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ABSTRACT

Objective Perturbation (OP) is a classic approach to differentially private (DP)
convex optimization with smooth loss functions but is less understood for non-
smooth cases. In this work, we study how to apply OP to DP linear learners
under loss functions with an implicit ℓ1-norm structure, such as max{0, x} as
a motivating example. We propose to first smooth out the implicit ℓ1-norm by
convolution, and then invoke standard OP. Convolution has many advantages that
distinguish itself from Moreau Envelope, such as approximating from above and
a higher degree of hyperparameters. These advantages, in conjunction with the
symmetry of ℓ1-norm, result in tighter pointwise approximation, which further
facilitates tighter analysis of generalization risks by using pointwise bounds. Un-
der mild assumptions on groundtruth distributions, the proposed OP-based algo-
rithm is found to be rate-optimal, and can achieve the excess generalization risk

O
(

1√
n
+

√
d ln (1/δ)

nε

)
. Experiments demonstrate the competitive performance

of the proposed method to Noisy-SGD.

1 INTRODUCTION

Differentially private convex optimization is one of the most crucial tools in private data analysis,
which seeks a good-performing output from an optimization problem so that the output is also
insensitive to the presence or absence of an individual in a dataset. In the past decade or more,
numerous works have together formed a good understanding of DP convex optimization; to name
a few papers, Chaudhuri et al. (2011); Kifer et al. (2012); Bassily et al. (2014; 2019; 2020). While
Noisy-SGD (Abadi et al., 2016) has outstripped almost all other approaches, the findings of privacy
leakage through Noisy-SGD’s hyperparameter tuning (Papernot & Steinke, 2022; Mohapatra et al.,
2022) has motivated recent revisits (Redberg et al., 2023; Agarwal et al., 2023) to another classic
and competitive method, Objective Perturbation (Kifer et al., 2012, OP).

OP follows a completely different design philosophy: it injects noise into the loss function of an em-
pirical risk minimization (ERM) problem and then solves the noisy ERM, unlike Noisy-SGD which
injects noise into gradients. Often, OP only requires light to no hyperparameter tuning. Moreover,
because the noisy ERM can be solved by any optimizer whose choice is independent of the problem
at hand, OP often returns high-quality (empirical) minimizers, regardless of the sample size. To
further improve its practicability, the recent work (Redberg et al., 2023) has tightened privacy ac-
counting of OP by employing privacy profiles, making it competitive or even better in performance
than honest Noisy-SGD (“honest” means privacy in hyperparameter tunings is correctly tracked).
Some other works also found OP appealing for certain tasks, such as private logistic regression
(Iyengar et al., 2019), binary classification (Neel et al., 2020), quantile regression (Chen & Chua,
2023), and online convex optimization (Agarwal et al., 2023). As a subroutine, OP also found a
position in personalized pricing (Chen et al., 2022) that fosters analysis of statistical properties of
some estimators.

However, compared to Noisy-SGD that can be applied to both nonsmooth and smooth problems,
OP is often criticized for being too restrictive as its performance is known to be optimal only when
being applied to problems with smooth loss functions. Intuitively, this is because minimizers to
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nonsmooth functions are very unstable. To hide privacy contained in such unstable minimizers,
we should either inject a high-variance noise or stabilize the minimizer first, both of which might
engender nontrivial accuracy loss. This technical issue prevents a rich class of problems from en-
joying advantages of OP, ranging from simple problems with ∥·∥1-regularizer to neural networks
with ReLU activation functions. As a motivating example demonstrated by Bassily et al. (2014),
minimizing a simple though basic nonsmooth function L̂(θ) :=

∑n
i=1 max{0, yi − θ⊤xi} by OP

is found to be challenging.

While the nonsmoothness issue of OP has been noticed for a decade, it has not been well-addressed
yet. One promising remedy is to smooth out the original nonsmooth function to get a smooth approx-
imation, and then apply standard OP to the smoothed approximation function. However, a downside
of this idea is the additional approximation error introduced by the smoothing step. As early as Bass-
ily et al. (2014) has noticed severe consequences of the additional error: the convergence rates of
OP is no longer optimal. They attempted to resolve the issue with convolution smoothing, but ended
with concluding that “straightforward smoothing does not yield optimal algorithms”. More recently,
some works (Kulkarni et al., 2021; Chen & Chua, 2023) designed more intricate OP-based algo-
rithms and developed involved analysis. But they either failed to obtain optimal convergence rates
or achieved it only under strong regularity conditions. Approaches that do not include a smoothing
step has also been explored by Neel et al. (2020), but they left the convergence rate-optimality as an
unanswered question.

Observing the strengths of OP and the improvement room for nonsmooth cases, we are interested
in applying OP to nonsmooth convex problems. Specifically, we focus our discussion mainly on a
common class of nonsmooth problems, where the loss function can be written as a sum between
an ℓ1-norm function and a well-behaved convex smooth function f(θ; z) := ∥A(z)θ∥1 + h(θ⊤z),
where θ is the variable to optimize and z is the data point, and A(·), h(·) are some known functions.
In other words, we assume the nonsmoothness issue is rooted in the ℓ1 function. The structure
naturally covers problems with a (possibly grouped) ℓ1-regularizer ∥·∥1 with a linear transformation
of A(·). Moreover, many functions whose widely accepted formulations not following the structure
can actually be reformulated into this form; for instance, positive operator x+ = |x| /2+x/2, pinball
loss rx++(1−r)(−x)+ = |x| /2+(r−1/2)x, τ -soft-thresholding (|x|−τ)+ =

∥∥∥ (x+τ)/2
(x−τ)/2

∥∥∥
1
−τ ,

etc. That is why we call it an implicit ℓ1 structure in the abstract. Surprisingly, some special
functions that do not follow the considered structure are also found to enjoy advantages developed
in this work, see Section 4.3 for extensions.

The key step of our approach is to apply convolution smoothing (Hirschman & Widder, 2012) to the
ℓ1-norm function only. While it seems a straightforward idea and a minor refinement, the benefit
turns out to be significant. The reason is that the symmetry of ℓ1 function can be utilized to identify
a smaller set over which an integral is calculated to characterize pointwise approximation errors.
With proper kernels, the errors could be exponentially small, in contrast to linearly small errors
used in the literature. The exponentially small approximation error is negligible and thus does not
harm convergence rates. Moreover, the smoothing method chosen is convolution smoothing, rather
than the most common method, Moreau Envelope (Parikh et al., 2014). Though convolution is a
classic method, its advantages, such as analytic convenience and a higher degree of hyperparameter
flexibility, are not often noticed and exploited in DP literature. It turns out that the overlooked
strengths are crucial to the improved performance. We compare both methods in Section 4.4.

Our contributions. Our first contribution includes the adoption of convolution for nonsmooth DP
convex optimization problems, and manifesting its advantages in performance improvements. While
convolution is not the first time being employed to address nonsmoothness issues, our analysis pro-
vides new insights into its role. Along with the development, we also make a thorough comparison
to Moreau Envelope. The second contribution is the improved performance analysis of convergence
rates of the proposed OP-based algorithm for nonsmooth DP stochastic convex optimization (DP-
SCO) with an implicit ℓ1 structure. Under mild assumptions, the proposed algorithm can achieve
optimal rates of DP-SCO in a Euclidean space. Last, we run simulations to demonstrate the benefits
of convolution and OP. Specifically, we observe a comparable performance to Noisy-SGD, and OP
even performs better in high-privacy regimes.

Related works. Objective Perturbation (Kifer et al., 2012, OP) is a classic tool for DP-ERM (Bassily
et al., 2014) and DP-SCO (Bassily et al., 2019). OP outputs a minimizer of a perturbed loss function,
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which substantially differs from the iterative algorithm, Noisy-SGD (Abadi et al., 2016). For smooth
Genralized Linear Models, OP is known to be rate optimal, i.e. its excess generalization risk is

O
(

1√
n
+

√
d ln (1/δ)

nε

)
(Bassily et al., 2021). To improve OP’s practicability, under smoothness

assumption, Iyengar et al. (2019) extended OP to allow it to return approximate minimizers, and
Redberg et al. (2023) tightened privacy accounting. However, much less is known about nonsmooth
cases. Without smoothness, Neel et al. (2020) proposed an OP algorithm paired with an additional
output perturbation step, but whether their algorithm is optimal is unclear. Chen & Chua (2023)
considered a special case of quantile regression; however, their result is lack of generality. Our work
is also closely related to another stream of works that apply convolution to address nonsmoothness
issues in DP convex optimization (Feldman et al., 2018; Kulkarni et al., 2021; Wang et al., 2021;
Carmon et al., 2023). A common feature of these works is that they all apply convolution before
feeding loss functions into a standard OP. We follow this idea to develop our algorithm.

2 PRELIMINARIES

Definition 2.1 (Differential Privacy). A randomized algorithm A : Zn → Θ is (ε, δ)-differential
private if, for any pair of neighboring datasets D ∼ D′ that differ in one data point, and for any
subset S ⊆ Θ, Pr [A(D) ∈ S] ≤ eε · Pr [A(D′) ∈ S] + δ.

Definition 2.2 (β-smoothness). Let β ≥ 0. A function f : Θ → R is β-smooth (w.r.t. ∥·∥p) over
a set Θ if for every θ1,θ2 ∈ Θ, ∥∇f(θ1)−∇f(θ2)∥q ≤ β ∥θ1 − θ2∥p, where p, q are conjugate
indices such that 1/p+ 1/q = 1. If the only admissible value of β is∞, we say f is nonsmooth.

Notation. We use B(R):= {θ ∈ Rd : ∥θ∥2 ≤ R} to denote the Euclidean ball with radius R >
0 around the origin, and ∥·∥2 to denote Euclidean norm. Data space is Z , and datapoints in a
dataset D := {zi}ni=1 are i.i.d. drawn from an unknown distribution P supported on Z . The
empirical risk of any θ ∈ Θ ⊆ Rd under loss function f and dataset D is denoted by F̂ (θ;D) :=
1
n

∑n
i=1 f(θ; zi), and the generalization risk of θ under distribution P is denoted by F (θ;P) :=

Ez∼P [f(θ; z)]. Shorthand F̂ (θ) and F (θ) are used when the dependence is clear from the context.
The excess generalization risk of algorithm A under distribution P is thus denoted as R(A;P) :=

ED∼Pn,A

[
F (θ̂A)

]
− F (θ∗) where θ∗ := argminθ∈Rd F (θ).

In this work, our ultimate goal is to design an OP-based algorithmA to find θ̂A that can achieve rate-
optimal performance in terms of excess generalization riskR(A;P) := ED∼Pn,A

[
F (θ̂A)

]
−F (θ∗)

for nonsmooth functions satisfying a specific structure in Assumption 2.3.
Assumption 2.3 (Nonsmooth models with an ℓ1 structure).

1. (Implicit ℓ1 structure) Loss function f(θ; z) : Rd × Rd → R has an implicit ℓ1-norm
structure and can be written as f(θ; z) := ∥A(z)θ∥1 + h(z⊤θ) for some known function
h(·) : R→ R and function A(·) : Rd → Rm×d, where m ≤ d is independent of d.

2. (Well-behaved h(·)) Function h(·) is convex and βh-smooth in θ (w.r.t. ∥·∥2). As a scalar
function, its derivative is uniformly upper bounded by Lh.

3. (Boundedness) Let θ∗ := argminθ∈Rd F (θ). We asume θ∗ ∈ B(R). Data space Z :=
B(D) ⊆ Rd is a Euclidean ball. Further assume the 2-norm of matrix A(·) is uniformly
upper bounded, i.e. supz∈Z ∥A(z)∥2 ≤ A.

The first assumption makes our discussion focus on a specific class of nonsmooth functions where
the nonsmoothness comes from the implicit ℓ1-norm. Despite the structural assumption, the con-
sidered model still covers a rich set of interesting problems. For instance, the motivating example
max{0, x} = (|x| + x)/2 admits a reformulation with A(z) := z⊤/2 and h(x) := x/2, where
x is the residual derived from z⊤θ. Similar reformulation applies to pinball loss: ∀r ∈ (0, 1), we
have rx+ + (1 − r)(−x)+ = |x| /2 + (r − 1/2)x. Another illustrative example is when A(·) is
independent of datapoint z; then the original model becomes an ℓ1-regularized GLM. If we further
have h ≡ 0, then the problem becomes a model for finding high-dimensional quantiles. Given all

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

these examples, it should be clear that our assumption of the model structure is not very restrictive.
The second assumption ensures h(·) is well-behaved, and the third assumption on boundedness is
very common and appears frequently in DP literature.

3 THE ALGORITHM

We propose the algorithm Convolution-then-Objective Perturbation (C-OP), which is formally given
below in Algorithm 1. The algorithm is built upon classic OP by wrapping it with an additional con-
volution smoothing (1), and then feeding the smoothed function into classic OP, i.e. Step 4, which
returns minimizer θ̂A. Both privacy and performance guarantees highly depend on the convolution
step. We thus give a brief introduction to convolution smoothing first.

Algorithm 1 Convolution then Objective Perturbation (C-OP), AC-OP

Input: Private dataset D := {zi}ni=1; privacy parameters (ε, δ); noise variance σ2; nonsmooth
loss function f(θ; z) = ∥A(z)θ∥1 + h(z⊤θ) that satisfies Assumption 2.3; Constant C :=√

mA2 +D2L2
h; any random variable k whose pdf (i.e. kernel) is given in the first column in

Table 1, and bandwidth parameter µ > 0.

1: For a given λ, find µ such that λ =
(βµ+βh)(m+1)

nε , where βµ is given in Table 1.
2: Get smooth approximation by convolution,

fµ(θ; z) = Ek [∥A(z)θ + µk∥1] + h(z⊤θ) (1)

3: Sample a Gaussian noise vector b ∼ N (0, σ2Id×d)

4: θ̂A ← argminθ∈Rd
1
n

∑n
i=1 fµ(θ; zi) + λ ∥θ∥22 +

⟨b,θ⟩
n

5: Return: θ̂A

3.1 CONVOLUTION SMOOTHING

Convolution smoothing Hirschman & Widder (2012) is an operation on function g : Rm → R+

and kernel k : Rm → R+ that produces a smooth approximation gµ of g. The kernel function k
should meet some regularity Conditions A.1 in the Appendix. In the main text, we focus on three
common kernels listed in Table 1. Each kernel in Table 1 defines a probability density function (pdf).
Intuitively, the approximated function value gµ(x) := Ek [g(x+ µk)] is a weighted average over

Table 1: Kernels and properties of smooth approximation (Lemma 3.1)

properties of gµ(x) := Ek [g(x+ µk)]

Kernels k(v) Lipschitz
Lµ

smoothness
βµ

uniform gap
supx(gµ − g)(x)

pointwise gap
(gµ − g)(x)

Gaussian e−
∥v∥22

2 /(
√
2π)m L L/µ Lµκp Lµ

∫
Vµ(x)

∥v∥p k(v) dv
Exponentiale−∥v∥2/n L

√
6L/µ Lµκp same as above

Laplacian e−∥v∥1/2m L

{√
6L/µ, if p = 1√
6mL/µ, o.w.

Lµκp same as above

Notes. Properties of gµ under Gaussian kernel is known in the literature (Duchi et al., 2012); we derive properties for other
kernels. The set Vµ(x) in the last column is defined around Lemma 4.1. The normalizer n for exponential kernel is n =

Γ(m/2)/(2πm/2Γ(m)) with Gamma function Γ(·).

its neighbors, and the weights are controlled by kernel k and bandwidth parameter µ > 0. Properties
of the approximation function gµ for general Lipschitz continuous function g are given below.
Lemma 3.1 (Properties of gµ). Let g : Rm → R+ be a closed, proper, convex, and L-Lipschitz
continuous (w.r.t ∥·∥p , p ∈ [1, 2]) loss function. Let k : Rm → R+ be any kernel function in Table

1; denote κp := Ek

[
∥k∥p

]
. Then, the convolution smoothing gµ possesses following properties:
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1. gµ is convex, Lµ-Lipschitz and βµ-smooth w.r.t. ∥·∥p (see Table 1 for values of Lµ and βµ);

2. gµ is differentiable with gradient∇gµ(x) = Ek [∇g(x+ µk)] ,∀x;

3. Approximation error satisfies the inequality g(x) ≤ gµ(x) ≤ g(x) + Lµκp,∀x;

4. gµ(x) =
∫
v∈Rm

[
g(x+µv)+g(x−µv)

2

]
k(v) dv.

These properties hold for general convex and Lipschitz function gµ. Special for this work, we will
use gℓ1 := ∥·∥1 frequently.

3.2 PRELIMINARY RESULTS

It can be shown that, with a well-calibrated variance σ2, the algorithm C-OP is (ε, δ)-DP.
Theorem 3.2 (Privacy Guarantee). Suppose Assumption 2.3 holds. The algorithm AC-OP is (ε, δ)-

DP, if σ2 ≥ C2·(8 ln (1/δ)+8ε)
ε2 where C :=

√
mA2 + L2

hD
2.

Because of the matrix A(z) in Assumption 2.3, our model does not have an exactly same structure
for which privacy accounting bug was fixed by Redberg et al. (2023); Agarwal et al. (2023). Thus,
we provide a detailed proof in the Appendix. The proof follows a similar idea in Agarwal et al.
(2023) but uses bounded A(·) to control privacy loss random variable’s tail behavior.

Now, we move to analyze the performance of C-OP. A crucial observation is the third part of Lemma
3.1, which implies gℓ1µ (x) := Ek[∥x+ µk∥1] approximates original function gℓ1(x) := ∥x∥1 from
above. Therefore, if we apply convolution to the nonsmooth loss function f , then fµ given by (1) will
be a pointwise upper bound on f . This facilitates a new decomposition of the excess generalization
riskR(A;P) := ED∼Pn,A

[
F (θ̂A)

]
− F (θ∗), as shown below:

R(A;P) = ED,A

[
F (θ̂A)− F̂ (θ̂A)

]
+ ED,A

[
F̂ (θ̂A)− F (θ∗)

]
≤ ED,A

[
F (θ̂A)− F̂ (θ̂A)

]
+ ED,A

[
F̂µ(θ̂

A)− F (θ∗)
]

= ED,A

[
F (θ̂A)− F̂ (θ̂A)

]
+ ED,A

[
F̂µ(θ̂

A)− F̂µ(θ
∗)
]
+ [Fµ(θ

∗)− F (θ∗)] . (2)

In the first line, we insert terms F̂ (θ̂A); in the second line, we use the pointwise upper bound fµ ≥ f ;
in the third line, we insert F̂µ(θ

∗). Essentially, the new risk upper bound (2) consists of three parts.
The first part is a sampling error that can be controlled through uniform stability analysis; the second
part is an empirical risk that can be controlled through risk analysis. With these observations, we
can get a preliminary result of C-OP’s performance.
Lemma 3.3 (C-OP Performance; Preliminary). Suppose Assumption 2.3 holds. If we set the regu-
larizer coefficient λ =

√
4C2/n+ dσ2/n2/R and use σ2 suggested by Theorem 3.2, then

R(A;P) ≤ 4
√
2CR ·

(
1√
n
+

√
d ln (1/δ)

nε

)
+ [Fµ(θ

∗)− F (θ∗)] .

The preliminary performance bound is remarkable, as it suggests that the additional approximation
error depends only on the approximation quality at optimal θ∗. Intuitively, this comes from us-
ing pointwise approximation upper bound to tightly characterize the approximation error, which is
unique to convolution smoothing. Instead, many other smoothing methods, such as Moreau Enve-
lope, do not allow this tighter characterization, roughly because Moreau approximates from below
(see details in Section 4.4). With lemma 3.3, it remains to control the population-level approxima-
tion error at θ∗. We do so in the next section by exploiting the ℓ1 structure of assumed models.

Before proceeding, we want to highlight an immediate result on the choice of µ from Lemma
3.3 and Theorem 3.2. According to step 1 of Algorithm 1, the value of µ should satisfy λ =
(βµ+βh)(m+1)

nε . Because βµ ≍ 1
µ , λ ≍

√
1/n+ dσ2/n2, and σ2 ≍ ln (1/δ)/ε2, we know

µ ≍ m√
nε2+2d(ln (1/δ)+ε)−βh

. Therefore, roughly speaking, when sample size n→∞, the value of

µ decreases. The fact that µ is decreasing is a desired feature, playing a key role in the next section.
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4 IMPROVED APPROXIMATION AND OPTIMAL RATES

4.1 EXPLOIT SYMMETRY OF ℓ1-NORM TO TIGHTEN APPROXIMATION ERRORS

We know from part four of Lemma 3.1 that gµ(x) is in fact a convex combination between g(x+µv)
and g(x− µv); thus the approximation error at x admits a closed form

gµ(x)− g(x) =

∫
v∈Rm

[
g(x+ µv) + g(x− µv)

2
− g(x)

]
k(v) dv,∀x. (3)

-4 -2 0 2 4
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Figure 1: approximation error.
µ = 0.5, Gaussian kernel

However, most existing works use the uniform upper bound Lµκp

in part three of Lemma 3.1 for convergence analysis, which is ob-
viously too conservative and significantly overestimates actual ap-
proximation errors. The example of g(x) = |x| in Figure 1 demon-
strates the huge overestimate: outside the interval [−1, 1] roughly,
there is no approximation error by convolution (green curve in Fig-
ure 1), but uniform bound (in black) says the error is nontrivial.

To understand this phenomenon analytically, we first notice that the
pointwise error (3) is calculated from an integral on the entire space.
However, it actually suffices to integrate over a smaller set Vµ(x),
where the integrand (g(x+ µv) + g(x− µv))/2− g(x) is strictly
positive:

Vµ(x) := {v ∈ Rm : g(x+ µv) + g(x− µv) > 2g(x)}. (4)

Despite the integrand is always nonnegative by convexity, under ℓ1-norm function, the set Vµ(x)
is in fact a much smaller set than the entire space, thanks to the symmetry of ℓ1-norm function.
For clarity, we denote this set under ℓ1-norm function by Vℓ1

µ (x) := {v ∈ Rm : ∥x+ µv∥1 +
∥x− µv∥1 > 2 ∥x∥1}. It has a closed-form expression as shown below.

Lemma 4.1 (Smaller Domain of Integration). if gℓ1 : x 7→ ∥x∥1 is the ℓ1-norm function, then the
set Vℓ1

µ (x) on which the integrand ∥x+µv∥1+∥x−µv∥1

2 − ∥x∥1 is strictly positive has a closed-form
expression Vℓ1

µ (x) := {v ∈ Rm : |v| > |x| /µ}, where |·| applies elementwise.

Geometrically, the set Vℓ1
µ (x) is a hollow set with a rectangle around the origin being removed.

Moreover, it can be shown that the set Vµ defined in (4) shrinks with gradually decreasing µ ↘ 0.
This result holds for any convex functions. But, specially for gℓ1 , this shrinkage is strict.
Lemma 4.2 (Monotonicity of Vµ in µ). If g is convex but not linear, then for any given x the set
Vµ(x) is monotonically increasing in µ and satisfies, for any 0 < µ0 < µ1 <∞,

∅ = V0(x) ⊆ Vµ0(x) ⊆ Vµ1(x) ⊆ V∞(x) = Rm\{0}, ∀x.

Moreover, the inequality becomes strict under function gℓ1 := ∥·∥1, i.e.,

∅ = Vℓ1
0 (x) ⊂ Vℓ1

µ0
(x) ⊂ Vℓ1

µ1
(x) ⊂ Vℓ1

∞(x) = Rm\{0}, ∀x ∈ ∂gℓ1 ,

where ∂gℓ1 := {x ∈ Rm : xj ̸= 0,∀j = 1, . . . ,m} is the set of differentiable points.

This lemma opens a door to further tighten approximation errors. To ses this, we notice first that

gℓ1µ (x)− gℓ1(x) =

∫
v∈Vℓ1

µ (x)

[
∥x+ µv∥1 + ∥x− µv∥1

2
− ∥x∥1

]
k(v) dv ≤ µ

∫
Vℓ1

µ (x)

∥v∥1 k(v) dv .

(5)

The upper bound in Eq.(5) is a product between the multiplicative factor µ and an integral over Vℓ1
µ .

Essentially, Lemma 4.2 states that when µ ↘ 0, the set Vℓ1
µ tends to be an empty set. Therefore,

both the factor µ and the integral term tend to 0 when µ ↘ 0, indicating a much faster rate of their
product than any of them. Moreover, the latter integral term decreases in a rate that heavily depends
on kernel function chosen. If we choose kernels from Table 1, then the integral term decreases
exponentially fast due to kernel functions’ light tail. We formally characterize the finding below.
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Lemma 4.3 (Kernel-dependent Approx. Error). Suppose gℓ1 : x 7→ ∥x∥1. If kernel function k(·) is

Gaussian kernel, then gℓ1µ (x)− gℓ1(x) ≤
√
2/πµ ·

∑m
j=1 exp

(
− |xj |2

2µ2

)
.

The left panel of Figure 2 justifies the finding: when µ↘ 0, the approximation error at either x = 1
or x = 0.5 decreases exponentially fast, whereas the uniform bound is only linear in µ. This ob-
servation also supports our argument that using uniform bound is too conservative for convergence
analysis. Moreover, all observations naturally extend to high-dimensional cases, see the right panel
of Figure 2. One remark about Lemmas 4.2 and 4.3 is that both results provide nontrivial improve-
ments when xj ̸= 0,∀j, i.e. x ̸∈ ∂gℓ. Because the set ∂gℓ1 actually has Lebesgue measure zero, we
can expect its impact to be negligible.

0.0 0.5 1.0
µ

0.0

0.2

0.4

0.6

0.8

ap
pr

ox
. e

rro
r

x=0.5

x=1

uniform error
(gconv − g)(0.5)

(gconv − g)(1)

-2
0

2 -2
0

2
0.0
0.1
0.2

uniform error
|gconv(x)− g(x)|

Figure 2: Left: approx. error v.s. µ under g(x) = |x|; convolution by Gaussian kernel. Right:
approx. error under g(x) = ∥x∥1 in a 2-dim space.

4.2 OPTIMAL RATES OF C-OP

With developed tighter approximation characterization, we are ready to show optimal rates of C-OP
under some distributions. By lemma 3.3, it suffices to show Fµ(θ

∗) − F (θ∗) is dominated by

O
(

1√
n
+

√
d ln (1/δ)

nε

)
. Because approximation errors are roughly exponentially small (given Gaus-

sian kernel is used), i.e. exp
(
− |A(z)θ∗|2j /µ2

)
,∀j ∈ [m], the optimal rate is then achievable as

long as A(z)θ∗ is not concentrated around 0, and µ→ 0 is properly chosen.
Assumption 4.4 (Widespread A(z)θ∗). Let z ∼ P and let ∥x∥−∞ := min{|x1| , . . . , |xm|} denote
the minimal absolute value among elements of x. We assume there exists a threshold τ > 0 such
that Pz

[
∥A(z)θ∗∥−∞ ≥ t

]
≥ 1− exp

(
−1/t2

)
,∀t ≤ τ .

Assumption 4.4 assumes that A(z)θ∗ is at least t-distance away from nondifferentiable points with
certain probability; otherwise, if all A(z)θ∗ are nondifferentiable points, this distribution of z might
be ill-posed and impractical. This assumption is motivated by neural networks with ReLU activation
functions where Aθ∗ are often far from nondifferentiable points (Ma & Fattahi, 2022). Generally
speaking, it might be hard to verify this assumption in practice (as it requires the knowledge of θ∗),
but for many real-world applications, this assumption naturally holds.
Example 1. r-th quantile regression, ∀r ∈ (0, 1). Suppose each datapoint z := (y,x) ∼ P follows
y = ⟨x,θ⟩+ ϵ with x1 ≡ 1, EP [x−1] = 0, and ϵ has a CDF Φ. Let u := ⟨( y

−x ), (
1
θ )⟩ = y−⟨x,θ⟩

be the residual. For r-th quantile loss function, we know f(θ; z) = ru++(1−r)(−u)+ = |u| /2+
(r − 1/2)u, A(z) = (y,−x⊤)/2, and θ∗ = θ + (Φ−1

r , 0, . . . , 0)⊤, where Φ−1
r is the r-th quantile

of the random noise ϵ. So
∥∥A(z)( 1

θ∗ )
∥∥
−∞ =

∣∣−Φ−1
r

∣∣ /2, suggesting that if τ := | − Φ−1
r |/2, then

Pz

[∥∥A(z)( 1
θ∗ )
∥∥
−∞ ≥ t

]
= 1,∀t ≤ τ . Hence, as long as Φ−1

r ̸= 0, Assumption 4.4 holds.

Example 2. ReLU. Because ReLU function takes the form f(u) = max{0, u} = |u| /2 + u/2,
letting the value of r in the quantile example go to 1 gives similar results.

Example 3. ℓ1-regularized regression. Let θ∗ := argminθ λ ∥θ∥1+
1
2Ey,x

[
(y − x⊤θ)2

]
. In this

case A(z) ≡ I . We know θ∗ = sgn(θ⋆)(θ⋆ − λ)+, where θ⋆ := argminθ Ey,x

[
(y − x⊤θ)2

]
is

the minimizer to a problem without the regularizer. Then if θ⋆ > 0 and λ < min{|θ⋆k|}dk=1, we will
have |θ∗| > 0. Therefore, ∃τ := min{|θ⋆k|}dk=1 − λ makes Assumption 4.4 true.
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Theorem 4.5 (C-OP Performance). Suppose Assumptions 2.3 and 4.4 hold. When we have either (i)
δ ≲ min

{
exp

(
−max{β2

h,m
2/τ4}/d

)
, n−m2/d

}
, or (ii) δ ≲ exp

(
−max{β2

h,m
2/τ4}/d

)
and

ε ≳
√

m2 ln(n)/n, then running C-OP with Gaussian kernel and parameters in Lemma 3.3 yields

R(A;P) ≤ 8
√
2CR ·

(
1√
n
+

√
d ln (1/δ)

nε

)
.

The theorem claims that under some assumptions, running C-OP can achieve the same optimal
convergence rate as that by Noisy-SGD (Bassily et al., 2019; 2020). However, it should be reminded
that the optimal rate of C-OP comes at prices of (i) some restrictions on (ε, δ) and (ii) a smaller set of
admissible distributions. Practically, both requirements are mild. Our numerical experiments keep
showing satisfactory performance of C-OP, even when these requirements are not necessarily met.

4.3 SOME SPECIAL CASES

We found some special cases not strictly following assumed structure still benefit from convolution,
and can achieve optimal rates if the distribution is not ill-posed (see Appendix B.4 for details).

Piecewise Linear Loss (Figure 4, middle). Suppose the nonsmooth loss function is piece-
wise linear with P < ∞ pieces in the form f(θ; z) := maxp∈[P ]{⟨ap, A(z)θ⟩ + bp} where
{ap, bp}Pp=1 are known parameters of pieces. In this case, the smooth approximation is fµ(θ; z) =
Ek

[
maxp∈[P ] {⟨ap, A(z)θ + µk⟩+ bp}

]
.

Bowl-shaped Loss (Figure 4, rightmost) Suppose bowl-shaped thresholding loss function
f(θ; z) := (∥Aθ∥1 − z)+ with known A ∈ Rm×d. In this case, applying convolution gives
fµ(θ; z) = Ek [(∥Aθ + µk∥1 − z)+].

4.4 COMPARE TO (GENERALIZED) MOREAU ENVELOPE

Because our work is motivated by DP convex optimization, we are interested in comparing convolu-
tion with (generalized) Moreau Envelope (Parikh et al., 2014), which is the most common smoothing
approach in DP literature, see its applications in Bassily et al. (2014; 2019), Feldman et al. (2020);
Asi et al. (2021); Bassily et al. (2022). (Standard) Moreau Envelope approximates the original non-
smooth function g : Rm → R with a smooth approximation obtained from a minimization problem
involving a smooth function ϕµ(·) := µϕ(·/µ) with ϕ(·) = 1

2 ∥·∥
2
2 and µ = 1,

gME(x) = inf
u∈Rm

{g(u) + ϕµ(x− u)}, ∀x. (6)

The Generalized Moreau takes other ϕ(·) function, and results in similar properties as convolution.
Lemma 4.6 (Properties of gME, partially from Beck & Teboulle (2012)). Let g : Rm → R be a
closed, proper, convex, and L-Lipschitz continuous function (w.r.t. ∥·∥2), and let ϕ : Rm → R
be a β′-smooth function satisfying regularity conditions (Condition B.1 in Appendix). Then the
Generalized Moreau Envelope gME possesses following properties:

1. gME is convex, L-Lipschitz, and (β′/µ)-smooth, w.r.t. ∥·∥2;

2. ∇gME(x) = ∇ϕµ(x−u∗(x)), where u∗(x) is the minimizer to the r.h.s problem of Eq.(6);

3. Let ϕ⋆ : Rm → R be the Fenchel conjugate of ϕ, and let ∥ϕ⋆∥∞ := supy∈B(L) ϕ
⋆(y).

Then, the approximation error is −µ ∥ϕ⋆∥∞ ≤ gME(x)− g(x) ≤ µϕ(0).

It is self-evident that Lemma 4.6 is an analog of Lemma 3.1. As a minor contribution, Lipschitz
constant of gME is tightened from 2L (Bassily et al., 2019) to L. Comparing Lemmas 3.1 and 4.6,
we observe some distinctions between convolution and Moreau. First, standard Moreau approxi-
mates the original function from below, contrasting with convolution that approximates from above
(Figure 3, first and third plots). Approximating from below invalidates the newly developed risk
decomposition in Eq.(2); thus analysis developed in this work does not directly apply to Moreau.

Second, Moreau approximates poorly at most points, whereas convolution approximates tightly at
most points, see Figure 3, second and fourth plots. This suggests that the overall approximation
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Figure 3: Comparison between Moreau gME and convolution gconv. Left two figures: g(x) = |x|;
right two figures: g(x) = ∥x∥1 in a 2-dim space.
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Figure 4: From left to right are quantile, piecewise linear, and bowl-shaped functions (in black), and
their smooth approximation functions via (i) convolution with Gaussian kernel (in green) and (ii)
Moreau with ϕ(x) =

√
1 + x2 (in blue). Both gME and gconv are 2-smooth.

error by Moreau is roughly at the same magnitude as the uniform bound; thus, Moreau cannot enjoy
benefits from replacing a uniform bound with pointwise bounds.

If Moreau takes other ϕ functions, such as ϕ(·) = L
√
1 + ∥·∥22, then gME can approximate g from

above. Nevertheless, the approximation quality is much lower, as shown in Figure 4. Therefore, we
prefer convolution over Moreau Envelope. We would like to highlight that the insights drawn and
distinctive features of convolution may have broader impacts on other applications.

5 EXPERIMENTS

We run experiments on two problems (i) high-dimensional medians f(θ;y, A) = ∥y −Aθ∥1 whose
convolution is given in Eq.(1); (ii) piecewise linear f(θ;y, A) = maxp∈[P ]{⟨ap,y −Aθ⟩ + bp}
whose convolution is given in Section 4.3. We use relative risks F (θ̂A)−F (θ∗)

F (θ∗) × 100% as the per-
formance metric, and compare three algorithms; namely, our algorithm C-OP; Moreau Envelope
(Bassily et al. 2019, Algorithm 1); and Noisy-SGD (Bassily et al. 2020, Algorithm 2). Noisy-SGD
does not have a smoothing step, while the other two have. Figure 5 shows results for problem (i).
It is evident that our algorithm C-OP outperforms existing methods in high-privacy regimes (sub-
plots on the left). In other regimes, it still performs comparably well to Noisy-SGD. Intuitively,
the improved performance of C-OP is because of our better utilization of the ℓ1 structure, whereas
Noisy-SGD is an indiscriminative approach.

6 CONCLUSION

Limitation of our work. Our work is not without limitations. First, Assumption 4.4 might be hard
to verify in practice as it requires the knowledge of θ∗. Though we have shown many examples that
the assumption naturally holds, it may not be the case for general problems. Second, the assumed
model is still restrictive to some extent. For example, terms A(z)θ and z⊤θ are assumed to be
low-dimensional; otherwise the convergence rate will blow up by an additional factor of

√
d. While

this limitation is not unique to ours but is inherent to OP, we would like to bring this issue to the
community’s attention for further studies.
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Figure 5: Relative risk v.s. sample size under various settings. Datapoint y ∼ N (Aθ, I3×3), where
for the base case d = 5, we let θ = (.5,−.5, 1,−1, 1), and let each element of matrix A follow
N (µAij

, 12) with µA :=
[

1 .5 0 0 1
.5 .5 0 0 1
0 0 −.5 0 1

]
. For higher dimensional cases, we concat multiply As and

θs. Results are averaged from 50 runs. Error bar = std. More results in Appendix B.7.

In this paper, we studied how to apply OP to nonsmooth DP-SCO problems whose loss function has
an implicit ℓ1 structure. We proposed to wrap OP with an additional convolution smoothing step.
Convolution found many distinctive features that make it more suitable than common methods such
as Moreau Envelope. These features facilitate tighter analysis of generalization risks, and thus under
mild assumptions, convolution-then-OP can achieve optimal rates. Numerical experiments further
showcase competitive performance. There are many interesting directions to explore in the future,
such as extending the idea in this work to more general nonsmooth functions, and how to get rid of
the mild assumptions on groundtruth distributions.
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A OMITTED MATERIALS AND PROOFS FOR SECTION 3

A.1 CONDITIONS ON KERNEL FUNCTIONS

Condition A.1 (Kernel Functions). Let k : Rm → R+ be a nonnegative function defined on d-
dimensional real space. We assume the function k has following properties:

• Integrate to 1:
∫
Rd k(v) dv = 1;

• Central Symmetry: k(v) = k(−v),∀v ∈ Rm;
• Monotonicity: k(v) is decreasing in ∥v∥p for some p ≥ 1;

• Finite Moments: κ2 :=
∫
Rm ∥v∥ k(v) dv <∞, k := supv∈Rm k(v) = k(0) <∞.

A.2 PROOF OF LEMMA 3.1: PROPERTIES OF CONVOLUTION

Proof. 1. Convexity and Lipschitzness can be easily shown by definition:

(convexity) gµ(λx+ (1− λ)y) ≤
∫

[λg(x+ µv) + (1− λ)g(y + µv)] · k(v) dv

= λgµ(x) + (1− λ)gµ(y);

(Lipschitzness) gµ(x)− gµ(y) =

∫
[g(x+ µv)− g(y + µv)] k(v) dv ≤ L ∥x− y∥p .

To show smoothness, we temporarily assume the second property that ∇gµ(x) =
Ek [∇f(x+ µk)] is true. Let TV(P,Q) and KL(P,Q) denote the total variation and
KL-divergence between distributions P and Q. Let q > 0 be conjugate index such that
1/p+ 1/q = 1. By definition of smoothness, it suffices to show ∥∇gµ(x)−∇gµ(y)∥q ≤
βµ ∥x− y∥p. Direct computation gives

∥∇gµ(x)−∇gµ(y)∥q =

∥∥∥∥∫ [∇g(x+ µv)−∇g(y + µv)] k(v) dv

∥∥∥∥
q

=

∥∥∥∥∫ ∇g(µu) · [k (u− x/µ)− k (u− y/µ) du]

∥∥∥∥
q

(change variables)

≤ ∥∇g(µv)∥q ·
∫
|k (u− x/µ)− k (u− y/µ)| du (triangle ineq.)

≤ L ·
∫
|k (u− x/µ)− k (u− y/µ)| du (g is L-lips cts w.r.t. ∥·∥p)

= 2L · 1
2

∫
|k(u)− k (u+ (x− y)/µ)| du

= 2L · TV(k,k+ δ/µ)). (7)

≤ 2L ·
√

1

2
KL(k,k+ δ/µ) (8)

The integral in the third-to-last line is the total variation (TV) between random variables
k and k + δ/µ for any given δ := y − x and µ; the last line is by Pinsker’s inequality.
Therefore, it suffices to control the KL-divergence between k and k+ δ/µ.

(a) When k ∼ N (0, Id×d), the KL-divergence between two Gaussians are well known:

KL(N (0, I),N (δ/µ, I)) =
∥δ∥22
2µ2

,

see Feldman et al. (2018, Theorem 33). Consequently, ∥∇fµ(x)−∇fµ(y)∥q ≤
L
µ ∥x− y∥2 ≤

L
µ ∥x− y∥p ,∀p ∈ [1, 2].

(b) When the kernel function is Exponential k(v) = 1
n ·e

−∥v∥2 with n = 2πd/2Γ(d)
Γ(d/2) where

Γ(z) =
∫∞
0

tz−1e−z dt is the gamma function, we consider two cases:

13
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i. when ∥δ∥p ≥ µ: we can show

KL(k,k+ δ/µ) =

∫
1

n
e−∥v∥2 · ln

(
e−∥v∥2

e−∥v−δ/µ∥2

)
dv

≤
∫

1

n
e−∥v∥2 · ∥δ∥2 /µ dv

= ∥δ∥2 /µ ≤ ∥δ∥p /µ. (9)

Therefore ∥∇gµ(x)−∇gµ(y)∥q ≤ 2L
√

1
2 ∥δ∥p /µ ≤

√
2L ∥δ∥p /µ, where the

second inequality is from ∥δ∥p /µ ≥ 1.
ii. when ∥δ∥p ≤ µ: for notational brevity, we temporarily use P, Q to denote the

probability measure of k, k + δ/µ respectively. By the inequality between KL-
divergence and χ2-divergence KL(P,Q) ≤ Dχ2(P,Q) and the fact that ex − 1 ≤√
3x when x ∈ [0, 1], we can show that

KL(P,Q) ≤ Dχ2(P,Q) =

∫ (
e−∥v∥2

e−∥v−δ/µ∥2

− 1

)2

·Q(v) dv

≤
∫ (

e∥δ∥2/µ − 1
)2
·Q(v) dv (10)

≤ 3 ∥δ∥22 /µ
2 ≤ 3 ∥δ∥2p /µ

2, (11)

Consequently, ∥∇gµ(x)−∇gµ(y)∥q ≤ 2L
√

1
2 · 3 ∥δ∥

2
p /µ

2 =
√
6L ∥δ∥p /µ.

Combining both cases, we conclude that when exponential kernel function is used, the
smoothed approximation gµ is

√
6L/µ-smooth w.r.t. ∥·∥p.

(c) When we use Laplacian kernel k(v) = e−∥v∥1/2d, the analysis idea for Exponential
kernel can still apply. Specifically, we can consider two cases ∥δ∥1 ≥ µ and ∥δ∥1 ≤
µ. In the first case, it can be shown that KL(k,k + δ/µ) ≤ ∥δ∥1 /µ which follows
from equation 9; in the second case, we can also show Dχ2(P,Q) ≤ 3 ∥δ∥21 /µ2

as that in equation 11. Therefore, ∥∇gµ(x)−∇gµ(y)∥q ≤ 2L
√

1
2 · 3 ∥δ∥

2
1 /µ

2 =
√
6L ∥δ∥1 /µ ≤

√
6mL ∥δ∥p /µ,∀p ∈ [1, 2].

2. Since we assume loss function g is Lipschitz and convex, it implies g is differentiable
almost everywhere; thus,∇g(x+ µk) exists with probability 1. As a result of that,

∇gµ(x) = ∇
∫

g(x+ µv)k(v) dv =

∫
∇g(x+ µv)k(v) dv = E [∇g(x+ µk)] .

3. Lower bound: for any x ∈ X ,

gµ(x) = Ek [g(x+ µ · k)] ≥ g(x+ µ · E[k]) = g(x),

where the inequality is by Jensen’s inequality, and the last equality is from the fact that
E[k] = 0 since k is centrally symmetric.

Upper bound: for any x ∈ X ,

gµ(x)− g(x) =

∫
[g(x+ µv)− g(x)] k(v) dv ≤ Lµ

∫
∥v∥p k(v) dv =: Lµκp,

where κp :=
∫
∥v∥p k(v) dv = Ek

[
∥k∥p

]
.

Specially, we do some calculations for κ2 as we will use κ2 later. Denote the surface area
of a given set by S(·). A well-known result from the geometry literature is that the surface
area of a m-dimensional Euclidean ball with radius t is S(B(t)) = 2πm/2

Γ(m/2) t
m−1.

14
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(a) When using Gaussian kernel k ∼ N (0, I), we have κ2 = E [∥k∥2] ≤
√

E
[
∥k∥22

]
=

√
m, which is by Jensen’s inequality and by noticing that ∥k∥2 is a chi-square random

variable with degree m.

(b) When using exponential kernel k(v) = 1
n · e

−∥v∥2 with n = 2πm/2Γ(m)
Γ(m/2) , we can show

that

κ2 =

∫
Rm

∥v∥2 ·
1

n
e−∥v∥2 mv =

1

n

∫ ∞

0

te−tS(B(t)) dt

=
1

n
·
∫ ∞

0

te−t 2πm/2

Γ(m/2)
tm−1 dt =

Γ(m+ 1)

Γ(m)
= m.

(c) When using Laplacian kernel k(v) = e−∥v∥1/2m,

κ2 =

∫
Rm

∥v∥2 ·
e−∥v∥1

2m
mv ≤

∫
Rm

∥v∥1 ·
e−∥v∥1

2m
dv

=
m∑
j=1

(∫ ∞

−∞
|vj | ·

e−|vj |

2
dvj

)
(integrate layer by layer)

= m.

4. We then notice that, the central symmetry of kernel function k(·) allows another represen-
tation of the approximation gap, for any x ∈ X :

gµ(x) =

∫
v∈Rm

g(x+ µv)k(v) dv (12)

=

∫
−v′∈Rm

g(x− µv′)k(−v′) d(−v′), (change variables v′ := −v)

=

∫
v′∈Rm

g(x− µv′)k(v′)d(v′) (k(·) is central symmetric) (13)

Combining equation 12 and equation 13 gives

gµ(x) =
1

2

(∫
v∈Rm

g(x+ µv)k(v) dv+

∫
v∈Rm

g(x− µv)k(v) dv

)
=

∫
v∈Rm

[
f(x+ µv) + g(x− µv)

2

]
k(v) dv

A.3 PROOF OF LEMMA 4.1: SMALLER DOMAIN OF INTEGRATION

Proof. To prove the statement for the m-dimensional case, it suffices to prove the case of 1-
dimension, i.e., to prove Vµ(x) := {v ∈ R : |x+µv|+|x−µv|

2 − |x| > 0} = {v : R : |v| >
|x| /µ} =: Vℓ1

µ (x). For ease of notation, we omit the dependence on x. We start with the l.h.s:

Vµ = {v ∈ R : |x+ µv|+ |x− µv| > 2 |x|}

=

{
v ∈ R :

|x+ µv|+ |x− µv| > 2 |x|;
µv > |x| .

}
︸ ︷︷ ︸

=:E1

∪
{
v ∈ R :

|x+ µv|+ |x− µv| > 2 |x|;
µv < − |x| .

}
︸ ︷︷ ︸

=:E2

∪
{
v ∈ R :

|x+ µv|+ |x− µv| > 2 |x|;
0 ≤ µv ≤ |x| .

}
︸ ︷︷ ︸

=:E3

∪
{
v ∈ R :

|x+ µv|+ |x− µv| > 2 |x|
|x| ≤ µv ≤ 0.

}
︸ ︷︷ ︸

=:E4

Since Vµ is divided into four sets, we can check out each set individually.
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• E1: For any v such that µv > |x|, we have |x+ µv| = x+µv and |x− µv| = µv−x; thus,
|x+ µv| + |x− µv| = 2µv > 2 |x|. In other words, µv > |x| is sufficient to characterize
the set E1, and the another constraint is redundant. So E1 = {v ∈ R : µv > |x|}.

• E2: For any v such that µv < − |x|, we have |x+ µv| = −x−µv and |x− µv| = x−µv;
thus, |x+ µv| + |x− µv| = −2µv > 2 |x|. Similarly, µv < − |x| is sufficient. So
E1 = {v ∈ R : µv < − |x|}.

• E3: For any v such that 0 ≤ µv ≤ |x|, (i) if x ≥ 0, then |x+ µv| + |x− µv| = 2x =
2 |x|; (ii) if x < 0, then |x+ µv| + |x− µv| = −2x = 2 |x|. The preceding two cases
indicate that no matter what x we have, |x+ µv|+ |x− µv| is always strictly equal to 2 |x|.
Therefore, E3 = ∅ is an empty set.

• E4: Following the same idea for E3, it is easy to show E4 is also an empty set.

Combining four cases, we conclude Vµ = E1 ∪ E2 = {v ∈ R : |v| > |x| /µ} = Vℓ1
µ .

A.4 PROOF OF THEOREM 3.2: PRIVACY GUARANTEE

Proof. Let A(D) := argminθ
1
n

∑n
i=1 fµ(θ; zi) + λ ∥θ∥22 + b⊤θ

n be the output of AC-OP. We
explicitly indicate its dependence on dataset D. We are going to show, for any v and a pair of
neighboring datasets D ∼ D′,

PrA [A(D) = v]

PrA [A(D′) = v]
≤ eε, w.p. at least 1− δ.

By first-order-condition, b(A(D);D) = −
∑n

i=1 fµ(A(D); zi) − 2nλA(D) . Changing variables
according to function inverse theorem, the output A(D) can be represented as a function of b in a
probabilistic way; that is PrA [A(D) = v] = pdf(b(v;D))·|det(∇b(v;D))| for any possible output
v. Here, on the right-hand-side, pdf(b(·;D)) is the pdf of noise b, and∇b is a function of v; det(·)
is the determinant of a given matrix. Therefore, we must have

PrA [A(D) = v]

PrA [A(D′) = v]
=

pdf(b(A(D);D))
pdf(b(A(D);D′))

· |det(∇b(A(D);D))|
|det(∇b(A(D);D′))|

, ∀v, (14)

Without loss of generality, we assume D′ has one more entry z′ than D, which immediately implies

b(A(D);D′) = b(A(D);D) +∇fµ(A(D); zn).

Recall the smoothed function is

fµ(θ; z) = Ek [∥A(z)θ + µk∥1] + h(z⊤θ).

Its gradient at any given θ is, by part 2 of Lemma 3.1,

∇fµ(θ; z) = Ek

[
∇θ

(
∥A(z)θ + µk∥1 + h(z⊤θ)

)]
= Ek

[
A(z)⊤sgn(A(z)θ + µk) + zh′(z⊤θ)

]
= A(z)⊤Ek [sgn(A(z)θ + µk)] + zh′(z⊤θ),

where sgn(·) is the sign vector.

Remember that, the noise b(A(D);D) ∼ N (0, σ2I). Thus, b(A(D);D′) ∼
N (∇fµ(A(D); zn), σ2I). Their likelihood ratio thus becomes

pdf(b(A(D);D))
pdf(b(A(D);D′))

=
exp

(
− 1

2 ∥b(A(D);D)∥
2
2 /σ

2
)

exp
(
− 1

2 ∥b(A(D);D)−∇fµ(A(D); zn)∥
2
2 /σ

2
)

= exp

([
−⟨b(A(D);D),∇fµ(A(D); zn)⟩+

1

2
∥∇fµ(A(D); zn)∥22

]
/σ2

)
.

(15)
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It should be noticed that b(A(D);D) and∇fµ(A(D); zn) are not independent, whereas Kifer et al.
(2012) claims they are independent, which is incorrect. This has been fixed by Redberg et al. (2023)
for linear models but not for models we considered here. There is a necessity to do the proof
ourselves.

We first look at the inner product in Eq.(15):

⟨b(A(D);D),∇fµ(A(D); zn)⟩ =
〈
b(A(D);D), A(zn)⊤Ek [sgn(A(zn)A(D) + µk)] + znh

′(z⊤
nA(D))

〉
.

Because b(A(D;D)) ∼ N (0, σ2I), we know A(zn)b(A(D);D)) ∼ N (0, A(zn)
⊤A(zn)σ

2).
Moreover, since we assume the 2-norm of A(z) is uniformly upper bounded by A for all z, by
the fact that |sgn(·)| ≤ 1, we have

Var
[〈
b(A(D);D), A(zn)⊤Ek [sgn(A(zn)A(D) + µk)]

〉]
≤ Var

[〈
N (0, A(z)⊤A(z)σ2), sgn(·)

〉]
≤ mA2σ2.

Immediately, we know if we use this upper bound, the resulting random variable will have a heavier
tail, and the variance can be upper bounded:

Var
[〈
N (0, σ2I), A(zn)

⊤sgn(·) + znh
′(·)
〉]
≤ mA2σ2 + L2

hσ
2 ∥zn∥22

≤ mA2σ2 + L2
hσ

2D2. (16)

Moreover, the bounded 2-norm of matrix A(z) also indicates a bounded ℓ2-norm of∇fµ(A(D); z):

∥∇fµ(A(D); z)∥22 =
∥∥Ek

[
A(z)⊤sgn(A(z)θ + µk) + zh′(z⊤θ)

]∥∥2
2

≤ Ek

[∥∥A(z)⊤sgn(A(z)θ + µk) + zh′(z⊤θ)
∥∥2
2

]
≤ Ek

[
2
∥∥A(z)⊤sgn(A(z)θ + µk)

∥∥2
2
+ 2

∥∥zh′(z⊤θ)
∥∥2
2

]
≤ 2mA2 + 2D2L2

h. (17)

Take log-transformation for both sides of Eq.(15), and then plug (16) and (17) back into (15), we
know that the privacy loss random variable ln

(
pdf(b(A(D);D))
pdf(b(A(D);D′))

)
has a lighter tail than the Gaussian

random variable given below[
N (0, σ2 · (mA2 + L2

hD
2)) + (mA2 + L2

hD
2)
]
/σ2.

It remains to find a σ2 so that
[
N (0, σ2 · (mA2 + L2

hD
2)) + (mA2 + L2

hD
2)
]
/σ2 ≤ ε

2 with prob-

ability at least 1− δ. By Gaussian random variable’s tail bound Pr
[
N (0, 12) ≥

√
2 ln (1/δ)

]
≤ δ,

it suffices to set

σ2 ≥ C2 · (8 ln (1/δ) + 8ε)

ε2
,

where C :=
√

mA2 + L2
hD

2. Therefore, with this σ2, we ensure

pdf(b(v;D))
pdf(b(v;D′))

≤ e
ε
2 , with prob. at least 1− δ. (18)

We then come to control the ratio between two determinants in Eq.(14). Denote matrix E(v) :=
∇b(v;D) − ∇b(v;D′) = ∇2fµ(v; zn). The rank of matrix E(v) over all v = A(D) is at most
m + 1. This is because ∇2fµ = A⊤A · ∇θEz [sgn(Aθ + µk)] + zz⊤h′′(·). Because A is an
m-by-d matrix and m ≤ d, the product matrix A⊤A is at most rank-m. Further because zz⊤h′′(·)
is a rank-1 matrix, we conclude that E is at most rank-(m + 1). An immediate result is that the
number of different eigenvalues between {ρ′i}di=1 of matrix n∇2F̂µ(A(D);D) + E and {ρi}di=1 of
matrix n∇2F̂µ(A(D);D) is at most m+1. Therefore, the ratio between the two determinants below

17
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depends only on the different eigenvalues:

|det(∇b(A(D);D′))|
|det(∇b(A(D);D))|

=

∣∣∣det(−n∇2F̂µ(A(D);D)− 2nλI − E)
∣∣∣∣∣∣det(−n∇2F̂µ(A(D);D)− 2nλI)

∣∣∣ =
Πm+1

i=1 |ρ′i + 2nλ|
Πm+1

i=1 |ρi + 2nλ|

≤ Πm+1
i=1

(
1 +
|ρ′i − ρi|
2nλ

)
≤
(
1 +

βµ + βh

2nλ

)m+1

.

(19)

The last inequality is due to (βµ + βh)-smoothness of fµ, which gives |ρ′i − ρi| ≤ βµ + βh. A
sufficient condition for (19) ≤ eε/2 is λ ≥ (βµ + βh)(m + 1)/(nε). Hence, if λ ≥ (βµ+βh)(m+1)

nε ,
then

|det(∇b(A(D);D′))|
|det(∇b(A(D);D))|

≤ e
ε
2 . (20)

Plugging Eqs.(18) and (20) into equation 14, we finally obtain,

PrA [A(D) = v]

PrA [A(D′) = v]
≤ eε, with prob. at least 1− δ,

if λ ≥ (βµ+βh)(m+1)
nε and σ2 ≥ C2 · (8 ln (1/δ)+ 8ε)/ε2 with C :=

√
mA2 + L2

hD
2. The lowered

dependence of λ on rank of matrix ∇2fµ, which is m + 1 instead of d, has also been noticed by
Iyengar et al. (2019) and been utilized to improve OP’s practicability.

Lemma A.1 (Uniform Stability Lemma, Bousquet & Elisseeff 2002). Let A : Zn → Θ be a τ -
uniformly stable algorithm w.r.t. loss function f : Θ×Z → R. Let P be a distribution over Z , and
D ∼ Pn be samples i.i.d. drawn from P. Then, we have ED,A

[
F (A(D))− F̂ (A(D))

]
≤ τ .

A.5 PROOF OF THEOREM 3.3: PRELIMINARY PERFORMANCE GUARANTEE

Proof. Denote F̂A
µ (θ) := F̂µ(θ) + λ ∥θ∥2 + ⟨b,θ⟩

n , and let θ̂A := argminθ F̂
A
µ (θ). We first

decompose the excess generalization risk of A, i.e.,R(A;P) = ED,A
[
F (θA)

]
− F (θ∗), into three

parts:

R(A;P) = ED,A

[
F (θ̂A)− F̂ (θ̂A)

]
+ ED,A

[
F̂ (θ̂A)− F (θ∗)

]
≤ ED,A

[
F (θ̂A)− F̂ (θ̂A)

]
+ ED,A

[
F̂µ(θ̂

A)− F (θ∗)
]
, (since fµ ≥ f )

= ED,A

[
F (θ̂A)− F̂ (θ̂A)

]
+ ED,A

[
F̂µ(θ̂

A)− F̂µ(θ
∗)
]
+ ED

[
F̂µ(θ

∗)− F (θ∗)
]

= ED,A

[
F (θ̂A)− F̂ (θ̂A)

]
+ ED,A

[
F̂µ(θ̂

A)− F̂µ(θ
∗)
]
+ [Fµ(θ

∗)− F (θ∗)] . (21)

As a result of the decomposition, it suffices to control three parts separately. The first part can
be controlled through uniform stability analysis; the second part can be upper bounded by classic
analysis on empirical loss; the last part amounts to approximation error.

1. The first part can be bounded by uniform stability analysis. Specifically, we first notice fµ
is Lf := (

√
mA+DLh)-Lipschitz continuous w.r.t. ∥·∥2. This is because

∂θfµ = A(z)⊤sgn(·) + zh′(·) =⇒ ∥∂θfµ∥2 ≤ ∥A(z)∥2 ∥sgn(·)∥2 + ∥z∥2 Lh

≤
√
mA+DLh.

18
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Then, for any given µ, by the facts that F̂A
µ is 2λ-strong convexity and that fµ is Lf :=

(mA+DLh)-Lipschitz continuous, we have:

λ
∥∥∥θ̂A(D)− θ̂A(D′)

∥∥∥2
2
≤ F̂A

µ (θ̂A(D′);D)− F̂A
µ (θ̂A(D),D)

= F̂A
µ (θ̂A(D′);D′)− F̂A

µ (θ̂A(D);D′)

+
fµ(θ̂

A(D′); z)− fµ(θ̂
A(D); z)

n
+

fµ(θ̂
A(D); z′)− fµ(θ̂

A(D′); z′)

n

≤
2Lf ·

∥∥∥θ̂A(D)− θ̂A(D′)
∥∥∥
2

n
,

which implies
∥∥∥θ̂A(D)− θ̂A(D′)

∥∥∥
2
≤ 2Lf

λn . Since function f is also Lf -Lipschitz, we can

conclude that Algorithm A is
2L2

f

λn w.r.t. f , i.e.,∣∣∣f(θ̂A(D))− f(θ̂A(D′))
∣∣∣ ≤ 2L2

f

λn
, ∀D ∼ D′,∀b,∀µ.

Then, by uniform stability lemma A.1, we can conclude that

ED,A

[
F (θ̂A(D))− F̂ (θ̂A(D))

]
≤

2L2
f

λn
≤ 4C2

λn
, (22)

where C :=
√
mA2 +D2L2

h, a same value as defined in Theorem 3.2.

2. The second part can be upper bounded by empirical loss analysis (Kifer et al., 2012; Iyengar
et al., 2019). Let F̂#

µ (θ) := F̂µ(θ)+λ ∥θ∥22 and let θ̂# be its minimizer; Firstly, we notice
that, by the strong convexity of F̂A

µ ,

λ
∥∥∥θ̂# − θ̂A

∥∥∥2
2
≤ F̂A

µ (θ̂#)− F̂A
µ (θ̂A) = F̂#

µ (θ̂#)− F̂#
µ (θ̂A) +

〈
b, θ̂#

〉
n

−

〈
b, θ̂A

〉
n

≤
∥b∥2

∥∥∥θ̂# − θ̂A
∥∥∥
2

n
,

which implies
∥∥∥θ̂# − θ̂A

∥∥∥
2
≤ ∥b∥

λn . Consequently, we can show

F̂µ(θ̂
A)− F̂µ(θ

∗) ≤
(
F̂#
µ (θ̂A)− λ

∥∥∥θ̂A
∥∥∥2
2

)
−
(
F̂#
µ (θ̂#)− λ ∥θ∗∥22

)
≤

F̂A
µ (θ̂A)−

〈
b, θ̂A

〉
n

−
F̂A

µ (θ̂#)−

〈
b, θ̂#

〉
n

+ λ ∥θ∗∥22

≤
∥b∥2

∥∥∥θ̂# − θ̂A
∥∥∥
2

n
+ λ ∥θ∗∥22

≤
∥b∥22
λn2

+ λ ∥θ∗∥22 ,

which holds for any dataset D, noise b, and bandwidth µ. Therefore, taking expectation on
both sides gives

ED,A

[
F̂µ(θ̂

A)− F̂µ(θ
∗)
]
≤

E
[
∥b∥22

]
λn2

+ λ ∥θ∗∥22 ≤
dσ2

λn2
+ λR2. (23)

The last inequality is by assumption that θ∗ is in B(R).
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Last, plugging Eqs.(22) and (23) back into Eq(21), and setting λ =
√
4C2/n+ dσ2/n2/R, where

σ2 = C2 · (8 ln (1/δ) + 8ε)/ε2 and C :=
√

mA2 + L2
hD

2, we can get

R(A;P) ≤ 2R

√
4C2

n
+

dσ2

n2
+ [Fµ(θ

∗)− F (θ∗)]

≤ 4
√
2CR

√
1

n
+

d ln (1/δ)

n2ε2
+ [Fµ(θ

∗)− F (θ∗)] .

B OMITTED MATERIALS AND PROOFS FOR SECTION 4

B.1 PROOF OF LEMMA 4.2: MONOTONICITY OF Vµ

Proof. For notational convenience, we fix an x and omit the dependency on x in expressions, and
denote set Vµ := Vµ(x) = {v ∈ Rm : g(x+µv)+ g(x−µv) > 2g(x)}. First of all, when µ = 0,
V0 = ∅. When µ = ∞, because we assume g is not a linear function, then V∞ = Rm\{0} due to
convexity of g. Second, because of convexity of g and Jensen’s inequality, the set Vµ ̸= ∅ as long as
µ > 0.

Now, we come to prove monotonicity. For any µ0 > 0, suppose we have the set Vµ0
at hand. Then,

for any v ∈ Vµ0
, by definition of Vµ0

, we must have

2g(x) < g(x+ µ0v) + g(x− µ0v), ∀v ∈ Vµ0 . (24)

Again because of convexity of g, we have:

g(x+ µ0v) ≤ g(x) + ⟨∇g(x+ µ0v), µ0v⟩ , ∀v;
g(x− µ0v) ≤ g(x)− ⟨∇g(x− µ0v), µ0v⟩ , ∀v.

Plugging the preceding two inequalities into inequality (24) gives

0 < ⟨∇g(x+ µ0v)−∇g(x− µ0v),v⟩ , ∀v ∈ Vµ0 . (25)

We would like to highlight the above inequality is strict.

Let µ1 > µ0. We first show the weak version Vµ0 ⊆ Vµ1 . It suffices to show every v ∈ Vµ0 is also
in Vµ1 , i.e. g(x+ µ1v) + g(x− µ1v) > 2g(x),∀v ∈ Vµ0 . We start with the l.h.s.:

g(x+ µ1v) + g(x− µ1v) = g(x+ µ0 + (µ1 − µ0)v) + g(x− µ0 − (µ1 − µ0)v)

≥ [g(x+ µ0v) + ⟨∇g(x+ µ0v), (µ1 − µ0)v⟩]
+ [g(x− µ0v) + ⟨∇g(x− µ0v),−(µ1 − µ0)v⟩] (by convexity of g)

= [g(x+ µ0v) + g(x− µ0v)]

+ (µ1 − µ0) ⟨∇g(x+ µ0v)−∇g(x− µ0v),v⟩ .
Because v ∈ Vµ0

, we must have g(x + µ0v) + g(x − µ0v) > 2f(x); moreover, inequality (25)
implies (µ1 − µ0) ⟨∇g(x+ µ0v)−∇g(x− µ0v),v⟩ > 0. With these two facts, we immediately
conclude g(x+ µ1v) + g(x− µ0v) > 2g(x),∀v ∈ Vµ0

; thus Vµ0
⊆ Vµ1

.

Now, we move to prove the strict subset claim when g : x 7→ ∥x∥1 is the ℓ1-norm function. Let us
pick the point λv for some v ∈ Vµ0

and λ ∈ (µ0/µ1, 1). It remains to show this point is in Vµ1
but

not in Vµ0
.

• λv in Vµ1
: It suffices to show

g(x+ µ1 · λv) + g(x− µ1 · λv) ≥ g(x+ µ0v) + g(x− µ0v)︸ ︷︷ ︸
>2f(x), by v ∈ Vµ0

+ ⟨∇g(x+ µ0v)−∇g(x− µ0v), µ1λ− µ0v⟩︸ ︷︷ ︸
>0, by inequality (25) and λ > µ0/µ1

> 2g(x),

where the second line is by convexity of g.
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• λv not in Vµ0
: We prove this by contradiction. Assume λv ∈ Vµ0

, then we must have
g(x+µ0λv)+ g(x−µ0λv) > 2g(x). However, this inequality is not true with gℓ1 : x 7→
∥x∥1 and x ∈ ∂gℓ1 , because ∥x+ µ0λv∥1 + ∥x− µ0λv∥1 = 2 ∥x∥1 = 2gℓ1(x),∀x ∈
∂gℓ1 . The preceding equality can be checked through a similar idea as that in the proof of
Lemma 4.1.

Combining both cases, we know the strict subset claim holds for gℓ1 : x 7→ ∥x∥1.

B.2 PROOF OF LEMMA 4.3: KERNEL-DEPENDENT APPROXIMATION ERROR

Proof. 1. When kernel function k(·) is Gaussian kernel k(v) := e−
∥v∥22

2 /(
√
2π)m, we have

gℓ1µ (x)− gℓ1(x) =

∫
Vℓ1

µ (x)

(
∥x+ µv∥1 + ∥x− µv∥1

2
− ∥x∥1

)
k(v) dv

≤ µ ·
∫
v:|v|>|x|/µ

∥v∥1 e
− ∥v∥22

2 /(
√
2π)m dv (by Lip cts.)

≤ µ ·
m∑
j=1

∫
vj :|vj |>|xj |/µ

|vj | ev
2
j/2/
√
2π dv (layer-by-layer)

=
√
2/πµ ·

m∑
j=1

exp

(
−|xj |2

2µ2

)
.

2. Suppose kernel is exponential kernel k(v) = 1
n · e

−∥v∥2 with n = 2πm/2Γ(m)
Γ(m/2) . Let

∥x∥−∞ := minj{|xj |} be the minimal element of |x|, and let S(·) be the surface mea-
sure for any given set. Then, we have,

gℓ1µ (x)− gℓ1(x) ≤ µ ·
∫
v:|v|>|x|/µ

∥v∥1
e−∥v∥2

n
dv

≤ µ
√
m ·

∫
v:|v|>|x|/µ

∥v∥2
e−∥v∥2

n
dv

=
µ
√
m

n

∫ ∞

∥x∥−∞/µ

te−t · S(B2(t))︸ ︷︷ ︸
=2πm/2tm−1/Γ(m/2)

dt (volumn of a ball)

=
µ
√
m

Γ(m)
·
∫ ∞

∥x∥−∞/µ

tme−t dt︸ ︷︷ ︸
=:Γ(m+1,∥x∥−∞/µ)

, (Γ(·) is Gamma function)

(26)

where the function Γ(m + 1, r) :=
∫∞
r

tme−t dt in (26) is the upper incomplete gamma
function. The upper incomplete gamma function has a closed-form when m is positive
integer, i.e., Γ(m + 1, r) = m! · e−r ·

∑m
k=0

rk

k! . Moreover, the upper incomplete gamma
function has a light tail; that is, when r increases, the function value tends to zero very fast.
The rate can be characterized if we can find a tight upper bound for the series

∑m
k=0

rk

k! .
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We notice that, when r ≥ 3:

ln

(
m∑

k=0

rk

k!

)
= ln

(
m∑

k=0

rk

k!

)
≤ ln

(
m∑

k=0

rk

e · kk/ek

)
(by Stirling’s approximation)

≤ ln

(
1

e
·

m∑
k=0

(re)k

)

= ln

(
1

e
· (re)

m+1 − 1

re− 1

)
≤ (m+ 1) · (ln r + 1)− ln (re− 1)− 1

= m · (ln r + 1) + ln

(
r

re− 1

)
≤ 2m ln r. (by r ≥ 3)

Consequently, an upper bound for the upper incomplete gamma function follows:

Γ(m+ 1, r) ≤ m! · e−r · e2m ln r = m! · e−r · r2m, ∀r ≥ 3.

Immediately,

gℓ1µ (x)− gℓ1(x) ≤ m3/2 · µ · exp
(
−
∥x∥−∞

µ
+ 2m ln

(∥x∥−∞
µ

))
.

3. When kernel is Laplacian kernel k(v) = 1
2m · e

−∥v∥1 , we have

gℓ1µ (x)− gℓ1(x) ≤ µ ·
∫
v:|v|>|x|/µ

 m∑
j=1

|vj |

 · 1

2m
· e−∥v∥1 dv

≤ µ ·
m∑
j=1

[∫
vj :|vj |>|xj |/µ

|vj | · e−|vj |/2 dv

]

≤ µ ·
m∑
j=1

(
|xj |
µ

+ 1

)
exp

(
−|xj |

µ

)
.

B.3 PROOF OF THEOREM 4.5: OP’S OPTIMAL RATES

Proof. Because we are using Gaussian kernel, by Lemmas 3.3 and 4.3, we know the excess gener-
alization risk can be upper bounded as

R(A;P) ≤ 4
√
2CR ·

(
1√
n
+

√
d ln (1/δ)

nε

)
+
√
2/πµ · Ez

 m∑
j=1

exp

(
−
|A(z)θ∗|2j

2µ2

) . (27)

It remains to check the upper bound when the value µ is chosen according to the algorithm
C-OP in Step 1, i.e., λ =

(βµ+βh)(m+1)
nε . Moreover, Table 1 indicates βµ := Lf/µ, where

Lf :=
√
mA + DLh. Furthermore, by Lemma 3.3, we set λ :=

√
4C2/n+ dσ2/n2/R with

C :=
√
mA2 +D2L2

h and σ2 = C2 · (8 ln (1/δ) + 8ε)/ε2. Therefore, combining these re-
lationships together, we can explicitly find a µ used by C-OP; specifically, the µ used is µ :=

(m+1)Lf

2CR
√

nε2+2d(ln (1/δ)+ε)−βh

.
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Now, we come to control pointwise approximation error upper bound. If Gaussian kernel is used,
then Lemma 4.3 implies, by law of total probability,

Ez

 m∑
j=1

exp

(
−
|A(z)θ∗|2j

2µ2

) = Ez

 m∑
j=1

exp

(
−
|A(z)θ∗|2j

2µ2

)
| ∥A(z)θ∗∥−∞ ≥ t

 · p(t)
+ Ez

 m∑
j=1

exp

(
−
|A(z)θ∗|2j

2µ2

)
| ∥A(z)θ∗∥−∞ < t

 · (1− p(t))

≤ m exp
(
−t2/(2µ2)

)
+m · (1− p(t))

= m
(
exp

(
−t2/(2µ2)

)
+ 1− p(t)

)
. (28)

Since assumption 4.4 says p(t) ≥ 1 − exp
(
−1/t2

)
,∀t ≤ τ , if we take t =

√
µ, then Eq.(28)

becomes
(28) = m (exp (−1/(2µ)) + exp (−1/µ)) ≤ 2m exp (−1/µ) . (29)

The preceding inequality holds only when
√
µ is smaller than the threshold τ . Nevertheless, we will

see later that the chosen µ tends to 0 as sample size n goes up. Substituting (29) into (27), we get
the final utility guarantee:

R(A;P) ≤ 4
√
2CR ·

(
1√
n
+

√
d ln (1/δ)

nε

)
+ 2
√
2mµ exp (−1/µ) .

Intuitively, if µ :=
(m+1)Lf

2CR
√

nε2+2d(ln (1/δ)+ε)−βh

↘ 0 as n → ∞, then the approximation error

2
√
2mµ exp(−1/µ), which decreases exponentially in µ, will be dominated by the polynomial term

4
√
2CR

(
1√
n
+

√
d ln (1/δ)

nε

)
. It is straightforward to find out sufficient conditions for µ ≤ τ2

2
√
2mµ exp (−1/µ) ≤ 4

√
2CR

(
1√
n
+

√
d ln (1/δ)

nε

)

⇐ µ ≤ min

1, τ2, 1/ ln

 m

2CR( 1√
n
+

√
d ln (1/δ)

nε )




⇐


2CR

√
nε2 + 2d(ln (1/δ) + ε) ≥ βh

2CR
√
nε2 + 2d(ln (1/δ) + ε) ≥ βh + (m+ 1)Lf ·max

{
1, 1/τ2, ln

(
m

2CR( 1√
n
+

√
d ln (1/δ)

nε )

)}

⇐


nε2 + 2d(ln (1/δ) + ε) ≥ β2

h

C2R2 ;

nε2 + 2d(ln (1/δ) + ε) ≥ (m+1)2L2
f

2C2R2 ·min

{
ln
(

m
√
n

2CR

)2
, ln
(
mnε
2CR

)2}
;

nε2 + 2d(ln (1/δ) + ε) ≥ (m+1)2L2
f/min{1,τ4}
C2R2 .

(30)

The first inequality in Eq.(30) ensures that the denominator in the expression of µ is always positive.
Below are some sufficient conditions ensuring the above inequalities to be true.

1. δ ≤ min

{
e−

max{β2
h,(m+1)2L2

f /min{1,τ4}}

dC2R2 ,
(

2CR
m

√
n

)(m+1)2/(2dR2)
}

. First of all, δ ≤

e−
max{β2

h,(m+1)2L2
f /min{1,τ4}}

dC2R2 is equivalent to d ln (1/δ) ≥ max{β2
h,(m+1)2L2

f/min{1,τ4}}
C2R2 ,

which implies the first and last inequalities of (30).

Next, when δ ≤
(

2CR
m

√
n

)(m+1)2/(2dR2)

, we have δ ≤
(

2CR
m

√
n

)(m+1)2/(2dR2)

≤(
2CR
m

√
n

)(m+1)2L2
f/(2dC

2R2)

= exp
(

−(m+1)2L2
f

2dC2R2 · ln
(

m
√
n

2CR

))
, which implies d ln (1/δ) ≥

(m+1)2L2
f

2C2R2 · ln
(

m
√
n

2CR

)
.
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Combining both cases, we know the δ chosen is sufficient for Eq.(30).

2. δ ≤ e−
max{β2

h,(m+1)2L2
f /min{1,τ4}}

2dC2R2 and ε ≥

√
2(m+1)2 ln

(
m

√
n

2CR

)
nR2 . We only need to

check the condition on ε. Direct calculation gives nε2 ≥ 2(m+1)2

R2 ln
(

m
√
n

2CR

)
≥

2(m+1)2·L2
f

2C2R2 ln
(

m
√
n

2CR

)
=

(m+1)2L2
f

C2R2 ln
(

m
√
n

2CR

)
.

B.4 OMITTED DISCUSSIONS ON SOME SPECIAL CASES

• Piecewise Linear Loss f(θ; z) := maxp∈[P ]{⟨ap, A(z)θ⟩ + bp}. The piecewise linear
loss is essentially a linear model. The privacy guarantee follows the same proof idea as in
the proof of Theorem 3.2, with slight modifications. First, the piecewise linear loss does
not have an h(·) function; so h(·) related terms, such as D2L2

h, can be removed. Second,
the additional term ap makes the variance in Eq.(16) larger by at most supp∈[P ] ∥ap∥22.
Therefore, the multiplicative constant C in the noise variance now should be C2 := mA2 ·
supp∈[P ] ∥ap∥22.
To obtain the optimal convergence rate, we need a analogue of Assumption 4.4 to en-
sure A(z)θ∗ stays away from the set of critical points Z := {z ∈ Z : ∃i, j ∈
[P ], s.t. ⟨ai, A(z)θ

∗⟩ = ⟨aj , A(z)θ
∗⟩}. The set Z contains all z′s where there are at

least two pieces intersects with each other. Let r(z,Z) := minz0∈Z{∥z − z0∥−∞} be the
distance between point z and set Z , where ∥z∥−∞ := min{|z1| , . . . , |zd|} is the minimal
absolute value of vector z.
Another key ingredient is to ensure the set defined follow is strictly monotone in µ,

Vµ(z) :=
{
v ⊆ Rm : max

p∈[P ]
{⟨ap, A(z)θ + µv⟩+ bp}+ max

p∈[P ]
{⟨ap, A(z)θ − µv⟩+ bp}

> 2 max
p∈[P ]

{⟨ap, A(z)θ⟩+ bp}
}
,

on which the corresponding integrand is strictly positive. However, the set Vµ(z) is hard to
characterize. But we can find a superset of it:

Vµ(z) := {v ∈ Rm : ∥v∥∞ > r(z,Z)/µ}.

Because for any v s.t. ∥v∥∞ ≤ r(z,Z)/µ, the value A(z)θ ± µv does not move away
from the piece where A(z)θ originally lives in, we can immediately conclude that such a
v /∈ Vµ(z). By a contrapositive argument, when v ∈ Vµ(z), then ∥v∥∞ ̸≤ r(z,Z)/µ, i.e.
v ∈ Vµ(z). Therefore, Vµ(z) ⊆ Vµ(z).

Assumption B.1. Let z ∼ P. We assume there exists a threshold τ > 0 such that
Pz [r(z,Z) ≥ t] ≥ 1− exp

(
−1/t2

)
,∀t ≤ τ .

With this assumption and assumption 2.3, proof in Appendix B.3 then can go through for
Vµ(z).

• Bowl-shaped Loss f(θ; z) := (∥Aθ∥1−z)+ with known A ∈ Rm×d. Because the positive
operator has Lipschitz constant 1, this operator will not affect noise magnitude; thus if we
let the constant C2 = mA2 in σ2, then (ε, δ)-DP is guaranteed. Regarding convergence
rates, we first let x∗ := Aθ∗. Similarly, we denote

Vµ(z) := {v ∈ Rd : (∥x∗ + µv∥1 − z)+ + (∥x∗ − µv∥1 − z)+ − 2(∥x∗∥1 − z)+ > 0}.

It can be shown that Vµ(z) ⊆ Sµ(z), where Sµ(z)’s complementary set SC(z) :={
v ∈ Rd

∣∣∣ µ |vi| ≤ |x∗
i | ,∀i = 1, . . . ,m;

µ ∥v∥1 ≤ |∥x∗∥1 − z|

}
. The set SC

µ (z) is highlighted in blue in Fig-

ure 6). For any v ∈ SC
µ (z), it must be true that sgn(x∗) = sgn(x∗+µv) = sgn(x∗−µv),
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Figure 6: Set SC
µ (z) is in blue (when µ = 1)

which follows from the first constraint in SC
µ (z). An immediate consequence of the un-

changed signs is

∥x∗ + µv∥1 + ∥x
∗ − µv∥1 = 2 ∥x∗∥1 . (31)

The second constraint in SC
µ (z) implies∣∣∣∣∣

m∑
i=1

sgn(x∗
i )µvi

∣∣∣∣∣ ≤
m∑
i=1

|sgn(x∗
i )µvi| = µ ∥v∥1 ≤ |∥x

∗∥1 − z|

=⇒

∣∣∣∣∣∥x∗∥1 − z +

m∑
i=1

sgn(x∗
i )µvi

∣∣∣∣∣+
∣∣∣∣∣∥x∗∥1 − z +

m∑
i=1

sgn(x∗
i ) · (−µvi)

∣∣∣∣∣ = 2 |∥x∗∥1 − z|

⇐⇒

∣∣∣∣∣
m∑
i=1

{sgn(x∗
i ) · (x∗

i + µvi)} − z

∣∣∣∣∣+
∣∣∣∣∣

m∑
i=1

{sgn(x∗
i ) · (x∗

i − µvi)} − z

∣∣∣∣∣ = 2 |∥x∗∥1 − z|

⇐⇒

∣∣∣∣∣
m∑
i=1

{sgn(x∗
i + µvi) · (x∗

i + µvi)} − z

∣∣∣∣∣+
∣∣∣∣∣

m∑
i=1

{sgn(x∗
i − µvi) · (x∗

i − µvi)} − z

∣∣∣∣∣ = 2 |∥x∗∥1 − z|

⇐⇒ |∥x∗ + µv∥1 − z|+ |∥x∗ − µv∥1 − z| = 2 |∥x∗∥1 − z| . (32)

With these two Eqs.(31) and (32), we are ready to show SC
µ (z) ⊆ VC

µ (z): for any v ∈
SC
µ (z), we have:

(∥x∗ + µv∥1 − z)+ + (∥x∗ − µv∥1 − z)+

−2(∥x∗∥1 − z)+ =
|∥x∗ + µx∥1 − z|+ (∥x∗ + µv∥1 − z)

2

+
|∥x− µv∥1 − z|+ (∥x∗ − µv∥1 − z)

2

−
2 (|∥x∗∥1 − z|+ (∥x∗∥1 − z))

2

=
∥x∗ + µv∥1 + ∥x∗ − µv∥1 − 2 ∥x∗∥1

2

+
|∥x∗ + µv∥1 − z|+ |∥x∗ − µv∥1 − z| − 2 |∥x∗∥1 − z|

2
= 0 + 0 = 0,

where the last line is by Eq.(31) and Eq.(32). The above derivation implies v ∈ VC
µ (z).

Therefore SC
µ (z) ⊆ VC

µ (z), and consequently, Vµ(z) ⊂ Sµ(z).
We next assume the distribution of z is not ill-posed.
Assumption B.2. Let z ∼ P. We assume there exists a threshold τ > 0 such that
Pz [|z − ∥Aθ∗∥1| ≥ t] ≥ 1− exp

(
−1/t2

)
,∀t ≤ τ .

Then, with this assumption and assumption 2.3, similarly, proof in Appendix B.3 then can
go through for Sµ(z).
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B.5 PROOF OF LEMMA 4.6: PROPERTIES OF MOREAU ENVELOPE

Proof. We first introduce two Lemmas on Fenchel’s conjugate that are helpful in later analysis. For
a function f , denote its Fenchel Conjugate as f⋆(y) := supx∈domf ⟨x,y⟩ − f(x).

Lemma B.3 (Fenchel’s Duality, Theorem 31.1 in Rockafellar 2015). Let f, h be two proper convex
functions. If the intersection between the relative interior of domains of functions f and g are
nonempty, i.e., ri(dom f) ∩ ri(domh) ̸= ∅, then one has

inf
u
{f(u)− h(u)} = sup

y
{h⋆(y)− f⋆(y)} .

Lemma B.4 (Conjugate Correspondence Theorem, Theorem 5.26 in Beck 2017). Let f : Rd → R
be a proper lower semicontinuous convex function. The following statements are equivalent:

• function f is 1/µ-smooth with respect to ∥·∥;

• its Fenchel conjugate f⋆ is µ-strongly convex with respect to dual norm ∥·∥∗

Throughout this proof, we replace the subscript ME with µ to indicate the dependency on param-
eter µ. By applying Lemma B.3, we first rewrite the Generalized Moreau Envelope into a dual
formulation:

gµ(x) := inf
u
{g(u) + ϕµ(x− u)} = inf

u
{g(u)− hµ,x(u)} (let hµ,x(u) := −ϕµ(x− u))

= sup
y

{
h⋆
µ,x(y)− g⋆(y)

}
. (by Lemma B.3)

(33)

Since

h⋆
µ,x(y) = sup

g
⟨g,y⟩+ ϕµ(x− g)

= ⟨x,y⟩ − inf
g
{⟨x− g,y⟩ − ϕµ(x− g)} (safe here since domϕµ = Rd)

= ⟨x,y⟩ − ϕ⋆
µ(y),

we can plug h⋆
µ,x = ⟨x,y⟩ − ϕ⋆

µ(y) back into equation 33, and obtain

gµ(x) = sup
y

{
⟨x,y⟩ − ϕ⋆

µ(y)− g⋆(y)
}

(34)

= sup
y

{
⟨x,y⟩ − (g⋆ + ϕ⋆

µ)(y)
}
= (g⋆ + ϕ⋆

µ)
⋆(x). (35)

With the Fenchel dual expression, we are ready to show desired properties.

1. The convexity of gµ is straightforward, as gµ is obtained from minimizing a convex function
over a convex set; thus convexity is preserved.

The smoothness comes from applying Lemma B.4 to ϕµ. Specifically, with a properly
chosen function ϕ that is continuously differentiable and β′-smooth (w.r.t ∥·∥2), we have

∥∇ϕµ(x)−∇ϕµ(y)∥q = ∥∇ϕ(x/µ)−∇ϕ(y/µ)∥q ≤ β′ · ∥x/µ− y/µ∥p =
β′

µ
· ∥x− y∥p ,

which implies ϕµ is β′/µ-smooth (w.r.t ∥·∥p). Applying Lemma B.4, we know that ϕ⋆
µ is

µ/β′-strongly convex (w.r.t ∥·∥q). As a result, g⋆ + ϕ⋆
µ is also µ/β′-strongly convex. Then

applying again Lemma B.4 to g⋆+ϕ⋆
µ, we have (g⋆+ϕ⋆

µ)
⋆ is β′/µ-smooth (w.r.t ∥·∥p). By

the equivalence between (g⋆+ϕ⋆
µ)

⋆ and gµ, i.e., Eq.(35), we know gµ is β := β′/µ-smooth.

Lastly, we come to show gµ is L-Lipschitz. For a given x, pick an arbitrary subgradient
v ∈ ∂gµ(x). We know that Fenchel-Young inequality can characterize subgradients when
taking equality, i.e.,

⟨v,x⟩ = gµ(x) + g⋆µ(v), ∀v ∈ ∂gµ(x). (36)
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In addition, because ϕ is strictly convex, u∗ := argminu g(u) + ϕµ(x− u) is unique for
any x; and therefore fµ(x) can be expressed as gµ(x) = g(u∗) + ϕµ(x− u∗). Moreover,
we have g⋆µ = g⋆ + ϕ⋆

µ by Eq.(35). Hence, Eq.(36) can be equivalently rewritten as

⟨v,x− u∗⟩+ ⟨v,u∗⟩ = LHS of (36)

= RHS of (36) = [g(u∗) + ϕµ(x− u∗)] +
[
g⋆(v) + ϕ⋆

µ(v)
]
.

(37)

Since ϕµ is continuously differentiable, its subgradient set is singleton and is ∂ϕµ(x −
u∗) = {∇ϕµ(x − u∗)},∀x. By the second property in Lemma 4.6, i.e., ∇gµ(x) =
∇ϕµ(x−u∗), the set of subgradients of gµ(x) is also singleton since ∂gµ(x) = ∂ϕµ(x−
u∗) = {∇ϕµ(x− u∗)}. The coincidence between ∂gµ(x) and ∂ϕµ(x− u∗) implies that
the picked subgradient v ∈ ∂fµ(x) should be also in ∂ϕµ(x − u∗). By Fenchel-Young
equality again, we have

⟨v,x− u∗⟩ = ϕµ(x− u∗) + ϕ⋆
µ(v). (38)

Subtracting Eq.(38) from Eq.(37) results in

⟨v,u∗⟩ = g(u∗) + g⋆(v),

which implies v ∈ ∂g(u∗). The above analysis shows that the picked subgradient v ∈
∂gµ(x) belongs to two other sets ∂ϕµ(x−u∗) and ∂g(u∗) at the same time, implying that
v ∈ ∂ϕµ(x− u∗) ∩ ∂g(u∗) ⊆ ∂g(u∗). Therefore, the norm of v is upper bounded by the
largest norm of subgradients in ∂g(u∗), i.e., :

∥v∥ ≤ sup
g∈∂g(u∗)

∥g∥ , ∀x,v.

kindly note that u∗ depends on x. By the assumption that g is L-Lipschitz continuous
w.r.t. ∥·∥p, subgradients in ∂g(u∗) are uniformly bounded w.r.t. dual norm ∥·∥q , i.e.,
supg∈∂g(u∗) ∥g∥q ≤ L. When we are in Euclidean space ∥·∥p = ∥·∥q = ∥·∥2, we finally
have supg∈∂g(u∗) ∥g∥2 ≤ L, which directly leads to

sup
v∈∂gµ(x),∀x∈X

∥v∥2 ≤ sup
g∈∂g(u∗),∀x

∥g∥2 ≤ L,

indicating that gµ is L-Lipschitz continuous.

2. The second property is a well-known result in Moreau Envelope literature, see Theorem
4.1 in Beck & Teboulle (2012). This property also indicates that gµ is differentiable.

3. It is easy to see

gµ(x)− g(x) = inf
u
{g(u) + ϕµ(x− u)} − g(x) ≤ g(x) + ϕµ(0)− g(x) = µϕ(0), ∀x,

which gives the upper bound. To show the desired lower bounds, we notice that, for any
x ∈ Rd,

gµ(x)− g(x) = inf
u
{g(u) + ϕµ(x− u)} − g(x)

≥ inf
u
{⟨g,u− x⟩+ ϕµ(x− u)} , ∀g ∈ ∂g(x),

= − sup
u
{⟨g,x− u⟩ − ϕµ(x− u)}

= −ϕ⋆
µ(g) = −µϕ⋆(g), ∀g ∈ ∂g(x),∀x. (39)

where the inequality is by the definition of subgradients. Further because we assume
domϕ⋆ ⊇ ∪x∈X∂g(x), the supermum of ϕ⋆ is thus finite, i.e. ∥ϕ⋆∥∞ := supg ϕ

⋆(g) <
∞. Therefore, Eq.(39) ≥ −µ ∥ϕ⋆∥∞ is a valid lower bound, which completes the proof.
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B.6 SUPPLEMENTARY MATERIALS TO SECTION 4

Condition B.1. The smooth function ϕ : Rm → R in Eq.(6) should satisfy following conditions:

1. function ϕ is continuously differentiable, strictly convex, and β′-smooth;

2. its Fenchel conjugate function ϕ⋆(y) := supu∈domϕ{⟨y,u⟩ − ϕ(u)} exists, and the do-
main of ϕ⋆ is a superset of subgradients set of g, i.e., domϕ⋆ ⊇ ∪x∈X∂g(x).

The first condition is common in literature. The second condition facilitates analysis through
Fenchel Conjugate, which leads to various results in Lemma 4.6. While the superset requirement in
the second condition is not straightforward at first glance, if g is L-Lipschitz continuous (w.r.t. ℓ2
norm), we can safely replace it with a sufficient alternative that domϕ⋆ ⊇ B(L). The alternative
requirement is much easier to check in practice.

There are various eligible ϕ function, and we list out some in Table 2. Evidently, functions in Table 2
all meet Condition B.1. However, not all ϕ functions in Table 2 result in an approximation function
gME that approximates g from above. The inequality in part 3 of Lemma 4.6 implies approximation

Table 2: Eligible Functions ϕ(·) for (Generalized) Moreau Envelope

Functions ϕ(x) dom ϕ Smoothness1 ϕ⋆(y) dom ϕ⋆ Convexity1

Energy2 1
p
|x|p R 1 1

q
|y|q R 1

ℓ2-norm β′

2
∥x∥22 Rd β′ 1

2β′ ∥y∥22 Rd 1
β′

Huber
{

β′ · ∥x∥22 /2, ∥x∥2 ≤ 1,
β′ · ∥x∥2 − β′/2, otherwise. Rd β′ 1

2β′ ∥y∥22 B(β′) 1
β′

Hellinger β′ ·
√

1 + ∥x∥22 Rd β′ −
√

β′2 − ∥y∥22 B(β′) 1
β′

1 with respect to l2-norm ∥·∥2; 2 p, q > 0 s.t. 1/p+ 1/q = 1;

from above only when ∥ϕ⋆∥∞ ≤ 0. The only eligible ϕ function is Hellinger. Specially, for the
Hellinger function, we should set β′ to be at least L in order to meet the superset requirement. The
approximation function by Hellinger is drawn in Figure 4.

B.7 ADDITIONAL EXPERIMENT RESULTS

B.7.1 EXCESS GENERALIZATION RISKS

Linear ℓ1 loss with a fixed A. In the main text, we reported numerical results for loss function
f(θ;y, A) = ∥y −Aθ∥1 where datapoints are (y, A) and As’ elements are random variables. Now,

let us fix the matrix to be a deterministic matrix A :=
[

1 .5 0 0 1
.5 .5 0 0 1
0 0 −.5 0 1

]
. In this case, the optimal θ∗

satisfies Aθ∗ = (−1.25,−1,−0.5); therefore, assumption 4.4 holds. Results are reported below
in Figure 7. Similarly, in high-privacy and small-sample regimes (left bottom), C-OP outperforms
other methods. One may notice the improvement is not as significant as that shown in Figure 5. We
conjecture this is because the deterministic nature of A weakens the advantage of C-OP that it can
return a minimizer to an ERM. With a deterministic matrix A, SGD can also output a high-quality
minimizer, even with high privacy.

Piecewise linear loss. We further conduct experiments under a piecewise linear function
f(θ;y, A) = maxp∈[P ]{⟨ap,y −Aθ⟩ + bp} whose convolution is given in Section 4.3. Experi-
ment settings are the same as that in Figure 5, and results are shown in Figure 8. From Figure 8,
we have similar observations: C-OP outperforms Noisy-SGD and Moreau in high-privacy regimes
(for example, ε = 0.2, d = 20). But when privacy requirements become less stringent, the advan-
tages diminish; and finally, Noisy-SGD performs the best again (for example, ε = 5, d = 30). This
suggests that when privacy is high, C-OP might be a competitive alternative to Noisy-SGD.
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Figure 7: Relative risk v.s. sample size under ℓ1-norm loss. Settings are the same as in Figure 5
expect that we fix the matrix A to be deterministic A :=

[
1 .5 0 0 1
.5 .5 0 0 1
0 0 −.5 0 1

]
.
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Figure 8: Relative risk v.s. sample size, under a piecewise linear loss function. Settings are the same
as in Figure 5.
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B.7.2 COMPUTATIONAL EFFICIENCY

For the ease of notation, let us denote x := A(z)θ. The computational bottleneck of C-OP is the
high-dimensional integration Ek [∥A(z)θ + µk∥1] :=

∫
v∈Rm ∥A(z)θ + µv∥1 k(v) dv in Eq.(1).

When the kernel function chosen is Gaussian kernel k(v) := Πm
j=1

(
1√
2π

exp
(
− v2

j

2

))
, the integral

admits a closed form expression:∫
v∈Rm

∥x+ µv∥1 k(v) dv =

∫
vm

· · ·
∫
v1

∥x+ µv∥1 Π
m
j=1

(
1√
2π

exp

(
−
v2j
2

))
dv1 . . . dvm

= ||x||1 +
m∑
j=1

(
µ
√
2/π exp

(
−

x2
j

2µ2

)
− 2|xj |Φ

(
−|xj |

µ

))
,

where Φ(·) is the CDF of a standard Gaussian random variable. However, for general kernels that
only satisfy Condition A.1, the convolution may not admit closed-form expressions because the
integral cannot be analytically done layer by layer.

We implement the integration with torchquad Gómez et al. (2021), a numerical integration module
utilizing GPUs. The module conducts high-dimensional convolution by discretizing the convolution
integral into small bins first, and then it calculates the function value in each bin, and lastly sums
them up. Because this kind of parallelization significantly benefits from GPUs, the calculation is
computationally efficient. Specifically, each integration completes within 50ms on an RTX 2060S
graphics card, and the overall optimization completes within seconds. The source code is attached
as supplementary materials for readers who are interested in implementation details.

Table 3: C-OP Runtime (in seconds)

n d ε = 0.2 ε = 0.5 ε = 1 ε = 5

100 5 0.49 0.53 0.54 0.51
10 0.70 0.83 0.88 0.83
20 2.73 3.11 3.48 3.16
30 4.02 5.19 6.16 5.85

500 5 0.76 0.91 0.67 0.71
10 0.90 0.98 1.00 1.01
20 4.41 4.02 3.94 3.71
30 9.24 8.96 6.63 6.03

1000 5 0.98 1.08 0.89 0.90
10 1.16 1.28 1.35 1.36
20 5.03 5.16 5.42 5.28
30 12.04 10.23 8.98 8.64

2000 5 1.58 1.52 1.35 1.36
10 1.84 2.09 2.01 2.04
20 7.05 7.72 8.11 7.51
30 14.75 13.88 12.17 13.41
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