.541 = 0.036
Uniform Linear GloVe 0.597 + 0.012 0.391 £0.018 0.441 +£0.030
Uniform Log Bert 0.598 + 0.032 0.512 + 0.021 0.517 + 0.036
Domain Uniform Log GloVe 0.608 + 0.014 0.438 £0.017 0.508 + 0.006
Generalization tf-idf Linear Bert 0.536 £ 0.026 0.518 + 0.034 0.511 £ 0.018
tf-idf Linear GloVe 0.579 £ 0.033 0.360 £ 0.016 0.486 + 0.057
tf-idf Log Bert 0.573 £0.018 0.516 + 0.035 0.501 + 0.064
tf-idf Log GloVe 0.599 + 0.025 0.430 + 0.020 0.505 + 0.005
Uniform Linear Bert 0.554 +0.135 0.492 +0.124 0.538 +0.107
Uniform Linear GloVe 0.667 + 0.022 0.547 + 0.025 0.419 +£0.073
Uniform Log Bert 0.593 + 0.049 0.541 + 0.023 0.559 + 0.045
Domain Uniform Log GloVe 0.638 + 0.024 0.555 + 0.022 0.511 +£0.045
Adaptation tf-idf Linear Bert 0.584 + 0.035 0.546 + 0.023 0.494 +0.033
tf-idf Linear GloVe 0.593 + 0.039 0.529 £ 0.022 0.463 + 0.041
tf-idf Log Bert 0.597 + 0.034 0.554 + 0.025 0.549 + 0.038
tf-idf Log GloVe 0.583 +0.029 0.534 + 0.027 0.451 £ 0.044

Table 2: Average performance for SGD real (Standard Generalization, Domain Generalization, and Domain Adapta-
tion) over eight model settings (uniform/tf-idf bag-of-words weights, linear/log constraint loss, and BERT/GloVe
embedding). The highest-performing settings are highlighted in bold.

Standard
Generalization

Domain
Generalization

Domain
Adaptation

0 1 Prop. 1 3 0

—— Uniform Linear GloVe
----- Uniform Log GloVe

1 Prop.1
Number of Labels per Class
——= tf-idf Linear GloVe

tf-idf Log Glove

3 0 1 Prop. 1 3

- tf-idf Linear Bert
-—- tf-idf Log Bert

Uniform Linear Bert
- - Uniform Log Bert

Figure 4: Average AMI performance for SGD Real (Standard Generalization, Domain Generalization, and Domain
Adaptation) on three highly constrained few-shot settings: 1 shot, proportional 1 shot, and 3 shot.

Table 2 summarizes the results for the SGD data
set. Highlighted in bold are the highest-performing
setting or methods within a standard deviation of
the highest-performing setting. For structure in-
duction, using a BERT embedding and uniform
bag-of-words-weights generally produces the best
AMI performance, while there is no significant dif-
ference between linear and log constraints. How-
ever, when examining the hidden representation
it is clear that the log relaxation outperforms or
performs as well as its linear counterpart. Addi-
tionally, Figure 4 summarizes the few-shot training
results for the SGD data settings when training
with 1-shot, proportional 1-shot, and 3-shots. We
see three methods generally on top in performance:
uniform-log-bert, tf-idf-linear-bert, and uniform-
linear-bert. There seems to be no clear winner
between uniform/tf-idf and linear/log; however, all
three of these settings use BERT embeddings.

6 Discussion and Conclusions

This paper introduces NEUPSL DSI, a novel neuro-
symbolic learning framework that guides latent dia-
log structure learning using differentiable symbolic
knowledge. Through extensive empirical evalu-
ations, we illustrate how the injection of just a
few domain knowledge rules significantly improves
both correctness and hidden representation quality
in this challenging unsupervised NLP task.

While NEUPSL DSI sees outstanding success
in the unsupervised settings, the introduction of
additional labels highlights a potential limitation
of NEUPSL DSI. If the domain knowledge intro-
duced is weak or noisy (as in the SGD setting),
when the model is provided with more substan-
tial evidence, this additional noisy supervision
can at times hurt generalization. Therefore, en-
abling models to perform weight learning, where
the model adaptively weights the importance of
symbolic rules as stronger evidence is introduced
is an interesting future direction (Karamanolakis
et al., 2021).
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# Token Constraint

wy : HASWORD(Utt, Class) — STATE(Utt, Class)

Figure 5: SGD Structure Induction Constraint Model

A Model Details

This section provides additional details on the NE-
UPSL DSI models for the Multi-WoZ and SGD
settings. Throughout these subsections, we cover
the symbolic constraints and the hyperparameters
used. All unspecified values for the constraints
or the DD-VRNN model were left at their default
values. The code is under the Apache 2.0 license.

A.1 SGD Constraints

The NEUPSL DSI model uses a single constraint
for all SGD settings (synthetic, standard, domain
generalization, and domain adaptation). Figure
5 provides an overview of the constraint, which
contains the following two predicates:

1. STATE(Utt,Class)

The STATE continuous valued predicate is
the probability that an utterance, identified
by the argument Utt, belongs to a dialog
state, identified by the argument Class. For
instance, the utterance hello world ! for
the greet dialog state would create a predi-
cate with a value between zero and one, i.e.,
STATE(hello world greet) = 0.7.

HASWORD(Utt,Class)

The HASWORD binary predicate indicates
if an utterance, identified by the argu-
ment Utt, contains a known token for
a particular class, identified by the argu-
ment Class. For instance if a known
token associated with the greet class is
hello, then the utterance hello world !
would create a predicate with value one, i.e.
HASWORD(hello world !, greet) = 1.

This token constraint encodes the prior knowl-
edge that utterances’ are likely to belong to dia-
log states when an utterance contains tokens repre-
senting that state. For example, if a known token
associated with the greet class is hello, then the
utterance hello world ! is likely to belong to the
greet state. The primary purpose of incorporating
this constraint into the model is to show how even
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a small amount of prior knowledge can aid pre-
dictions. To get the set of tokens associated with
each state, we trained a supervised linear classifier
where the input is an utterance, and the label is the
class. After training, every token is individually
run through the trained model to get a set of logits
over each class. These logits represent the relative
importance that each token has over every class.
Sparsity is introduced to this set of logits, leaving
only the top 0.1% of values and replacing the others
with zeros. This sparsity reduces the set of 261,651
logits to 262 non-zero logits.

A.2 Multi-WoZ Constraints

The NEUPSL DSI model for the Multi-WoZ set-
ting uses a set of dialog constraints, which can be
broken into dialog start, middle, and end. Figure
6 provides an overview of the constraints, which
contains the following 11 predicates:

1. STATE(Utt,Class)

The STATE continuous valued predicate is
the probability that an utterance, identified
by the argument Utt, belongs to a dialog
state, identified by the argument Class. For
instance, the utterance hello world ! for
the greet dialog state would create a predi-
cate with a value between zero and one, i.e.,
STATE(hello world !greet) = 0.7.

FIRSTUTT(Utt)

The FIRSTUTT binary predicate indicates if
an utterance, identified by the argument Utt,
is the first utterance in a dialog.

. LASTUTT(Utt)
The LASTUTT binary predicate indicates if
an utterance, identified by the argument Ut t,
is the last utterance in a dialog.

. PREVUTT(Uttl, Utt2)
The PREVUTT binary predicate indicates if an
utterance, identified by the argument Utt 2,
is the previous utterance in a dialog of another
utterance, identified by the argument Ut t 1.



# Dialog Start
w1 : “FIRSTUTT(Utt) — —STATE(Utt, greet)

wg : FIRSTUTT(Utt) A HASGREETWORD(Utt) — STATE(Utt, greet)

ws : FIRSTUTT(Utt) A “HASGREETWORD(Utt) — STATE(Utt, init_request)

# Dialog Middle

# Dialog End
w10 : LASTUTT(Utt) A HASENDWORD(Utt) — STATE(Utt, end)

w11 : LASTUTT(Utt) A HASACCEPTWORD(Utt) — STATE(Utt, accept)

: PREVUTT(Utt1, Utt2) A STATE(Utt2, greet) — STATE(Uttl, init_request)

: PREVUTT(Utt1, Utt2) A =STATE(Utt2, greet) — —STATE(Uttl, init_request)

: PREVUTT(Utt1, Utt2) A STATE(Utt2, init_request) — STATE(Uttl, second_request)

: PREVUTT(Utt1, Utt2) A STATE(Utt2, second_request) A HASINFOQUESTIONWORD (Utt1) — STATE(Utt1l,info_question)
: PREVUTT(Utt1, Utt2) A STATE(Utt2, second_request) A HASSLOTQUESTIONWORD(Utt1) — STATE(Utt1, slot_question)
: PREVUTT(Utt1, Utt2) A STATE(Utt2, end) A HASCANCELWORD(Utt1) — STATE(Uttl, cancel)

wis : LASTUTT(Utt) A HASINSISTWORD(Utt) — STATE(Utt, insist)

Figure 6: MultiWoZ Structure Induction Constraint Model

. HASGREETWORD (Utt)
The HASGREETWORD binary predicate indi-
cates if an utterance, identified by the argu-
ment Utt, contains a known token for the
greet class. The list of known greet words is
['helld ) hi'].

HASINFOQUESTIONWORD(Utt)

The HASINFOQUESTIONWORD binary pred-
icate indicates if an utterance, identified by
the argument Utt, contains a known token
for the info question class. The list of known
info question words is ['address’,’ phone'].

. HASSLOTQUESTIONWORD(Utt)
The HASSLOTQUESTIONWORD binary pred-
icate indicates if an utterance, identified by
the argument Utt, contains a known token
for the slot question class. The list of known
slot question words is ["what’,’ 7'].

HASINSISTWORD(Utt)

The HASINSISTWORD binary predicate indi-
cates if an utterance, identified by the argu-
ment Utt, contains a known token for the
insist class. The list of known insist words is
[sure’, no'].

HASCANCELWORD(Utt)

The HASCANCELWORD binary predicate in-
dicates if an utterance, identified by the ar-
gument Ut t, contains a known token for the
cancel class. The list of known cancel words
is ['no’].
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10. HASACCEPTWORD(Utt)
The HASACCEPTWORD binary predicate in-
dicates if an utterance, identified by the ar-
gument Ut t, contains a known token for the
accept class. The list of known accept words
is ['yes’, great’].
11. HASENDWORD(Utt)
The HASENDWORD binary predicate indi-
cates if an utterance, identified by the argu-
ment Utt, contains a known token for the
end class. The list of known end words is
['thank') thanks'].

The dialog start constraints take advantage of
the inherent structure built into the beginning of
task-oriented dialogs. In the same order as the
dialog start rules in Figure 6: 1) If the first turn
utterance does not contain a known greet word,
then it does not belong to the greet state. 2) If the
first turn utterance contains a known greet word,
then it belongs to the greet state. 3) If the first turn
utterance does not contain a known greet word,
then it belongs to the initial request state.

The dialog middle constraints exploit the tempo-
ral dependencies within the middle of a dialog. In
the same order as the dialog middle rules in Figure
6: 1) If the previous utterance belongs to the greet
state, then the current utterance belongs to the
initial request state. 2) If the previous utterance
does not belong to the greet state, then the current
utterance does not belong to the initial request
state. 3) If the previous utterance belongs to the
initial request state, then the current utterance be-



longs to the second request state. 4) If the previ-
ous utterance belongs to the second request state
and it has a known info question token, then the
current utterance belongs to the info question
state. 5) If the previous utterance belongs to the
second request state and it has a known slot ques-
tion token, then the current utterance belongs to the
slot question state. 4) If the previous utterance
belongs to the end state and it has a known can-
cel token, then the current utterance belongs to the
cancel state.

The dialog end constraints take advantage of the
inherent structure built into the end of task-oriented
dialogs. In the same order as the dialog end rules
in Figure 6: 1) If the last turn utterance contains a
known end word, then it belongs to the end state.
2) If the last turn utterance contains a known accept
word, then it belongs to the accept state. 3) If the
last turn utterance contains a known insist word,
then it belongs to the insist state.

B Additional Model Details

B.1 Symbolic-rule Normalization in the
Multi-class Setting

In the multi-class setting (e.g., multiple latent
states), some soft logic operation on the model
probability py, will lead to a probability that no
longer normalizes to 1. For example, the negation
operation on the probability vector py, will lead
to !Ipw = 1 — pw; then in the multi-class setting,
the norm of Ipy is ELC‘(l —pi) =C|—1>1,
where |C is the number of classes. To address the
above concern, we re-normalize after every soft
logic operation:

fa(y, %) = fwly, %)/l fw(y: %),

where fy (y,x) is the output of a soft logical oper-
ation.

B.2 Model Hyperparameters

The DD-VRNN uses an LSTM (Hochreiter and
Schmidhuber, 1997) with 200-400 units for the
RNNSs, and fully-connected highly flexible feature
extraction functions with a dropout of 0.4 for the
input X, the latent vector z, the prior, the encoder
and the decoder. The input to the DD-VRNN is
the utterances with a 300-dimension word embed-
ding created using a GloVe embedding (Pennington
et al., 2014) and a Bert embedding (Devlin et al.,
2019). The maximum utterance word length was
set to 40, the maximum length of a dialog was
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set to 10, and the tunable weight, v (Equation 3),
was set to 0.1. The total number of parameters is
26,033,659 for the model with GloVe embedding
and 135,368,227 with Bert embedding. The exper-
iments are run in Google TPU V4, and the total
GPU hours for all finetuning are 326 GPU hours.

C Datasets

This section provides additional information on the
SGD, SGD synthetic, and MultiWoZ 2.1 synthetic
datasets.

C.1 SGD

The Schema-Guided Dialog (SGD) (Rastogi et al.,
2020) is a task-oriented conversation dataset involv-
ing interactions with services and APIs covering
20 domains. There are overlapping functionalities
over many APIs, but their interfaces differ. One
conversion may involve multiple domains. The
train set contains conversions from 16 domains,
with four held-out domains only present in test
sets. This gives 34,308 in-domain and 5,441 out-
of-domain test examples. To evaluate the model’s
generalization, we evaluate the model performance
on both test sets. In specific, we establish three
different evaluation protocols.

¢ SGD Standard Generalization We train the
model using the SGD train set and evaluate it
on the in-domain test set.

¢ SGD Domain Generalization We train the
model using the SGD train set and evaluate it
on the out-of-domain test set.

* SGD Domain Adaptation We train the model
using the SGD train set and label-wiped in-
domain and out-of-domain test sets and evalu-
ate it on the out-of-domain test set.

C.2 SGD Synthetic

Using the template-based generator from the SGD
developers Kale and Rastogi (2020), we generate
10,800 synthetic dialogs using the same APIs and
dialog states as the official SGD data. We split
the examples with 75% train and 25% test. The
schema-guided generator code is under Apache 2.0
license: https://github.com/google-research/task-
oriented-dialogue/blob/main/LICENSE.

C.3 MulitWoZ 2.1 Synthetic

MultiWoZ 2.1 synthetic (Campagna et al., 2020)
is a multi-domain goal-oriented dataset cover-
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Figure 7: Ground truth dialog structure used to generate the MultiWoZ 2.1 dataset. The transition graph shows

transitions over 0.05%.

ing five domains (Attraction, Hotel, Restau-
rant, Taxi, and Train) and nine dialog acts
(greet, initial request, second request, insist,
info question, slot question, accept, cancel,
and end). Following Campagna et al. (2020),
we generate 10* synthetic dialogs from a known
ground-truth dialog structure. Figure 7 provides
an overview of the ground truth dialog structure,
which is based on the original MultiWoz 2.1 dataset
(Eric et al., 2019), used through the generative
process. These 10 synthetic dialogs are ran-
domly sampled without replacement to create ten
splits with 80% train, 10% test, and 10% vali-
dation. The MultiWoZ 2.1 synthetic code is un-
der the MIT License: https://github.com/stanford-
oval/zero-shot-multiwoz-acl2020.  The Multi-
WoZ 2.1 code uses genie under the MIT
License: https://github.com/stanford-oval/genie-
k8s/blob/master/LICENSE.

D Extended Experimental Evaluation

In this section, we provide extended experimental
evaluations on the NEUPSL DSI models for all
settings. We split the extended evaluation into eval-
uation metrics, main results, ablation results, and
additional experiments. Details describing changes
to the models are provided in each subsection.

D.1 Evaluation Metrics

Adjusted Mutual Information (AMI) - AMI
evaluates dialog structure prediction by evaluating
the correctness of the dialog state assignments. Let
U* ={U{,..., Ut} be the ground-truth assign-
ment of dialog states for all utterances in the corpus,
and U = {Uy,...,Uc} be the predicted assign-
ment of dialog states based on the learned dialog
structure model. U* and U are not directly compa-
rable because they draw from different base sets of
states (Ux* from the ground truth set of states and
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U from the collection of states induced by the DD-
VRNN) that may even have different cardinalities.
We address this problem using Adjusted Mutual
Information (AMI), a metric developed initially to
compare unsupervised clustering algorithms. Intu-
itively, AMI treats each assignment as a probability
distribution over states and uses Mutual Informa-
tion to measure their similarity, adjusting for the
fact that larger clusters tend to have higher MI.
AMI is defined as follows:

AMI(U,U*) =
MI(U,U*) — E(MI(U,U*))
Avg(H(U), H(U*)) - E(MI(U,U"))

Where MI(U,U*) is the mutual information
score, E(MI(U,U*)) is the expected mutual
information over all possible assignments, and
Avg(H(U), H(U*)) is the average entropy of the
two clusters (Vinh et al., 2010).

Purity - Let U* {Uf,..., Ui} be the
ground-truth assignment of dialog states for all
utterances in the corpus, and U = {Uy,...,Uc}
be the predicted assignment of dialog states based
on the learned dialog structure model. Each cluster
is assigned to the class which is most frequent in
the cluster. This assignment then calculates accu-
racy by summing together the total correct of each
cluster and dividing by the total number of clusters.
Purity is defined as follows:

Purity(U,U*) = ZCount (U, U*, Ag)

k 1

where K is the number of unique clusters predicted,
N is the total number of predicted utterances, Ay is
the most frequent underlying ground truth in cluster
k, and Count(U,U*, Ay) is the total number of
correctly labeled utterances within that assigned
cluster.



. SGD . .
Metric Method Standard Domain Generalization Domain Adaptation SGD Synthetic | MuliWoZ
Random 0.098 + 0.000 0.098 + 0.000 0.098 + 0.000 0.094 + 0.001 | 0.480 £ 0.000
Purity = DD-VRNN | 0.341 £0.019 0.425 +£0.016 0.443 + 0.015 0.447 £0.024 | 0.701 £0.042
NEUPSL DSI | 0.463 + 0.039 0.468 + 0.039 0.425 £ 0.056 0.810 £ 0.005 | 0.762 = 0.015

Table 3: Test set performance on MultiWoZ Synthetic, SGD, and SGD Synthetic. These values correlate with the

results reported in Table 1.
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Figure 8: Average Purity and Class Balanced Accuracy on MultiWoZ Synthetic, SGD, and SGD Synthetic for
varying amounts of supervision. These values correlate with the results reported in Figure 3.

D.2 Main Results

This section provides additional experimental re-
sults for the structure induction and hidden repre-
sentation learning performance. Table 3 summa-
rizes the extended evaluation of the main results
for the NEUPSL DSI model and DD-VRNN base-
line on an additional metric: purity. These values
correlate with the reported results in Table 1, i.e.,
these are not the best-performing results but are
calculated using the model that produced the best
AMI results. Purity follows a similar trend as AMI,
where NEUPSL DSI outperforms the DD-VRNN
in most settings. In addition, Figure 8 summarizes
the few-shot results for purity and each hidden rep-
resentation setting (full and few-shot). Similar to
the AMI, the introduction of labels improves per-
formance across all settings.
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D.3 Ablation Results

This section provides an extended ablation for the
SGD real setting and full ablations for the SGD
synthetic and MultiWoZ datasets. Each ablation
analysis studies structure induction and hidden rep-
resentation learning (Section 5) over various neural
settings.

Table 4 summarizes the unsupervised results for
the MulitWoZ data setting over four major method
axes: parameterization of the constraint loss (linear
v.s. log constraint loss, Section 4.2), weighting
scheme for the bag-of-words loss (uniform v.s. tf-
idf weights, Section 4.3), constraint normalization
(standard v.s. normalized, Section B.1), and the
choice of underlying utterance embedding (BERT
(Devlin et al., 2019) v.s. GloVe (Pennington et al.,
2014)) leading to a total of 2% = 16 settings.
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Figure 9: Average performance for SGD Real (Standard Generalization, Domain Generalization, and Domain
Adaptation) on three highly constrained few-shot settings: 1-shot, proportional 1-shot, and 3-shot. Results are split
into Hidden Representation Learning with class-balanced accuracy and Structure Induction with adjusted mutual

information.

Table 5 summarizes the unsupervised results
for the SGD synthetic data setting over two ma-
jor method axes: parameterization of the constraint
loss (linear v.s. log constraint loss, Section 4.2),
and weighting scheme for the bag-of-words loss
(uniform v.s. tf-idf weights, Section 4.3) leading to
a total of 22 = 4 settings.

Figure 9, Figure 10, and Figure 11 summarize
the few-shot training results for the MultiWoZ,
SGD synthetic, and SGD real (Standard General-
ization, Domain Generalization, and Domain Adap-
tation) data settings when training with 1 shot, pro-
portional 1 shot, and 3 shots.

D.4 Additional Experiments

Throughout this section, we provide additional di-
alog structure experiments to understand further
when injecting common-sense knowledge as struc-
tural constraints is beneficial. The additional exper-
iments are broken into 1) A study of the sparsity
introduced into the tokens in the SGD synthetic
setting and 2) An exploration of an alternative soft
logic formulation.
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D.4.1 Sparsity

In this experiment, we explore varying the sparsity
introduced to the token weights, as described in
Appendix A.1. Table 6 shows the performance for
the hidden representation and structure induction
tasks. When the percent of non-zero word weights
is 100.00%, this implies the model is trained on
full supervision, while the non-zero word weights
at 0.00% represent the unsupervised DD-VRNN re-
sults. Surprisingly, we see substantial improvement
in all data settings. Even when the non-zero word
weight percentage is 0.02%, resulting in 54 non-
zero weights, we still see approximately a 20% im-
provement to the AMI. Note 54 non-zero weights
are equivalent to about two identifiable tokens per
class.

D.4.2 Alternative Soft Logic Approximation

In this experiment, we explore an alternative soft
logic formulation, Product Real logic, which is
used in another principled NeSy framework called
Logic Tensor Networks (Badreddine et al., 2022).
Similar to the Lukasiewicz logic, Product Real logic



Bag-of-Words  Constraint ~ Constraints . Hidden Representation Learning Structure Induction
Weights Loss Normalized Embedding Full Few-Shot
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) (AMI)
Random 0.111 £0.007 0.111 £ 0.007 0.000 + 0.000
Uniform Linear Standard Bert 0.941 + 0.010 0.667 £ 0.030 0.529 +0.040
Uniform Linear Standard GloVe 0.919 £0.015 0.672 + 0.060 0.589 £ 0.050
Uniform Linear Normalized Bert 0.949 + 0.008 0.645 +0.028 0.550 +0.018
Uniform Linear Normalized GloVe 0.934 + 0.009 0.748 + 0.057 0.516 £0.010
Uniform Log Standard Bert 0.944 + 0.005 0.624 £ 0.039 0.586 +0.038
Uniform Log Standard GloVe 0.906 + 0.008 0.711 + 0.050 0.571+£0.011
Uniform Log Normalized Bert 0.944 + 0.006 0.695 + 0.027 0.505 +0.029
Uniform Log Normalized GloVe 0.918 +0.023 0.680 = 0.057 0.612 + 0.081
tf-idf Linear Standard Bert 0.943 + 0.010 0.675 £ 0.035 0.574 £ 0.064
tf-idf Linear Standard GloVe 0.881 +0.016 0.744 + 0.052 0.607 + 0.061
tf-idf Linear Normalized Bert 0.947 + 0.021 0.705 + 0.021 0.511 £0.027
tf-idf Linear ~ Normalized GloVe 0.925 £0.013 0.721 + 0.051 0.544 £ 0.039
tf-idf Log Standard Bert 0.943 + 0.007 0.705 + 0.030 0.587 +0.027
tf-idf Log Standard GloVe 0.921 £0.016 0.747 + 0.042 0.604 +0.012
tf-idf Log Normalized Bert 0.943 + 0.005 0.689 + 0.038 0.618 + 0.028
tf-idf Log Normalized GloVe 0.913 £0.015 0.762 + 0.070 0.545 £ 0.053

Table 4: Test set performance on MultiWoZ Synthetic data setting.

Bag-of-Words  Constraint Hidden Representation Learning Structure Induction
Weights Loss Full Few-Shot
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) (AMI)
Random 0.026 = 0.001 0.026 £ 0.001 0.000 + 0.000
Uniform Linear 0.983 + 0.003 0.717 £ 0.021 0.754 £ 0.032
Uniform Log 0.992 + 0.003 0.758 = 0.015 0.811 = 0.005
Supervised Linear 0.988 + 0.004 0.714 £ 0.021 0.746 + 0.035
Supervised Log 0.993 + 0.004 0.741 £ 0.019 0.820 + 0.005
Table 5: Test set performance on SGD Synthetic data setting.
Non-Zero Non-Zero Hidden Representation Learning Structure Induction
Word Weight Word Weight Full Few-Shot
Percentage Count ( Class Balanced Accuracy ) ( Class Balanced Accuracy ) (AMI)
100.00% 261651 0.9997 + 0.0006 0.9527 + 0.0083 0.9999 + 0.0001
3.25% 8499 0.9995 + 0.0005 0.9636 + 0.0028 0.9962 + 0.0006
0.92% 2418 0.9995 + 0.0002 0.9475 + 0.0074 0.9616 + 0.0010
0.42% 1111 0.9955 £ 0.0010 0.9213 +0.0053 0.9450 + 0.0020
0.19% 504 0.9954 + 0.0016 0.8591 + 0.0082 0.7954 £ 0.0018
0.10% 262 0.9904 + 0.0025 0.8241 +0.0243 0.8071 = 0.0056
0.02% 54 0.9848 + 0.0019 0.8193 £ 0.0111 0.6607 £ 0.0014
0.00% 0 0.9443 £ 0.0107 0.7283 £ 0.0127 0.5527 £ 0.0171

Table 6: Test set performance on the SGD Synthetic data setting over varying sparsity in the token weights.

approximates logical clauses with linear inequali-
ties:

ANB=AxDB
AVB=A+B—-AxB
-A=10—-A

where A and B are either ground atoms or logical
expressions over atoms. In either case, they have
values between [0,1].
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Table 7 summarizes the unsupervised results for
the MulitWoZ data setting over three major method
axes: the soft logic approximation (Lukasiewicz
v.s. Product Real), parameterization of the con-
straint loss (linear v.s. log constraint loss, Section
4.2), and weighting scheme for the bag-of-words
loss (uniform v.s. tf-idf weights, Section 4.3) lead-
ing to a total of 23 = 8 settings. Surprisingly,
in all settings of structure induction, Lukasiewicz
logic outperforms Product Real logic by over 15%.
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Figure 10: Average performance for MultiWoZ Synthetic on three highly constrained few-shot settings: 1-shot,
proportional 1-shot, and 3-shot. Results are split into Hidden Representation Learning with class-balanced accuracy
and Structure Induction with adjusted mutual information.
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Figure 11: Average performance for SGD Synthetic on three highly constrained few-shot settings: 1-shot, propor-
tional 1-shot, and 3-shot. Results are split into Hidden Representation Learning with class-balanced accuracy and
Structure Induction with adjusted mutual information.

. Bag-of-Words ~ Constraint Hidden Representation Learning Structure Induction
Soft Logic Weights Loss Full Few-Shot
( Class Balanced Accuracy ) ( Class Balanced Accuracy ) (AMI)
Random 0.0261 £0.0013 0.0261 £0.0013 0.0000 £ 0.0004
Uniform Linear 0.9188 £ 0.0150 0.6320 £ 0.0290 0.5892 £ 0.0496
Lukasiewicz Uniform Log 0.9060 + 0.0083 0.6574 +£0.0184 0.5707 £ 0.0105
tf-idf Linear 0.8807 £ 0.0164 0.6761 £ 0.0289 0.6066 * 0.0605
tf-idf Log 0.9210 £ 0.0160 0.6579 £ 0.0204 0.6037 £ 0.0120
Uniform Linear 0.9151 £ 0.0566 0.6194 + 0.0529 0.3928 +0.1881
Uniform Log 0.8807 £ 0.0502 0.6174 £ 0.0525 0.4579 £ 0.1897
Product Real . .
tf-idf Linear 0.9176 £ 0.0369 0.6741 £ 0.0411 0.4392 £ 0.1903
tf-idf Log 0.9232 £0.0147 0.6479 £ 0.0367 0.5202 £ 0.0455

Table 7: Test set AMI and standard deviation on MulitWoZ data set on two soft logic relaxations.

Interestingly, the hidden representation learning
performance is roughly equivalent between the two

soft logic formulations.

Figure 12 summarizes the few-shot training re-
sults for the MultiWoZ synthetic data settings when
training with 1 shot, proportional 1 shot, and 3
shots. Noticeably, the Product Real logic closes the
gap with the introduction of labels. However, the
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Lukasiewicz logic still has an edge when observing
the largest semi-supervised setting.
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Figure 12: Average performance for MultiWoZ Synthetic for two soft logic relaxations (Real-Product and
Lukasiewicz) on three highly constrained few-shot settings: 1-shot, proportional 1-shot, and 3-shot. Results
are split into Hidden Representation Learning with class-balanced accuracy and Structure Induction with adjusted
mutual information.
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