Under review as a conference paper at ICLR 2026

MIMIC-BENCH: EXPLORING THE USER-LIKE THINK-
ING AND MIMICKING CAPABILITIES OF MULTIMODAL
LLARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid advancement of multimodal large language models (MLLMs) has
greatly prompted the video interpretation task, and numerous works have been
proposed to explore and benchmark the cognition and basic visual reasoning ca-
pabilities of MLLMs. However, practical applications on social media platforms
demand MLLMs that can emulate user-like thinking and behavior when interpret-
ing user-generated videos, which has been rarely studied in current research. To
bridge the gap and get closer to general practical artificial intelligence (Al), we
first construct MIMIC-Data, a large-scale dataset containing 150K+ user-shared
videos with corresponding information including captions, tags, comments, efc.
Then, we present MIMIC-Bench, a large-scale benchmark building upon curated
4,000 user-shared videos from MIMIC-Data, which is designed to evaluate user-
like thinking and mimicking capabilities of MLLMs in real-world video contexts.
MIMIC-Bench not only supports user-like thinking challenges including creator
intent, user feedback interpretation, efc., but also introduces a novel comment imi-
tation task to assess whether MLLMs can generate human-like responses to video
content. Based on MIMIC-Data and MIMIC-Bench, we develop MIMIC-Chat,
which integrates spatial and temporal features into a large language model, and
finetunes the model to perform user-like thinking and mimicking tasks. Extensive
experiments conducted based on 24 existing MLLMs and our MIMIC-Chat model
that current MLLMs exhibit limited capabilities to perform human-like think-
ing and responses, and MIMIC-Chat performs better to some extent. We hope
MIMIC-Bench can contribute to the advancement of human-aligned video under-
standing in the multi-modal era. The MIMIC-Data, MIMIC-Bench, and MIMIC-
Chat will be released upon the publication.

1 INTRODUCTION

In recent years, video platforms have rapidly emerged as mainstream media for social interaction
and knowledge sharing. Beyond passive viewing, users actively participate in shaping the video
ecosystem through content creation, commenting, and engagement. A single user-generated video
is often accompanied by rich metadata and viewer interactions, such as titles, descriptions, tags, and
comments, efc., which reflect not only the video content but also how humans perceive, interpret, and
respond to it. These contents embody high-level human cognition and social behavior, offering a rich
yet underexplored resource for evaluating machine intelligence. Studying how multi-modal large
language models (MLLMs) interpret such human-centric signals is crucial for advancing toward
general-purpose Al systems that can truly understand and engage into social and cultural contexts.

Driven by the effectiveness of integrating multimodal information into large language models
(LLMs) to acquire the scene perception ability (Radford et al., 2021; Li et al., 2021; Chen et al.,
2020; Wang et al., 2022; Cho et al., 2021; Wang et al., 2021), recent progress in MLLMs (Zhang
et al., 2025; Bai et al., 2025; Gao et al., 2024; Chen et al., 2024a) have led to strong performance
on tasks involving visual understanding, temporal reasoning, and open-ended language generation.
Powered by scalable visual encoders and multi-frame alignment mechanisms, these models achieve
impressive results on several benchmarks (Li et al., 2024b; Fu et al., 2024; Mangalam et al., 2023),
etc., which assess the capabilities of MLLMs in video captioning, action recognition, and event
prediction. However, these benchmarks typically rely on curated visual-only datasets and designer-
crafted questions, focusing on low- or mid-level perception tasks that emphasize what happens in the
video while neglecting how humans think , feel, and react. The lack of real-world user context and
organically generated content limits their capacity to evaluate whether MLLMs can simulate human



Under review as a conference paper at ICLR 2026

ﬁ Favorite » Share
Count ) y Count
Lu Comment " é”“ .
oun
$> Tags 88 Category
N
é Description Q Topic

1 < A7 A
AmdaA, *.5 ¢
[&MLLMS + MIMIC-Chat (Ours)J

mment Matching (left, 4000) / Comment Popularity (right, 4000)

(a) All the information contained " i " . .
in @ User Generated Video (U6C) (b) User-like Thinking Task (c) User-like Mimicking Task

Figure 1: Overview of MIMIC-Bench. (a) Left: Multi-source metadata from user-shared videos. (b) Center:
User-like thinking task: across three axes—CIU, CAM, and UIU. (c) Right: User-like mimicking task:
human-like comment simulation pipeline.

cognition and language behavior in authentic video scenarios. Although some studies have begun
to explore emotions in multimodal data such as EmoLLM (Yang et al., 2024), efc., the practical
applications are more complex than simple emotional tasks.

To bridge this gap, we first introduce MIMIC-Data, which comprises 150K+ user-shared videos
and corresponding metadata information, as shown in Figure 1(a). Then, we construct MIMIC-
Bench, a large-scale benchmark designed to evaluate user-like thinking and behavioral capabilities
of MLLMs in real-world, user-centric video applications. Unlike prior benchmarks that focus pri-
marily on visual recognition and rely on synthetic or designer-curated questions, MIMIC-Bench is
grounded in real user-generated content and targets the human-like video understanding, i.e., how
creators and viewers interpret, react to, and communicate about video content. As shown in Figure
1(b)(c), the benchmark consists of two components: (1) a User-like Thinking Task that spans three
structured reasoning axes, including Creator Intent Understanding (CIU), Content Attribute Match-
ing (CAM), and User Interaction Understanding (UIU), and (2) a User-like Mimicking Task
that evaluates whether MLLMs can generate and identify human-like comments on video content.
Notably, MIMIC-Bench shifts the focus from factual QA to human-centered cognitive tasks, espe-
cially comment imitation, which directly evaluate whether MLLMs can approximate human-like
reasoning and expression.

We also introduce MIMIC-Chat, a multi-modal model designed to simulate human thinking and
expression. Built upon the spatial and temporal visual encoders and a large language model back-
bone, it is trained on over 150k video samples from the training set of MIMIC-Data, enabling joint
learning of video semantics and human-style responses. In summary, our key contributions are:

* We construct MIMIC-Data, a large-scale dataset containing all metadata information for
over 150K user-shared videos.

* We propose MIMIC-Bench, the first large-scale benchmark designed to evaluate human-
aligned reasoning and communicative behavior of MLLMs in practical video understand-
ing. Especially, we introduce a novel comment imitation task that offers a new lens to
assess human-like thinking and mimicking capabilities of MLLMs.

* We develop MIMIC-Chat, a multi-modal model trained on 150k+ real-world samples,
enabling the joint modeling of video semantics and social cognition.

* We conduct extensive experiments on MIMIC-Bench, and compare the performance of 24
state-of-the-art MLLMs and our MIMIC-Chat. Results show that current MLLMs exhibit
limited capabilities on MIMIC-Bench, and MIMIC-Chat performs better to some extent.

2 RELATED WORK

2.1 MULTI-MODAL LARGE LANGUAGE MODELS FOR VIDEO UNDERSTANDING
Recent advances in large language models (LLMs) (Eysenbach et al., 2023; Chiang et al., 2023)
have shown strong performance in open-ended reasoning, contextual understanding, and instruction



Under review as a conference paper at ICLR 2026

Parent-Child
ACG & Chinese —
o§o > Aesthetic - c
Traditional Chin Spontaneous =
| ‘ Cosplas, ACG U Captures

Beauty & Style ‘ Sharing Fun Moments
77 Ly e ’
! ns ily Life

oL

[

%OHumamtIu & Arts
Dance/ Painting/

& Calligraphy/ Music, etc

ets

The pe

ha

¢ ol @ 039 F;Im & Editin

/5

e
; /Q\Nnture & Trave
Travel Logs,
1& /v tural Scenery Sharing

Figure 2: Mimic-Data Overview. We select 150,000+ videos, and each video is guaranteed to be of high
quality and in line with public aesthetics. The videos can be categorized into 8 categories (Daily Life can be
divided into: Spontaneous Captures, Parent-Child, and Sharing Fun Moments).
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following (Radford et al., 2019; Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023).
Building on this progress, multi-modal large language models (MLLMs) (Dai et al., 2023; OpenAl,
2023; Team et al., 2023; Zhu et al., 2023) have emerged to jointly process visual and textual inputs.
Early works (Alayrac et al., 2022; Chen et al., 2022) introduced vision-language pretraining, while
recent models (Liu et al., 2023; ?; Sun et al., 2024) improved image-language alignment. As video
becomes more prominent, MLLMs have been extended to handle temporal dynamics and multi-
frame reasoning. Representative models like Video-LLaMA (Zhang et al., 2023; Cheng et al., 2024;
Zhang et al., 2025), InternVL (Chen et al., 2023; 2024b; Gao et al., 2024; Chen et al., 2024a), and the
Qwen-VL series (Bai et al., 2023; Wang et al., 2024a; Bai et al., 2025) combine visual encoders with
language backbones to perform well on video captioning, action localization, and Q&A, leveraging
spatiotemporal pooling, contrastive learning, and dense alignment. Despite excelling at factual un-
derstanding, most MLLMs fall short in modeling human-like cognition. These gaps highlight the
need reflecting real-world user intent and communication and motivates our work.

2.2 VIDEO BENCHMARKS AND EVALUATION PROTOCOLS

Numerous benchmarks (Fu et al., 2023; Li et al., 2023; Yu et al., 2023; Liu et al., 2025; Ning et al.,
2023; Wang et al., 2024b) and datasets (Marino et al., 2019; Goyal et al., 2017; Song et al., 2024)
have been developed to evaluate MLLMs on video understanding. Early works (Jang et al., 2017;
Chowdhury et al., 2018) focus on short-form video QA, testing recognition of visual entities and ac-
tions. Recent benchmarks (Li et al., 2024b; Fu et al., 2024; Mangalam et al., 2023; Wu et al., 2024)
extend evaluation to multimodal alignment, instruction following, long-range modeling, and multi-
turn dialogue. These resources have improved content-level evaluation, primarily assessing “what
happens in the video” via structured queries, while overlooking how humans interpret, react to, or
linguistically engage with videos. Most evaluations stress visual recognition but neglect emotional
and linguistic engagement with videos, while EmoLLM (Yang et al., 2024) touches affective reason-
ing yet leaves human-style commenting, social interaction, and expressive realism underexplored.
User-generated signals like comments, descriptions, and feedback are rarely included, despite their
relevance on real-world platforms. This limits assessment of models’ ability to simulate human
cognition and communication in natural contexts. In contrast, our benchmark incorporates real user
content and authentic responses to evaluate MLLMs from a human-aligned perspective.

3 BENCHMARK CONSTRUCTION — MIMIC-BENCH

In this section, we introduce MIMIC-Bench, a benchmark for evaluating human-aligned reasoning
and communicative behavior in real-world, user-centric video scenarios. It follows three core prin-
ciples: Realism—deriving tasks from authentic human interactions rather than synthetic prompts;
Task Orientation—designing evaluations around multiple-choice and generation tasks with prac-
tical grounding; and Human Alignment—measuring models’ ability to simulate human cognition
and expression in the video domain.

3.1 DATASET OVERVIEW

Data Source and Initial Collection. To construct MIMIC-Bench, we first collect over 150,000
user-generated videos from mainstream short video platforms (TikTok and YouTube), which form
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the foundation of MIMIC-Data. This dataset spans diverse topics such as lifestyle, education,
travel, beauty, and humor (Figure 2). Each video is paired with metadata, including titles, tags,
descriptions, comments, and interaction statistics, all sourced from publicly accessible content in
compliance with platform policies. To ensure quality and usability, we applied initial filtering to
remove videos with low resolution, excessive noise, or corruption, as well as those lacking mean-
ingful metadata (e.g., empty titles, no comments, very short duration). We prioritized samples with
rich viewer engagement—measured by comment volume and like count—ensuring that selected
videos reflect natural and diverse human responses. This high-quality pool forms the basis for both
benchmark construction and model training.

Multi-Source Metadata Composition. Each video is represented as a multi-modal, multi-field
unit combining content with surrounding human interactions. Beyond the visual and audio signals,
each sample includes user-level metadata: title (creator intent), tags and topic labels (categorical
annotations), description (context or emotional framing), category, user comments (subjective im-
pressions), and popularity indicators (like counts). These components capture not only what the
video presents but also how creators frame it and how viewers respond cognitively and emotionally.
Unlike datasets focused solely on video-text pairs, our structure reflects the full communication loop
of online video ecosystems.

Benchmark Subset Construction. To build tasks, we further filtered the 150,000 videos using
a ranking score based on engagement metrics (likes, favorites, shares), publisher influence, and
thematic relevance. We selected the top 2% from TikTok and top 5% from YouTube, yielding
4,000 highly engaging and representative samples.

These videos combine high content quality with rich user interaction and serve as the core resource
for constructing challenging, cognitively demanding evaluation tasks.

To ensure reliability, we implemented a three-step quality control process: selecting highly interac-
tive videos with rich viewer feedback, carefully designing distractors to avoid ambiguity, and con-
ducting a large-scale manual review of over 20,000 QA entries from 4,000 videos. This procedure
guarantees accuracy, coherence, and unambiguous semantics across the benchmark. The distribu-
tion of tasks reflects real-world user behavior rather than being artificially balanced, ensuring that
the benchmark maintains ecological validity and mirrors authentic application scenarios.

Fairness and Validity To enhance fairness and temporal validity, we further filtered out samples
that relied on ephemeral trends, niche memes, or culture-specific references. By retaining only
general and widely comprehensible semantics—such as emotional tone, social context, and stylistic
cues—MIMIC-Bench remains accessible across cultural backgrounds and stable over time.

3.2 TASK SUITE DESIGN

3.2.1 USER-LIKE THINKING TASK

To assess whether MLLMs can reason about video content in a human-aligned way, we design
seven single-choice tasks grouped into three axes: Creator Intent Understanding (CIU), Content
Attribute Matching (CAM), and User Interaction Understanding (UIU). These tasks leverage rich
metadata from MIMIC-Data to evaluate both perceptual and cognitive understanding. These tasks
are grounded in rich video metadata and evaluate both perceptual and cognitive understanding. De-
tailed information about the MIMIC-Bench benchmark, are provided in Appendix.

Creator Intent Understanding (CIU). This axis includes two sub-tasks. In Title Selection, the
model selects the title most likely assigned by the creator, based on thematic and stylistic cues. In
Description Selection, it identifies the description best aligned with the video’s content and intent.
Ground-truths come from original metadata; distractors are sampled from unrelated videos to ensure
semantic contrast and minimize stylistic leakage.

Content Attribute Matching (CAM). This axis comprises three tasks. In Tag Matching, the
model selects the tag that best captures content-level semantics. Topic Matching requires identifying
the most relevant thematic label, while Category Matching asks for the correct predefined content
category. All answers are derived from original annotations, and distractors are drawn from distinct
videos with non-overlapping labels.

User Interaction Understanding (UIU). This axis focuses on modeling viewer behavior. In Com-
ment Matching, the model selects the comment most likely reflecting genuine viewer feedback; the
ground-truth is the top-liked comment, and distractors come from unrelated categories. In Comment
Popularity, the model chooses the most-liked comment among four from the same video (top-1, top-
10, top-50, top-100), based on subtle linguistic and contextual signals. All tasks follow a four-way
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Figure 3: Overview of the proposed MIMIC-Chat architecture. Given sampled video frames, spatial and tem-
poral features are extracted using dual encoders and projected into language space via lightweight MLPs. The
projected visual tokens and task-specific instructions are fused and processed by a LoRA-enhanced InternLM?2-
Chat-8B model. The unified interface supports both structured reasoning tasks (e.g., classification) and open-
ended comment generation, enabling human-aligned video understanding.

single-choice format with one correct answer. The design emphasizes semantic confusion, distractor
diversity, and option balance, ensuring that task success reflects genuine understanding rather than
superficial cues or memorization. While some metadata-based tasks might appear straightforward,
the overall suite is cognitively demanding. In particular, comment-related tasks (e.g., Comment
Matching and Comment Popularity) require nuanced reasoning about social interaction, linguistic
appeal, and collective preferences, making them non-trivial and discriminative.

3.2.2 USER-LIKE MIMICKING TASK

Beyond structured reasoning, we introduce a novel task—Comment Imitation—to evaluate
whether MLLMs can simulat human-like comments in social video contexts. This task emphasizes
linguistic creativity, emotional expression, and social reasoning rather than factual correctness.

Task Motivation. As the second core component of MIMIC-Bench, this task captures the imagi-
native, affective, and context-aware nature of real viewer comments. It evaluates capability: gener-
ating authentic, human-style comments. Although the task inevitably involves subjective judgment,
we explicitly design the protocol and aggregation strategy to ensure reproducibility and comparabil-
ity, transforming subjective perception into a systematic evaluation dimension.

Task Setup. For each of the 4,000 benchmark videos, we collect the top-5 most-liked real com-
ments. Each of the 24 MLLMs then generates one comment per video, producing a pool of 5 real
and 24 model-generated comments, anonymized and randomly shuffled.

Human Evaluation. We conduct al human study using the same setup to provide a perceptual
reference. These annotations serve as both a performance upper bound and an indicator of which
Al-generated comments “deceive” human judges.

Evaluation Metrics. We use two metrics: Imitation Quality, based on the percentage of com-
ments judged as human and their average realism scores (0-5). Beyond serving as a benchmark com-
ponent, this protocol and its associated metrics also provide a methodological contribution, offering
a reusable framework for future studies on human-likeness evaluation in multimodal generation.

This task creates a unique loop—generation — judgment — scoring—offering a lens to assess
models’ social and linguistic alignment with humans in multimodal settings.

4 MIMIC-CHAT

In this section, we present MIMIC-Chat, a unified multimodal framework tailored for human-
aligned video understanding. The model supports both User-like Thinking Tasks and User-like
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Mimicking Tasks in MIMIC-Bench, enabling assessment of perception, cognition, and linguistic
behavior within a cohesive pipeline.

4.1 ARCHITECTURE OVERVIEW

MIMIC-Chat is composed of three key components: a spatiotemporal video encoder, a task-guided
instruction formatter, and a causal language model. This architecture supports both single-choice
classification and free-form comment generation under a unified input format.

The model takes a video V' and task-specific instruction 7" as input, and produces the output Y via:

Y = LM([vID],¢(V), [sEP],T) (1)

Here, ¢(V')’ denotes visual tokens extracted and projected from the video, while [VID] and [SEP]
are special tokens marking the multimodal boundaries. This design enables multimodal fusion and
instruction-following through a shared interface. It balances open-ended expressiveness with dis-
criminative precision, making it suitable for all tasks in MIMIC-Bench. A detailed architecture
diagram is shown in Figure 3.

4.2 VIDEO ENCODING AND VISUAL TOKEN EXTRACTION

To convert raw video into structured multimodal input, we adopt a spatiotemporal encoder with a
lightweight projection layer, ensuring compatibility with the language model backbone.

Frame Sampling and Preprocessing. We adopt a dual-branch design: the spatial branch uni-
formly samples 8 frames to capture scene-level cues, while the temporal branch consumes the full
frame sequence to preserve fine-grained dynamics and causal context. All frames are resized and
center-cropped to a fixed resolution before encoding.

Spatiotemporal Encoding via TimeSformer. The processed frames are input to a spatiotemporal
encoding pipeline composed of a spatial encoder (operating on sampled frames) and a temporal
encoder (operating on the full sequence), which together capture complementary spatial layouts and
temporal dependencies. It outputs a fixed-length token sequence:

o(V) ={v1,v9,...,0n}, v; € R 2)

MLP-Based Projection. We align visual tokens with the language space via a lightweight MLP:

v; = MLP(v;) 3)

For simplicity, Eq. (3) shows a generic projection; in practice, we use distinct spatial and temporal
projectors before fusion. The transformed sequence ¢(V')" ensures effective vision-language inte-
gration. We distinguish a spatial projector (mapping tokens from the sampled-frame branch) and a
temporal projector (mapping tokens from the full-sequence branch). Their outputs are subsequently
fused within the language model via gated integration, ensuring complementary spatial-temporal
reasoning.

Multimodal Input Construction. We concatenate the visual tokens ¢(V')" with the natural lan-
guage instruction 7', using special tokens [VID] and [SEP] to delineate modalities. Each token is
assigned modality-aware positional embeddings.

Language Model Integration. We employ InternLM-8B as the causal language model. It re-
ceives the multimodal sequence and generates either a structured classification output or a free-form
textual response depending on the task type.

This video encoder module forms the foundation for MIMIC-Chat’s high-level reasoning and gen-
eration capabilities, providing a consistent visual representation for diverse human-centered video
understanding tasks. For a more detailed explanation of the model architecture and training con-
figurations, refer to Appendix, where we provide additional insights on the system architecture and
benchmark construction.

4.3 TRAINING DATA CONSTRUCTION - MIMIC-DATA

We build an instruction-tuning dataset named Mimic-Data from 150,000+ high-quality videos, each
paired with multiple QA examples aligned with MIMIC-Bench tasks. This ensures consistency
between training and evaluation in both structure and intent.
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For the seven single-choice tasks (CIU, CAM, UIU), each sub-task is framed using a standardized
prompt (e.g., “Based on the video, choose the most appropriate tag/title/comment”), followed by
four candidate options. The correct answer guides the model to align visual-linguistic cues with se-
mantic labels. For the comment generation task, we use a unified prompt per video (e.g., “Generate
a natural and imaginative comment for this video.”) and provide the top-5 most-liked user com-
ments as references. This helps the model learn to express emotional nuance, associative thinking,
and stylistic variation.

4.4 TRAINING OBJECTIVE AND OPTIMIZATION

We use supervised instruction tuning to train MIMIC-Chat on all tasks, optimizing for accurate,
human-like responses to video and instructions.

Training Loss. All training samples are cast as question-answer pairs, allowing us to apply a
standard language modeling loss:

Y]
Lim = — Zlog P(yt ‘ X, y<t) 4

t=1

This formulation unifies structured classification (e.g., choice “A”) and open-ended generation (e.g,
full comments) under a single decoding objective.

Multi-task Learning. We employ a unified architecture without task-specific heads. Batches from
different tasks are randomly sampled, enabling the model to generalize across diverse task types by
interpreting the instruction and visual context.

Optimization Strategy. We fine-tune the full model except for the frozen visual backbone. Train-
ing leverages standard techniques including mixed-precision computation, dropout, gradient clip-
ping, and label smoothing for improved stability and generalization. This unified objective aligns
spatial-temporal semantics with human-centric reasoning goals, supporting both discriminative and
generative tasks in MIMIC-Bench.

Parameter-Efficient Tuning. Following (Hu et al., 2022), we integrate LoRA modules into select
attention layers of InternLM-8B and jointly train them with the multimodal projector. This approach
reduces memory usage while preserving performance. We further examine the contribution of the
temporal encoder, spatial/temporal projectors, and LoRA through ablation studies in Appendix.

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENTAL SETUP

We evaluate MIMIC-Chat and 24 baselines—including 21 open-source MLLMs and 3 powerful
proprietary models—as well as human participants on two key tracks in MIMIC-Bench: (1) User-
like Thinking Tasks, which cover structured reasoning problems based on metadata; and (2) User-
like Mimicking Tasks, which assess comment generation.

Implementation Details. For baseline models, we follow each model’s official preprocessing
strategy (including frame sampling and resolution). For MIMIC-Chat, we adopt the dual-branch
design described in Section 4: the spatial branch uniformly samples 8 frames, while the temporal
branch processes the full frame sequence. Prompts follow the format defined in Section 4. Subjec-
tive evaluation is conducted via a web interface. Three independent annotators judged each comment
on two dimensions: (i) whether it was human- or Al-written, and (ii) a realism score between 0 and
5. We summarize key ablation findings here and provide detailed results in the Appendix. Remov-
ing the temporal encoder or either projector leads to substantial performance drops, while excluding
LoRA causes consistent but smaller degradation.

5.2 USER-LIKE THINKING TASK PERFORMANCE

We evaluate all participants on the seven structured reasoning tasks in MIMIC-Bench, spanning three
axes: creator intent understanding (CIU), content attribute matching (CAM), and user interaction
understanding (UIU). Accuracy is reported per task and averaged across all subtasks. Results are
summarized in Table 1.

Human participants achieve an overall accuracy of 73.1%, maintaining strong consistency across
all reasoning axes and setting the upper bound on UIU tasks, particularly in Comment Matching
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Table 1: Accuracy (%) on the seven reasoning tasks in MIMIC-Bench, covering three cognitive axes: Creator
Intent Understanding (TiS: Title Selection, DeS: Description Selection), Content Attribute Matching (TaM: Tag
Matching, ToM: Topic Matching, CaM: Category Matching), and User Interaction Understanding (CoM: Com-
ment Matching, CoP: Comment Popularity). Overall denotes the average accuracy across all seven tasks. The

highest, second-highest, and third-highest scores are highlighted in purple , green , and pink , respectively.

Task Type CIU CAM UIu o
verall]

Models / Tasks TiST DeStT TaMt ToM1T CaM?t CoM?T CoP1
VideoChatGPT (Maaz et al., 2024) 27.6 33.1 24.8 233 16.7 23.8 223 24.1
Video-LLaVA (Lin et al., 2023) 27.0 41.2 68.3 324 17.0 24.6 25.8 31.6
VideoChat2 (Li et al., 2024b) 37.7 332 30.1 46.1 342 329 26.7 33.6
LLaVA-NeXT (Li et al., 2024a) 32.7 329 50.4 353 31.4 25.7 235 31.6
VideoLLaMA2 (Cheng et al., 2024) 39.2 38.2 63.8 423 36.1 37.7 27.1 393
VideoLLaMA3 (Zh 78.7 58.0 78.6 82.0 495 51.3 28.3 58.7
MiniCPM-V (Yao et a 77.6 65.4 71.0 78.6 49.1 55.0 28.9 59.2
MiniCPM-o (Yao et al 71.1 60.7 84.8 833 50.2 542 32.0 59.5
CogVLM2 (Hong et al., 2024) 5.1 375 83.6 70.3 55.0 41.9 29.9 50.2
Qwen2-VL (2B) (Wang et al., 2024a) 48.6 51.9 70.8 57.1 473 36.2 243 443
Qwen2-VL (7B) (Wang 75.0 753 84.7 76.4 33.1 522 273 574
Qwen2.5-VL (3B) (Bai et al 5 78.7 51.2 74.7 85.7 43.9 56.1 295 59.0
Qwen2.5-VL (7B) (Wang et al., 2024a) 80.8 54.1 72.6 88.0 43.6 58.1 29.0 59.9
Qwen2.5-VL (72B) (Wang et al., 2024a) 85.6 79.3 79.8 93.3 50.6 67.3 33.1 66.7
InternVL2 (2B) (Chen et al., 2024b) 46.1 272 67.3 62.7 45.1 335 23.8 41.9
InternVL2 (4B) (Chen et al., 2024b) 76.3 52.8 72.8 74.8 45.0 49.8 325 56.8
InternVL2 (8B) (Chen et al., 2024b) 84.1 72.9 78.6 872 51.1 63.9 30.6 64.4
InternVL2.5 (4B) (Chen et al., 2024a) 79.2 333 852 84.8 53.7 574 28.7 60.7
InternVL2.5 (8B) (Chen et al., 2024a) 83.5 47.6 86.6 89.8 50.0 64.0 31.6 64.5
InternVideo2.5 (Wang et al., 2025) 832 71.7 87.5 90.1 535 64.4 327 66.3
InternVL3 (78B) (Zhu et al., 2025) 87.4 75.1 80.1 90.5 515 70.2 333 67.5
ChatGPT-40 (Achiam et )23) 87.9 80.3 83.6 88.7 51.3 70.9 335 68.2
Gemini2.5-pro (Comanici et al., 2025) 92.6 89.5 82.9 92.3 56.1 82.9 435 75.1
03 (El-Kishky et al., 2025) 93.2 86.1 85.7 92.1 55.2 774 45.5 74.6
Human 85.1 77.2 78.7 90.6 60.0 85.9 51.1 73.1
MIMIC-Chat(Ours) 90.4 87.1 86.7 92.5 55.7 78.3 43.6 74.1

(85.9%) and Comment Popularity (51.1%). MIMIC-Chat, our fine-tuned model, attains an overall
accuracy of 74.1%, ranking third among all participants—slightly behind two frontier proprietary
models (Gemini-2.5-Pro at 75.1% and 03 at 74.6%) but surpassing all open-source baselines, includ-
ing very large ones such as Qwen2.5-VL-72B (66.7%) and InternVL3-78B (67.5%). MIMIC-Chat
achieves top-three performance across nearly all subtasks, with notable strength in creator intent
understanding (TiS 90.4%, DeS 87.1%) and content attribute matching (CaM 55.7%).

Despite these gains, UIU remains the most challenging axis: while MIMIC-Chat improves substan-
tially over prior open models, its performance on Comment Popularity (43.6%) still lags far behind
human annotators. This highlights the intrinsic difficulty of modeling user-centric semantics and
interaction cues.

Overall, the results confirm that human-aligned fine-tuning enables MIMIC-Chat to close the gap
with, and in some cases surpass, much larger models, underscoring the importance of task-specific
alignment rather than sheer model scale alone.

5.3 USER-LIKE MIMICKING TASK PERFORMANCE

We evaluate each model’s ability to generate human-like comments through a comment simulation
task. Table 2 summarizes the results. Here, the first column (Models) denotes the comment sources:
each row reports evaluation results for comments generated by the corresponding model, while the
Human row represents real user comments originally collected from video-sharing platforms.

Comment Simulation. For each video, all models generate one comment, which is then evaluated
by human annotators. The simulation quality is measured in three ways: (1) the percentage of a
model’s comments judged as “human’; (2) the distribution of realism scores (0-5); and (3) the mean
realism score per model. Each comment is anonymously presented to multiple human evaluators,
who are asked to determine whether it was written by a human or an Al, and to rate its human-
likeness on a 0-5 scale. Inter-annotator agreement reached 91.95%, calculated as the proportion of
samples on which at least two annotators gave consistent judgments. This high level of agreement
indicates that the evaluation is stable and less susceptible to individual annotator bias. The “Judged
as Human” metric reflects the proportion of a model’s comments that were classified as human-
written. The “Score@k” distribution indicates the percentage of all comments receiving score k,
and “Mean Score” reports the overall average realism score across the model’s 4,000 generated
comments.

As shown in the table, MIMIC-Chat significantly outperforms all baseline models in the key met-
ric of being judged as human (64.24%), more than triple most existing models, and second only to
real human comments (87.57%). Its average realism score (2.88) is also notably higher than that of
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Table 2: Evaluation of comment simulation across all participants, based on human judgments. The results
include human-likeness classification rates, realism score distributions (0-5), and mean scores. The highest,

second-highest, and third-highest scores are highlighted in purple , green ,and pink , respectively.

Comment Simulation

MOdelS\TaSk Judged as Judged as ‘ Score Distribution(%) Mean
Human (%) 1 Al (%) ) Score 1
Score@0 | Score@1| Score@2 Score@3 Score@4 1 Score@5 1
VideoChatGPT (Maaz et al., 2024) 18.65 81.35 50.15 27.52 3.67 7.95 6.27 4.43 1.06
Video-LLaVA (Lin et al., 2023) 6.30 93.70 63.16 28.48 1.88 2.07 2.44 1.97 0.58
VideoChat2 (Li et al., 2024b) 21.02 78.98 53.66 21.54 3.79 9.40 7.70 3.92 1.08
LLaVA-NeXT (Li et al., 2024a) 7.02 92.98 63.20 27.58 2.12 293 1.90 2.27 0.60
VideoLLaMA?2 (Cheng et al., 2024) 2.70 97.30 75.57 20.37 1.25 0.31 1.56 0.94 0.35
VideoLLaMA3 (Zhang et al., 2025) 4.02 95.98 68.46 24.95 2.47 1.28 1.19 1.65 0.47
MiniCPM-V (Yao et al., 2024) 8.17 91.83 61.78 26.98 2.99 2.64 2.37 3.25 0.67
MiniCPM-o (Yao et al., 2024) 6.85 93.15 66.43 24.60 2.11 1.23 2.81 2.81 0.58
CogVLM2 (Hong et al., 2024) 7.50 92.50 68.20 21.40 2.80 4.80 1.70 1.10 0.54
Qwen2-VL (2B) (Wang et al., 2024a) 6.54 93.46 63.82 27.25 2.39 2.08 2.31 2.16 0.58
Qwen2-VL (7B) (Wang et al., 2024a) 6.99 93.01 62.36 28.25 2.33 2.70 1.95 2.40 0.61
Qwen2.5-VL (3B) (Bai et al., 2025) 14.18 85.82 59.61 23.76 2.38 3.93 4.83 5.49 0.87
Qwen2.5-VL (7B) (Bai et al., 2025) 10.25 89.75 67.76 20.73 1.19 2.60 3.27 4.46 0.66
InternVL2 (2B) (Chen et al., 2024b) 1.03 98.97 80.59 17.66 0.66 0.29 0.29 0.51 0.24
InternVL2 (4B) (Chen et al., 2024b) 3.69 96.31 77.14 17.70 1.47 0.66 1.55 1.47 0.36
InternVL2 (8B) (Chen et al., 2024b) 5.37 94.63 66.09 26.36 2.11 2.18 1.09 2.18 0.52
InternVL2.5 (4B) (Chen et al., 2024a) 16.26 83.74 54.24 26.58 2.93 4.39 5.70 6.16 0.99
InternVL2.5 (8B) (Chen et al., 2024a) 10.90 89.10 59.47 26.54 2.86 2.56 421 4.36 0.79
InternVideo2.5 (Wang et al., 2025) 12.67 87.33 55.58 27.60 3.77 4.45 445 4.15 0.87
Qwen2.5-VL (72B) (Bai et al., 2025) 26.93 73.07 42.59 22.83 7.65 6.92 9.63 10.40 1.49
InternVL3 (78B) (Zhu et al., 2025) 30.21 69.79 41.23 18.87 9.69 5.48 13.83 10.90 1.65
ChatGPT-40 (Achiam et al., 2023) 40.32 59.68 28.65 21.32 9.71 10.91 17.64 11.77 2.03
Gemini2.5-pro (Comanici et al., 2025) 41.87 58.13 29.51 16.84 11.78 9.97 1831 13.59 2.12
03 (El-Kishky et al., 2025) 43.36 56.64 28.68 19.71 8.25 11.33 19.56 12.47 2.11
Human 87.57 12.43 8.84 3.13 0.49 4.37 24.59 58.58 4.08
MIMIC-Chat (ours) 64.24 35.76 7.62 15.23 12.91 26.82 20.20 17.22 2.88

other models. These results suggest that MIMIC-Chat produces more natural, human-aligned com-
ments in both linguistic style and semantic coherence. These findings highlight that MIMIC-Chat
achieves the most human-aligned comment generation performance among all evaluated models.

We attribute this advantage to a fundamental behavioral difference: most baseline models tend to
generate literal or content-descriptive comments—such as rephrasing video scenes or restating vi-
sual facts—which are easily recognized as Al-written by human annotators. In contrast, MIMIC-
Chat demonstrates a stronger capacity for simulating human-like thinking patterns, often exhibit-
ing signs of divergent, associative, or emotionally reflective reasoning—traits more characteristic
of genuine human responses in open-domain video discussions. Beyond open-source baselines,
the inclusion of stronger proprietary models (e.g., ChatGPT-40, Gemini2.5-pro, and 03) reveals a
narrowing gap in human-likeness. These models achieve substantially higher realism scores and
human-judgment rates than most open-source MLLMs. Nevertheless, MIMIC-Chat remains the
most competitive among open-source systems and still exhibits a notable margin over proprietary
counterparts in the “Judged as Human” metric. Taken together, these results indicate that while re-
cent closed-source models are improving rapidly in simulating human-like comments, there remains
a sizable gap compared to genuine human responses, underscoring the challenge of fully capturing
the subtleties of human reasoning and expression.

To ensure fairness, we also fine-tuned several strong open baselines on MIMIC-Data under identical
settings. While their performance improved, they still lagged behind MIMIC-Chat, suggesting that
our advantage stems not merely from access to task-aligned data but from the proposed architecture
and training strategy. Full results are reported in Appendix.

6 CONCLUSION

We presented MIMIC-Data and MIMIC-Bench, a large-scale dataset and benchmark for evaluat-
ing human-aligned video understanding, and introduced MIMIC-Chat, a model trained to bridge
the gap between perception and human-like reasoning. Across 24 competitive MLLMs, results show
that while recent systems advance perception, they still fall short in mimicking human thought and
expression. MIMIC-Chat narrows this gap, setting a new state of the art among open-source mod-
els. We believe this work opens a new direction toward socially and cognitively aligned multimodal
intelligence.
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ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. This work introduces MIMIC-Bench, a bench-
mark designed to evaluate multimodal large language models (MLLMs) on human-aligned video
understanding tasks, and MIMIC-Chat, a model fine-tuned for this purpose. All videos and meta-
data in MIMIC-Data were collected from publicly available sources under permissible use. Per-
sonally identifiable or sensitive information was excluded during data collection, and only videos
with non-sensitive, non-personal content were retained. The benchmark is intended purely for aca-
demic research, and we carefully considered potential risks of misuse, including bias amplification
and overfitting to social norms. Our aim is to provide the research community with a rigorous tool
for assessing MLLMs’ human-aligned capabilities, while promoting responsible stewardship of Al
technologies.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The main paper details
the construction process of MIMIC-Bench, the task definitions, and the evaluation protocols. We
describe the design of MIMIC-Chat, including its dual-branch spatial-temporal encoder, training
strategy, and optimization settings. Appendix C and D provide further details on model architec-
ture, training configurations, dataset construction, and visualization examples. We plan to release
the benchmark data splits, evaluation code, and MIMIC-Chat training scripts upon publication to
facilitate replication and follow-up research.

LLM USAGE STATEMENT

Large Language Models (LLMs) were used only as part of the evaluation in our benchmark,
where 24 baseline models (both open-source and proprietary) were compared against our proposed
MIMIC-Chat. LLMs were not used to generate any dataset samples, annotations, or experimental
results. All dataset construction, annotation, and analysis were conducted independently by the au-
thors. We used LLMs in a limited capacity for language polishing of the manuscript, but no section
of the research design, data collection, or core analysis was generated by LLMs. The authors take
full responsibility for the content of this paper.
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A ABLATION STUDIES

A.1 ABLATION SETUP

To isolate the contribution of each key component in MIMIC-Chat, we perform controlled abla-
tions under a unified training and evaluation pipeline. Unless otherwise specified, all settings strictly
follow the main paper (§4—8§5): same training data (MIMIC-Data), instruction format, loss, opti-
mizer, batch size, number of epochs, inference hardware (A6000 GPUs), and evaluation metrics. For
thinking tasks we report accuracy on the seven multiple-choice subtasks; for mimicking we report
human-judged comment simulation metrics (Judged as Human, Score@k, Mean Score). We do not
include source-identification results in the appendix.

Backbone and Inputs (constant across variants). We use the full dual-branch video pathway
described in §4 as the reference (“Full”): a spatial branch that uniformly samples 8 frames for scene-
level cues, and a temporal branch that processes the full frame sequence for fine-grained dynamics.
Visual tokens from both branches are projected by branch-specific MLP projectors and fused into
the language model with gated integration. The causal LM is InternLM-8B with LoRA modules
enabled in the Full configuration.

Ablated Variants. We construct four ablation variants by toggling one component at a time while
keeping all other factors identical:

* w/o LoRA (No-LoRA): Disable all LoRA adapters in InternLM-8B and freeze the LM
parameters; only the multimodal projector(s) remain trainable. This tests the role of
parameter-efficient language adaptation for instruction alignment.

* w/o Temporal Encoder (No-TempEnc): Remove the temporal branch (full-sequence pro-
cessing); the model uses only the spatial branch with 8 uniformly sampled frames. This
probes the importance of explicit temporal modeling.

* w/o Temporal Projector (No-TempProj): Keep both branches but remove the temporal-
specific projector; temporal tokens are routed through the spatial projector (shared MLP)
before fusion. This examines whether a dedicated temporal projection space is necessary.

» w/o Spatial Projector (No-SpatProj): Keep both branches but remove the spatial-specific
projector; spatial tokens are routed through the temporal projector (shared MLP). This
complements the previous variant and tests sensitivity to projector specialization.

Fairness Controls. All variants use the same prompts and decoding settings as the Full model.
Frame sampling, resolution, and preprocessing follow §5. When a branch is removed (e.g., No-
TempEnc), the remaining branch and its projector are unchanged; when a projector is removed (e.g.,
No-TempProj/No-SpatProj), tokens are passed through the remaining projector to keep token dimen-
sionality and downstream interfaces intact. This design ensures that any performance difference can
be attributed to the ablated component rather than confounds in optimization or data.

A.2 QUANTITATIVE COMPARISON ON THINKING TASKS

We quantify the contribution of each core component on the seven multi-choice tasks (CIU:
TiS/DeS; CAM: TaM/ToM/CaM; UIU: CoM/CoP). All settings (data, preprocessing, prompts) are
held fixed as in the main experiments; only the indicated module is removed or altered.

Key observations. The ablation results reveal that both temporal modeling and LoRA-based adap-
tation are indispensable. Removing the temporal encoder causes the largest overall drop (74.1 —
65.8; —8.3 pp), with especially severe declines in DeS (—33.8 pp) and UIU tasks (CoM: —12.9
pp, CoP: —11.0 pp), underscoring the need for end-to-end temporal reasoning. LoRA adaptation is
equally critical: ablating it reduces Overall to 66.9 (—7.2 pp), driven by sharp declines on semantics-
heavy tasks such as DeS (—22.7 pp), TaM (—16.3 pp), and both UIU subtasks. The temporal pro-
Jjector further contributes complementary gains, as its removal lowers Overall to 67.5 (—6.6 pp)
and disproportionately weakens CAM and UIU performance, while the spatial projector supports
static semantics, with its absence (Overall 68.7; —5.4 pp) most affecting DeS (—18.9 pp). Together,
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Table 3: Accuracy (%) on the seven structured reasoning tasks after ablating components of MIMIC-Chat. CIU
includes Title Selection (TiS) and Description Selection (DeS); CAM includes Tag/Topic/Category Matching
(TaM/ToM/CaM); UIU includes Comment Matching (CoM) and Comment Popularity (CoP). Overall is the

average over all seven tasks. The full model’s scores are highlighted in purple .

Task Type CIU CAM UIu Overallt
Models / Tasks TiST DeStT TaMt ToMt CaMt CoM?T CoP1
MIMIC-Chat (full) 90.4 87.1 86.7 92.5 55.7 78.3 43.6 74.1
w/o LoRA 88.3 64.4 70.4 89.8 473 68.2 34.1 66.9
w/o Temporal Encoder 85.6 53.3 87.5 89.5 51.4 65.4 32.6 65.8
w/o Temporal Projector ~ 89.0 75.4 72.8 91.8 48.6 70.3 34.5 67.5
w/o Spatial Projector 89.3 68.2 84.2 91.7 50.2 72.6 35.1 68.7

these findings highlight that temporal components drive interaction- and context-sensitive reasoning,
while LoRA secures creator-intent and textual alignment, and only their integration allows the full
model to achieve a balanced advantage across CIU, CAM, and UIU.

A.3 DISCUSSION

The ablation results highlight several broader implications. First, temporal modeling and LoRA-
based language adaptation are complementary: the former underpins interaction- and context-
sensitive reasoning (UIU, CAM), while the latter ensures fine-grained textual alignment (CIU,
DeS/TaM). Second, different task categories stress distinct modalities—CIU benefits most from
semantic adaptation, whereas UIU requires strong temporal grounding—indicating that balanced
multimodal integration is essential for generalizable video understanding. Finally, the consistent
superiority of the full model suggests that parameter-efficient language tuning and temporally-
aware encoding are not just additive improvements, but jointly critical for bridging the gap between
perception-driven reasoning and socially aligned interpretation, reinforcing the design principles
behind MIMIC-Chat.

B FINE-TUNING OTHER MODELS

B.1 SETUP

To assess whether the improvements of MIMIC-Chat stem solely from access to MIMIC-Data, we
fine-tuned several strong video-language models under identical conditions. Specifically, we se-
lected three representative backbones covering different architectures and scales: Qwen2.5-VL-7B,
InternVL2.5-8B, and InternVideo2.5-8B. These models were chosen because of their strong base-
line performance and wide adoption in the community.

For fairness, all models were fine-tuned on the same training split of MIMIC-Data that was used
to train MIMIC-Chat, and evaluated on the official test set of MIMIC-Bench. The fine-tuning
procedure followed a unified setup:

* Data. The full MIMIC-Data training split was used without task-specific resampling. All
structured and generative tasks share the same preprocessing pipeline.

+ Optimization. We employed AdamW optimizer with a learning rate of 2 x 1075, cosine
decay, and batch size of 128. Training was run for 3 epochs with early stopping on the
validation set.

* LoRA. For parameter-efficient adaptation, LoORA modules were applied to the language
backbone of each model, while vision encoders were kept frozen. This ensured efficiency
and comparability across different backbones.

* Evaluation. All models were evaluated on the seven structured reasoning tasks (CIU,
CAM, UIU) and the mimicking tasks, using accuracy for multi-choice and human-likeness
metrics for generative tasks.
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Table 4: Accuracy (%) on the seven structured reasoning tasks after fine-tuning existing models on MIMIC-
Data. CIU includes Title Selection (TiS) and Description Selection (DeS); CAM includes Tag/Topic/Category
Matching (TaM/ToM/CaM); UIU includes Comment Matching (CoM) and Comment Popularity (CoP). Over-

all is the average over all seven tasks. The full model’s scores are highlighted in purple .

Task Type CIU CAM UIu Overallt
Models / Tasks TiST DeStT TaMt ToM?T CaM?T CoM?1T CoP?t
Qwen2.5-VL-7B 80.8 54.1 72.6 88.0 43.6 58.1 29.0 59.9
InternVL2.5-8B 83.5 47.6 86.6 89.8 50.0 64.0 31.6 64.5
InternVideo2.5-8B 83.2 71.7 87.5 90.1 53.5 64.4 32.7 66.3
fine-tuned on MIMIC-Data

Qwen2.5-VL-7B (ft) 85.1 60.2 80.1 89.7 46.8 64.7 323 66.4
InternVL2.5-8B (ft) 85.6 533 87.5 89.5 514 65.4 32.6 65.8
InternVideo2.5-8B (ft)  87.5 76.2 90.3 91.3 51.3 66.9 33.1 68.1

MIMIC-Chat (Ours)  90.4 87.1 86.7 92.5 55.7 74.3 43.6 74.1

This setup ensures that any observed performance differences are attributable to model architecture
and adaptation capacity, rather than data imbalance or training procedure.

B.2 RESULTS

We report the performance of fine-tuned models compared with MIMIC-Chat across both structured
reasoning and mimicking tasks.

Key findings. Fine-tuning on MIMIC-Data consistently improves all baseline models, with
Qwen2.5-VL-7B gaining from 59.9 to 66.4 overall accuracy and InternVideo2.5-8B rising from
66.3 to 68.1. The strongest gains appear in semantics-heavy tasks such as DeS (e.g., +6.1 for
Qwen2.5-VL-7B) and TaM (+7.5), highlighting the value of domain-specific alignment. Never-
theless, MIMIC-Chat remains clearly ahead across nearly all tasks, especially in DeS (87.1 vs. 76.2
for the best fine-tuned baseline) and CoP (43.6 vs. 33.6), confirming that its superior architecture
and training design contribute substantially beyond data fine-tuning alone.

B.3 DISCUSSION

The fine-tuning experiments demonstrate that existing MLLMs, when adapted to MIMIC-Data, can
indeed improve their performance on user-centric reasoning tasks. Models such as Qwen2.5-VL-
7B and InternVideo2.5-8B show consistent gains in both creator-intent understanding (e.g., DeS)
and content-attribute matching (e.g., TaM), validating the importance of training data that reflects
human communicative patterns. However, the improvements are incremental: even the best fine-
tuned baselines remain substantially behind MIMIC-Chat in both overall accuracy and in the most
challenging sub-tasks. This suggests that while domain-specific fine-tuning enhances alignment, it
cannot substitute for architectural innovations and multi-stage training pipelines explicitly designed
for human-like reasoning. In other words, access to the same data is not sufficient—MIMIC-Chat’s
advantage lies in how it integrates LoRA-based language adaptation, temporal-spatial modeling,
and task-specific objectives to achieve balanced and robust performance across all axes of MIMIC-
Bench.

C MODEL ARCHITECTURE AND IMPLEMENTATION DETAILS

In Section 4 of the main paper, we provided a brief overview of the MIMIC-Chat architecture,
which integrates a video encoder, an instruction formatter, and a language model into a unified
framework. This section supplements that overview by elaborating on implementation-level details
and training configurations, including hardware setup, fine-tuning strategies, visual input processing,
and optimization techniques.
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C.1 TRAINING ENVIRONMENT AND HARDWARE CONFIGURATION

All experiments were conducted on a high-performance server equipped with six NVIDIA RTX
A6000 GPUs (each with 48 GB memory), using CUDA 12.2 and driver version 535.179.
Model training was implemented with PyTorch, and distributed optimization was realized through
torchrun and DeepSpeed Stage 1, enabling parameter offloading and mixed-precision (bf16)
training for enhanced memory and efficiency.

C.2 FINE-TUNING STRATEGY AND MODULE CONFIGURATION

MIMIC-Chat adopts a parameter-efficient instruction tuning strategy, updating only key compo-
nents:

* Language Model (LLM): LoRA modules are injected into the attention sublayers of
InternLM2-Chat-8B, leveraging low-rank adaptation to reduce trainable parameters.

* Freezing Strategy: Both the vision backbone and LLM backbone are frozen during train-
ing, while projection layers and LoRA modules remain trainable.

* Vision Projection: Spatial and temporal features are independently projected into the lan-
guage space via two MLPs to preserve visual-linguistic alignment.

Additionally, bf16 mixed-precision training and gradient checkpointing are enabled to reduce mem-
ory usage without compromising performance.

C.3 VIDEO INPUT PROCESSING AND VISUAL TOKEN CONSTRUCTION
Each video sample undergoes standardized frame sampling and preprocessing:

* Frame Sampling: The spatial encoder uses 8 frames uniformly sampled from each video,
while the temporal encoder processes the full sequence of frames to capture fine-grained
temporal dynamics.

» Image Processing: All frames are center-cropped and resized to 448x448 resolution.

* Feature Encoding: The spatial and temporal encoders extract static and dynamic informa-
tion. The spatial encoder processes the 8 uniformly sampled frames, while the temporal
encoder consumes the full frame sequence to capture temporal continuity.

* Projection and Tokenization: Features from both spatial and temporal encoders are pro-
jected into the language model token space to form visual tokens.

* Input Construction: Visual tokens and natural language instructions are concatenated,
with [VID] and [SEP] tokens denoting modality boundaries.

A dynamic patch control mechanism (up to 6 patches) and thumbnail token injection are introduced
to accommodate longer videos and enhance contextual representation.

C.4 TRAINING CONFIGURATION AND OPTIMIZATION
To ensure performance and stability, we adopt the following training settings:

* Epochs: 50

* Per-device batch size: 2; Global batch size: 4 (via gradient accumulation)
* Learning rate: 4e-5 with 3% warm-up

* Input resolution: 448x448

* Max dynamic patches: 6

* Optimizer: AdamW with weight decay 0.01

* Scheduler: Cosine decay

* Gradient clipping: enabled
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* Max sequence length: 4096 tokens
* Grouped training: samples are grouped by token length to accelerate convergence

* Monitoring: training logs recorded via TensorBoard; best-performing checkpoints and
LoRA weights are saved periodically

C.5 ENGINEERING OPTIMIZATIONS FOR SYSTEM ROBUSTNESS

To support long-context, large-scale multimodal training, we introduce several engineering enhance-
ments:

* Lazy-loading dataset class for robust video streaming with corrupted frame handling;

* Custom trainer with LoRA-only weight saving to facilitate model deployment and abla-
tion analysis;

* Dynamic image preprocessing that adapts patch numbers and resolutions on-the-fly to
control memory usage;

* Multi-task training support, enabling unified classification and generation under
instruction-based prompts.

D BENCHMARK CONSTRUCTION AND VISUALIZATION EXAMPLES

In Section 3 of the main paper, we outlined the construction of MIMIC-Bench and the motivation
for its design. This section provides additional implementation details regarding how the 4,000
benchmark videos were selected and scored, including the criteria used to ensure their human-centric
relevance and linguistic richness. It also supplements the dataset composition and preparation steps
that underpin our evaluation tasks.

D.1 SELECTION AND SCORING CRITERIA

To ensure that the benchmark accurately reflects human-style interpretation and communicative be-
havior, we curated 4,000 videos from the larger MIMIC-Data pool of 150,000+ user-shared videos.
The selection process involved a multi-stage filtering pipeline:

(1) Engagement Scoring. Each video was assigned a composite engagement score to measure real-
world user interaction. The score combines the log-normalized values of like count, favorite count,
share count, and comment count, computed as:

Engagement Score = «-log(Like) + 8 - log(Favorite) + -log(Share) + ¢ - log( Comment) (5)

Weseta = 1.0, 8 = 0.8, v = 0.5, and § = 1.2 to place greater emphasis on comments, which
better reflect human intent and understanding.

(2) Metadata Integrity. After sorting by engagement score, we retained only those videos with
complete metadata fields, including title, description, tags, and topic. We further ensured that each
video contains at least five unique, high-quality user comments and is free from decoding errors or
anomalously short durations.

(3) Semantic Coverage and Diversity. To ensure diverse coverage across topics and expression
styles, we adopted the following constraints:

* Top 2% videos from TikTok and top 5% from YouTube were selected.

* The selected pool spans 8 major categories (e.g., lifestyle, travel, beauty) and 20+ subcate-
gories.

* The distribution of comment types was controlled to include exclamatory, inquisitive, as-
sociative, and ironic styles.

This multi-dimensional curation strategy ensures that MIMIC-Bench captures both high user en-
gagement and rich human-centered semantics, laying a robust foundation for downstream evaluation
of multimodal models on user-aligned reasoning and mimicking capabilities.
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Figure 4: Presentation of the responses to the MiniCPM-V and MIMIC-Chat (Ours) part of the
task. Ground truth is marked in red in the question, and model responses and correctness follow the
corresponding question.

D.2 QUALITATIVE EXAMPLES OF MODEL RESPONSES

To better illustrate the performance of different multimodal large language models (MLLMs) on
MIMIC-Bench tasks, we present a series of representative model response examples in this sup-
plementary material. These examples cover a variety of tasks such as title selection, tag matching,
comment imitation, demonstrating each model’s ability to interpret real-world user videos and gen-
erate human-aligned responses.

Each example includes the following components:

* Task input: the multimodal metadata associated with the video, along with the task
prompt;

* Model-generated responses: the outputs from a set of baseline MLLMs, as well as our
proposed MIMIC-Chat model;

¢ Ground-truth or reference answers: provided for comparison to evaluate model correct-
ness or human-likeness.

As shown in Figures 4, 5, and 6, the visualized outputs display the input prompts, the model pre-
dictions, and whether the generated results match the expected answers. These examples qualita-
tively complement the quantitative results in the main paper, highlighting each model’s strengths
and weaknesses across tasks involving higher-level reasoning, creative intent recognition, and user
interaction interpretation.

We hope these examples will deepen understanding of the challenges posed by MIMIC-Bench and
inspire the development of more human-aligned multimodal systems.
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Figure 6: Presentation of the responses to the Qwen2-VL, VideoChat2, LLaVA-NeXT, and
CogVLM2 part of the task. Ground truth is marked in red in the question, and model responses
and correctness follow the corresponding question.
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D.3 EXTENDED DESCRIPTION OF MIMIC-DATA

MIMIC-Data is the foundational dataset for constructing all tasks in MIMIC-Bench. It contains over
150,000 user-generated short videos collected from multiple public video-sharing platforms. While
the main paper already outlines the high-level data pipeline and task mappings, this section provides
additional implementation details regarding its structure and usage.

Each data sample is stored in structured JSONL format, with fields including video_path,
title, description, tags, topic, and a list of user comments. Every video is associ-
ated with at least five real user comments. All text fields are pre-cleaned by removing duplicates,
empty or meaningless entries, and normalizing punctuation and encoding formats to ensure natural
linguistic quality.

During task construction, each video may yield multiple question—answer pairs depending on the
completeness of its metadata and the number of available comments. All training prompts are for-
mulated in a unified instruction-following format, where the task type and target field are explicitly
encoded (e.g., “Please select the most likely title,” or “Which comment is most popular?”).

MIMIC-Data is also structurally well-suited for supporting the full range of tasks in MIMIC-Bench.
All evaluation samples are derived directly from original metadata fields without requiring additional
human annotations. In particular, for the comment imitation tasks, we select the top five most-liked
user comments per video and control the stylistic diversity of samples across expressive, associative,
declarative, and rhetorical styles to better support modeling of human-like language behavior.

In future releases, we plan to extend MIMIC-Data with multilingual versions and enhanced semantic
annotations to support broader research in multimodal reasoning and generation.
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