

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PRETRAINING LLM WITH LATENT THOUGHTS IN CONTINUOUS SPACE

Anonymous authors

Paper under double-blind review

ABSTRACT

The remarkable success of Chain-of-Thought (CoT), which enhances performance by scaling generation steps at test-time, inspires us to ask: can we leverage a similar scaling of computational steps during pretraining to improve the generation of each individual token? To address this, we propose a novel pre-training methodology: *Pretraining Language Models with Latent Thoughts*. Our approach pretrains a language model (LM) to first generate an intermediate latent thought—the last hidden state of the current position—which is then used as input to predict the actual subsequent token. This additional computational step enables the LM to refine its prediction within unconstrained continuous space. Our experiments demonstrate that, at an identical inference cost, a LM that generates one additional latent thought per token outperforms a standard model with *double* the parameters. For instance, ours-1.4B (Pythia Arch), pretrained on 300B tokens from the Pile, significantly surpasses the vanilla Pythia-2.8B trained on the same data on both language modeling and a range of general downstream tasks. Furthermore, increasing the number of latent thoughts generated before each actual token—forming a chain analogous to CoT—consistently improves the model’s performance.

Figure 1: Scaling curves comparing our method (Pythia Arch) with the official Pythia suite on the 300B Pile. Our 1.26B model matches the loss of Pythia-2.8B with 55% fewer parameters (left), while our 1.4B model reaches the baseline’s final performance with 62% less training data (right).

1 INTRODUCTION

The conventional wisdom in improving language models—scaling up parameters and data—is facing diminishing returns due to data scarcity (Villalobos et al., 2022; Muennighoff et al., 2023), saturating scaling laws (Hoffmann et al., 2022a; Hackenburg et al., 2025), and prohibitive training overheads (Pati et al., 2023; Narayanan et al., 2021; Li et al., 2024).

This has shifted focus towards enhancing model capabilities via test-time scaling (Snell et al., 2024), particularly through methods based on Chain-of-Thought (CoT) (Jaech et al., 2024; DeepSeek-AI et al., 2025). CoT achieves remarkable success by generating long reasoning chains for each question, effectively scaling the generation steps and increasing computation per query. While effective, CoT relies on specialized datasets and complex training schemes (Allen-Zhu & Li, 2023; Li et al.,

Figure 2: A comparison between the standard language model and ours. In the standard language model, each token is generated after a single forward pass. In contrast, ours does not immediately sample the output token after one forward pass; instead, it uses the computed last hidden state as the next input embedding for generating the subsequent output token. This allows the language model to think in an unconstrained latent space before producing each token.

2025; Pang et al., 2025), is confined to a discrete token space, and is ultimately capped by the base model’s capabilities (Yue et al., 2025).

An alternative direction is to scale computation during pretraining. One approach, often termed “vertical scaling”, deepens the network by reusing parameters (Zeng et al., 2025; Giannou et al., 2023; Geiping et al., 2025; Chen et al., 2025b). However, this can lead to training instabilities (Geiping et al., 2025) and often fails to outperform a standard dense model with a comparable inference budget, limiting its practical utility.

Inspired by the success of CoT in scaling generation steps, we propose a novel “horizontal scaling” approach: Pretraining Language Models with Latent Thoughts. Instead of deepening the model, our method teaches the LM to scale the generation process for each token. It first generates an intermediate latent thought—the last hidden state of the current position—which is then used as input to predict the actual subsequent token. This allows the model to refine its predictions in an unconstrained continuous space. To maintain training efficiency, we employ the Jacobi iteration (Saad, 2003; Barrett et al., 1994) to parallelize this inherently sequential process.

Our experiments show that, at an identical inference cost, a model trained with one latent thought per token surpasses a standard model with double the parameters. For instance, our 1.4B models, built on Pythia and LLaMA architectures, significantly outperform their vanilla 2.8B counterparts trained on the same data. Our method also proves superior to previous vertical scaling techniques, even when their inference cost is twice as high. Furthermore, increasing the number of latent thoughts to form a chain of latent thoughts—analogous to CoT—before generating each real token consistently improves model performance, further underscoring the potential of our approach.

2 RELATED WORK

We begin by discussing the two most related works: Coconut (Hao et al., 2024) and PonderLM (Zeng et al., 2025). Coconut finetunes a language model on *CoT data*, employing a “Chain of Continuous Thought”—represented by the final hidden states—to simulate explicit reasoning steps. This continuous chain is typically applied only after a question is posed. In contrast, our model learns this capability naturally during *pretraining* on a *general corpus*, appending a latent token after every token rather than just at the end of a prompt. PonderLM employs a *vertical scaling* strategy, deepening the model for a single generation step by iteratively re-feeding a “pondering embedding”—a probability-weighted sum of token embeddings—into its input layers. In contrast, our method utilizes a *horizontal scaling* approach. We extend the generative process for each token by appending latent thoughts, which are directly derived from the last hidden state of the previous computation step. A more comprehensive comparison with related works is provided in Table 1.

Other related methods (including test-time scaling and parameter sharing) can be broadly categorized into three main paradigms: scaling model depth via sequential parameter sharing, exploring multiple solutions through parallel computation, and scaling generation steps.

108
 109
 110
 111
 112
 113 Table 1: A taxonomy of most related methods. The Computation Space column specifies where
 114 additional computation occurs. Our method is unique in its ability to learn a per-token, latent-
 115 space computational mechanism from a general corpus via a standard pretraining objective, without
 116 requiring specialized instruction data or complex training schemes like reinforcement learning.
 117
 118

Method	Core Strategy	Training Data	Computation Space	Application Level	Training Method
CoT	Scaling Generation	CoT Data	Explicit Token	Per Question	RL/SFT
Pause Tokens	Scaling Generation	General Corpus	Fixed Special Token	Per Token	Pretrain
Quiet-STaR	Scaling Generation	General Corpus	Explicit Token	Per Token	RL
PonderLM	Scaling Model Depth	General Corpus	Continuous Embedding	Per Token	Pretrain
LoopedLM	Scaling Model Depth	General Corpus	Hidden State	Per Token	Pretrain
Coconut	Scaling Generation	CoT Data	Hidden State	Per Question	SFT
Ours	Scaling Generation	General Corpus	Hidden State	Per Token	Pretrain

122
 123
 124 **Sequential Parameter Sharing to Scale Up Model Depth.** This paradigm increases a model’s
 125 effective depth by reusing its parameters. Early work like Universal Transformers (Dehghani et al.)
 126 reused entire blocks, while more recent methods refine this by iterating over layers to refine hidden
 127 states (Geiping et al., 2025), recycling output states back into the input (Giannou et al., 2023; Saunshi
 128 et al.), or recurrently applying a single layer to critical tokens (Chen et al., 2025a). While these
 129 approaches can enhance model capabilities, they often introduce significant inference overhead and
 130 training instabilities. In contrast, our horizontal scaling approach avoids the potential instabilities of
 131 deep recurrent computations by integrating thought into the sequence length.

132 **Exploring Multiple Solutions through Parallel Computation.** This paradigm involves generating
 133 multiple candidate solutions in parallel and then selecting the most promising one using a specific
 134 criterion. Prominent examples include Best-of-N sampling (Cobbe et al., 2021; Sun et al., 2024; Gui
 135 et al., 2024; Amini et al., 2024; Sessa et al., 2024) and Majority Voting (Wang et al., 2022). While
 136 effective at improving performance on complex reasoning tasks, these approaches can be computa-
 137 tionally inefficient. Furthermore, a key challenge is the difficulty of reliably identifying the best
 138 candidate from the generated set, as the verifier or selection heuristic may not be optimal (Stroebel
 139 et al., 2024; Hassid et al., 2024).

140 **Scaling Generation Steps.** The most prominent method for scaling generation steps is Chain-of-
 141 Thought (CoT) (Wei et al., 2022), which elicits reasoning paths from models before they provide
 142 a final answer. While effective, this process is often applied at the per-question level. Subsequent
 143 work has sought to integrate this “thinking” process more granularly into generation. One approach
 144 involves inserting non-content or “thinking” tokens into the sequence. For example, Goyal et al.
 145 (2023) inserted learnable “pause” tokens, while others explored discrete planning tokens (Wang
 146 et al., 2024) or filler tokens (Pfau et al., 2024). Quiet-STaR (Zelikman et al., 2024) even uses
 147 reinforcement learning to generate explicit rationale tokens between output tokens. However, these
 148 methods remain constrained to the discrete vocabulary space. In contrast, our work elevates this
 149 per-token computation into the continuous latent space.

150 3 METHODOLOGY

151 In this section, we introduce our pretraining methodology, which trains a language model to first
 152 generate an intermediate latent thought before predicting the actual subsequent token. We first
 153 establish the notation for a standard Transformer-based language model. Given an input sequence
 154 $x = (x_1, x_2, \dots, x_T)$, the model processes the token embeddings $\mathbf{E}_t = [\mathbf{e}(x_1), \mathbf{e}(x_2), \dots, \mathbf{e}(x_t)]$
 155 using a Transformer architecture. The operation can be formulated as:

$$156 \mathbf{H}_t = \text{Transformer}(\mathbf{E}_t)$$

157 where $\mathbf{e}(\cdot)$ is the token embedding lookup function. The resulting matrix $\mathbf{H}_t \in \mathbb{R}^{t \times d}$ contains the
 158 sequence of last-layer hidden states. We denote the hidden state at position t as $\mathbf{h}_t = \mathbf{H}_t[t, :]$.
 159

3.1 INFERENCE PROCESS

The inference process of our model is straightforward (Figure 2). For each token to be generated, the model first computes its corresponding last hidden state. This hidden state is then used as the input embedding for the subsequent token generation step, mimicking a recurrent thinking process.

3.2 TRAINING PROCEDURE

While inference is sequential, a purely autoregressive training procedure is computationally infeasible for long sequences (e.g., $T = 2048$), as it would require thousands of separate forward passes. To address this, we employ the **Jacobi iteration** to approximate the true autoregressive hidden states, which allows for parallel training (Figure 3). The goal is to find a set of “fixed-point” hidden states $\mathbf{H}^* = [\mathbf{h}_1^*, \dots, \mathbf{h}_T^*]$ that are the output of the model when they are also part of the input. We solve for these states iteratively as follows:

1. Initial Hidden State Estimation (Iteration 0): We begin by performing a single forward pass on the original token embeddings $\mathbf{E} = [\mathbf{e}(x_1), \dots, \mathbf{e}(x_T)]$ to obtain the initial hidden states:

$$[\mathbf{h}_1^0, \mathbf{h}_2^0, \dots, \mathbf{h}_T^0] = \text{Transformer}([\mathbf{e}(x_1), \mathbf{e}(x_2), \dots, \mathbf{e}(x_T)])$$

2. Parallel State Update via Jacobi Iteration (Iteration $k \rightarrow k + 1$): For each subsequent iteration k , we construct a new input sequence by interleaving the original token embeddings with the hidden states from the *previous* iteration, \mathbf{H}^k :

$$\mathbf{S}^k = [\mathbf{e}(x_1), \mathbf{h}_1^k, \mathbf{e}(x_2), \mathbf{h}_2^k, \dots, \mathbf{e}(x_T), \mathbf{h}_T^k]$$

We then feed this sequence into the model to compute the updated hidden states for the next iteration, \mathbf{H}^{k+1} , in a single, parallel forward pass:

$$[\dots, \mathbf{h}_1^{k+1}, \dots, \mathbf{h}_2^{k+1}, \dots] = \text{Transformer}(\mathbf{S}^k)$$

In this iterative process, all components of the new state vector \mathbf{H}^{k+1} are computed in parallel based on the entire state vector from the previous iteration, \mathbf{H}^k . As shown in Figure 4, this iteration converges rapidly, with the hidden states stabilizing after a few rounds.

Figure 3: Parallel training procedure of our method (via Jacobi iteration). (1) The model computes initial hidden states from the input embeddings (x_1, x_2, x_3) . These hidden states are then interleaved with their corresponding token embeddings to form a new input sequence. (2) For K rounds, all hidden states are updated in parallel. In each iteration, hidden states from the previous step are interleaved with the original embeddings to form the new input. (3) Finally, the cross-entropy loss ($\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$) is computed at the positions corresponding to the hidden state inputs to optimize language modeling.

Figure 4: RMSE of the last hidden states before and after the i th iteration. The model is the vanilla Pythia-1B tested with $4*2048$ tokens.

Figure 5: Language Modeling Perplexity (PPL). Our method achieves the lowest perplexity, consistently surpassing PonderLM despite its $2\times$ inference overhead at the same model size. Ours 1.4B (Pythia Arch) also outperforms the larger Pythia-2.8B baseline. Numbers denote the absolute perplexity improvement (\downarrow) over the corresponding Pythia models.

3. Loss Computation: After K Jacobi iterations, we form the final input sequence $\mathbf{S}^K = [\mathbf{e}(x_1), \mathbf{h}_1^K, \dots, \mathbf{e}(x_T), \mathbf{h}_T^K]$. The language modeling objective is then optimized by computing the cross-entropy loss (L_1, L_2, \dots, L_T) at the positions corresponding to the final hidden state inputs. Specifically, the loss L_i is computed for predicting the token x_{i+1} from the hidden state \mathbf{h}_i^K . To prevent overfitting to a fixed number of steps, we randomly sample K from $\{2, 3, 4\}$ for each training instance.

By formulating the training in this manner, we break the strict sequential dependency inherent in autoregressive models, thereby enabling efficient, parallel training.

3.3 POSITION EMBEDDING

When a last hidden state is fed back into the model as an input, it inherits the same positional encoding as its corresponding original token embedding. For instance, the positional encoding for \mathbf{h}_i^k is identical to that of $\mathbf{e}(x_i)$ for all iterations k .

4 EXPERIMENTS

Our evaluation comprises six main components:

1. We first present the results of large-scale pretraining for our model on the 300B-token Pile dataset (Gao et al., 2020), analyzing its scaling behavior and language modeling performance in comparison to the official Pythia suite (Biderman et al., 2023).
2. Next, we assess our model on a broad range of downstream tasks, including general benchmarks and instruction-following, and compare its performance with the official Pythia suite, the PonderLM-Pythia (Zeng et al., 2025), and established models such as OPT (Zhang et al., 2022), Bloom (Le Scao et al., 2023), and TinyLLaMA (Zhang et al., 2024).
3. We further benchmark our approach against several competitive baselines, including Looped Transformer (Giannou et al., 2023), Pause Token (Goyal et al., 2023), PonderLM, and models with doubled parameter counts.
4. To validate the effectiveness of our method on off-the-shelf foundation models, we perform continual pretraining on Llama-3-3B (Grattafiori et al., 2024).
5. Finally, we conduct an ablation study to analyze the impact of key hyperparameters.

4.1 LARGE-SCALE PRETRAINING ON PILE

We begin by validating our method at scale. We select the Pile (Gao et al., 2020), a substantial 300B-token dataset, as it provides a comprehensive pretraining corpus while remaining computationally tractable. We pretrain models based on the Pythia architecture (Biderman et al., 2023) for two key reasons. First, its training protocol, including all hyperparameters, is publicly available, enabling a highly controlled experiment where the gains from our method can be isolated. Second, this foundation allows for a direct and rigorous comparison against both the official Pythia models and relevant prior work like PonderLM-Pythia (Zeng et al., 2025).

270
 271 Table 2: Zero-shot and five-shot accuracy (%) on downstream tasks. All pretrained model weights
 272 used for comparison are obtained from their official repositories. Δacc indicates the average acc-
 273 uracy improvement over the corresponding Pythia baseline. Italicized models are shown but not
 274 bolded, since they use significantly larger training data or parameters, and their avg acc are marked
 275 in red when outperformed by our model. Ponder refers to the PonderLM-Pythia model, whose infer-
 276 ence cost is *twice* ours under the same parameter size, with results taken from their original paper.

277 Model (#training tokens)	278	Lambada OpenAI	ARC -E	Lambada Standard	ARC -C	Wino Grande	PIQA	Hella Swag	SciQ	RACE	Avg acc / $\Delta\text{acc} \uparrow$
0-shot											
281 Pythia-410M (300B)	282	51.4	52.2	36.4	21.4	53.8	66.9	33.7	81.5	30.9	47.6
282 OPT-350M (300B)	283	45.2	44.0	35.8	20.7	52.3	64.5	32.0	74.9	29.8	44.4
283 Bloom-560M (366B)	284	34.3	47.5	33.3	22.4	51.5	63.8	31.5	80.3	30.5	43.9
284 Ponder-410M (300B)	285	56.9	51.9	45.3	22.6	56.0	68.7	37.0	81.4	33.8	50.4
285 <i>Pythia-1B</i> (300B)		55.9	56.8	42.0	24.2	52.5	70.5	37.7	83.3	32.7	50.6
Ours-410M (Pythia Arch, 300B)											
286 Pythia-1.4B (300B)	287	59.1	54.0	47.3	24.6	55.5	69.4	37.7	86.2	33.5	51.9 / +4.3
288 Bloom-1.7B (366B)	289	61.6	60.4	49.7	25.9	57.5	70.8	40.4	86.4	34.1	54.1
289 Ponder-1.4B (300B)	290	57.9	57.1	52.5	23.4	59.7	71.8	41.6	84.3	34.3	53.6
290 <i>Tinyllama-1.1B</i> (3T)	291	46.2	56.4	44.5	23.7	56.8	68.5	37.5	85.0	33.2	50.2
291 <i>Pythia-2.8B</i> (300B)		65.2	62.0	53.8	27.0	60.1	72.6	44.0	89.0	35.2	56.5
292 <i>Pythia-1.4B</i> (300B)		58.8	60.3	49.3	28.0	59.0	73.3	45.0	88.9	36.4	55.4
293 Ours-1.4B (Pythia Arch, 300B)		64.6	64.4	54.3	29.5	60.2	73.8	45.4	88.5	34.9	57.3
Ours-1.4B (Pythia Arch, 300B)											
5-shot											
294 Pythia-410M (300B)	295	43.9	54.7	32.8	22.3	53.4	68.0	33.8	88.9	30.4	47.6
295 OPT-350M (300B)	296	38.3	45.4	32.1	20.5	53.0	65.8	31.9	85.7	29.5	44.7
296 Bloom-560M (366B)	297	29.4	50.2	29.7	21.9	52.7	64.2	31.4	88.0	30.0	44.2
297 Ponder-410M (300B)	298	48.9	58.7	43.7	26.1	54.0	70.5	37.3	91.0	32.4	51.4
298 <i>Pythia-1B</i> (300B)		48.3	58.6	35.8	25.4	52.8	71.3	37.7	91.6	31.7	50.4
299 Ours-410M (Pythia Arch, 300B)		52.1	58.0	45.0	26.0	54.6	69.2	37.9	91.7	32.6	51.9 / +4.3
300 Pythia-1.4B (300B)	301	54.5	63.1	44.5	28.8	57.1	71.0	40.5	92.4	34.6	54.1
301 OPT-1.3B (300B)	302	54.0	60.4	49.0	26.9	56.9	72.4	38.5	91.8	35.4	52.7
302 Bloom-1.7B (366B)	303	42.5	58.8	41.5	26.2	57.7	68.7	37.6	91.9	33.5	50.9
303 Ponder-1.4B (300B)	304	59.2	67.5	49.9	32.4	60.4	73.5	44.2	94.3	37.1	57.6
304 <i>Tinyllama-1.1B</i> (3T)		53.8	64.8	45.0	31.1	59.4	73.8	44.9	94.0	36.4	55.9
305 <i>Pythia-2.8B</i> (300B)		59.0	67.0	50.7	31.0	61.1	74.4	45.3	93.7	35.9	57.6
306 Ours-1.4B (Pythia Arch, 300B)		63.6	67.4	56.0	32.6	64.0	73.5	46.4	94.5	37.9	59.5 / +5.4

4.1.1 SCALING PROPERTIES

308 As illustrated in Figure 1, our pretrained models demonstrate superior scaling properties in both parameter
 309 and data efficiency. Ours-1.26B (Pythia Arch), for instance, matches the performance of the
 310 official Pythia-2.8B with 55% fewer parameters. Furthermore, ours-1.4B (Pythia Arch) converges
 311 to the official version’s final performance using 62% less training data. Additional scaling curves on
 312 GPT-2 and LLaMA, presented in Appendix E, further validate the generalizability of our method.

4.1.2 LANGUAGE MODELING ABILITY

316 To further quantify these pretraining gains, we evaluate perplexity (PPL) on several standard benchmarks
 317 (Pile validation, WikiText (Merity et al., 2016), and the Lambada (Paperno et al., 2016)). The
 318 results in Figure 5 show that our method delivers substantial and consistent PPL reductions across
 319 all model sizes and datasets. Notably, ours-1.4B (Pythia Arch) is better than official Pythia-2.8B.

4.2 DOWNSTREAM TASK EVALUATION

321 We now evaluate the practical capabilities of our previous pretrained Pythia models on a range of
 322 downstream applications.

Figure 6: Instruction-following evaluation on MT-Bench. Our pretrained Pythia models outperform their official Pythia counterparts in all categories.

4.2.1 GENERAL DOWNSTREAM TASKS

Datasets. Following (Gu & Dao, 2023; Zeng et al., 2025), we including LAMBADA (Paperno et al., 2016), SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), ARC-Easy and ARC-Challenge (Clark et al., 2018), RACE (Lai et al., 2017) for comprehensive evaluation.

Baselines. We compare our pretrained Pythia models against several strong baselines: (1) the official Pythia models; (2) the PonderLM-Pythia models from prior work; (3) several open-source models trained on a similar data volume, including OPT (Zhang et al., 2022) and Bloom (Le Scao et al., 2023); and (4) TinyLLaMA (Zhang et al., 2024), a powerful model trained on ten times the amount of data (3T tokens vs. our 300B).

Results. As shown in Table 2, our pretrained Pythia models consistently outperform similarly-sized baselines, including official Pythia, PonderLM-Pythia, OPT, and Bloom. Remarkably, our models also surpass competitors more than twice their size. For instance, ours-410M (Pythia Arch) exceeds the performance of official Pythia-1B and Bloom-1.7B, while ours-1.4B (Pythia Arch) outperforms Pythia-2.8B. Furthermore, our pretrained Pythia-1.4B significantly surpasses TinyLLaMA-1.1B, despite the latter being trained on 10 \times more data.

4.2.2 INSTRUCTION-FOLLOWING ABILITY

We evaluate instruction-following capabilities by fine-tuning the 410m and 1.4B versions of ours (Pythia Arch) and the official Pythia models on the Alpaca dataset (Taori et al., 2023). When tested on the MT-Bench benchmark (Zheng et al., 2023), the our pretrained Pythia models consistently outperform their official Pythia counterparts across all categories, as shown in Figure 6. This results in significant average score improvements of 0.63 for the 410m model and 0.77 for the 1.4B model.

4.3 COMPARISON WITH BASELINE METHODS

To contextualize the performance and efficiency of our proposed method, we conduct a detailed comparison against several competitive baselines on the LLaMA architecture.

Baselines. We compare our model against four strong approaches:

- **Looped Transformer** (Saunshi et al.): Processes the input by iterating through the entire set of transformer layers multiple times.
- **Pause Token** (Goyal et al., 2023): Inserts a specified number of learnable “pause tokens” before generating each token, allowing for additional computation per step.

378 Table 3: Comparison on various benchmarks. Inference FLOPs are relative to the vanilla model.
 379 Actual throughput is evaluated following [Wu & Tu \(2024\)](#). Our method shows superior performance
 380 across all metrics while maintaining inference efficiency. Detailed downstream tasks performance
 381 are provided in [Appendix D](#).
 382

383 Model	384 Inference FLOPs	385 Throughput (tokens/s)	386 Pile OpenAI	387 Lambada Wikitext	388 Lambada Standard	389 Avg Acc 0 shot	390 Avg Acc 5 shot	
385 LLaMA-1.4B (train from scratch)	386 1×	387 221.19	388 9.04	389 11.42	390 20.18	391 27.52	392 47.7	393 47.5
394 Methods with comparable (2×) inference FLOPs								
395 Looped LLaMA-1.4B (2 loops)	396 2×	397 112.33	398 8.35	399 9.22	400 18.34	401 21.50	402 49.8	403 48.5
404 Pause LLaMA-1.4B (1 pause)	405 2×	406 112.57	407 8.58	408 9.87	409 19.10	410 19.90	411 48.5	412 48.2
413 Pondering LLaMA-1.4B (1 step)	414 2×	415 110.16	416 8.33	417 9.26	418 18.36	419 19.95	420 49.6	421 49.2
422 LLaMA-2.8B (train from scratch)	423 2×	424 110.50	425 8.23	426 8.93	427 18.09	428 17.08	429 49.8	430 50.6
431 Our LLaMA-1.4B								
432 2×	433 111.55	434 7.89	435 7.39	436 16.99	437 12.20	438 52.3	439 51.9	
440 Methods with higher (4×) inference FLOPs								
441 Looped LLaMA-1.4B (4 loops)	442 4×	443 59.48	444 8.04	445 8.14	446 17.35	447 15.14	448 50.9	449 50.5
450 Pause LLaMA-1.4B (3 pauses)	451 4×	452 60.43	453 8.17	454 7.92	455 17.81	456 13.76	457 51.0	458 50.4
459 Pondering LLaMA-1.4B (3 steps)	460 4×	461 55.42	462 8.03	463 8.02	464 17.23	465 15.48	466 51.5	467 51.5

- 400 • **Pondering LLM** ([Zeng et al., 2025](#)): Iteratively refines its output by feeding a “pondering embedding” (a probability-weighted sum of token embeddings) back into the model for several steps.
- 401 • **Scaled-up Model**: As an oracle baseline, we train a standard LLaMA model with twice the number of parameters (2.8B). This model has inference FLOPs comparable to our method.

404 For the iterative baselines (Looped Transformer, Pause Token, and PonderLM), we evaluate them
 405 under two distinct computational budgets. First, we configure them to match the inference FLOPs
 406 of our method (a 2× increase over the vanilla model), corresponding to 2 loops, 1 pause token, or
 407 1 pondering step. Second, to provide a more challenging comparison, we pretrain them in a setting
 408 with double the inference FLOPs of our method (a 4× increase), corresponding to 4 loops, 3 pause
 409 tokens, or 3 pondering steps.

410 **Settings.** We use the LLaMA-1.4B model as our testbed. For a fair comparison, all models are
 411 trained on a 26B token dataset using identical hyperparameters. We report perplexity (PPL; lower
 412 is better) on the Pile validation set, Wikitext, and the Lambada datasets (OpenAI and standard
 413 versions), as well as the average accuracy on the nine downstream tasks previously mentioned. The
 414 computational overhead is measured in relative inference FLOPs against the vanilla 1.4B model.

415 **Training Computation Analysis.** We analyze the training FLOPs relative to the vanilla model when
 416 trained on the same amount of data. For the baselines configured with the higher (4×) inference
 417 budget (e.g., 4 loops, 3 pause tokens, or 3 pondering steps), the training cost scales linearly, resulting
 418 in approximately 4× the FLOPs of the vanilla baseline. The scaled-up model (2.8B) incurs roughly
 419 2× the training FLOPs due to the doubled parameter count.

420 For our method, the training process involves three components: (1) an initial forward pass on the
 421 original sequence (1×); (2) K Jacobi iterations performed on an interleaved sequence of tokens and
 422 thoughts (which doubles the sequence length, incurring 2× cost per iteration); and (3) a final forward
 423 pass on the interleaved sequence (2×). The total training cost multiplier is therefore formulated as
 424 $1 + 2K + 2 = 3 + 2K$. In our experiments, we sample K from {2, 3} ($\mathbb{E}[K] = 2.5$) rather than
 425 {2, 3, 4} to prioritize efficiency as we empirically found this range sufficient, resulting in an average
 426 training cost of approximately $3 + 2 \times 2.5 = 8 \times$ that of the vanilla baseline.

427 **Results.** The results, summarized in [Table 3](#), show that our method consistently achieves the lowest
 428 perplexity across all language modeling benchmarks and the highest average accuracy on the
 429 downstream tasks. Notably, our approach not only surpasses all methods in the comparable (2×)
 430 inference FLOPs category, including the LLaMA-2.8B oracle, but also demonstrates a significant
 431 advantage over methods operating at a much higher (4×) inference budget. This highlights the
 432 superior performance and inference efficiency of our approach.

Figure 7: Training loss comparison of our method and vanilla continual pretraining for the LLaMA-3-3B on 5B tokens from SlimPajama.

Figure 8: (Top) Impact of the num of Jacobi iterations . (Bottom) Chaining more latent thoughts before each token consistently lowers loss.

Table 4: 0-shot and 5-shot accuracy (%) on downstream tasks, evaluating LLaMA-3-3B enhancement via continual pre-training (CPT). The table compares three models: original LLaMA-3-3B, vanilla CPT, and our method with continual pre-training.

Model	Lambada OpenAI	ARC -E	Lambada Standard	ARC -C	Wino Grande	PIQA	Hella Swag	SciQ	RACE	Avg acc / Δ acc \uparrow
0-shot										
LLaMA-3-3B	70.1	74.5	63.7	42.2	69.0	76.8	55.4	95.5	39.4	65.2
Standard CPT	69.4-0.7	76.2+1.7	65.1+1.4	42.5+0.3	67.5-1.5	77.2+0.4	55.1-0.3	94.1-1.4	39.6+0.2	65.2
Ours CPT	70.8+0.7	76.3+1.8	67.5+3.8	42.1-0.1	69.0+0.0	77.9+1.1	56.1+0.7	94.6-0.9	40.5+1.1	66.2
5-shot										
LLaMA-3-3B	66.8	78.1	64.1	44.1	71.4	78.6	56.1	96.4	41.8	66.4
Standard CPT	66.1-0.7	77.7-0.4	66.0+1.9	43.0-1.1	71.5+0.1	78.3-0.3	55.8-0.3	96.5+0.1	40.6-1.2	66.2
Ours CPT	69.0+2.2	78.6+0.5	67.4+3.3	48.0+3.9	72.9+1.5	78.1-0.5	57.0+0.9	96.7+0.3	41.4-0.4	67.7

4.4 EFFECTIVENESS ON OFF-THE-SHELF FOUNDATION MODELS

We further investigate whether our method can effectively enhance existing, large-scale foundation models. To this end, we take the official LLaMA-3-3B (Grattafiori et al., 2024) model and perform continual pre-training on 5 billion tokens from the SlimPajama dataset (Shen et al., 2024). We compare the original model’s performance with two versions after this additional training: a vanilla continual pretraining baseline and our proposed approach. As illustrated in Figure 7, our method achieves a lower training loss than the vanilla baseline after consuming less than 1B tokens, and this performance gap widens as training progresses. As shown in Table 4, evaluation on our nine standard downstream tasks reveals that our method provides a substantial boost in performance, demonstrating its utility as a plug-and-play enhancement for off-the-shelf models.

4.5 ABLATION STUDY

In this section, we study the impact of key components. We ablate the number of Jacobi iterations, different position embedding strategies, and the number of latent thoughts (chain analogous to CoT) generated before each token. All experiments are conducted on the Pythia-70m with 30B tokens.

As shown in Figure 8 (Top), increasing the number of Jacobi iterations initially lowers the loss, but the improvement saturates after only 3 iterations, which corroborates the fast convergence we observe (Figure 4). Meanwhile, as illustrated in Figure 8 (Bottom), chaining more latent thoughts consistently leads to better performance, which demonstrates our method’s potential for pretraining LLMs to generate a chain of latent thoughts before predicting each token. Regarding position embedding, we compared assigning sequential position ids to thoughts versus reusing the token’s

486 position id for its corresponding thoughts and found a negligible performance difference. We use
 487 the latter strategy to avoid the need for long-context capabilities.
 488

489 **5 CONCLUSION**
 490

491 In this paper, we introduce the approach of pretraining language models with latent thoughts, which
 492 can be effectively realized using large-scale general corpora. Language models pretrained with latent
 493 thoughts consistently outperforms its counterparts with double the parameters (at equal inference
 494 cost), as well as prior related methods like PonderLM, looped, and paused models, even when
 495 they use double the inference budget. Furthermore, we show that chaining latent thoughts, akin to
 496 COT, consistently improves model performance. We posit that our work introduces a new potential
 497 dimension for scaling the capabilities of language models.
 498

499 **REFERENCES**
 500

501 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
 502 *arXiv preprint arXiv:2309.14402*, 2023.

503 Afra Amini, Tim Vieira, Elliott Ash, and Ryan Cotterell. Variational best-of-n alignment. *arXiv*
 504 *preprint arXiv:2407.06057*, 2024.

505 Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra, Victor
 506 Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst. *Templates for the Solution of*
 507 *Linear Systems: Building Blocks for Iterative Methods*. SIAM, Philadelphia, PA, 1994.

508 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric
 509 Hallahan, Mohammad Aftab Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
 510 Pythia: A suite for analyzing large language models across training and scaling. In *International*
 511 *Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

512 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
 513 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 514 volume 34, pp. 7432–7439, 2020.

515 Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan
 516 Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic
 517 depth scaling to foster adaptive internal thinking. *arXiv preprint arXiv:2502.13842*, 2025a.

518 Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan
 519 Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic
 520 depth scaling to foster adaptive internal thinking, 2025b. URL <https://arxiv.org/abs/2502.13842>.

521 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 522 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 523 *arXiv preprint arXiv:1803.05457*, 2018.

524 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 525 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 526 solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>, 9, 2021.

527 DeepSeek-AI, Daya Guo, Dejian Yang, and Haowei Zhang et al. Deepseek-r1: Incentivizing reason-
 528 ing capability in llms via reinforcement learning. 2025. URL <https://arxiv.org/abs/2501.12948>.

529 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
 530 transformers. In *International Conference on Learning Representations*.

531 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 532 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
 533 for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

540 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
 541 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
 542 latent reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.

543

544 Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
 545 Papailiopoulos. Looped transformers as programmable computers. In *International Conference
 546 on Machine Learning*, pp. 11398–11442. PMLR, 2023.

547

548 Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
 549 Nagarajan. Think before you speak: Training language models with pause tokens. *arXiv preprint
 550 arXiv:2310.02226*, 2023.

551

552 Aaron Grattafiori, Abhimanyu Dubey, et al. The llama 3 herd of models. *arXiv preprint
 553 arXiv:2407.21783*, 2024. URL <https://arxiv.org/abs/2407.21783>.

554

555 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
 556 preprint arXiv:2312.00752*, 2023.

557

558 Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models and
 559 the sweetness of best-of-n sampling. *arXiv preprint arXiv:2406.00832*, 2024.

560

561 Kobi Hackenburg, Ben M Tappin, Paul Röttger, Scott A Hale, Jonathan Bright, and Helen Margetts.
 562 Scaling language model size yields diminishing returns for single-message political persuasion.
 563 *Proceedings of the National Academy of Sciences*, 122(10):e2413443122, 2025.

564

565 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 566 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint
 567 arXiv:2412.06769*, 2024.

568

569 Michael Hassid, Tal Remez, Jonas Gehring, Roy Schwartz, and Yossi Adi. The larger the better?
 570 improved llm code-generation via budget reallocation. *arXiv preprint arXiv:2404.00725*, 2024.

571

572 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 573 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
 574 ing compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022a.

575

576 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 577 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
 578 empirical analysis of compute-optimal large language model training. *Advances in Neural Infor-
 579 mation Processing Systems*, 35:30016–30030, 2022b.

580

581 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 582 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
 583 preprint arXiv:2412.16720*, 2024.

584

585 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
 586 comprehension dataset from examinations. *arXiv preprint arXiv:1704.04683*, 2017.

587

588 Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
 589 Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
 590 parameter open-access multilingual language model. 2023.

591

592 Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Shishir G Patil, Matei Zaharia, Joseph E
 593 Gonzalez, and Ion Stoica. Llms can easily learn to reason from demonstrations structure, not
 594 content, is what matters! *arXiv preprint arXiv:2502.07374*, 2025.

595

596 Wenzhe Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han Tian, Zhizhen Zhong, Guyue Liu, Ying
 597 Zhang, and Kai Chen. Understanding communication characteristics of distributed training. In
 598 *Proceedings of the 8th Asia-Pacific Workshop on Networking*, pp. 1–8, 2024.

599

600 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 601 models. *arXiv preprint arXiv:1609.07843*, 2016.

594 Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
 595 Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
 596 models. *Advances in Neural Information Processing Systems*, 36:50358–50376, 2023.

597

598 Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
 599 Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Effi-
 600 cient large-scale language model training on gpu clusters using megatron-lm. In *Proceedings of*
 601 *the international conference for high performance computing, networking, storage and analysis*,
 602 pp. 1–15, 2021.

603 Bo Pang, Hanze Dong, Jiacheng Xu, Silvio Savarese, Yingbo Zhou, and Caiming Xiong.
 604 Bolt: Bootstrap long chain-of-thought in language models without distillation. *arXiv preprint*
 605 *arXiv:2502.03860*, 2025.

606

607 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 608 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
 609 Word prediction requiring a broad discourse context. *arXiv preprint arXiv:1606.06031*, 2016.

610 Suchita Pati, Shaizeen Aga, Mahzabeen Islam, Nuwan Jayasena, and Matthew D Sinclair. Com-
 611 putation vs. communication scaling for future transformers on future hardware. *arXiv preprint*
 612 *arXiv:2302.02825*, 2023.

613

614 Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation
 615 in transformer language models. *arXiv preprint arXiv:2404.15758*, 2024.

616 Yousef Saad. *Iterative Methods for Sparse Linear Systems*. SIAM, Philadelphia, PA, second edition,
 617 2003.

618

619 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 620 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

621

622 Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with
 623 latent thoughts: On the power of looped transformers. In *The Thirteenth International Conference*
 624 *on Learning Representations*.

625

626 Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
 627 Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, et al. Bond: Aligning llms
 628 with best-of-n distillation. *arXiv preprint arXiv:2407.14622*, 2024.

629

630 Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
 631 Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, and Eric Xing. Slimpajama-dc: Un-
 632 derstanding data combinations for llm training. *arXiv preprint arXiv:2309.10818*, 2024. URL
<https://arxiv.org/abs/2309.10818>.

633

634 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 635 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

636

637 Benedikt Stroebel, Sayash Kapoor, and Arvind Narayanan. Inference scaling flaws: The limits of llm
 638 resampling with imperfect verifiers. *arXiv preprint arXiv:2411.17501*, 2024.

639

640 Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
 641 Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. *arXiv preprint*
 642 *arXiv:2410.20290*, 2024.

643

644 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 645 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

646

647 Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbahn, and Anson Ho.
 648 Will we run out of data? an analysis of the limits of scaling datasets in machine learning. *arXiv*
 649 *preprint arXiv:2211.04325*, 1, 2022.

648 Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessandro
 649 Sordoni. Guiding language model reasoning with planning tokens, 2024. URL <https://arxiv.org/abs/2310.05707>.
 650

651 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 652 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 653 *arXiv preprint arXiv:2203.11171*, 2022.
 654

655 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 656 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 657 *neural information processing systems*, 35:24824–24837, 2022.
 658

659 Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
 660 *arXiv preprint arXiv:1707.06209*, 2017.
 661

662 Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models.
 663 *arXiv preprint arXiv:2405.10637*, 2024.
 664

665 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 666 enforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 667 *preprint arXiv:2504.13837*, 2025.
 668

669 Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
 670 Quiet-star: Language models can teach themselves to think before speaking, 2024. URL <https://arxiv.org/abs/2403.09629>.
 671

672 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 673 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.
 674

675 Boyi Zeng, Shixiang Song, Siyuan Huang, Yixuan Wang, He Li, Ziwei He, Xinbing Wang, Zhiyu
 676 Li, and Zhouhan Lin. Pretraining language models to ponder in continuous space. *arXiv preprint*
 677 *arXiv:2505.20674*, 2025.
 678

679 Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
 680 language model. *arXiv preprint arXiv:2401.02385*, 2024.
 681

682 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christo-
 683 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
 684 language models. *arXiv preprint arXiv:2205.01068*, 2022.
 685

686 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 687 Zi Lin, Zhouhan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 688 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.
 689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A ETHICS STATEMENT**
703704 Our model’s demonstrated superiority in performance and efficiency necessitates a discussion of its
705 dual-use nature. The same advanced capabilities that make it a powerful tool for positive applications
706 could also be leveraged to generate highly convincing misinformation at scale. Furthermore, its
707 novel architecture may present unknown security and privacy risks. We believe the responsible
708 advancement of this technology requires a parallel effort to understand and mitigate these challenges.
709710 **B REPRODUCIBILITY STATEMENT**
711712 To ensure the reproducibility of our research, we have included the complete source code in the
713 supplementary material. We also provide core hyperparameter and implementation settings in this
714 paper. Using the provided code and specified configurations, all main results and figures reported in
715 this paper can be fully reproduced. A public code repository will be made available upon publication.
716717 **C THE USE OF LARGE LANGUAGE MODELS**
718719 Large Language Models (LLMs) were not used for the core methodology or the main research
720 content of this paper. We utilized an LLM solely for the purpose of improving the language and
721 clarity of the manuscript.
722723 **D DETAILED DOWNSTREAM TASKS PERFORMANCE**
724725 Table 5: Zero-shot and five-shot accuracy (%) on downstream tasks, as described in [Section 4.3](#).
726

727 Model	728 Lambada 729 OpenAI	730 ARC 731 -E	732 Lambada 733 Standard	734 ARC 735 -C	736 Wino 737 Grande	738 PIQA	739 Hella 740 Swag	741 SciQ	742 RACE	743 Avg acc / 744 Δacc ↑
0-shot										
734 LLaMA-1.4B (train from scratch)	735 50.6	736 52.2	737 37.1	738 20.9	739 53.0	740 65.6	741 33.6	742 84.5	743 31.8	744 47.7
Methods with comparable (2×) inference FLOPs										
745 Looped LLaMA-1.4B (2 loops)	746 53.6	747 54.3	748 41.8	749 23.6	750 52.9	751 69.3	752 35.8	753 83.6	754 33.5	755 49.8
756 Pause LLaMA-1.4B (1 pause)	757 51.8	758 53.8	759 40.1	760 21.8	761 52.5	762 67.5	763 34.7	764 83.1	765 30.9	766 48.5
767 Pondering LLaMA-1.4B (1 step)	768 53.8	769 53.2	770 42.6	771 23.0	772 52.6	773 68.4	774 35.9	775 83.2	776 33.3	777 49.6
778 LLaMA-2.8B (train from scratch)	779 54.3	780 53.4	781 43.5	782 24.4	783 53.1	784 68.0	785 36.2	786 83.4	787 31.5	788 49.8
Our LLaMA-1.4B	58.1	58.0	48.2	25.2	53.9	70.7	38.6	85.9	32.4	52.3/+4.6
Methods with higher (4×) inference FLOPs										
789 Looped LLaMA-1.4B (4 loops)	790 55.8	791 55.2	792 45.6	793 23.2	794 54.1	795 68.9	796 37.6	797 84.9	798 33.0	799 50.9
800 Pause LLaMA-1.4B (3 pauses)	801 56.2	802 54.0	803 46.5	804 24.2	805 55.3	806 68.8	807 36.7	808 85.4	809 32.3	810 51.0
811 Pondering LLaMA-1.4B (3 step)	812 56.7	813 56.3	814 45.4	815 23.8	816 55.6	817 68.3	818 37.8	819 86.3	820 33.0	821 51.5
5-shot										
822 LLaMA-1.4B (train from scratch)	823 45.1	824 53.5	825 34.7	826 22.3	827 50.9	828 66.1	829 33.6	830 89.3	831 31.6	832 47.5
Methods with comparable (2×) inference FLOPs										
833 Looped LLaMA-1.4B (2 loops)	834 46.0	835 55.6	836 36.9	837 23.9	838 51.1	839 69.2	840 35.7	841 90.1	842 27.9	843 48.5
844 Pause LLaMA-1.4B (1 pause)	845 45.5	846 56.1	847 35.6	848 23.8	849 50.8	850 68.0	851 34.9	852 88.4	853 30.7	854 48.2
855 Pondering LLaMA-1.4B (1 step)	856 48.0	857 56.3	858 40.9	859 24.4	860 53.3	861 69.2	862 36.2	863 89.5	864 25.0	865 49.2
867 LLaMA-2.8B (train from scratch)	868 49.7	869 57.2	870 43.7	871 25.3	872 53.1	873 69.3	874 36.3	875 89.6	876 30.8	877 50.6
Our LLaMA-1.4B	49.8	59.6	45.6	27.7	56.3	69.8	38.7	91.3	28.0	51.9/+4.4
Methods with higher (4×) inference FLOPs										
880 Looped LLaMA-1.4B (4 loops)	881 48.0	882 58.5	883 42.8	884 25.0	885 54.8	886 70.4	887 37.6	888 89.2	889 28.5	890 50.5
890 Pause LLaMA-1.4B (3 pauses)	891 48.8	892 56.6	893 41.0	894 24.1	895 54.1	896 69.3	897 36.6	898 90.7	899 32.6	900 50.4
901 Pondering LLaMA-1.4B (3 step)	902 49.5	903 58.8	904 42.6	905 25.4	906 54.3	907 69.2	908 37.9	909 91.2	910 34.7	911 51.5

Figure 9: Scaling curves for vanilla models and ours (GPT-2 Arch and LLaMA Arch).

E GENERALIZATION TO GPT-2 AND LLaMA

To verify the general applicability of our method, we apply our proposed latent mechanism to the widely-used GPT-2 and LLaMA architectures.

Experimental Settings. We train both vanilla and latent-enhanced versions of these models from scratch on a subset of the Pile dataset, with sizes ranging from 405M to 1.4B parameters. The experimental setup, including the number of training tokens aligned with Chinchilla scaling laws (Hoffmann et al., 2022b). Detailed model configurations and training hyperparameters are provided in Table 6.

Results. The scaling curves are presented in Figure 9. Our method provides significant and consistent performance improvements for both GPT-2 and LLaMA across all model sizes. Notably, ours-834M (GPT-2 Arch) and ours-834M (LLaMA Arch) achieve a validation loss comparable to their vanilla counterparts trained with approximately **2.48x** and **2.46x** the parameter-token product, respectively.

Table 6: Model sizes and hyperparameters for the scaling experiments on GPT-2 and LLaMA.

Parameters	n_{layers}	d_{model}	n_{heads}	Learning Rate	Batch Size (tokens)	Training Tokens
405M	24	1024	16	3.0e-4	0.5M	7B
834M	24	1536	24	2.5e-4	0.5M	15B
1.4B	24	2048	32	2.0e-4	0.5M	26B

F COMPLEMENTING MODELS WITH TEST-TIME SCALING APPROACHES

We study whether our method (denoted **Ours CPT**) complement common test-time scaling strategies, compared with a vanilla baseline (**Standard CPT**). We evaluate on TRUTHFULQA (ROUGE-L) and GSM8K (Exact Match), and set the number of samples $N \in \{1, \dots, 10\}$ for Best-of- N and Majority Voting.

Settings. We reuse the two models from Section 4.4: both start from the official LLaMA-3-3B backbone and undergo continual pretraining on the same SlimPajama dataset. One is a vanilla continual-pretraining baseline (Standard CPT), while the other incorporates our latent thoughts during continual pretraining (Ours CPT). We evaluate three test-time strategies: Majority Voting, Best-of- N (BoN), and Chain-of-Thought (CoT) prompting, varying only the number of samples N for voting and BoN.

Figure 10: Test-time scaling on GSM8K. Majority Voting (left) and Best-of-N (right). Across $N \in \{1, \dots, 10\}$, Ours CPT improves more than the baseline.

Figure 11: Test-time scaling on TRUTHFULQA. Majority Voting (left) and Best-of-N (right). Ours CPT benefits more than Standard CPT across N .

F.1 MAJORITY VOTING

As N increases, both models improve, but the gap between them widens consistently on TRUTHFULQA and GSM8K. This pattern suggests that Ours CPT produces batches of answers that are clustered and consistently correct, making aggregation particularly effective. (See Figure 10 (left) and Figure 11 (left).)

F.2 BEST OF N

BoN likewise amplifies Ours CPT over Standard CPT and improves monotonically with N , indicating that our model reliably produces a *diverse set of high-quality candidates* from which a strong single answer can be selected. While its gains are typically a bit smaller than Majority Voting at the same N , the strong BoN curve is nevertheless evidence against mode collapse: Ours CPT generates multiple plausible solutions, and either selecting the best (BoN) or aggregating them (voting) yields consistent benefits. (See Figure 10 (right) and Figure 11 (right).)

F.3 CoT

We further test CoT prompting on GSM8K. As summarized in Table 7, CoT improves both models, with Ours CPT benefiting more. This suggests a complementary relationship between the two techniques, where their combination leads to more reliable outcomes.

864
865 Table 7: Effect of CoT on GSM8K (Exact Match; higher is better). CoT improves both models and
866 yields consistently larger gains for Ours CPT.
867
868
869

Setting	Standard CPT	Ours CPT
without CoT	0.1001	0.1259
with CoT	0.2426	0.3290

870
871
872 **G JACOBI CONVERGENCE ANALYSIS AND EQUIVALENCE TO SEQUENTIAL**
873 **INFERENCE**
874

875 In this section, we provide a rigorous theoretical and empirical analysis to demonstrate that the
876 parallel Jacobi iteration employed during training is mathematically consistent with standard sequential
877 inference. We structure our analysis along a four-step logical chain:

878 1. **Convergence:** The parallel iteration is theoretically guaranteed to converge to a fixed point H^* ;
879 2. **Exponential Rate:** The rapid decay of iterative updates proves that the convergence is exponential;
880 3. **Trajectory Alignment:** Empirical evidence shows the iteration also converges to the sequential
881 solution H_{seq} ;
882 4. **Equivalence:** By the uniqueness of limits, it follows that $H^* = H_{\text{seq}}$, proving the solutions are
883 identical.

884
885 **G.1 EXACT CONVERGENCE GUARANTEE OF PARALLEL TRAINING (FINITE-STEP**
886 **PROPERTY)**

887 We view the Jacobi iteration in parallel training as a process of finding a fixed point. Let $E \in \mathbb{R}^{T \times d}$
888 be the fixed input Embeddings, and $H^{(k)} \in \mathbb{R}^{T \times d}$ be the hidden states at iteration k . We treat the
889 Transformer layers as a non-linear operator Φ , with the update rule $H^{(k+1)} = \Phi(H^{(k)}; E)$. Our
890 goal is to find the fixed point H^* satisfying $H^* = \Phi(H^*; E)$.

891 Unlike general fixed-point problems, the Autoregressive Causality of the Transformer guarantees
892 stability. Specifically, since the computation of the i -th token depends strictly on preceding tokens
893 ($j < i$), convergence follows a clear inductive chain: the first token stabilizes immediately based
894 on the fixed input, and subsequently, any token k stabilizes once its preceding context (tokens 1 to
895 $k-1$) is fixed.

896 This guarantees that for a sequence of length T , the entire sequence strictly converges to the fixed
897 point H^* in at most T steps.

898
899 **G.2 FAST EXPONENTIAL CONVERGENCE**

900 While the above theorem provides a “worst-case” guarantee (taking T steps), the core advantage of
901 our method is that its convergence speed is significantly faster than T . We introduce the Banach
902 Fixed-Point Theorem for analysis.

903 **Theoretical Analysis:**

904 • **Definition:** According to the Banach Fixed-Point Theorem, if there exists a Lipschitz constant L
905 ($0 \leq L < 1$) under some norm $\|\cdot\|$, such that for any H_a, H_b , $\|\Phi(H_a) - \Phi(H_b)\| \leq L\|H_a - H_b\|$
906 holds, then the iteration must converge to a unique fixed point H^* .
907 • **Convergence Speed:** If $L < 1$, the error at iteration k will decay exponentially: $\|H^{(k)} - H^*\| \leq$
908 $L^k\|H^{(0)} - H^*\|$. This indicates that the algorithm possesses an exponential convergence property,
909 meaning the error magnitude shrinks by a fixed ratio L at each step.
910 • **Posterior Error Estimation (Cauchy Property):** Since the true fixed point H^* is unknown, we
911 rely on the property of Cauchy Sequences. The upper bound of the error to the true solution is
912 determined by the RMSE of adjacent iterations:
913

$$\|H^{(k)} - H^*\| \leq \frac{L}{1-L} \underbrace{\|H^{(k)} - H^{(k-1)}\|}_{\text{RMSE } r_k}$$

Figure 12: Empirical convergence analysis of the Jacobi iteration on our pretrained Pythia-410M. (Left) The decay of the internal RMSE across 30 iterations shows that the parallel hidden states converge exponentially to a fixed point, eventually hitting the BFloat16 numerical precision floor. (Right) The convergence of the parallel hidden states towards the sequential autoregressive solution over the first 10 iterations. We focus on the initial phase to highlight the rapid exponential alignment with the sequential result before numerical noise dominates.

This inequality implies via a logical chain: as long as we observe the RMSE r_k decaying at rate L , it is mathematically guaranteed that the true error $\|H^{(k)} - H^*\|$ also tends to 0 at the same rate L . If the operator Φ is a contraction mapping, then for any adjacent iteration steps:

$$\underbrace{\|H^{(k+1)} - H^{(k)}\|}_{r_{k+1}} = \|\Phi(H^{(k)}) - \Phi(H^{(k-1)})\| \leq L \cdot \underbrace{\|H^{(k)} - H^{(k-1)}\|}_{r_k}$$

Recursively, we obtain $r_k \leq L^k \cdot r_0$. This proves that: under a contraction mapping ($L < 1$), the RMSE r_k must decay exponentially.

Empirical Verification: We tracked the RMSE r_k for our pretrained Pythia-410M model. The results are shown in Figure 12 (Left).

- **Log-Linear Fitting:** To quantify the convergence rate and verify the exponential decay hypothesis ($r_k \propto L^k$), we linearize the relationship by taking the base-10 logarithm:

$$\log_{10}(r_k) \approx k \cdot \log_{10}(L) + C$$

This equation indicates that if the convergence is exponential, the RMSE curve should form a straight line on a semi-logarithmic scale, with the slope corresponding to $\log_{10}(L)$.

- **Exponential Decay:** In the active convergence phase (first ~ 10 iterations), the RMSE exhibits a strict linear trajectory on the semi-logarithmic scale ($R^2 > 0.95$), confirming the exponential decay law consistent with the contraction mapping theory.
- **Effective Lipschitz Constant (L):** The fitting yields $L \approx 0.345 < 1$.
- **Practical Implication:** $L \approx 0.345$ implies an extremely rapid convergence rate.
 - Reducing the error to 1% (10^{-2}) of the initial value requires only ~ 4 iterations.
 - Reducing the error to 0.1% (10^{-3}) requires only ~ 6 iterations.
- **Precision Floor:** The convergence stabilizes at the BFloat16 precision limit ($\sim 10^{-5}$), confirming the algorithm has reached the maximum precision allowed by the hardware.

G.3 ITERATION ALSO CONVERGES TO THE SEQUENTIAL SOLUTION H_{SEQ}

“Sequential Inference” produces the standard autoregressive result H_{seq} , and the result of the parallel iteration $H^{(k)}$ also converges to H_{seq} .

Verification: To empirically verify this, we calculated the RMSE between the parallel state $H^{(k)}$ at iteration k and the sequential ground truth H_{seq} . As shown in Figure 12 (Right), the distance $\|H^{(k)} - H_{\text{seq}}\|$ similarly exhibits exponential decay. Within ~ 9 iterations, the difference drops to the BFloat16 precision floor ($\sim 10^{-5}$).

Figure 13: **Randomizing the iteration count prevents depth overfitting.** *Left:* Training with a fixed iteration count ($K = 2$) causes a large spike at the first unseen step ($k = 3$). *Right:* Randomized training ($K \in \{2, 3, 4\}$) yields stable, near-exponential decay of $\|H^{(k)} - H^{(k-1)}\|$ and convergence to the numerical floor.

990 G.4 EQUIVALENCE: PARALLEL SOLUTION H^* MATCHES SEQUENTIAL RESULT H_{SEQ}

992 Since the result of the parallel Jacobi iteration $H^{(k)}$ converges to both H^* and H_{seq} , by the uniqueness
 993 of limits, we know that $H^* = H_{\text{seq}}$, proving the two are completely identical.
 994

995 H RANDOMIZING THE ITERATION COUNT

998 **Setup.** We compare two schemes for the number of Jacobi iterations used in the hidden-state
 999 update: (i) a *fixed iteration* scheme with $K = 2$; and (ii) a *randomized iteration* scheme where
 1000 $K \sim \text{Unif}\{2, 3, 4\}$. All other training settings are identical. At evaluation, we track the root mean
 1001 squared change of hidden states $\text{RMSE}(k) = \|H^{(k)} - H^{(k-1)}\|$ over up to 30 iterations.

1002 **Observation.** With *fixed* $K = 2$, the curve exhibits a pronounced spike at the first unseen step
 1003 ($k = 3$), indicating overfitting to a specific computational depth and poor generalization beyond
 1004 trained iterations. In contrast, *randomized* $K \in \{2, 3, 4\}$ induces a smooth, near-exponential decay
 1005 that persists well beyond the trained range, converging to the BFloat16 numerical floor.

1007 I TRAINING DETAILS

1009 The primary computational cost comes from pretraining Ours-1.4B on the 300B-token Pile dataset.
 1010 This pretraining was conducted on a cluster of high-performance 64GB GPUs and required a total
 1011 of 73,047 GPU hours.

1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025