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Abstract

We introduce OSVBench, a new benchmark for
evaluating Large Language Models (LLMs) in
generating code for complete specifications per-
taining to operating system kernel verification
tasks. The benchmark first defines the specifica-
tion generation problem into a program synthe-
sis problem within a confined scope of syntax
and semantics by providing LLMs with the pro-
gramming model. The LLMs are required to un-
derstand the provided verification assumption
and the potential syntax and semantics space to
search for, then generate the complete specifica-
tion for the potentially buggy operating system
code implementation under the guidance of the
high-level functional description of the oper-
ating system. This benchmark is built upon a
real-world operating system kernel, Hyperker-
nel, and consists of 245 complex specification
generation tasks in total, each is a long context
task of about 30,000 tokens. Our comprehen-
sive evaluation of 10 LLMs exhibits the limited
performance of the current LLMs on the speci-
fication generation tasks for operating system
verification. Significant disparities of their per-
formance on the benchmark, differentiating the
ability on long context code generation tasks.

1 Introduction

Large Language Models (LLMs) have shown great
potential in software engineering tasks, such as
code generation, code summarization, and bug re-
pair. However, an important aspect of software
engineering remains underexplored: software veri-
fication. Software verification uses rigorous math-
ematical reasoning to prove the absence of bugs
in software (Dahl et al., 1972), which is essential
in ensuring the correctness of software in safety-
critical domains such as aerospace, healthcare, and
nuclear energy (Klein et al., 2009; Amani et al.,
2016; O’Connor et al., 2016), where software er-
rors could lead to catastrophic economic losses
or even endanger human lives. However, man-

ual software verification is challenging and time-
consuming. It typically requires a deep understand-
ing of formal methods and program analysis, skills
that are usually acquired only at the graduate level.
As a result, professionals capable of conducting
verification is limited, highlighting the need for
automation in this area.

In this paper, we examine the capabilities of
LLMs in automating software verification. We
introduce a benchmark suite to evaluate the effec-
tiveness of these models in verifying an operating
system (OS) kernel, a fundamental component of
many critical infrastructures. Verifying an OS ker-
nel is highly non-trivial due to the inherent com-
plexity, concurrency, and hardware interactions in-
volved. For example, the verification of the well-
known selL4 microkernel (Klein et al., 2009) re-
quired 11 person-years of effort for 10,000 lines
of C code, while verifying two operations of the
BilbyFs file system required 9.25 person-months
of effort (Amani et al., 2016) for 1,350 lines of
code. Automating verification requires generating
specifications that characterize the expected prop-
erties, a task as complex as developing correctness
proofs (Sammler et al., 2021; Leino, 2010; Jacobs
and Piessens, 2008; Ma et al., 2024). For example,
developing the specification for selL.4 (Klein et al.,
2009) required 7 person-months of effort.

We introduce OSVBench, a benchmark suite de-
rived from the Hyperkernel project (Nelson et al.,
2017), to evaluate the capabilities of LLMs in gen-
erating specifications for verifying the functional
correctness of an OS kernel. This benchmark aims
to facilitate automation in the generation of OS
kernel verification specifications. The benchmark
comprises of 245 verification specification genera-
tion tasks, each of which is a complex and intricate
program synthesis task with long context, approxi-
mately 30,000 tokens.

Figure 1 illustrates the workflow for each verifi-
cation specification generation task. This workflow
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Figure 1: The workflow of OSVBench benchmark suite

is divided into two main stages: the generation
stage and the specification quality evaluation stage.

In the generation stage, several inputs are pro-
vided to guide the process, including the verifi-
cation assumptions, a programming model with
deterministic formal semantics, a set of few-shot
examples, and the final task problem. The few-shot
examples consist of three components: (1) a pre-
cise and accurate functional description in natural
language for a specific system call of the OS kernel,
(2) the concrete, potentially buggy code implemen-
tation of the system call, and (3) the specification
required to verify the functional correctness of the
system call, which ensures the functional correct-
ness of the OS kernel. The task problem, in turn,
is structured to include the functional description
and the potentially buggy code implementation of
the system call while leaving the specification for
LLMs to synthesize.

The second stage, referred to as the specification
quality evaluation stage, utilizes a verifier to assess
the correctness of the generated specification. This
is achieved by verifying multiple OS kernel imple-
mentations with different injected bugs, using both
the generated specification and the oracle specifica-
tion as references. If the verification results for any
of the implementations differ between the two spec-
ifications, the generated specification is deemed in-
correct; otherwise, it is considered correct. Further
details on the functionality and operation of the
verifier are provided in subsection 3.1.

We conducted comprehensive experiments on
the formal specification generation from the func-
tional description in natural language and the code
implementation of the OS kernel with different

types and numbers of vulnerabilities by injecting
5 real-world types of bugs into the OS kernel. The
experiment results showcase the potential of LLMs
in automating formal specification generation for
OS kernel verification. Finally, we conduct rigor-
ous data decontamination (Yang et al., 2023) for
the synthetic dataset to remove samples that closely
resemble those in the test subset Dgggt of the cover-
age dataset. The main contributions of this paper
can be summarized as below:

* We initiate an exploration of LLMs in the con-
text of OS verification tasks, which necessi-
tate a deep understanding and manipulation of
extensive contextual information and domain-
specific knowledge.

* We introduce OSVBench, a benchmark de-
signed for OS verification, to evaluate the
capabilities of LLMs in generating specifica-
tions for OS kernels.

* We performed a comprehensive evaluation of
the most advanced LLMs in generating spec-
ifications aimed at verifying the functional
correctness of an OS kernel. We also discuss
the impact of varying types and quantities of
bugs on the quality and effectiveness of the
generated specifications.

2 Related Work

2.1 Software Verification

Software verification (D’silva et al., 2008) ensures
that software conforms to specified properties or
requirements, playing a critical role in guarantee-
ing software reliability and correctness. Com-



mon techniques include static analysis (Cousot
and Cousot, 1977), model checking (Emerson and
Clarke, 1980), and theorem proving. Theorem
proving can be categorized into interactive theo-
rem proving, such as Isabelle (Isabelle, 2025), Coq
(Coq, 2025), and Dafny (Dafny, 2025), and auto-
mated theorem proving, which relies on solvers
such as Z3 (De Moura and Bjgrner, 2008).
Operating system kernel verification (Klein et al.,
2014) has been a central research goal in ensuring
the reliability and security of critical software sys-
tems. Early foundational work includes efforts
such as UCLA Secure Unix (Walker et al., 1980),
PSOS (Feiertag et al., 1977), and KIT (Bevier,

1989), which laid the groundwork for formal ap- ;

proaches to kernel correctness. Recent progress has
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expanded to leveraging formal methods like theo-

rem proving (Nelson et al., 2017) and model check-
ing (Klein et al., 2009), aiming for high-assurance
kernels with mathematically verified properties.

Prior work on leveraging LLMs for software
verification mainly focused on generating proofs
from specifications (Chen et al., 2024; Zhang et al.,
2024), which involves translating one determinis-
tic formal semantic representation (specifications,
in various forms) into another (proofs expressed
in formal languages). Additionally, some studies
have explored the task of specification generation.
However, much of this work has concentrated on
general-purpose specification generation (Ma et al.,
2024), which differs significantly from the genera-
tion of OS kernel specifications due to the distinct
verification assumptions and requirements encoun-
tered in this domain.

2.2 LLM for Code Generation

The use of Large Language Models (LLMs) for
code generation has gained significant attention in
recent years, as these models have demonstrated
remarkable capabilities in synthesizing code snip-
pets from natural language descriptions (Austin
et al., 2021; Athiwaratkun et al., 2022; Zan et al.,
2023; Jiang et al., 2024). Several studies have ex-
plored the potential of LLMs in various code gen-
eration tasks, ranging from simple function genera-
tion (Chen et al., 2021; Luo et al., 2023) to more
complex programming challenges (Jimenez et al.,
2023; Ding et al., 2024). Despite these advance-
ments, code generation for specific domains, such
as operating system (OS) kernel verification, poses
unique challenges that are not fully addressed by
general-purpose LLMs. The complexity and speci-

ficity of the syntax and semantics involved in such
domains require models not only to understand
programming languages but also to grasp domain-
specific knowledge and verification assumptions.
This challenge calls for a benchmark that evaluate
the capabilities of LLLMs in generating specifica-
tions for operating system kernels.

3 OSVBench

In this section, we will discuss the benchmark con-
struction details and the specification generation
problem formulation.

class KernelState(BaseStruct):

procs = Proc()
pages = Page()
files = File()
pcipages = PCIPage()

3.1 Preliminaries

Hyperkernel (Nelson et al., 2017) is an OS ker-
nel verification project that includes both a real-
world kernel implementation and a verification
framework built on the automated theorem prover
Z3. The kernel implementation supports 50 sys-
tem calls, covering key functionalities such as pro-
cess management, virtual memory, file descriptors,
device interaction, inter-process communication,
and scheduling. The entire codebase consists of
approximately 18,000 lines of C and assembly, en-
compassing both the kernel implementation and
associated user-space components.

As demonstrated in the specification quality eval-
uation section in Figure 1, the verifier for Hyperk-
ernel requires two types of specifications as input.
The first is a state-machine specification, which
defines the functional correctness by describing the
intended behavior of the OS kernel. The second
is a higher-level declarative specification, which
outlines overarching properties and invariants that
the state-machine specification must satisfy. For
example, one such property ensures that the num-
ber of children for any given process is always
equal to the total number of processes identifying
that process as their parent. In our formulation of
the verification specification generation task, the
declarative specification is provided as input, and
the objective is to synthesize the corresponding
state-machine specification that formally defines
the functional behaviors of the kernel.

The verifier establishes two theorems. The first
one proves that the kernel implementation is a re-




finement of the state-machine specification, ex-
pressed as Vor,p € Ximpl, Ve € C,30spec €
Y spec, such that o4(c) = op(c), which states that
for every kernel state in the implementation, under
any condition, there exists a corresponding kernel
state defined in the state-machine specification that
is equivalent under the same condition. The sec-
ond theorem demonstrates that the state-machine
specification satisfies the properties and invariants
defined within the declarative specifications.

In our formulation of the specification genera-
tion task, the declarative specifications are provided
and the role of the LLM is to synthesize the state-
machine specifications. Once the state-transition
specification is prepared, its verifier performs sym-
bolic execution on the compiled LLVM IR (Lattner
and Adve, 2004) of the OS kernel and invokes
the z3 (De Moura and Bjgrner, 2008) solver to
perform the equivalence checking on the real ker-
nel state transitions in the concrete implementa-
tion and those defined in the state-transition spec-
ification. Additionally, the verifier ensures that
the state-machine specification adheres to the high-
level declarative specifications. Any detected in-
consistency indicates either the presence of a bug in
the OS kernel code implementation or that the state-
transition specification fails to accurately describe
the intended functionality of the system call.

We select the Hyperkernel as the benchmark for
the following reasons: 1) Hyperkernel’s specifica-
tions are well-defined and systematically modeled
using Python classes with deterministic semantics.
Crafting these specifications requires significant
expertise and non-trivial effort, making it a suitable
and challenging benchmark for evaluating specifi-
cation generation tasks. 2) Hyperkernel employs
an automated theorem prover, specifically the Z3
solver, to formally verify the functional correctness
of the OS kernel instead of using the interactive the-
orem provers, such as Isabelle, Coq, or Dafny. By
utilizing an automated solver, the focus can remain
on the specification generation tasks, streamlining '
the verification process. ;

4
3.2 Problem Formulation

6
Verification of operating systems requires exten- ,

sive domain-specific expertise. To enable large *
language models (LLMs) to address the verifica-
tion specification problem by leveraging their pre-

trained knowledge, we reformulate the problem as'!
a program synthesis task within a domain defined i
by deterministic formal semantics based on two i«
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observations. The first is that the kernel behav-
ior is well-modeled using a set of Python classes
with deterministic semantics, which serves as the
programming model. Second, as outlined in the
subsection 3.1, the state-machine specification of
the Hyperkernel defines the kernel state transitions.
Specifically, it specifies the kernel state to which
the OS will transition under specific conditions
upon the completion of a corresponding system call.
Thus, the synthesis domain for the state-machine
specification synthesis task can be formally defined,
as illustrated in Equation 1. In this context, the
State represents the modeled class KernelState,
as detailed in Listing 3.

Synthesize correct specification within the
scoped semantics. In this context, the task of the
LLMs is to first comprehend the semantics of the
programming model described in Listing 3. Subse-
quently, the LLMs perform state-machine specifi-
cation synthesis guided by the high-level functional
description of the system call. Finally, within the
constrained domain of formal semantics defined
in Equation 1, the LLMs search for the correct
implementation of the specification.

To synthesize the correct specification from an
informal functional description in natural language,
the process must ensure accurate field access, ap-
propriate constant selection, and precise condi-
tion selection. Specifically, to achieve determin-
istic specification synthesis, the synthesis process
should operate within a symbolic triple relation,
denoted as < Desc, Impl, Model >. This rule
entails that, for synthesizing any given statement in
the specification, the LLLM should first identify the
relevant functional description (Desc), then locate
the corresponding concrete kernel implementation
(Impl). Finally, it must interpret the intended se-
mantics and synthesize the correct specification
by referencing the appropriate model (Model) as
defined within the programming model.

int sys_close(pid_t pid, int fd) {
if (lis_pid_valid(pid)) // Cond1.
return -ESRCH;

if (lis_fd_valid(fd)) // Cond2.
return -EBADF;
clear_fd(pid, fd);
}
static inline void clear_fd(pid_t pid,

int fd) {

file = get_file(get_fd(pid, fd));
proc->ofile[fd] = 0;
--proc->nr_fds;
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if (--file->refcnt == @) { // Cond3

}

For example, Listing 3.2 shows the implementa-
tion of the system call sys_close. As the functional
description indicates: This involves updating the
process’s file descriptor table to mark the descrip-
tor as unused and decrementing the count of open
file descriptors for the process. Additionally, the
system updates the file’s reference count to reflect
the decrease of the file references.

Kernel code implementation:

proc->ofile[fd] =
--proc->nr_fds;
--file->refcnt;

0;

By searching in the programming model and the
synthesis domain Equation 1:
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Figure 2: Diverged kernel states of sys_close

the system call sys_close. Consequently, the ker-
nel state specified in the synthesized specification
should be as follows:

class Proc(Struct):

ofile = Map(pid_t,
nr_fds = Refcnt(pid_t,
class File(Struct):

fd_t, fn_t)
fd_t, size_t)

refcnt = Refcnt(fn_t,
size_t)

(pid_t, fd_t),

The synthesized specification is:

new.procs[pid].ofile[fd] = z3.
BitVecVal (@, dt.fn_t)
new.procs[pid]l.nr_fds[fd]l -= 1

new.files[fn].refcnt[(pid, fd)] -=1

Specification := State
State := State.(field; + Expression)™ | State
Expression = i f cond Expression, Expression’ |
Expression op Expression | Constant
cond = and cond, cond | or cond cond |
State. field; op Constant |
State. field; op State. field;
op=+ - X +==>< > <= Q)
Diverged kernel statesKernel state conditions
synthesis. To synthesize an accurate state-machine
specification, it is essential to determine the kernel
state to which the system transitions under specific
conditions according to the synthesis domain Equa-
tion 1. This process requires LLMs to perform
advanced reasoning, as many system calls involve
cascading and interdependent conditions. Figure 2
illustrates the diverged kernel states resulting from

def sys_close(old, pid,
spec_condl = z3.And(

z3.And(pid > 0,

z3.And(fd >= 0,

£d):

pid < dt.NPROC),
fd < dt.NOFILE),

newl = old.copy()
spec_cond2 = z3.And(new.files[fn].

refcnt () 0)
new2 = newl.copy()

new3 = util.If(spec_cond2,new2,newl)
return spec_condl, util.If(
spec_cond1l, new3, old)

The specification Listing 3.2 illustrates the ker-
nel’s state transitions under different conditions.
Specifically, the kernel transitions to new_statel
when both spec_condl and spec_cond2 are satis-
fied. If spec_condl is satisfied but spec_cond?2 is
not, the kernel transitions to new_state2. Finally,
if neither spec_condl nor spec_cond? is satisfied,
the kernel remains in old_state.

3.3 Verification Specification Generation

In real-world scenarios involving the verification
of OS kernels, the kernel implementation is not
guaranteed to be correct and may contain various
types and numbers of bugs. The primary objective
of verification is to identify and pinpoint these bugs
within the kernel’s concrete code implementation.
So the verification specification generation task is
defined as synthesizing the comprehensive speci-
fications to verify the functional correctness of an
OS kernel under the guidance of the correct high-
level functional descriptions and potentially buggy
code implementations of the system calls.




We begin by engaging three OS specialists to
manually draft detailed functional descriptions of
each system call in natural language. We then em-
ploy a voting strategy to determine the most accu-
rate and representative functional description for
each system call to ensure clarity and precision.

Additionally, to simulate real-world conditions,
we begin with the correct code implementation of
the OS kernel and systematically construct a set
of incorrect implementations. This is achieved by
randomly introducing five types of real-world bugs,
derived from the xv6 kernel (Cox et al., 2011), into
the codebase of Hyperkernel. This approach allows
us to evaluate the impact of various vulnerabili-
ties on the performance of large language models
(LLMs) in generating accurate state-machine spec-
ifications. The definition of each type of buggy
code implementation is provided in Appendix A.

Finally, we create a total of 245 verification spec-
ification generation tasks upon 49 of the system
calls of Hyperkernel, each consisting of a correct
high-level functional description of a system call
paired with its corresponding potentially buggy
code implementation. Among the 245 code imple-
mentations, some are correct, while others contain
varying numbers of bugs, ranging from one to five.

4 Evaluation

4.1 Experimental Setup

State-of-the-art LLMs. We conduct an eval-
uation of the current state-of-the-art large lan-
guage models (LLMs) developed by four leading
institutions: OpenAl, DeepSeek, Meta, and the
Qwen Team. Specifically, our evaluation includes
the o1, 03-mini, and GPT-40 models from Ope-
nAl; the DeepSeek-R1 and DeepSeek-Chat mod-
els from DeepSeek; the Llama-3.1-70B-Instruct
and Llama-3.1-8B-Instruct models from Meta;
and the QwQ-32B-Preview, Qwen2.5-72B-Instruct,
and Qwen2.5-Coder-7B-Instruct models from the
Qwen Team. The evaluation leverages the OS-
VBench framework to systematically assess the
performance of these models in the task of gener-
ating OS kernel verification specifications. These
LLM:s differ in key characteristics such as the num-
ber of parameters, open-source availability, data
cutoff dates, and pretraining objectives. For all
models, we employ a greedy search decoding strat-
egy with pass@1 for consistency in evaluation.

Prompts As illustrated in Figure 1, the prompt
for each task is specifically designed for a particu-

lar system call within the OS kernel. The prompt
is structured into four key components: the system
verification assumptions, the programming model,
the few-shot examples, and the task question. The
task question includes the correct functional de-
scription, a potentially buggy code implementation,
and instructions for generating the specification re-
quired to verify the functional correctness of the
system call. The few-shot examples are carefully
selected by OS kernel verification experts to ensure
they are representative for the task.

Specification quality metrics. To systematically
evaluate the performance of LLMs on the tasks, we
define several metrics. As outlined in the specifi-
cation correctness evaluation stage in Figure 1, we
deliberately created multiple OS kernel implemen-
tations with known, artificially inserted bugs. The
metric Pass@ ] is used to indicate that the gener-
ated specification is correct, meaning it precisely
identifies the vulnerabilities in the same manner as
the oracle specification across all buggy OS ker-
nel implementations. The Syntax Error metric de-
notes cases where the generated specification fails
to execute correctly or terminates with an excep-
tion. Finally, the Semantic Error refers to instances
where the verifier successfully translates the speci-
fication into SMT (De Moura and Bjgrner, 2008)
and performs verification on the OS kernel imple-
mentation, but the pinpointed vulnerability differs
from that specified by the oracle specification.

4.2 Main Results

Table 1 presents results of the performance of
LLMs across institutions and bug categories.
DeepSeek-Chat stands out with the highest average
pass@1 rate (46.53%) and a superior ability to gen-
erate correct specifications (51.02%), showcasing
robust performance across all bug types.

In general, models with larger parameter sizes
tend to outperform their smaller counterparts.
For instance, Llama-3.1-8B-Instruct and Qwen2.5-
Coder-7B-Instruct exhibit significantly weaker per-
formance compared to their larger counterparts,
such as Llama-3.1-70B-Instruct and Qwen2.5-72B-
Instruct, which have over 70 billion parameters.
The results also highlight the performance degrada-
tion caused by the presence of various bug types,
with the impact varying across models and bug
categories. For example, memory leak bugs have
the most pronounced effect on the DeepSeek-R1
model, while incorrect pointer bugs most signifi-



Table 1: Performance comparison of various models with 5-shots prompt. * denotes reasoning LLMs.

Institution Model Incorrect Incorrect /O Memory  Buffer Bounds Correct | Av
Pointer Privilege Leak Overflow Checking &
ol* 12.68 21.43 13.51 20.37 23.15 28.57 | 23.67
OpenAl 03-mini* 19.72 18.75 18.92 12.96 15.74 26.53 | 22.04
GPT-40 33.80 34.82 32.43 33.33 36.11 42.86 | 38.78
DeepSeck DeepSeek-R1* 32.39 21.43 13.51 20.37 23.15 42.86 | 40.00
p DeepSeek-Chat 38.02 39.29 36.49 44.44 43.52 51.02 | 46.53
Meta Llama-3.1-70b-instruct 12.68 18.75 12.16 16.67 22.22 22.45 | 2245
Llama-3.1-8B-Instruct 0 11.61 0 12.96 9.26 10.20 | 10.61
QwQ-32B-Preview* 14.08 23.21 20.27 20.37 23.15 22.45 | 24.08
Qwen Team Qwen2.5-72b-instruct 25.35 26.79 24.32 25.93 30.56 34.69 | 32.24
Qwen2.5-Coder-7B-Instruct 0 8.04 0 3.70 5.56 4.08 4.90
Table 2: Syntax and semantic errors of various models. ol DeepSeek-R1 QWQ-32B-Preview
* . 03-mini DeepSeek-Chat Qwen2.5-72b-Instruct
denotes reasoning LLMs. GPT-40 Llama-3.1-70b-Instruct Qwen2.5-Coder-7B-Instruct
- 50
Model ‘ Syntax Error Semantic Error
ol* 52.65 23.67 401
03-mini* 51.02 26.94 -
GPT-40 35.10 26.53 ®1
DeepSeek-R1* 32.65 26.53 e 201
DeepSeek-Chat 31.02 24.90
Llama-3.1-70b-instruct 44.90 32.65 101
Llama-3.1-8B-Instruct 67.76 23.67 o
. 1 2 3 4 5
QWQ_SZB_Pre.VIGW 66.53 9.39 Number of Vulnerabilities
Qwen?2.5-72b-instruct 42.25 25.31
Qwen2.5-Coder-7B-Instruct 86.12 11.02 Figure 3: Performance comparison of bug number.

cantly impact the ol models.

Surprisingly, widely regarded reasoning models,
such as ol and DeepSeek-R1, do not consistently
outperform other models in this task. In particular,
the ol model demonstrates weak performance, per-
forming worse than the QwQ-32B-Preview model,
which challenges assumptions about the superior-
ity of certain reasoning models in these tasks. We
speculate that the advanced reasoning models being
utilized produce lengthy chains of reasoning traces,
which could pose challenges to the long-context
learning capabilities in OS verification scenarios.

4.3 Syntax and Semantic Error Analysis

Given the definitions of syntax and semantic er-
rors provided in section 4.1, we analyze the error
rates of the evaluated LLMs. By definition, mod-
els with better overall performance are expected to
exhibit lower error rates, with semantic error rates
comparatively higher than syntax error rates. This
is because, when generating specifications, LLMs
must first ensure syntactic validity according to the
programming model before attempting to perform

verification on the OS kernel to pinpoint vulnerabil-
ities. As observed in Table 2, the best-performing
model, DeepSeek-Chat, aligns with this expecta-
tion, showing a comparatively higher semantic er-
ror rate relative to its syntax error rate. In contrast,
the worst-performing model, Qwen2.5-Coder-7B-
Instruct, exhibits the opposite trend, with a notably
low semantic error rate but an exceptionally high
syntax error rate, indicating significant challenges
in producing syntactically valid specifications. To
further investigate the root causes of these errors,
we conducted a detailed case study in Appendix B
on two representative error cases, analyzing how
the specifications generated by the LLMs lead to
syntax and semantic errors. This analysis aims to
provide deeper insights into the limitations of the
models and potential areas for improvements.

4.4 TImpact of Number of Vulnerabilities

In practical applications, OS kernels typically ex-
hibit a limited number of potential vulnerabilities,
with few instances of severe vulnerabilities. Conse-
quently, we further explore the impact of varying
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Figure 4: Performance of various models on different number of few-shot examples. * denotes reasoning LLM:s.

numbers of vulnerabilities on the performance of
specification synthesis, as illustrated in Figure 3.
Our observations yield several insights: 1) The
pass@ ] performance of LLMs tends to decline
as the number of vulnerabilities increases. This
decline is likely because the presence of more vul-
nerabilities in the kernel implementation compli-
cates the models’ ability to accurately comprehend
the functional descriptions. 2) Advanced reason-
ing models underperform compared to traditional
instruction-following models. For instance, GPT-
4o consistently outperforms ol and 03-mini across
all levels of vulnerability. Similarly, DeepSeek-R1
is less effective than DeepSeek-Chat. These find-
ings align with the observations presented in Table
1. Therefore, reasoning-enhanced models may en-
counter greater challenges due to the long-context
limitations inherent in OS verification scenarios.

4.5 Impact of Number of Demonstrations

Recent studies have demonstrated that in-context
learning (ICL) significantly enhances the ability of
LLMs to acquire new tasks from a limited set of
examples (Brown et al., 2020; Dong et al., 2022).
In the realm of OS verification, which is inher-
ently complex, the provision of examples illustrat-
ing the generation of specifications from functional
descriptions and code implementations exerts a sub-
stantial influence on performance outcomes. In this
study, we explore various ICL settings, specifically
zero-shot, one-shot, three-shot, and five-shot learn-
ing, as illustrated in Figure 4. It is noteworthy that
we exclude discussions on ol and DeepSeek-R1,
owing to their prohibitive cost and time-intensive
nature. Our observations reveal that the zero-shot
setting (without being shown in the Figure 4) re-
sults in complete task failure, with a success rate
of 0% across all models, underscoring the critical
importance of demonstrations in OS verification
contexts. As anticipated, the pass@ I performance

of LLMs tends to improve with the provision of
additional demonstrations. Notably, DeepSeek-
Chat appears to derive greater benefits from in-
creased demonstrations. While 03-mini surpasses
DeepSeek-Chat in the one-shot context, it underper-
forms compared to GPT-40 and DeepSeek-Chat in
the three- and five-shot scenarios. We hypothesize
that the advanced reasoning models currently in
use generate extensive chains of reasoning traces,
which may challenge the long-context learning ca-
pabilities in OS verification scenarios.

5 Conclusion

We introduce OSVBench, a robust benchmark for
evaluating the performance of LLMs in generating
specifications for verifying OS kernels. By framing
the specification generation as a program synthesis
problem, the benchmark challenges LLMs to nav-
igate complex syntax and semantics within long-
context tasks. Our comprehensive evaluation of
10 powerful LLMs reveals limitations in their cur-
rent ability to handle these tasks effectively, with
notable disparities in performance across models.
These findings underscore the need for further ad-
vancements in LLM technology to enhance their
understanding and generation capabilities in com-
plex domains. OSVBench not only highlights ex-
isting gaps but also serves as a valuable tool for
guiding future research aimed at improving verifi-
cation processes in operating system development.

Limitations

While our OSVBench offers a significant advance-
ment in evaluating LLLMs for operating system
kernel verification tasks, several limitations must
be considered. The benchmark is specifically de-
signed around the Hyperkernel operating system,
which may not capture the full diversity of kernel
architectures, potentially limiting the generalizabil-



ity of results to other systems. The complexity
of tasks, consisting of approximate 30,000 tokens
each, poses significant challenges in context man-
agement for LLMs, possibly overshadowing other
capabilities like logical reasoning. Additionally,
the confined scope of syntax and semantics within
the benchmark may not fully reflect the dynamic
nature of real-world operating system development
environments. Current evaluation metrics may not
capture qualitative aspects of successful specifica-
tion generation, such as readability and adaptability,
which are crucial for practical implementation. Fur-
thermore, the benchmark lacks real-world feedback
loops, such as iterative testing and debugging, lim-
iting its ability to simulate realistic development
conditions. Lastly, given the fixed nature of tasks
and reliance on a single kernel, there’s a risk of
LLMs overfitting to specific tasks rather than de-
veloping broader, adaptable understanding, which
can constrain insights into their general capabil-
ities. These limitations can guide future efforts
to enhance benchmarks for evaluating LLMs in
complex, real-world programming and verification
tasks.
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A Types of Buggy Code Implementations

Incorrect pointer. The incorrect pointer bug oc-
curs because the switchuvm() function is intended

of this system call is as follows: it verifies that the
current process owns the specified PCI page. The
corresponding code snippet is provided below:

to switch the Task State Segment (TSS) and page
table to the process p that is passed as an argument. ,
However, instead of using p to access the kstack °
field, the function erroneously references the global 4
variable proc. This misuse of the pointer results in
an incorrect kernel state transition. 0

Bounds checking. The bounds checking bug oc-
curs because the second condition fails to validate s

int sys_map_pcipage(pn_t pt, size_t
index, pn_t pcipn, pte_t perm) {
if (!is_pcipn_pid(pcipn, pid))

return -EACCES;
}
static int is_pcipn_pid(pn_t pcipn,
pid_t pid) {

return pci_table[pcipages[pcipn].
devid] pid;

if size is negative. Without this check, a negative
size can cause an integer underflow in (uint)i + size,
bypassing the bounds check and allowing invalid

And the model generate the specification as be-
low:

memory access. This results in potential memory !

old.pcipages[pcipn].devid == old.current

violations, including accessing or modifying out-
of-bounds memory, leading to undefined behavior.

Memory leak. This memory leak bug occurs
because the function incorrectly skips over page
table entries (PTEs) when encountering a zero page
directory entry (PDE). The faulty statement fails to
move to the next page table, causing valid PTEs to

However, based on the provided programming
model, old.pcipages[pcipn] is intended to retrieve
a modeled instance of a PCIPage, which does not
include a modeled devid attribute. This error results
in an attempt to access a non-existent class field in
Python, leading to the syntax error.

be missed and their corresponding physical mem- !
ory not being freed. This leads to leaked memory,

class PCIPage(Struct):
owner Map (pn_t,
valid Map (pn_t,

devid_t)
bool_t)

which remains allocated but unusable, potentially

exhausting system resources over time.

Incorrect I/0O privilege. This I/O privilege bug
occurs because the kernel fails to set the iomb field °
in the TSS, leaving it at its default value (0), which 4
allows user-space processes to execute 1/O instruc- ¢
tions directly. This violates privilege separation, ’ .
enabling malicious processes to bypass kernel con- ,
trol, access hardware, corrupt device state, or desta-10
bilize the system.

Buffer overflow. This buffer overflow bug oc-
curs because the kernel incorrectly assumes that
cpu->id (APIC IDs) are consecutive and start from
zero, using it directly as an index into the cpus
array. If APIC IDs are sparse or non-consecutive,
this results in out-of-bounds memory access, poten-
tially corrupting kernel memory, causing system
instability, or introducing security vulnerabilities.

B Case Study

We next conduct a case study to further investigate
the root causes of these errors.

Syntax error. First, we present an example of a '

syntax error. This error occurs during the synthesis
of the state-machine specification for the system
call sys_map_pcipage. The functional description
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class KernelState(BaseStruct):
pci = PCI()
pcipages

PCIPage ()

class PCIPage(Struct):

owner Map(pn_t, devid_t)

class PCI(Struct):
owner Map (devid_t,

pid_t)

Based on the programming model described
above, the appropriate reasoning process to de-
termine the process identifier associated with the
PCIPage, starting from its page number, can be
outlined as follows: By analyzing the types of the
fields involved, we can deduce that the first step is
to retrieve the PCIPage instance corresponding to
the given page number. Next, we should identify its
owner, represented by the device identifier (devid).
Using this device identifier, the associated PCI in-
stance can then be obtained. Finally, from the PCI
instance, the process identifier can be determined.
Hence, the correct specification should be:

old.pci[old.pcipages[pcipn].owner].owner
old.current,

The LLM fails to accurately reason about the
access chain required to retrieve the correct object.



LN ece

if( (n,

<< 3; return -1;
5 if(( I o>= >sz ||

+ if( <0 || (uint)i >=

>sz)

return -1;
(charx)i;
return 0;

->qdt[SEG_TSS].s = 0; &i) < 0)

= ( Jproc->
=( ) OXFFFF;

( << 3);
f(p-> = 0)
) tchuvm: no pgdir®);

(a) Incorrect 1/0 Privilege

LN

void switchuvm(struct proc *p)

= ( ) OXFFFF;

(d) Incorrect Pointer

(

)i+

(b) Bounds Checking

3 a+= H
( » (charx)a, 0);

I« )i+ > o -a+=( - 1) * PGSIZE;
+a= (PDX(a) + 1, 0, 0) -
else if((*pte & P) 1= 0){

)3

if( == 0)

(c) Memory Leak
(] (]

switch(*p){
case :
= (struct mpproc*)p;

f( 1= > "

f("mpinit: ncpustd apicid=d\n®,

+= sizeof(struct mpproc);
continue;

(e) Buffer Overflow

Figure 5: Five types of bugs.

This failure may be attributed to the long context,
which might cause the LLM to lose track of the
provided programming model and instead generate
a specification resembling the concrete code imple-
mentation of the system call. However, it is crucial
to emphasize that the kernel’s abstract modeling
differs fundamentally from its code implementa-
tion.

Semantic error. Next, we present another ex-
ample to demonstrate the occurrence of semantic
errors. This example involves a mistake in the
synthesis of the state-machine specification for the
system call sys_map_proc. The functional descrip-
tion of this system call is as follows: it verifies the
specified permissions and rejects the operation if
the permissions include write access. However, the
code implementation contains an injected bug:

if (pte_writable(perm)) [correct]

if (!pte_writable(perm)) [bug injected]
return -EACCES;

static inline bool pte_writable(
uintptr_t x)

{
return x & PTE_W;

}

In this case, the LLM is expected to identify the
injected vulnerability by adhering to the functional
description and generate the correct specification
as follows:

perm & dt.PTE_W != 0,

However, the large language model (LLM) fails
to accurately interpret the functional description
and instead generates an incorrect specification:

perm & dt.PTE_W Q,
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This incorrect condition causes the kernel state,
as defined in the specification, to transition into
an inconsistent state that deviates from the correct
operating system implementation, ultimately result-
ing in a semantic error.
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