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Abstract

We introduce OSVBench, a new benchmark for001
evaluating Large Language Models (LLMs) in002
generating code for complete specifications per-003
taining to operating system kernel verification004
tasks. The benchmark first defines the specifica-005
tion generation problem into a program synthe-006
sis problem within a confined scope of syntax007
and semantics by providing LLMs with the pro-008
gramming model. The LLMs are required to un-009
derstand the provided verification assumption010
and the potential syntax and semantics space to011
search for, then generate the complete specifica-012
tion for the potentially buggy operating system013
code implementation under the guidance of the014
high-level functional description of the oper-015
ating system. This benchmark is built upon a016
real-world operating system kernel, Hyperker-017
nel, and consists of 245 complex specification018
generation tasks in total, each is a long context019
task of about 30,000 tokens. Our comprehen-020
sive evaluation of 10 LLMs exhibits the limited021
performance of the current LLMs on the speci-022
fication generation tasks for operating system023
verification. Significant disparities of their per-024
formance on the benchmark, differentiating the025
ability on long context code generation tasks.026

1 Introduction027

Large Language Models (LLMs) have shown great028

potential in software engineering tasks, such as029

code generation, code summarization, and bug re-030

pair. However, an important aspect of software031

engineering remains underexplored: software veri-032

fication. Software verification uses rigorous math-033

ematical reasoning to prove the absence of bugs034

in software (Dahl et al., 1972), which is essential035

in ensuring the correctness of software in safety-036

critical domains such as aerospace, healthcare, and037

nuclear energy (Klein et al., 2009; Amani et al.,038

2016; O’Connor et al., 2016), where software er-039

rors could lead to catastrophic economic losses040

or even endanger human lives. However, man-041

ual software verification is challenging and time- 042

consuming. It typically requires a deep understand- 043

ing of formal methods and program analysis, skills 044

that are usually acquired only at the graduate level. 045

As a result, professionals capable of conducting 046

verification is limited, highlighting the need for 047

automation in this area. 048

In this paper, we examine the capabilities of 049

LLMs in automating software verification. We 050

introduce a benchmark suite to evaluate the effec- 051

tiveness of these models in verifying an operating 052

system (OS) kernel, a fundamental component of 053

many critical infrastructures. Verifying an OS ker- 054

nel is highly non-trivial due to the inherent com- 055

plexity, concurrency, and hardware interactions in- 056

volved. For example, the verification of the well- 057

known seL4 microkernel (Klein et al., 2009) re- 058

quired 11 person-years of effort for 10,000 lines 059

of C code, while verifying two operations of the 060

BilbyFs file system required 9.25 person-months 061

of effort (Amani et al., 2016) for 1,350 lines of 062

code. Automating verification requires generating 063

specifications that characterize the expected prop- 064

erties, a task as complex as developing correctness 065

proofs (Sammler et al., 2021; Leino, 2010; Jacobs 066

and Piessens, 2008; Ma et al., 2024). For example, 067

developing the specification for seL4 (Klein et al., 068

2009) required 7 person-months of effort. 069

We introduce OSVBench, a benchmark suite de- 070

rived from the Hyperkernel project (Nelson et al., 071

2017), to evaluate the capabilities of LLMs in gen- 072

erating specifications for verifying the functional 073

correctness of an OS kernel. This benchmark aims 074

to facilitate automation in the generation of OS 075

kernel verification specifications. The benchmark 076

comprises of 245 verification specification genera- 077

tion tasks, each of which is a complex and intricate 078

program synthesis task with long context, approxi- 079

mately 30,000 tokens. 080

Figure 1 illustrates the workflow for each verifi- 081

cation specification generation task. This workflow 082
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Figure 1: The workflow of OSVBench benchmark suite

is divided into two main stages: the generation083

stage and the specification quality evaluation stage.084

In the generation stage, several inputs are pro-085

vided to guide the process, including the verifi-086

cation assumptions, a programming model with087

deterministic formal semantics, a set of few-shot088

examples, and the final task problem. The few-shot089

examples consist of three components: (1) a pre-090

cise and accurate functional description in natural091

language for a specific system call of the OS kernel,092

(2) the concrete, potentially buggy code implemen-093

tation of the system call, and (3) the specification094

required to verify the functional correctness of the095

system call, which ensures the functional correct-096

ness of the OS kernel. The task problem, in turn,097

is structured to include the functional description098

and the potentially buggy code implementation of099

the system call while leaving the specification for100

LLMs to synthesize.101

The second stage, referred to as the specification102

quality evaluation stage, utilizes a verifier to assess103

the correctness of the generated specification. This104

is achieved by verifying multiple OS kernel imple-105

mentations with different injected bugs, using both106

the generated specification and the oracle specifica-107

tion as references. If the verification results for any108

of the implementations differ between the two spec-109

ifications, the generated specification is deemed in-110

correct; otherwise, it is considered correct. Further111

details on the functionality and operation of the112

verifier are provided in subsection 3.1.113

We conducted comprehensive experiments on114

the formal specification generation from the func-115

tional description in natural language and the code116

implementation of the OS kernel with different117

types and numbers of vulnerabilities by injecting 118

5 real-world types of bugs into the OS kernel. The 119

experiment results showcase the potential of LLMs 120

in automating formal specification generation for 121

OS kernel verification. Finally, we conduct rigor- 122

ous data decontamination (Yang et al., 2023) for 123

the synthetic dataset to remove samples that closely 124

resemble those in the test subset D(0)
test of the cover- 125

age dataset. The main contributions of this paper 126

can be summarized as below: 127

• We initiate an exploration of LLMs in the con- 128

text of OS verification tasks, which necessi- 129

tate a deep understanding and manipulation of 130

extensive contextual information and domain- 131

specific knowledge. 132

• We introduce OSVBench, a benchmark de- 133

signed for OS verification, to evaluate the 134

capabilities of LLMs in generating specifica- 135

tions for OS kernels. 136

• We performed a comprehensive evaluation of 137

the most advanced LLMs in generating spec- 138

ifications aimed at verifying the functional 139

correctness of an OS kernel. We also discuss 140

the impact of varying types and quantities of 141

bugs on the quality and effectiveness of the 142

generated specifications. 143

2 Related Work 144

2.1 Software Verification 145

Software verification (D’silva et al., 2008) ensures 146

that software conforms to specified properties or 147

requirements, playing a critical role in guarantee- 148

ing software reliability and correctness. Com- 149
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mon techniques include static analysis (Cousot150

and Cousot, 1977), model checking (Emerson and151

Clarke, 1980), and theorem proving. Theorem152

proving can be categorized into interactive theo-153

rem proving, such as Isabelle (Isabelle, 2025), Coq154

(Coq, 2025), and Dafny (Dafny, 2025), and auto-155

mated theorem proving, which relies on solvers156

such as Z3 (De Moura and Bjørner, 2008).157

Operating system kernel verification (Klein et al.,158

2014) has been a central research goal in ensuring159

the reliability and security of critical software sys-160

tems. Early foundational work includes efforts161

such as UCLA Secure Unix (Walker et al., 1980),162

PSOS (Feiertag et al., 1977), and KIT (Bevier,163

1989), which laid the groundwork for formal ap-164

proaches to kernel correctness. Recent progress has165

expanded to leveraging formal methods like theo-166

rem proving (Nelson et al., 2017) and model check-167

ing (Klein et al., 2009), aiming for high-assurance168

kernels with mathematically verified properties.169

Prior work on leveraging LLMs for software170

verification mainly focused on generating proofs171

from specifications (Chen et al., 2024; Zhang et al.,172

2024), which involves translating one determinis-173

tic formal semantic representation (specifications,174

in various forms) into another (proofs expressed175

in formal languages). Additionally, some studies176

have explored the task of specification generation.177

However, much of this work has concentrated on178

general-purpose specification generation (Ma et al.,179

2024), which differs significantly from the genera-180

tion of OS kernel specifications due to the distinct181

verification assumptions and requirements encoun-182

tered in this domain.183

2.2 LLM for Code Generation184

The use of Large Language Models (LLMs) for185

code generation has gained significant attention in186

recent years, as these models have demonstrated187

remarkable capabilities in synthesizing code snip-188

pets from natural language descriptions (Austin189

et al., 2021; Athiwaratkun et al., 2022; Zan et al.,190

2023; Jiang et al., 2024). Several studies have ex-191

plored the potential of LLMs in various code gen-192

eration tasks, ranging from simple function genera-193

tion (Chen et al., 2021; Luo et al., 2023) to more194

complex programming challenges (Jimenez et al.,195

2023; Ding et al., 2024). Despite these advance-196

ments, code generation for specific domains, such197

as operating system (OS) kernel verification, poses198

unique challenges that are not fully addressed by199

general-purpose LLMs. The complexity and speci-200

ficity of the syntax and semantics involved in such 201

domains require models not only to understand 202

programming languages but also to grasp domain- 203

specific knowledge and verification assumptions. 204

This challenge calls for a benchmark that evaluate 205

the capabilities of LLMs in generating specifica- 206

tions for operating system kernels. 207

3 OSVBench 208

In this section, we will discuss the benchmark con- 209

struction details and the specification generation 210

problem formulation. 211
212

1 class KernelState(BaseStruct): 213
2 procs = Proc() 214
3 pages = Page() 215
4 files = File() 216
5 pcipages = PCIPage () 217
6 ... 218219

3.1 Preliminaries 220

Hyperkernel (Nelson et al., 2017) is an OS ker- 221

nel verification project that includes both a real- 222

world kernel implementation and a verification 223

framework built on the automated theorem prover 224

Z3. The kernel implementation supports 50 sys- 225

tem calls, covering key functionalities such as pro- 226

cess management, virtual memory, file descriptors, 227

device interaction, inter-process communication, 228

and scheduling. The entire codebase consists of 229

approximately 18,000 lines of C and assembly, en- 230

compassing both the kernel implementation and 231

associated user-space components. 232

As demonstrated in the specification quality eval- 233

uation section in Figure 1, the verifier for Hyperk- 234

ernel requires two types of specifications as input. 235

The first is a state-machine specification, which 236

defines the functional correctness by describing the 237

intended behavior of the OS kernel. The second 238

is a higher-level declarative specification, which 239

outlines overarching properties and invariants that 240

the state-machine specification must satisfy. For 241

example, one such property ensures that the num- 242

ber of children for any given process is always 243

equal to the total number of processes identifying 244

that process as their parent. In our formulation of 245

the verification specification generation task, the 246

declarative specification is provided as input, and 247

the objective is to synthesize the corresponding 248

state-machine specification that formally defines 249

the functional behaviors of the kernel. 250

The verifier establishes two theorems. The first 251

one proves that the kernel implementation is a re- 252
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finement of the state-machine specification, ex-253

pressed as ∀σImpl ∈ ΣImpl,∀c ∈ C,∃σSpec ∈254

ΣSpec, such that σA(c) = σB(c), which states that255

for every kernel state in the implementation, under256

any condition, there exists a corresponding kernel257

state defined in the state-machine specification that258

is equivalent under the same condition. The sec-259

ond theorem demonstrates that the state-machine260

specification satisfies the properties and invariants261

defined within the declarative specifications.262

In our formulation of the specification genera-263

tion task, the declarative specifications are provided264

and the role of the LLM is to synthesize the state-265

machine specifications. Once the state-transition266

specification is prepared, its verifier performs sym-267

bolic execution on the compiled LLVM IR (Lattner268

and Adve, 2004) of the OS kernel and invokes269

the z3 (De Moura and Bjørner, 2008) solver to270

perform the equivalence checking on the real ker-271

nel state transitions in the concrete implementa-272

tion and those defined in the state-transition spec-273

ification. Additionally, the verifier ensures that274

the state-machine specification adheres to the high-275

level declarative specifications. Any detected in-276

consistency indicates either the presence of a bug in277

the OS kernel code implementation or that the state-278

transition specification fails to accurately describe279

the intended functionality of the system call.280

We select the Hyperkernel as the benchmark for281

the following reasons: 1) Hyperkernel’s specifica-282

tions are well-defined and systematically modeled283

using Python classes with deterministic semantics.284

Crafting these specifications requires significant285

expertise and non-trivial effort, making it a suitable286

and challenging benchmark for evaluating specifi-287

cation generation tasks. 2) Hyperkernel employs288

an automated theorem prover, specifically the Z3289

solver, to formally verify the functional correctness290

of the OS kernel instead of using the interactive the-291

orem provers, such as Isabelle, Coq, or Dafny. By292

utilizing an automated solver, the focus can remain293

on the specification generation tasks, streamlining294

the verification process.295

3.2 Problem Formulation296

Verification of operating systems requires exten-297

sive domain-specific expertise. To enable large298

language models (LLMs) to address the verifica-299

tion specification problem by leveraging their pre-300

trained knowledge, we reformulate the problem as301

a program synthesis task within a domain defined302

by deterministic formal semantics based on two303

observations. The first is that the kernel behav- 304

ior is well-modeled using a set of Python classes 305

with deterministic semantics, which serves as the 306

programming model. Second, as outlined in the 307

subsection 3.1, the state-machine specification of 308

the Hyperkernel defines the kernel state transitions. 309

Specifically, it specifies the kernel state to which 310

the OS will transition under specific conditions 311

upon the completion of a corresponding system call. 312

Thus, the synthesis domain for the state-machine 313

specification synthesis task can be formally defined, 314

as illustrated in Equation 1. In this context, the 315

State represents the modeled class KernelState, 316

as detailed in Listing 3. 317

Synthesize correct specification within the 318

scoped semantics. In this context, the task of the 319

LLMs is to first comprehend the semantics of the 320

programming model described in Listing 3. Subse- 321

quently, the LLMs perform state-machine specifi- 322

cation synthesis guided by the high-level functional 323

description of the system call. Finally, within the 324

constrained domain of formal semantics defined 325

in Equation 1, the LLMs search for the correct 326

implementation of the specification. 327

To synthesize the correct specification from an 328

informal functional description in natural language, 329

the process must ensure accurate field access, ap- 330

propriate constant selection, and precise condi- 331

tion selection. Specifically, to achieve determin- 332

istic specification synthesis, the synthesis process 333

should operate within a symbolic triple relation, 334

denoted as < Desc, Impl,Model >. This rule 335

entails that, for synthesizing any given statement in 336

the specification, the LLM should first identify the 337

relevant functional description (Desc), then locate 338

the corresponding concrete kernel implementation 339

(Impl). Finally, it must interpret the intended se- 340

mantics and synthesize the correct specification 341

by referencing the appropriate model (Model) as 342

defined within the programming model. 343

344
1 int sys_close(pid_t pid , int fd) { 345
2 if (! is_pid_valid(pid)) // Cond1. 346
3 return -ESRCH; 347
4 if (! is_fd_valid(fd)) // Cond2. 348
5 return -EBADF; 349
6 ... 350
7 clear_fd(pid , fd); 351
8 ... 352
9 } 353

10 static inline void clear_fd(pid_t pid , 354
int fd) { 355

11 ... 356
12 file = get_file(get_fd(pid , fd)); 357
13 proc ->ofile[fd] = 0; 358
14 --proc ->nr_fds; 359
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15 if (--file ->refcnt == 0) { // Cond3360
16 ...361
17 }362
18 }363364

For example, Listing 3.2 shows the implementa-365

tion of the system call sys_close. As the functional366

description indicates: This involves updating the367

process’s file descriptor table to mark the descrip-368

tor as unused and decrementing the count of open369

file descriptors for the process. Additionally, the370

system updates the file’s reference count to reflect371

the decrease of the file references.372

Kernel code implementation:373
374

1 proc ->ofile[fd] = 0;375
2 --proc ->nr_fds;376
3 --file ->refcnt;377378

By searching in the programming model and the379

synthesis domain Equation 1:380
381

1 class Proc(Struct):382
2 ...383
3 ofile = Map(pid_t , fd_t , fn_t)384
4 nr_fds = Refcnt(pid_t , fd_t , size_t)385
5 class File(Struct):386
6 ...387
7 refcnt = Refcnt(fn_t , (pid_t , fd_t),388

size_t)389390

The synthesized specification is:391
392

1 new.procs[pid].ofile[fd] = z3.393
BitVecVal(0, dt.fn_t)394

2 new.procs[pid]. nr_fds[fd] -= 1395
3 new.files[fn]. refcnt [(pid , fd)] -= 1396397

Specification := State398

State := State.(fieldi ← Expression)∗ | State399

Expression = if cond Expression,Expression′ |400

Expression op Expression | Constant401

cond = and cond, cond | or cond cond |402

State.fieldi op Constant |403

State.fieldi op State.fieldi′404

op = + -×÷ == > < >= <= (1)405

Diverged kernel statesKernel state conditions406

synthesis. To synthesize an accurate state-machine407

specification, it is essential to determine the kernel408

state to which the system transitions under specific409

conditions according to the synthesis domain Equa-410

tion 1. This process requires LLMs to perform411

advanced reasoning, as many system calls involve412

cascading and interdependent conditions. Figure 2413

illustrates the diverged kernel states resulting from414

Old

Cond1

OldNew1

Cond2

New1 Old

Cond3

New1 New2

Spec_cond1

Spec_cond2

Figure 2: Diverged kernel states of sys_close

the system call sys_close. Consequently, the ker- 415

nel state specified in the synthesized specification 416

should be as follows: 417
418

1 def sys_close(old , pid , fd): 419
2 spec_cond1 = z3.And( 420
3 z3.And(pid > 0, pid < dt.NPROC), 421
4 z3.And(fd >= 0, fd < dt.NOFILE), 422
5 ...) 423
6 new1 = old.copy() 424
7 ... 425
8 spec_cond2 = z3.And(new.files[fn]. 426

refcnt () == 0) 427
9 new2 = new1.copy() 428

10 ... 429
11 new3 = util.If(spec_cond2 ,new2 ,new1) 430
12 return spec_cond1 , util.If( 431

spec_cond1 , new3 , old) 432433

The specification Listing 3.2 illustrates the ker- 434

nel’s state transitions under different conditions. 435

Specifically, the kernel transitions to new_state1 436

when both spec_cond1 and spec_cond2 are satis- 437

fied. If spec_cond1 is satisfied but spec_cond2 is 438

not, the kernel transitions to new_state2. Finally, 439

if neither spec_cond1 nor spec_cond2 is satisfied, 440

the kernel remains in old_state. 441

3.3 Verification Specification Generation 442

In real-world scenarios involving the verification 443

of OS kernels, the kernel implementation is not 444

guaranteed to be correct and may contain various 445

types and numbers of bugs. The primary objective 446

of verification is to identify and pinpoint these bugs 447

within the kernel’s concrete code implementation. 448

So the verification specification generation task is 449

defined as synthesizing the comprehensive speci- 450

fications to verify the functional correctness of an 451

OS kernel under the guidance of the correct high- 452

level functional descriptions and potentially buggy 453

code implementations of the system calls. 454
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We begin by engaging three OS specialists to455

manually draft detailed functional descriptions of456

each system call in natural language. We then em-457

ploy a voting strategy to determine the most accu-458

rate and representative functional description for459

each system call to ensure clarity and precision.460

Additionally, to simulate real-world conditions,461

we begin with the correct code implementation of462

the OS kernel and systematically construct a set463

of incorrect implementations. This is achieved by464

randomly introducing five types of real-world bugs,465

derived from the xv6 kernel (Cox et al., 2011), into466

the codebase of Hyperkernel. This approach allows467

us to evaluate the impact of various vulnerabili-468

ties on the performance of large language models469

(LLMs) in generating accurate state-machine spec-470

ifications. The definition of each type of buggy471

code implementation is provided in Appendix A.472

Finally, we create a total of 245 verification spec-473

ification generation tasks upon 49 of the system474

calls of Hyperkernel, each consisting of a correct475

high-level functional description of a system call476

paired with its corresponding potentially buggy477

code implementation. Among the 245 code imple-478

mentations, some are correct, while others contain479

varying numbers of bugs, ranging from one to five.480

4 Evaluation481

4.1 Experimental Setup482

State-of-the-art LLMs. We conduct an eval-483

uation of the current state-of-the-art large lan-484

guage models (LLMs) developed by four leading485

institutions: OpenAI, DeepSeek, Meta, and the486

Qwen Team. Specifically, our evaluation includes487

the o1, o3-mini, and GPT-4o models from Ope-488

nAI; the DeepSeek-R1 and DeepSeek-Chat mod-489

els from DeepSeek; the Llama-3.1-70B-Instruct490

and Llama-3.1-8B-Instruct models from Meta;491

and the QwQ-32B-Preview, Qwen2.5-72B-Instruct,492

and Qwen2.5-Coder-7B-Instruct models from the493

Qwen Team. The evaluation leverages the OS-494

VBench framework to systematically assess the495

performance of these models in the task of gener-496

ating OS kernel verification specifications. These497

LLMs differ in key characteristics such as the num-498

ber of parameters, open-source availability, data499

cutoff dates, and pretraining objectives. For all500

models, we employ a greedy search decoding strat-501

egy with pass@1 for consistency in evaluation.502

Prompts As illustrated in Figure 1, the prompt503

for each task is specifically designed for a particu-504

lar system call within the OS kernel. The prompt 505

is structured into four key components: the system 506

verification assumptions, the programming model, 507

the few-shot examples, and the task question. The 508

task question includes the correct functional de- 509

scription, a potentially buggy code implementation, 510

and instructions for generating the specification re- 511

quired to verify the functional correctness of the 512

system call. The few-shot examples are carefully 513

selected by OS kernel verification experts to ensure 514

they are representative for the task. 515

Specification quality metrics. To systematically 516

evaluate the performance of LLMs on the tasks, we 517

define several metrics. As outlined in the specifi- 518

cation correctness evaluation stage in Figure 1, we 519

deliberately created multiple OS kernel implemen- 520

tations with known, artificially inserted bugs. The 521

metric Pass@1 is used to indicate that the gener- 522

ated specification is correct, meaning it precisely 523

identifies the vulnerabilities in the same manner as 524

the oracle specification across all buggy OS ker- 525

nel implementations. The Syntax Error metric de- 526

notes cases where the generated specification fails 527

to execute correctly or terminates with an excep- 528

tion. Finally, the Semantic Error refers to instances 529

where the verifier successfully translates the speci- 530

fication into SMT (De Moura and Bjørner, 2008) 531

and performs verification on the OS kernel imple- 532

mentation, but the pinpointed vulnerability differs 533

from that specified by the oracle specification. 534

4.2 Main Results 535

Table 1 presents results of the performance of 536

LLMs across institutions and bug categories. 537

DeepSeek-Chat stands out with the highest average 538

pass@1 rate (46.53%) and a superior ability to gen- 539

erate correct specifications (51.02%), showcasing 540

robust performance across all bug types. 541

In general, models with larger parameter sizes 542

tend to outperform their smaller counterparts. 543

For instance, Llama-3.1-8B-Instruct and Qwen2.5- 544

Coder-7B-Instruct exhibit significantly weaker per- 545

formance compared to their larger counterparts, 546

such as Llama-3.1-70B-Instruct and Qwen2.5-72B- 547

Instruct, which have over 70 billion parameters. 548

The results also highlight the performance degrada- 549

tion caused by the presence of various bug types, 550

with the impact varying across models and bug 551

categories. For example, memory leak bugs have 552

the most pronounced effect on the DeepSeek-R1 553

model, while incorrect pointer bugs most signifi- 554
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Table 1: Performance comparison of various models with 5-shots prompt. ∗ denotes reasoning LLMs.

Institution Model
Incorrect
Pointer

Incorrect I/O
Privilege

Memory
Leak

Buffer
Overflow

Bounds
Checking

Correct Avg.

OpenAI
o1∗ 12.68 21.43 13.51 20.37 23.15 28.57 23.67
o3-mini∗ 19.72 18.75 18.92 12.96 15.74 26.53 22.04
GPT-4o 33.80 34.82 32.43 33.33 36.11 42.86 38.78

DeepSeek
DeepSeek-R1∗ 32.39 21.43 13.51 20.37 23.15 42.86 40.00
DeepSeek-Chat 38.02 39.29 36.49 44.44 43.52 51.02 46.53

Meta
Llama-3.1-70b-instruct 12.68 18.75 12.16 16.67 22.22 22.45 22.45
Llama-3.1-8B-Instruct 0 11.61 0 12.96 9.26 10.20 10.61

Qwen Team
QwQ-32B-Preview∗ 14.08 23.21 20.27 20.37 23.15 22.45 24.08
Qwen2.5-72b-instruct 25.35 26.79 24.32 25.93 30.56 34.69 32.24
Qwen2.5-Coder-7B-Instruct 0 8.04 0 3.70 5.56 4.08 4.90

Table 2: Syntax and semantic errors of various models.
∗ denotes reasoning LLMs.

Model Syntax Error Semantic Error

o1∗ 52.65 23.67
o3-mini∗ 51.02 26.94
GPT-4o 35.10 26.53

DeepSeek-R1∗ 32.65 26.53
DeepSeek-Chat 31.02 24.90

Llama-3.1-70b-instruct 44.90 32.65
Llama-3.1-8B-Instruct 67.76 23.67

QwQ-32B-Preview∗ 66.53 9.39
Qwen2.5-72b-instruct 42.25 25.31
Qwen2.5-Coder-7B-Instruct 86.12 11.02

cantly impact the o1 models.555

Surprisingly, widely regarded reasoning models,556

such as o1 and DeepSeek-R1, do not consistently557

outperform other models in this task. In particular,558

the o1 model demonstrates weak performance, per-559

forming worse than the QwQ-32B-Preview model,560

which challenges assumptions about the superior-561

ity of certain reasoning models in these tasks. We562

speculate that the advanced reasoning models being563

utilized produce lengthy chains of reasoning traces,564

which could pose challenges to the long-context565

learning capabilities in OS verification scenarios.566

4.3 Syntax and Semantic Error Analysis567

Given the definitions of syntax and semantic er-568

rors provided in section 4.1, we analyze the error569

rates of the evaluated LLMs. By definition, mod-570

els with better overall performance are expected to571

exhibit lower error rates, with semantic error rates572

comparatively higher than syntax error rates. This573

is because, when generating specifications, LLMs574

must first ensure syntactic validity according to the575

programming model before attempting to perform576
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Figure 3: Performance comparison of bug number.

verification on the OS kernel to pinpoint vulnerabil- 577

ities. As observed in Table 2, the best-performing 578

model, DeepSeek-Chat, aligns with this expecta- 579

tion, showing a comparatively higher semantic er- 580

ror rate relative to its syntax error rate. In contrast, 581

the worst-performing model, Qwen2.5-Coder-7B- 582

Instruct, exhibits the opposite trend, with a notably 583

low semantic error rate but an exceptionally high 584

syntax error rate, indicating significant challenges 585

in producing syntactically valid specifications. To 586

further investigate the root causes of these errors, 587

we conducted a detailed case study in Appendix B 588

on two representative error cases, analyzing how 589

the specifications generated by the LLMs lead to 590

syntax and semantic errors. This analysis aims to 591

provide deeper insights into the limitations of the 592

models and potential areas for improvements. 593

4.4 Impact of Number of Vulnerabilities 594

In practical applications, OS kernels typically ex- 595

hibit a limited number of potential vulnerabilities, 596

with few instances of severe vulnerabilities. Conse- 597

quently, we further explore the impact of varying 598
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Figure 4: Performance of various models on different number of few-shot examples. ∗ denotes reasoning LLMs.

numbers of vulnerabilities on the performance of599

specification synthesis, as illustrated in Figure 3.600

Our observations yield several insights: 1) The601

pass@1 performance of LLMs tends to decline602

as the number of vulnerabilities increases. This603

decline is likely because the presence of more vul-604

nerabilities in the kernel implementation compli-605

cates the models’ ability to accurately comprehend606

the functional descriptions. 2) Advanced reason-607

ing models underperform compared to traditional608

instruction-following models. For instance, GPT-609

4o consistently outperforms o1 and o3-mini across610

all levels of vulnerability. Similarly, DeepSeek-R1611

is less effective than DeepSeek-Chat. These find-612

ings align with the observations presented in Table613

1. Therefore, reasoning-enhanced models may en-614

counter greater challenges due to the long-context615

limitations inherent in OS verification scenarios.616

4.5 Impact of Number of Demonstrations617

Recent studies have demonstrated that in-context618

learning (ICL) significantly enhances the ability of619

LLMs to acquire new tasks from a limited set of620

examples (Brown et al., 2020; Dong et al., 2022).621

In the realm of OS verification, which is inher-622

ently complex, the provision of examples illustrat-623

ing the generation of specifications from functional624

descriptions and code implementations exerts a sub-625

stantial influence on performance outcomes. In this626

study, we explore various ICL settings, specifically627

zero-shot, one-shot, three-shot, and five-shot learn-628

ing, as illustrated in Figure 4. It is noteworthy that629

we exclude discussions on o1 and DeepSeek-R1,630

owing to their prohibitive cost and time-intensive631

nature. Our observations reveal that the zero-shot632

setting (without being shown in the Figure 4) re-633

sults in complete task failure, with a success rate634

of 0% across all models, underscoring the critical635

importance of demonstrations in OS verification636

contexts. As anticipated, the pass@1 performance637

of LLMs tends to improve with the provision of 638

additional demonstrations. Notably, DeepSeek- 639

Chat appears to derive greater benefits from in- 640

creased demonstrations. While o3-mini surpasses 641

DeepSeek-Chat in the one-shot context, it underper- 642

forms compared to GPT-4o and DeepSeek-Chat in 643

the three- and five-shot scenarios. We hypothesize 644

that the advanced reasoning models currently in 645

use generate extensive chains of reasoning traces, 646

which may challenge the long-context learning ca- 647

pabilities in OS verification scenarios. 648

5 Conclusion 649

We introduce OSVBench, a robust benchmark for 650

evaluating the performance of LLMs in generating 651

specifications for verifying OS kernels. By framing 652

the specification generation as a program synthesis 653

problem, the benchmark challenges LLMs to nav- 654

igate complex syntax and semantics within long- 655

context tasks. Our comprehensive evaluation of 656

10 powerful LLMs reveals limitations in their cur- 657

rent ability to handle these tasks effectively, with 658

notable disparities in performance across models. 659

These findings underscore the need for further ad- 660

vancements in LLM technology to enhance their 661

understanding and generation capabilities in com- 662

plex domains. OSVBench not only highlights ex- 663

isting gaps but also serves as a valuable tool for 664

guiding future research aimed at improving verifi- 665

cation processes in operating system development. 666

Limitations 667

While our OSVBench offers a significant advance- 668

ment in evaluating LLMs for operating system 669

kernel verification tasks, several limitations must 670

be considered. The benchmark is specifically de- 671

signed around the Hyperkernel operating system, 672

which may not capture the full diversity of kernel 673

architectures, potentially limiting the generalizabil- 674
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ity of results to other systems. The complexity675

of tasks, consisting of approximate 30,000 tokens676

each, poses significant challenges in context man-677

agement for LLMs, possibly overshadowing other678

capabilities like logical reasoning. Additionally,679

the confined scope of syntax and semantics within680

the benchmark may not fully reflect the dynamic681

nature of real-world operating system development682

environments. Current evaluation metrics may not683

capture qualitative aspects of successful specifica-684

tion generation, such as readability and adaptability,685

which are crucial for practical implementation. Fur-686

thermore, the benchmark lacks real-world feedback687

loops, such as iterative testing and debugging, lim-688

iting its ability to simulate realistic development689

conditions. Lastly, given the fixed nature of tasks690

and reliance on a single kernel, there’s a risk of691

LLMs overfitting to specific tasks rather than de-692

veloping broader, adaptable understanding, which693

can constrain insights into their general capabil-694

ities. These limitations can guide future efforts695

to enhance benchmarks for evaluating LLMs in696

complex, real-world programming and verification697

tasks.698
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A Types of Buggy Code Implementations870

Incorrect pointer. The incorrect pointer bug oc-871

curs because the switchuvm() function is intended872

to switch the Task State Segment (TSS) and page873

table to the process p that is passed as an argument.874

However, instead of using p to access the kstack875

field, the function erroneously references the global876

variable proc. This misuse of the pointer results in877

an incorrect kernel state transition.878

Bounds checking. The bounds checking bug oc-879

curs because the second condition fails to validate880

if size is negative. Without this check, a negative881

size can cause an integer underflow in (uint)i + size,882

bypassing the bounds check and allowing invalid883

memory access. This results in potential memory884

violations, including accessing or modifying out-885

of-bounds memory, leading to undefined behavior.886

Memory leak. This memory leak bug occurs887

because the function incorrectly skips over page888

table entries (PTEs) when encountering a zero page889

directory entry (PDE). The faulty statement fails to890

move to the next page table, causing valid PTEs to891

be missed and their corresponding physical mem-892

ory not being freed. This leads to leaked memory,893

which remains allocated but unusable, potentially894

exhausting system resources over time.895

Incorrect I/O privilege. This I/O privilege bug896

occurs because the kernel fails to set the iomb field897

in the TSS, leaving it at its default value (0), which898

allows user-space processes to execute I/O instruc-899

tions directly. This violates privilege separation,900

enabling malicious processes to bypass kernel con-901

trol, access hardware, corrupt device state, or desta-902

bilize the system.903

Buffer overflow. This buffer overflow bug oc-904

curs because the kernel incorrectly assumes that905

cpu->id (APIC IDs) are consecutive and start from906

zero, using it directly as an index into the cpus907

array. If APIC IDs are sparse or non-consecutive,908

this results in out-of-bounds memory access, poten-909

tially corrupting kernel memory, causing system910

instability, or introducing security vulnerabilities.911

B Case Study912

We next conduct a case study to further investigate913

the root causes of these errors.914

Syntax error. First, we present an example of a915

syntax error. This error occurs during the synthesis916

of the state-machine specification for the system917

call sys_map_pcipage. The functional description918

of this system call is as follows: it verifies that the 919

current process owns the specified PCI page. The 920

corresponding code snippet is provided below: 921
922

1 int sys_map_pcipage(pn_t pt, size_t 923
index , pn_t pcipn , pte_t perm) { 924

2 if (! is_pcipn_pid(pcipn , pid)) 925
3 return -EACCES; 926
4 } 927
5 static int is_pcipn_pid(pn_t pcipn , 928

pid_t pid) { 929
6 ... 930
7 return pci_table[pcipages[pcipn]. 931

devid] == pid; 932
8 } 933934

And the model generate the specification as be- 935

low: 936
937

1 old.pcipages[pcipn].devid == old.current 938939

However, based on the provided programming 940

model, old.pcipages[pcipn] is intended to retrieve 941

a modeled instance of a PCIPage, which does not 942

include a modeled devid attribute. This error results 943

in an attempt to access a non-existent class field in 944

Python, leading to the syntax error. 945
946

1 class PCIPage(Struct): 947
2 owner = Map(pn_t , devid_t) 948
3 valid = Map(pn_t , bool_t) 949950

951
1 class KernelState(BaseStruct): 952
2 pci = PCI() 953
3 pcipages = PCIPage () 954
4 955
5 class PCIPage(Struct): 956
6 ... 957
7 owner = Map(pn_t , devid_t) 958
8 959
9 class PCI(Struct): 960

10 owner = Map(devid_t , pid_t) 961962

Based on the programming model described 963

above, the appropriate reasoning process to de- 964

termine the process identifier associated with the 965

PCIPage, starting from its page number, can be 966

outlined as follows: By analyzing the types of the 967

fields involved, we can deduce that the first step is 968

to retrieve the PCIPage instance corresponding to 969

the given page number. Next, we should identify its 970

owner, represented by the device identifier (devid). 971

Using this device identifier, the associated PCI in- 972

stance can then be obtained. Finally, from the PCI 973

instance, the process identifier can be determined. 974

Hence, the correct specification should be: 975
976

1 old.pci[old.pcipages[pcipn].owner].owner 977
== old.current , 978979

The LLM fails to accurately reason about the 980

access chain required to retrieve the correct object. 981
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(a) Incorrect I/O Privilege (b) Bounds Checking (c) Memory Leak

(d) Incorrect Pointer (e) Buffer Overflow

Figure 5: Five types of bugs.

This failure may be attributed to the long context,982

which might cause the LLM to lose track of the983

provided programming model and instead generate984

a specification resembling the concrete code imple-985

mentation of the system call. However, it is crucial986

to emphasize that the kernel’s abstract modeling987

differs fundamentally from its code implementa-988

tion.989

Semantic error. Next, we present another ex-990

ample to demonstrate the occurrence of semantic991

errors. This example involves a mistake in the992

synthesis of the state-machine specification for the993

system call sys_map_proc. The functional descrip-994

tion of this system call is as follows: it verifies the995

specified permissions and rejects the operation if996

the permissions include write access. However, the997

code implementation contains an injected bug:998
999

1 if (pte_writable(perm)) [correct]1000
2 if (! pte_writable(perm)) [bug injected]1001
3 return -EACCES;1002
4 static inline bool pte_writable(1003

uintptr_t x)1004
5 {1005
6 return x & PTE_W;1006
7 }10071008

In this case, the LLM is expected to identify the1009

injected vulnerability by adhering to the functional1010

description and generate the correct specification1011

as follows:1012
1013

1 perm & dt.PTE_W != 0,10141015

However, the large language model (LLM) fails1016

to accurately interpret the functional description1017

and instead generates an incorrect specification:1018
1019

1 perm & dt.PTE_W == 0,10201021

This incorrect condition causes the kernel state, 1022

as defined in the specification, to transition into 1023

an inconsistent state that deviates from the correct 1024

operating system implementation, ultimately result- 1025

ing in a semantic error. 1026
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