
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRETRAINING LLM WITH LATENT THOUGHTS
IN CONTINUOUS SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

The remarkable success of Chain-of-Thought (CoT), which enhances performance
by scaling generation steps at test-time, inspires us to ask: can we leverage a simi-
lar scaling of computational steps during pretraining to improve the generation of
each individual token? To address this, we propose a novel pre-training methodol-
ogy: Pretraining Language Models with Latent Thoughts. Our approach pretrains
a language model (LM) to first generate an intermediate latent thought—the last
hidden state of the current position—which is then used as input to predict the ac-
tual subsequent token. This additional computational step enables the LM to refine
its prediction within unconstrained continuous space. Our experiments demon-
strate that, at an identical inference cost, a LM that generates one additional latent
thought per token outperforms a standard model with double the parameters. For
instance, ours-1.4B (Pythia Arch), pretrained on 300B tokens from the Pile, sig-
nificantly surpasses the vanilla Pythia-2.8B trained on the same data on both lan-
guage modeling and a range of general downstream tasks. Furthermore, increas-
ing the number of latent thoughts generated before each actual token—forming a
chain analogous to CoT—consistently improves the model’s performance.

410M 1B 1.4B 2B 2.8B
#Parameters (log scale)

1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20

Lo
ss

55% fewer params

Pythia
Ours (Pythia Arch)
Pythia
Ours (Pythia Arch)

20B 40B 60B 100B 200B 300B
#Training tokens (log scale)

1.9

2.0

2.1

2.2

2.3

Lo
ss

62% fewer training tokens

Pythia-1.4B
Ours-1.4B (Pythia Arch)
Pythia-1.4B
Ours-1.4B (Pythia Arch)

Figure 1: Scaling curves comparing our method (Pythia Arch) with the official Pythia suite on the
300B Pile. Our 1.26B model matches the loss of Pythia-2.8B with 55% fewer parameters (left),
while our 1.4B model reaches the baseline’s final performance with 62% less training data (right).

1 INTRODUCTION

The conventional wisdom in improving language models—scaling up parameters and data—is fac-
ing diminishing returns due to data scarcity (Villalobos et al., 2022; Muennighoff et al., 2023),
saturating scaling laws (Hoffmann et al., 2022a; Hackenburg et al., 2025), and prohibitive training
overheads (Pati et al., 2023; Narayanan et al., 2021; Li et al., 2024).

This has shifted focus towards enhancing model capabilities via test-time scaling (Snell et al., 2024),
particularly through methods based on Chain-of-Thought (CoT) (Jaech et al., 2024; DeepSeek-AI
et al., 2025). CoT achieves remarkable success by generating long reasoning chains for each ques-
tion, effectively scaling the generation steps and increasing computation per query. While effective,
CoT relies on specialized datasets and complex training schemes (Allen-Zhu & Li, 2023; Li et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Input embedding

Last hidden state

�1 �2 �3

�3 �4

�1

�2

�2

�3

�3

�4
⋯⋯

Input token

Output token
Sampling

�2

Large Language Model Large Language Model

Figure 2: A comparison between the standard language model and ours. In the standard language
model, each token is generated after a single forward pass. In contrast, ours does not immediately
sample the output token after one forward pass; instead, it uses the computed last hidden state as the
next input embedding for generating the subsequent output token. This allows the language model
to think in an unconstrained latent space before producing each token.

2025; Pang et al., 2025), is confined to a discrete token space, and is ultimately capped by the base
model’s capabilities (Yue et al., 2025).

An alternative direction is to scale computation during pretraining. One approach, often termed
”vertical scaling”, deepens the network by reusing parameters (Zeng et al., 2025; Giannou et al.,
2023; Geiping et al., 2025; Chen et al., 2025b). However, this can lead to training instabilities
(Geiping et al., 2025) and often fails to outperform a standard dense model with a comparable
inference budget, limiting its practical utility.

Inspired by the success of CoT in scaling generation steps, we propose a novel ”horizontal scaling”
approach: Pretraining Language Models with Latent Thoughts. Instead of deepening the model,
our method teaches the LM to scale the generation process for each token. It first generates an
intermediate latent thought—the last hidden state of the current position—which is then used as
input to predict the actual subsequent token. This allows the model to refine its predictions in an
unconstrained continuous space. To maintain training efficiency, we employ the Jacobi iteration
(Saad, 2003; Barrett et al., 1994) to parallelize this inherently sequential process.

Our experiments show that, at an identical inference cost, a model trained with one latent thought per
token surpasses a standard model with double the parameters. For instance, our 1.4B models, built
on Pythia and LLaMA architectures, significantly outperform their vanilla 2.8B counterparts trained
on the same data. Our method also proves superior to previous vertical scaling techniques, even
when their inference cost is twice as high. Furthermore, increasing the number of latent thoughts to
form a chain of latent thoughts—analogous to CoT—before generating each real token consistently
improves model performance, further underscoring the potential of our approach.

2 RELATED WORK

We begin by discussing the two most related works: Coconut (Hao et al., 2024) and PonderLM (Zeng
et al., 2025). Coconut finetunes a language model on CoT data, employing a “Chain of Continu-
ous Thought”—represented by the final hidden states—to simulate explicit reasoning steps. This
continuous chain is typically applied only after a question is posed. In contrast, our model learns
this capability naturally during pretraining on a general corpus, appending a latent token after every
token rather than just at the end of a prompt. PonderLM employs a vertical scaling strategy, deep-
ening the model for a single generation step by iteratively re-feeding a “pondering embedding”—a
probability-weighted sum of token embeddings—into its input layers. In contrast, our method uti-
lizes a horizontal scaling approach. We extend the generative process for each token by appending
latent thoughts, which are directly derived from the last hidden state of the previous computation
step. A more comprehensive comparison with related works is provided in Table 1.

Other related methods (including test-time scaling and parameter sharing) can be broadly catego-
rized into three main paradigms: scaling model depth via sequential parameter sharing, exploring
multiple solutions through parallel computation, and scaling generation steps.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: A taxonomy of most related methods. The Computation Space column specifies where
additional computation occurs. Our method is unique in its ability to learn a per-token, latent-
space computational mechanism from a general corpus via a standard pretraining objective, without
requiring specialized instruction data or complex training schemes like reinforcement learning.

Method Core Strategy Training Data Computation Space Application
Level

Training
Method

CoT Scaling Generation CoT Data Explicit Token Per Question RL/SFT
Pause Tokens Scaling Generation General Corpus Fixed Special Token Per Token Pretrain
Quiet-STaR Scaling Generation General Corpus Explicit Token Per Token RL
PonderLM Scaling Model Depth General Corpus Continuous Embedding Per Token Pretrain
LoopedLM Scaling Model Depth General Corpus Hidden State Per Token Pretrain
Coconut Scaling Generation CoT Data Hidden State Per Question SFT

Ours Scaling Generation General Corpus Hidden State Per Token Pretrain

Sequential Parameter Sharing to Scale Up Model Depth. This paradigm increases a model’s
effective depth by reusing its parameters. Early work like Universal Transformers (Dehghani et al.)
reused entire blocks, while more recent methods refine this by iterating over layers to refine hidden
states (Geiping et al., 2025), recycling output states back into the input (Giannou et al., 2023; Saunshi
et al.), or recurrently applying a single layer to critical tokens (Chen et al., 2025a). While these
approaches can enhance model capabilities, they often introduce significant inference overhead and
training instabilities. In contrast, our horizontal scaling approach avoids the potential instabilities of
deep recurrent computations by integrating thought into the sequence length.

Exploring Multiple Solutions through Parallel Computation. This paradigm involves generating
multiple candidate solutions in parallel and then selecting the most promising one using a specific
criterion. Prominent examples include Best-of-N sampling (Cobbe et al., 2021; Sun et al., 2024; Gui
et al., 2024; Amini et al., 2024; Sessa et al., 2024) and Majority Voting (Wang et al., 2022). While
effective at improving performance on complex reasoning tasks, these approaches can be compu-
tationally inefficient. Furthermore, a key challenge is the difficulty of reliably identifying the best
candidate from the generated set, as the verifier or selection heuristic may not be optimal (Stroebl
et al., 2024; Hassid et al., 2024).

Scaling Generation Steps. The most prominent method for scaling generation steps is Chain-of-
Thought (CoT) (Wei et al., 2022), which elicits reasoning paths from models before they provide
a final answer. While effective, this process is often applied at the per-question level. Subsequent
work has sought to integrate this ”thinking” process more granularly into generation. One approach
involves inserting non-content or ”thinking” tokens into the sequence. For example, Goyal et al.
(2023) inserted learnable ”pause” tokens, while others explored discrete planning tokens (Wang
et al., 2024) or filler tokens (Pfau et al., 2024). Quiet-STaR (Zelikman et al., 2024) even uses
reinforcement learning to generate explicit rationale tokens between output tokens. However, these
methods remain constrained to the discrete vocabulary space. In contrast, our work elevates this
per-token computation into the continuous latent space.

3 METHODOLOGY

In this section, we introduce our pretraining methodology, which trains a language model to first
generate an intermediate latent thought before predicting the actual subsequent token. We first
establish the notation for a standard Transformer-based language model. Given an input sequence
x = (x1, x2, . . . , xT), the model processes the token embeddings Et = [e(x1), e(x2), . . . , e(xt)]
using a Transformer architecture. The operation can be formulated as:

Ht = Transformer(Et)

where e(·) is the token embedding lookup function. The resulting matrix Ht ∈ Rt×d contains the
sequence of last-layer hidden states. We denote the hidden state at position t as ht = Ht[t, :].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

�3�2�1

Large Language Model

Large Language Model

Large Language Model

�1 �2 �3

×
K

Input
Embedding

Last
Hidden State

Figure 3: Parallel training proce-
dure of our method (via Jacobi iter-
ation). (1) The model computes ini-
tial hidden states from the input em-
beddings (x1, x2, x3). These hidden
states are then interleaved with their
corresponding token embeddings to
form a new input sequence. (2) For K
rounds, all hidden states are updated
in parallel. In each iteration, hidden
states from the previous step are inter-
leaved with the original embeddings
to form the new input. (3) Finally,
the cross-entropy loss (L1,L2,L3) is
computed at the positions correspond-
ing to the hidden state inputs to opti-
mize language modeling.

3.1 INFERENCE PROCESS

The inference process of our model is straightforward (Figure 2). For each token to be generated,
the model first computes its corresponding last hidden state. This hidden state is then used as the
input embedding for the subsequent token generation step, mimicking a recurrent thinking process.

3.2 TRAINING PROCEDURE

While inference is sequential, a purely autoregressive training procedure is computationally infeasi-
ble for long sequences (e.g., T = 2048), as it would require thousands of separate forward passes.
To address this, we employ the Jacobi iteration to approximate the true autoregressive hidden states,
which allows for parallel training (Figure 3). The goal is to find a set of “fixed-point” hidden states
H∗ = [h∗

1, . . . ,h
∗
T] that are the output of the model when they are also part of the input. We solve

for these states iteratively as follows:

1. Initial Hidden State Estimation (Iteration 0): We begin by performing a single forward pass
on the original token embeddings E = [e(x1), . . . , e(xT)] to obtain the initial hidden states:

[h0
1,h

0
2, . . . ,h

0
T] = Transformer([e(x1), e(x2), . . . , e(xT)])

0 5 10 15 20 25 30
of iterations

0.0

0.1

0.2

0.3

0.4

0.5

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r RMSE Change

Figure 4: RMSE of the last hidden states before
and after the ith iteration. The model is the vanilla
Pythia-1B tested with 4*2048 tokens.

2. Parallel State Update via Jacobi Iteration
(Iteration k → k + 1): For each subsequent
iteration k, we construct a new input sequence
by interleaving the original token embeddings
with the hidden states from the previous itera-
tion, Hk:

Sk = [e(x1),h
k
1 , e(x2),h

k
2 , . . . , e(xT),h

k
T]

We then feed this sequence into the model to
compute the updated hidden states for the next
iteration, Hk+1, in a single, parallel forward
pass:

[. . . ,hk+1
1 , . . . ,hk+1

2 , . . .] = Transformer(Sk)

In this iterative process, all components of the
new state vector Hk+1 are computed in parallel
based on the entire state vector from the previ-
ous iteration, Hk. As shown in Figure 4, this it-
eration converges rapidly, with the hidden states
stabilizing after a few rounds.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

410M 1.4B
(a) Lambada Standard, PPL ()
0

10

20

30

Pe
rp

le
xi

ty
-18.36

-3.75

Pythia-2.8B
Pythia
PonderLM
Ours

410M 1.4B
(b) Wikitext, PPL ()

0

5

10

15

20

Pe
rp

le
xi

ty

-2.93

-2.01

410M 1.4B
(c) Pile, PPL ()

0

2

4

6

8

Pe
rp

le
xi

ty

-0.86

-0.71

410M 1.4B
(d) Lambada OpenAI, PPL ()
0

2

4

6

8

10

Pe
rp

le
xi

ty -3.56

-1.54

Figure 5: Language Modeling Perplexity (PPL). Our method achieves the lowest perplexity, con-
sistently surpassing PonderLM despite its 2× inference overhead at the same model size. Ours
1.4B (Pythia Arch) also outperforms the larger Pythia-2.8B baseline. Numbers denote the absolute
perplexity improvement (↓) over the corresponding Pythia models.

3. Loss Computation: After K Jacobi iterations, we form the final input sequence SK =
[e(x1),h

K
1 , . . . , e(xT),h

K
T]. The language modeling objective is then optimized by computing the

cross-entropy loss (L1, L2, . . . , LT) at the positions corresponding to the final hidden state inputs.
Specifically, the loss Li is computed for predicting the token xi+1 from the hidden state hK

i . To pre-
vent overfitting to a fixed number of steps, we randomly sample K from {2, 3, 4} for each training
instance.

By formulating the training in this manner, we break the strict sequential dependency inherent in
autoregressive models, thereby enabling efficient, parallel training.

3.3 POSITION EMBEDDING

When a last hidden state is fed back into the model as an input, it inherits the same positional
encoding as its corresponding original token embedding. For instance, the positional encoding for
hk
i is identical to that of e(xi) for all iterations k.

4 EXPERIMENTS

Our evaluation comprises six main components:

1. We first present the results of large-scale pretraining for our model on the 300B-token Pile
dataset (Gao et al., 2020), analyzing its scaling behavior and language modeling performance
in comparison to the official Pythia suite (Biderman et al., 2023).

2. Next, we assess our model on a broad range of downstream tasks, including general bench-
marks and instruction-following, and compare its performance with the official Pythia suite, the
PonderLM-Pythia (Zeng et al., 2025), and established models such as OPT (Zhang et al., 2022),
Bloom (Le Scao et al., 2023), and TinyLLaMA (Zhang et al., 2024).

3. We further benchmark our approach against several competitive baselines, including Looped
Transformer (Giannou et al., 2023), Pause Token (Goyal et al., 2023), PonderLM, and models
with doubled parameter counts.

4. To validate the effectiveness of our method on off-the-shelf foundation models, we perform con-
tinual pretraining on Llama-3-3B (Grattafiori et al., 2024).

5. Finally, we conduct an ablation study to analyze the impact of key hyperparameters.

4.1 LARGE-SCALE PRETRAINING ON PILE

We begin by validating our method at scale. We select the Pile (Gao et al., 2020), a substantial 300B-
token dataset, as it provides a comprehensive pretraining corpus while remaining computationally
tractable.We pretrain models based on the Pythia architecture (Biderman et al., 2023) for two key
reasons.. First, its training protocol, including all hyperparameters, is publicly available, enabling
a highly controlled experiment where the gains from our method can be isolated. Second, this
foundation allows for a direct and rigorous comparison against both the official Pythia models and
relevant prior work like PonderLM-Pythia (Zeng et al., 2025).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot and five-shot accuracy (%) on downstream tasks. All pretrained model weights
used for comparison are obtained from their official repositories. ∆acc indicates the average ac-
curacy improvement over the corresponding Pythia baseline. Italicized models are shown but not
bolded, since they use significantly larger training data or parameters, and their avg acc are marked
in red when outperformed by our model. Ponder refers to the PonderLM-Pythia model, whose infer-
ence cost is twice ours under the same parameter size, with results taken from their original paper.

Model (#training tokens)
Lambada
OpenAI

ARC
-E

Lambada
Standard

ARC
-C

Wino
Grande PIQA Hella

Swag SciQ RACE Avg acc /
∆acc ↑

0-shot

Pythia-410M (300B) 51.4 52.2 36.4 21.4 53.8 66.9 33.7 81.5 30.9 47.6
OPT-350M (300B) 45.2 44.0 35.8 20.7 52.3 64.5 32.0 74.9 29.8 44.4
Bloom-560M (366B) 34.3 47.5 33.3 22.4 51.5 63.8 31.5 80.3 30.5 43.9
Ponder-410M (300B) 56.9 51.9 45.3 22.6 56.0 68.7 37.0 81.4 33.8 50.4
Pythia-1B (300B) 55.9 56.8 42.0 24.2 52.5 70.5 37.7 83.3 32.7 50.6
Ours-410M (Pythia Arch, 300B) 59.1 54.0 47.3 24.6 55.5 69.4 37.7 86.2 33.5 51.9 / +4.3

Pythia-1.4B (300B) 61.6 60.4 49.7 25.9 57.5 70.8 40.4 86.4 34.1 54.1
OPT-1.3B (300B) 57.9 57.1 52.5 23.4 59.7 71.8 41.6 84.3 34.3 53.6
Bloom-1.7B (366B) 46.2 56.4 44.5 23.7 56.8 68.5 37.5 85.0 33.2 50.2
Ponder-1.4B (300B) 65.2 62.0 53.8 27.0 60.1 72.6 44.0 89.0 35.2 56.5
Tinyllama-1.1B (3T) 58.8 60.3 49.3 28.0 59.0 73.3 45.0 88.9 36.4 55.4
Pythia-2.8B (300B) 64.6 64.4 54.3 29.5 60.2 73.8 45.4 88.5 34.9 57.3
Ours-1.4B (Pythia Arch, 300B) 67.6 64.1 57.1 30.2 60.9 72.9 45.8 91.0 37.1 58.5 / +4.4

5-shot

Pythia-410M (300B) 43.9 54.7 32.8 22.3 53.4 68.0 33.8 88.9 30.4 47.6
OPT-350M (300B) 38.3 45.4 32.1 20.5 53.0 65.8 31.9 85.7 29.5 44.7
Bloom-560M (366B) 29.4 50.2 29.7 21.9 52.7 64.2 31.4 88.0 30.0 44.2
Ponder-410M (300B) 48.9 58.7 43.7 26.1 54.0 70.5 37.3 91.0 32.4 51.4
Pythia-1B (300B) 48.3 58.6 35.8 25.4 52.8 71.3 37.7 91.6 31.7 50.4
Ours-410M (Pythia Arch, 300B) 52.1 58.0 45.0 26.0 54.6 69.2 37.9 91.7 32.6 51.9 / +4.3

Pythia-1.4B (300B) 54.5 63.1 44.5 28.8 57.1 71.0 40.5 92.4 34.6 54.1
OPT-1.3B (300B) 54.0 60.4 49.0 26.9 56.9 72.4 38.5 91.8 35.4 52.7
Bloom-1.7B (366B) 42.5 58.8 41.5 26.2 57.7 68.7 37.6 91.9 33.5 50.9
Ponder-1.4B (300B) 59.2 67.5 49.9 32.4 60.4 73.5 44.2 94.3 37.1 57.6
Tinyllama-1.1B (3T) 53.8 64.8 45.0 31.1 59.4 73.8 44.9 94.0 36.4 55.9
Pythia-2.8B (300B) 59.0 67.0 50.7 31.0 61.1 74.4 45.3 93.7 35.9 57.6
Ours-1.4B (Pythia Arch, 300B) 63.6 67.4 56.0 32.6 64.0 73.5 46.4 94.5 37.9 59.5 / +5.4

4.1.1 SCALING PROPERTIES

As illustrated in Figure 1, our pretrained models demonstrate superior scaling properties in both pa-
rameter and data efficiency. Ours-1.26B (Pythia Arch), for instance, matches the performance of the
official Pythia-2.8B with 55% fewer parameters. Furthermore, ours-1.4B (Pythia Arch) converges
to the official version’s final performance using 62% less training data. Additional scaling curves on
GPT-2 and LLaMA, presented in Appendix E, further validate the generalizability of our method.

4.1.2 LANGUAGE MODELING ABILITY

To further quantify these pretraining gains, we evaluate perplexity (PPL) on several standard bench-
marks (Pile validation, Wikitext (Merity et al., 2016), and the Lambada (Paperno et al., 2016)). The
results in Figure 5 show that our method delivers substantial and consistent PPL reductions across
all model sizes and datasets. Notably, ours-1.4B (Pythia Arch) is better than offical Pythia-2.8B.

4.2 DOWNSTREAM TASK EVALUATION

We now evaluate the practical capabilities of our previous pretrained Pythia models on a range of
downstream applications.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 1 2 3

— Pythia-410m, avg score=1.73
— Ours-410m (Pythia Arch), avg score=2.36

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 1 2 3 4

— Pythia-1.4B, avg score=2.24
— Ours-1.4B (Pythia Arch), avg score=3.01

Figure 6: Instruction-following evaluation on MT-Bench. Our pretrained Pythia models outperform
their official Pythia counterparts in all categories.

4.2.1 GENERAL DOWNSTREAM TASKS

Datasets. Following (Gu & Dao, 2023; Zeng et al., 2025), we including LAMBADA (Paperno
et al., 2016), SciQ (Welbl et al., 2017), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020),
WinoGrande (Sakaguchi et al., 2021), ARC-Easy and ARC-Challenge (Clark et al., 2018), RACE
(Lai et al., 2017) for comprehensive evaluation.

Baselines. We compare our pretrained Pythia models against several strong baselines: (1) the official
Pythia models; (2) the PonderLM-Pythia models from prior work; (3) several open-source models
trained on a similar data volume, including OPT (Zhang et al., 2022) and Bloom (Le Scao et al.,
2023); and (4) TinyLLaMA (Zhang et al., 2024), a powerful model trained on ten times the amount
of data (3T tokens vs. our 300B).

Results. As shown in Table 2, our pretrained Pythia models consistently outperform similarly-sized
baselines, including official Pythia, PonderLM-Pythia, OPT, and Bloom. Remarkably, our models
also surpass competitors more than twice their size. For instance, ours-410M (Pythia Arch) exceeds
the performance of official Pythia-1B and Bloom-1.7B, while ours-1.4B (Pythia Arch) outperforms
Pythia-2.8B. Furthermore, our pretrained Pythia-1.4B significantly surpasses TinyLLaMA-1.1B, de-
spite the latter being trained on 10× more data.

4.2.2 INSTRUCTION-FOLLOWING ABILITY

We evaluate instruction-following capabilities by fine-tuning the 410m and 1.4B versions of ours
(Pythia Arch) and the official Pythia models on the Alpaca dataset (Taori et al., 2023). When tested
on the MT-Bench benchmark (Zheng et al., 2023), the our pretrained Pythia models consistently
outperform their official Pythia counterparts across all categories, as shown in Figure 6. This results
in significant average score improvements of 0.63 for the 410m model and 0.77 for the 1.4B model.

4.3 COMPARISON WITH BASELINE METHODS

To contextualize the performance and efficiency of our proposed method, we conduct a detailed
comparison against several competitive baselines on the LLaMA architecture.

Baselines. We compare our model against four strong approaches:

• Looped Transformer (Saunshi et al.): Processes the input by iterating through the entire set of
transformer layers multiple times.

• Pause Token (Goyal et al., 2023): Inserts a specified number of learnable “pause tokens” before
generating each token, allowing for additional computation per step.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison on various benchmarks. Inference FLOPs are relative to the vanilla model.
Actual throughput is evaluated following Wu & Tu (2024). Our method shows superior performance
across all metrics while maintaining inference efficiency. Detailed downstream tasks performance
are provided in Appendix D.

Model Inference
FLOPs

Throughput
(tokens/s) Pile Lambada

OpenAI Wikitext Lambada
Standard

Avg Acc
0 shot

Avg Acc
5 shot

LLaMA-1.4B (train from scratch) 1× 221.19 9.04 11.42 20.18 27.52 47.7 47.5

Methods with comparable (2×) inference FLOPs
Looped LLaMA-1.4B (2 loops) 2× 112.33 8.35 9.22 18.34 21.50 49.8 48.5
Pause LLaMA-1.4B (1 pause) 2× 112.57 8.58 9.87 19.10 19.90 48.5 48.2
Pondering LLaMA-1.4B (1 step) 2× 110.16 8.33 9.26 18.36 19.95 49.6 49.2
LLaMA-2.8B (train from scratch) 2× 110.50 8.23 8.93 18.09 17.08 49.8 50.6
Our LLaMA-1.4B 2× 111.55 7.89 7.39 16.99 12.20 52.3 51.9

Methods with higher (4×) inference FLOPs
Looped LLaMA-1.4B (4 loops) 4× 59.48 8.04 8.14 17.35 15.14 50.9 50.5
Pause LLaMA-1.4B (3 pauses) 4× 60.43 8.17 7.92 17.81 13.76 51.0 50.4
Pondering LLaMA-1.4B (3 steps) 4× 55.42 8.03 8.02 17.23 15.48 51.5 51.5

• Pondering LLM (Zeng et al., 2025): Iteratively refines its output by feeding a “pondering em-
bedding” (a probability-weighted sum of token embeddings) back into the model for several steps.

• Scaled-up Model: As an oracle baseline, we train a standard LLaMA model with twice the num-
ber of parameters (2.8B). This model has inference FLOPs comparable to our method.

For the iterative baselines (Looped Transformer, Pause Token, and PonderLM), we evaluate them
under two distinct computational budgets. First, we configure them to match the inference FLOPs
of our method (a 2× increase over the vanilla model), corresponding to 2 loops, 1 pause token, or
1 pondering step. Second, to provide a more challenging comparison, we pretrain them in a setting
with double the inference FLOPs of our method (a 4× increase), corresponding to 4 loops, 3 pause
tokens, or 3 pondering steps.

Settings. We use the LLaMA-1.4B model as our testbed. For a fair comparison, all models are
trained on a 26B token dataset using identical hyperparameters. We report perplexity (PPL; lower
is better) on the Pile validation set, Wikitext, and the Lambada datasets (OpenAI and standard ver-
sions), as well as the average accuracy on the nine downstream tasks previously mentioned. The
computational overhead is measured in relative inference FLOPs against the vanilla 1.4B model.

Training Computation Analysis. We analyze the training FLOPs relative to the vanilla model when
trained on the same amount of data. For the baselines configured with the higher (4×) inference
budget (e.g., 4 loops, 3 pause tokens, or 3 pondering steps), the training cost scales linearly, resulting
in approximately 4× the FLOPs of the vanilla baseline. The scaled-up model (2.8B) incurs roughly
2× the training FLOPs due to the doubled parameter count.

For our method, the training process involves three components: (1) an initial forward pass on the
original sequence (1×); (2) K Jacobi iterations performed on an interleaved sequence of tokens and
thoughts (which doubles the sequence length, incurring 2× cost per iteration); and (3) a final forward
pass on the interleaved sequence (2×). The total training cost multiplier is therefore formulated as
1 + 2K + 2 = 3 + 2K. In our experiments, we sample K from {2, 3} (E[K] = 2.5) rather than
{2, 3, 4} to prioritize efficiency as we empirically found this range sufficient, resulting in an average
training cost of approximately 3 + 2× 2.5 = 8× that of the vanilla baseline.

Results. The results, summarized in Table 3, show that our method consistently achieves the low-
est perplexity across all language modeling benchmarks and the highest average accuracy on the
downstream tasks. Notably, our approach not only surpasses all methods in the comparable (2×)
inference FLOPs category, including the LLaMA-2.8B oracle, but also demonstrates a significant
advantage over methods operating at a much higher (4×) inference budget. This highlights the
superior performance and inference efficiency of our approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2.14

2.16

2.18

2.20

2.22

Tr
ai

ni
ng

 L
os

s

Vanilla Loss
Ours Loss

1 2 3 4 5
Training Tokens (B)

0

2

Le
ar

ni
ng

 R
at

e ×10 5

Continue Pretrain: Loss & LR

Figure 7: Training loss comparison of our
method and vanilla continual pretraining for the
LLaMA-3-3B on 5B tokens from SlimPajama.

0 1 2 3 5
Num of Jacobi iterations

2.70

2.72

2.74

2.76

Lo
ss

0 1 2 3
Num of chained latent thoughts (0 = Vanilla)

2.64

2.72

2.80

Lo
ss

Figure 8: (Top) Impact of the num of Jacobi iter-
ations . (Bottom) Chaining more latent thoughts
before each token consistently lowers loss.

Table 4: 0-shot and 5-shot accuracy (%) on downstream tasks, evaluating LLaMA-3-3B enhance-
ment via continual pre-training (CPT). The table compares three models: original LLaMA-3-3B,
vanilla CPT, and our method with continual pre-training.

Model Lambada
OpenAI

ARC
-E

Lambada
Standard

ARC
-C

Wino
Grande PIQA Hella

Swag SciQ RACE Avg acc /
∆acc ↑

0-shot

LLaMA-3-3B 70.1 74.5 63.7 42.2 69.0 76.8 55.4 95.5 39.4 65.2
Standard CPT 69.4-0.7 76.2+1.7 65.1+1.4 42.5+0.3 67.5-1.5 77.2+0.4 55.1-0.3 94.1-1.4 39.6+0.2 65.2
Ours CPT 70.8+0.7 76.3+1.8 67.5+3.8 42.1-0.1 69.0+0.0 77.9+1.1 56.1+0.7 94.6-0.9 40.5+1.1 66.2

5-shot

LLaMA-3-3B 66.8 78.1 64.1 44.1 71.4 78.6 56.1 96.4 41.8 66.4
Standard CPT 66.1-0.7 77.7-0.4 66.0+1.9 43.0-1.1 71.5+0.1 78.3-0.3 55.8-0.3 96.5+0.1 40.6-1.2 66.2
Ours CPT 69.0+2.2 78.6+0.5 67.4+3.3 48.0+3.9 72.9+1.5 78.1-0.5 57.0+0.9 96.7+0.3 41.4-0.4 67.7

4.4 EFFECTIVENESS ON OFF-THE-SHELF FOUNDATION MODELS

We further investigate whether our method can effectively enhance existing, large-scale foundation
models. To this end, we take the official LLaMA-3-3B (Grattafiori et al., 2024) model and perform
continual pre-training on 5 billion tokens from the SlimPajama dataset (Shen et al., 2024). We
compare the original model’s performance with two versions after this additional training: a vanilla
continual pretraining baseline and our proposed approach. As illustrated in Figure 7, our method
achieves a lower training loss than the vanilla baseline after consuming less than 1B tokens, and
this performance gap widens as training progresses. As shown in Table 4, evaluation on our nine
standard downstream tasks reveals that our method provides a substantial boost in performance,
demonstrating its utility as a plug-and-play enhancement for off-the-shelf models.

4.5 ABLATION STUDY

In this section, we study the impact of key components. We ablate the number of Jacobi iterations,
different position embedding strategies, and the number of latent thoughts (chain analogous to CoT)
generated before each token. All experiments are conducted on the Pythia-70m with 30B tokens.

As shown in Figure 8 (Top), increasing the number of Jacobi iterations initially lowers the loss,
but the improvement saturates after only 3 iterations, which corroborates the fast convergence we
observe (Figure 4). Meanwhile, as illustrated in Figure 8 (Bottom), chaining more latent thoughts
consistently leads to better performance, which demonstrates our method’s potential for pretrain-
ing LLMs to generate a chain of latent thoughts before predicting each token. Regarding position
embedding, we compared assigning sequential position ids to thoughts versus reusing the token’s

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

position id for its corresponding thoughts and found a negligible performance difference. We use
the latter strategy to avoid the need for long-context capabilities.

5 CONCLUSION

In this paper, we introduce the approach of pretraining language models with latent thoughts, which
can be effectively realized using large-scale general corpora. Language models pretrained with latent
thoughts consistently outperforms its counterparts with double the parameters (at equal inference
cost), as well as prior related methods like PonderLM, looped, and paused models, even when
they use double the inference budget. Furthermore, we show that chaining latent thoughts, akin to
COT, consistently improves model performance. We posit that our work introduces a new potential
dimension for scaling the capabilities of language models.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
arXiv preprint arXiv:2309.14402, 2023.

Afra Amini, Tim Vieira, Elliott Ash, and Ryan Cotterell. Variational best-of-n alignment. arXiv
preprint arXiv:2407.06057, 2024.

Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra, Victor
Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan
Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic
depth scaling to foster adaptive internal thinking. arXiv preprint arXiv:2502.13842, 2025a.

Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan
Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic
depth scaling to foster adaptive internal thinking, 2025b. URL https://arxiv.org/abs/
2502.13842.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 9, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, and Haowei Zhang et al. Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learning. 2025. URL https://arxiv.org/abs/
2501.12948.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

10

https://arxiv.org/abs/2502.13842
https://arxiv.org/abs/2502.13842
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398–11442. PMLR, 2023.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Aaron Grattafiori, Abhimanyu Dubey, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024. URL https://arxiv.org/abs/2407.21783.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models and
the sweetness of best-of-n sampling. arXiv preprint arXiv:2406.00832, 2024.

Kobi Hackenburg, Ben M Tappin, Paul Röttger, Scott A Hale, Jonathan Bright, and Helen Margetts.
Scaling language model size yields diminishing returns for single-message political persuasion.
Proceedings of the National Academy of Sciences, 122(10):e2413443122, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Michael Hassid, Tal Remez, Jonas Gehring, Roy Schwartz, and Yossi Adi. The larger the better?
improved llm code-generation via budget reallocation. arXiv preprint arXiv:2404.00725, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022a.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
empirical analysis of compute-optimal large language model training. Advances in Neural Infor-
mation Processing Systems, 35:30016–30030, 2022b.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Shishir G Patil, Matei Zaharia, Joseph E
Gonzalez, and Ion Stoica. Llms can easily learn to reason from demonstrations structure, not
content, is what matters! arXiv preprint arXiv:2502.07374, 2025.

Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han Tian, Zhizhen Zhong, Guyue Liu, Ying
Zhang, and Kai Chen. Understanding communication characteristics of distributed training. In
Proceedings of the 8th Asia-Pacific Workshop on Networking, pp. 1–8, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

11

https://arxiv.org/abs/2407.21783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358–50376, 2023.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Effi-
cient large-scale language model training on gpu clusters using megatron-lm. In Proceedings of
the international conference for high performance computing, networking, storage and analysis,
pp. 1–15, 2021.

Bo Pang, Hanze Dong, Jiacheng Xu, Silvio Savarese, Yingbo Zhou, and Caiming Xiong.
Bolt: Bootstrap long chain-of-thought in language models without distillation. arXiv preprint
arXiv:2502.03860, 2025.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Suchita Pati, Shaizeen Aga, Mahzabeen Islam, Nuwan Jayasena, and Matthew D Sinclair. Com-
putation vs. communication scaling for future transformers on future hardware. arXiv preprint
arXiv:2302.02825, 2023.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. arXiv preprint arXiv:2404.15758, 2024.

Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, second edition,
2003.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with
latent thoughts: On the power of looped transformers. In The Thirteenth International Conference
on Learning Representations.

Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, et al. Bond: Aligning llms
with best-of-n distillation. arXiv preprint arXiv:2407.14622, 2024.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, and Eric Xing. Slimpajama-dc: Un-
derstanding data combinations for llm training. arXiv preprint arXiv:2309.10818, 2024. URL
https://arxiv.org/abs/2309.10818.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Benedikt Stroebl, Sayash Kapoor, and Arvind Narayanan. Inference scaling flaws: The limits of llm
resampling with imperfect verifiers. arXiv preprint arXiv:2411.17501, 2024.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho.
Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv
preprint arXiv:2211.04325, 1, 2022.

12

https://arxiv.org/abs/2309.10818
https://github.com/tatsu-lab/stanford_alpaca

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessandro
Sordoni. Guiding language model reasoning with planning tokens, 2024. URL https://
arxiv.org/abs/2310.05707.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637, 2024.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Boyi Zeng, Shixiang Song, Siyuan Huang, Yixuan Wang, He Li, Ziwei He, Xinbing Wang, Zhiyu
Li, and Zhouhan Lin. Pretraining language models to ponder in continuous space. arXiv preprint
arXiv:2505.20674, 2025.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

13

https://arxiv.org/abs/2310.05707
https://arxiv.org/abs/2310.05707
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

Our model’s demonstrated superiority in performance and efficiency necessitates a discussion of its
dual-use nature. The same advanced capabilities that make it a powerful tool for positive applications
could also be leveraged to generate highly convincing misinformation at scale. Furthermore, its
novel architecture may present unknown security and privacy risks. We believe the responsible
advancement of this technology requires a parallel effort to understand and mitigate these challenges.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have included the complete source code in the
supplementary material. We also provide core hyperparameter and implementation settings in this
paper. Using the provided code and specified configurations, all main results and figures reported in
this paper can be fully reproduced. A public code repository will be made available upon publication.

C THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were not used for the core methodology or the main research
content of this paper. We utilized an LLM solely for the purpose of improving the language and
clarity of the manuscript.

D DETAILED DOWNSTREAM TASKS PERFORMANCE

Table 5: Zero-shot and five-shot accuracy (%) on downstream tasks, as described in Section 4.3.

Model Lambada
OpenAI

ARC
-E

Lambada
Standard

ARC
-C

Wino
Grande PIQA Hella

Swag SciQ RACE Avg acc /
∆acc ↑

0-shot

LLaMA-1.4B (train from scratch) 50.6 52.2 37.1 20.9 53.0 65.6 33.6 84.5 31.8 47.7

Methods with comparable (2×) inference FLOPs
Looped LLaMA-1.4B (2 loops) 53.6 54.3 41.8 23.6 52.9 69.3 35.8 83.6 33.5 49.8
Pause LLaMA-1.4B (1 pause) 51.8 53.8 40.1 21.8 52.5 67.5 34.7 83.1 30.9 48.5
Pondering LLaMA-1.4B (1 step) 53.8 53.2 42.6 23.0 52.6 68.4 35.9 83.2 33.3 49.6
LLaMA-2.8B (train from scratch) 54.3 53.4 43.5 24.4 53.1 68.0 36.2 83.4 31.5 49.8
Our LLaMA-1.4B 58.1 58.0 48.2 25.2 53.9 70.7 38.6 85.9 32.4 52.3/+4.6

Methods with higher (4×) inference FLOPs
Looped LLaMA-1.4B (4 loops) 55.8 55.2 45.6 23.2 54.1 68.9 37.6 84.9 33.0 50.9
Pause LLaMA-1.4B (3 pauses) 56.2 54.0 46.5 24.2 55.3 68.8 36.7 85.4 32.3 51.0
Pondering LLaMA-1.4B (3 step) 56.7 56.3 45.4 23.8 55.6 68.3 37.8 86.3 33.0 51.5

5-shot

LLaMA-1.4B (train from scratch) 45.1 53.5 34.7 22.3 50.9 66.1 33.6 89.3 31.6 47.5

Methods with comparable (2×) inference FLOPs
Looped LLaMA-1.4B (2 loops) 46.0 55.6 36.9 23.9 51.1 69.2 35.7 90.1 27.9 48.5
Pause LLaMA-1.4B (1 pause) 45.5 56.1 35.6 23.8 50.8 68.0 34.9 88.4 30.7 48.2
Pondering LLaMA-1.4B (1 step) 48.0 56.3 40.9 24.4 53.3 69.2 36.2 89.5 25.0 49.2
LLaMA-2.8B (train from scratch) 49.7 57.2 43.7 25.3 53.1 69.3 36.3 89.6 30.8 50.6
Our LLaMA-1.4B 49.8 59.6 45.6 27.7 56.3 69.8 38.7 91.3 28.0 51.9 /+4.4

Methods with higher (4×) inference FLOPs
Looped LLaMA-1.4B (4 loops) 48.0 58.5 42.8 25.0 54.8 70.4 37.6 89.2 28.5 50.5
Pause LLaMA-1.4B (3 pauses) 48.8 56.6 41.0 24.1 54.1 69.3 36.6 90.7 32.6 50.4
Pondering LLaMA-1.4B (3 step) 49.5 58.8 42.6 25.4 54.3 69.2 37.9 91.2 34.7 51.5

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

405M*7B 834M*15B 1.4B*26B
Parameters * Tokens

2.1

2.2

2.3

2.4

2.5

2.6

Lo
ss

2.48x
2.46x

GPT fitted
LLaMA fitted
GPT
Ours (GPT Arch)
LLaMA
Ours (LLaMA Arch)

Figure 9: Scaling curves for vanilla models and ours (GPT-2 Arch and LLaMA Arch).

E GENERALIZATION TO GPT-2 AND LLAMA

To verify the general applicability of our method, we apply our proposed latent mechanism to the
widely-used GPT-2 and LLaMA architectures.

Experimental Settings. We train both vanilla and latent-enhanced versions of these models from
scratch on a subset of the Pile dataset, with sizes ranging from 405M to 1.4B parameters. The exper-
imental setup, including the number of training tokens aligned with Chinchilla scaling laws (Hoff-
mann et al., 2022b). Detailed model configurations and training hyperparameters are provided in
Table 6.

Results. The scaling curves are presented in Figure 9. Our method provides significant and con-
sistent performance improvements for both GPT-2 and LLaMA across all model sizes. Notably,
ours-834M (GPT-2 Arch) and ours-834M (LLaMA Arch) achieve a validation loss comparable to
their vanilla counterparts trained with approximately 2.48x and 2.46x the parameter-token product,
respectively.

Table 6: Model sizes and hyperparameters for the scaling experiments on GPT-2 and LLaMA.

Parameters nlayers dmodel nheads Learning Rate Batch Size
(tokens)

Training
Tokens

405M 24 1024 16 3.0e-4 0.5M 7B
834M 24 1536 24 2.5e-4 0.5M 15B
1.4B 24 2048 32 2.0e-4 0.5M 26B

F COMPLEMENTING MODELS WITH TEST-TIME SCALING APPROACHES

We study whether our method (denoted Ours CPT) complement common test-time scaling strate-
gies, compared with a vanilla baseline (Standard CPT). We evaluate on TRUTHFULQA (ROUGE-
L) and GSM8K (Exact Match), and set the number of samples N ∈{1, . . . , 10} for Best-of-N and
Majority Voting.

Settings. We reuse the two models from Section 4.4: both start from the official LLaMA-3-3B
backbone and undergo continual pretraining on the same SlimPajama dataset. One is a vanilla
continual-pretraining baseline (Standard CPT), while the other incorporates our latent thoughts dur-
ing continual pretraining (Ours CPT). We evaluate three test-time strategies: Majority Voting, Best-
of-N (BoN), and Chain-of-Thought (CoT) prompting, varying only the number of samples N for
voting and BoN.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
N

20

25

30

35

40

45

Ex
ac

t M
at

ch
 (%

)

=11.07

GSM8K Majority Voting
 (Ours Standard)

Ours CPT
Standard CPT

1 2 3 4 5 6 7 8 9 10
N

20

30

40

50

60

70

Ex
ac

t M
at

ch
 (%

)

=9.78

GSM8K Best of N
 (Ours Standard)

Ours CPT
Standard CPT

Figure 10: Test-time scaling on GSM8K. Majority Voting (left) and Best-of-N (right). Across
N ∈ {1, . . . , 10}, Ours CPT improves more than the baseline.

1 2 3 4 5 6 7 8 9 10
N

35

40

45

50

55

60

65

Sc
or

e =9.94

TruthfulQA Majority Voting (RougeL)
 (Ours Standard)

Ours CPT
Standard CPT

1 2 3 4 5 6 7 8 9 10
N

35

40

45

50

55

60

65

70

Sc
or

e
=7.28

TruthfulQA Best of N (RougeL)
 (Ours Standard)

Ours CPT
Standard CPT

Figure 11: Test-time scaling on TRUTHFULQA. Majority Voting (left) and Best-of-N (right). Ours
CPT benefits more than Standard CPT across N .

F.1 MAJORITY VOTING

As N increases, both models improve, but the gap between them widens consistently on TRUTH-
FULQA and GSM8K. This pattern suggests that Ours CPT produces batches of answers that are
clustered and consistently correct, making aggregation particularly effective. (See Figure 10 (left)
and Figure 11 (left).)

F.2 BEST OF N

BoN likewise amplifies Ours CPT over Standard CPT and improves monotonically with N , indicat-
ing that our model reliably produces a diverse set of high-quality candidates from which a strong
single answer can be selected. While its gains are typically a bit smaller than Majority Voting at the
same N , the strong BoN curve is nevertheless evidence against mode collapse: Ours CPT generates
multiple plausible solutions, and either selecting the best (BoN) or aggregating them (voting) yields
consistent benefits. (See Figure 10 (right) and Figure 11 (right).)

F.3 COT

We further test CoT prompting on GSM8K. As summarized in Table 7, CoT improves both mod-
els, with Ours CPT benefiting more. This suggests a complementary relationship between the two
techniques, where their combination leads to more reliable outcomes.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Effect of CoT on GSM8K (Exact Match; higher is better). CoT improves both models and
yields consistently larger gains for Ours CPT.

Setting Standard CPT Ours CPT

without CoT 0.1001 0.1259
with CoT 0.2426 0.3290

G JACOBI CONVERGENCE ANALYSIS AND EQUIVALENCE TO SEQUENTIAL
INFERENCE

In this section, we provide a rigorous theoretical and empirical analysis to demonstrate that the par-
allel Jacobi iteration employed during training is mathematically consistent with standard sequential
inference. We structure our analysis along a four-step logical chain:

1. Convergence: The parallel iteration is theoretically guaranteed to converge to a fixed point H∗;
2. Exponential Rate: The rapid decay of iterative updates proves that the convergence is exponen-

tial;
3. Trajectory Alignment: Empirical evidence shows the iteration also converges to the sequential

solution Hseq;
4. Equivalence: By the uniqueness of limits, it follows that H∗ = Hseq, proving the solutions are

identical.

G.1 EXACT CONVERGENCE GUARANTEE OF PARALLEL TRAINING (FINITE-STEP
PROPERTY)

We view the Jacobi iteration in parallel training as a process of finding a fixed point. Let E ∈ RT×d

be the fixed input Embeddings, and H(k) ∈ RT×d be the hidden states at iteration k. We treat the
Transformer layers as a non-linear operator Φ, with the update rule H(k+1) = Φ(H(k);E). Our
goal is to find the fixed point H∗ satisfying H∗ = Φ(H∗;E).

Unlike general fixed-point problems, the Autoregressive Causality of the Transformer guarantees
stability. Specifically, since the computation of the i-th token depends strictly on preceding tokens
(j < i), convergence follows a clear inductive chain: the first token stabilizes immediately based
on the fixed input, and subsequently, any token k stabilizes once its preceding context (tokens 1 to
k − 1) is fixed.

This guarantees that for a sequence of length T , the entire sequence strictly converges to the fixed
point H∗ in at most T steps.

G.2 FAST EXPONENTIAL CONVERGENCE

While the above theorem provides a “worst-case” guarantee (taking T steps), the core advantage of
our method is that its convergence speed is significantly faster than T . We introduce the Banach
Fixed-Point Theorem for analysis.

Theoretical Analysis:

• Definition: According to the Banach Fixed-Point Theorem, if there exists a Lipschitz constant L
(0 ≤ L < 1) under some norm ∥ ·∥, such that for any Ha, Hb, ∥Φ(Ha)−Φ(Hb)∥ ≤ L∥Ha−Hb∥
holds, then the iteration must converge to a unique fixed point H∗.

• Convergence Speed: If L < 1, the error at iteration k will decay exponentially: ∥H(k) −H∗∥ ≤
Lk∥H(0)−H∗∥. This indicates that the algorithm possesses an exponential convergence property,
meaning the error magnitude shrinks by a fixed ratio L at each step.

• Posterior Error Estimation (Cauchy Property): Since the true fixed point H∗ is unknown, we
rely on the property of Cauchy Sequences. The upper bound of the error to the true solution is
determined by the RMSE of adjacent iterations:

∥H(k) −H∗∥ ≤ L

1− L
∥H(k) −H(k−1)∥︸ ︷︷ ︸

RMSE rk

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12
Jacobi Iterations

10 5

10 4

10 3

10 2
RM

SE
 C

ha
ng

e
(L

og
 S

ca
le

)
Effective L 0.345
R2 0.9550

RMSE Convergence (H(k) H(k 1))

Measured Data
Exponential Fit

1 2 3 4 5 6 7 8 9 10 11 12
Jacobi Iterations

10 6

10 5

10 4

10 3

10 2

RM
SE

 v
s.

Fin
al

 (L
og

 S
ca

le
)

Effective L 0.314
R2 0.9752

Convergence to Final (H(k) Hseq)

Measured Data
Exponential Fit

Figure 12: Empirical convergence analysis of the Jacobi iteration on our pretrained Pythia-410M.
(Left) The decay of the internal RMSE across 30 iterations shows that the parallel hidden states
converge exponentially to a fixed point, eventually hitting the BFloat16 numerical precision floor.
(Right) The convergence of the parallel hidden states towards the sequential autoregressive solution
over the first 10 iterations. We focus on the initial phase to highlight the rapid exponential alignment
with the sequential result before numerical noise dominates.

This inequality implies via a logical chain: as long as we observe the RMSE rk decaying at rate
L, it is mathematically guaranteed that the true error ∥H(k)−H∗∥ also tends to 0 at the same rate
L. If the operator Φ is a contraction mapping, then for any adjacent iteration steps:

∥H(k+1) −H(k)∥︸ ︷︷ ︸
rk+1

= ∥Φ(H(k))− Φ(H(k−1))∥ ≤ L · ∥H(k) −H(k−1)∥︸ ︷︷ ︸
rk

Recursively, we obtain rk ≤ Lk · r0. This proves that: under a contraction mapping (L < 1), the
RMSE rk must decay exponentially.

Empirical Verification: We tracked the RMSE rk for our pretrained Pythia-410M model. The
results are shown in Figure 12 (Left).

• Log-Linear Fitting: To quantify the convergence rate and verify the exponential decay hypothesis
(rk ∝ Lk), we linearize the relationship by taking the base-10 logarithm:

log10(rk) ≈ k · log10(L) + C

This equation indicates that if the convergence is exponential, the RMSE curve should form a
straight line on a semi-logarithmic scale, with the slope corresponding to log10(L).

• Exponential Decay: In the active convergence phase (first ∼ 10 iterations), the RMSE exhibits
a strict linear trajectory on the semi-logarithmic scale (R2 > 0.95), confirming the exponential
decay law consistent with the contraction mapping theory.

• Effective Lipschitz Constant (L): The fitting yields L ≈ 0.345 < 1.
• Practical Implication: L ≈ 0.345 implies an extremely rapid convergence rate.

– Reducing the error to 1% (10−2) of the initial value requires only ∼ 4 iterations.
– Reducing the error to 0.1% (10−3) requires only ∼ 6 iterations.

• Precision Floor: The convergence stabilizes at the BFloat16 precision limit (∼ 10−5), confirming
the algorithm has reached the maximum precision allowed by the hardware.

G.3 ITERATION ALSO CONVERGES TO THE SEQUENTIAL SOLUTION HSEQ

“Sequential Inference” produces the standard autoregressive result Hseq, and the result of the parallel
iteration H(k) also converges to Hseq.

Verification: To empirically verify this, we calculated the RMSE between the parallel state H(k)

at iteration k and the sequential ground truth Hseq. As shown in Figure 12 (Right), the distance
∥H(k) −Hseq∥ similarly exhibits exponential decay. Within ∼ 9 iterations, the difference drops to
the BFloat16 precision floor (∼ 10−5).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
of iterations

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r RMSE Change

0 5 10 15 20 25 30
of iterations

0.00

0.02

0.04

0.06

0.08

0.10

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r RMSE Change

Figure 13: Randomizing the iteration count prevents depth overfitting. Left: Training with a
fixed iteration count (K = 2) causes a large spike at the first unseen step (k = 3). Right: Ran-
domized training (K ∈ {2, 3, 4}) yields stable, near-exponential decay of ∥H(k) − H(k−1)∥ and
convergence to the numerical floor.

G.4 EQUIVALENCE: PARALLEL SOLUTION H∗ MATCHES SEQUENTIAL RESULT HSEQ

Since the result of the parallel Jacobi iteration H(k) converges to both H∗ and Hseq, by the unique-
ness of limits, we know that H∗ = Hseq, proving the two are completely identical.

H RANDOMIZING THE ITERATION COUNT

Setup. We compare two schemes for the number of Jacobi iterations used in the hidden-state
update: (i) a fixed iteration scheme with K = 2; and (ii) a randomized iteration scheme where
K ∼ Unif{2, 3, 4}. All other training settings are identical. At evaluation, we track the root mean
squared change of hidden states RMSE(k) = ∥H(k) −H(k−1)∥ over up to 30 iterations.

Observation. With fixed K = 2, the curve exhibits a pronounced spike at the first unseen step
(k = 3), indicating overfitting to a specific computational depth and poor generalization beyond
trained iterations. In contrast, randomized K ∈ {2, 3, 4} induces a smooth, near-exponential decay
that persists well beyond the trained range, converging to the BFloat16 numerical floor.

I TRAINING DETAILS

The primary computational cost comes from pretraining Ours-1.4B on the 300B-token Pile dataset.
This pretraining was conducted on a cluster of high-performance 64GB GPUs and required a total
of 73,047 GPU hours.

19

