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Abstract

Large multimodal models (LMMs) suffer from001
multimodal hallucination, where they provide002
incorrect responses misaligned with the given003
visual information. Recent works have con-004
jectured that one of the reasons behind multi-005
modal hallucination might be due to the vision006
encoder failing to ground on the image prop-007
erly. To mitigate this issue, we propose a novel008
approach that leverages self-feedback as vi-009
sual cues. Building on this approach, we intro-010
duce VOLCANO, a multimodal self-feedback011
guided revision model. VOLCANO generates012
natural language feedback to its initial response013
based on the provided visual information and014
utilizes this feedback to self-revise its initial015
response. VOLCANO effectively reduces multi-016
modal hallucination and achieves state-of-the-017
art on MMHal-Bench, POPE, and GAVIE. It018
also improves on general multimodal abilities019
and outperforms previous models on MM-Vet020
and MMBench. Through a qualitative anal-021
ysis, we show that VOLCANO’s feedback is022
properly grounded on the image than the ini-023
tial response. This indicates that VOLCANO024
can provide itself with richer visual informa-025
tion, helping alleviate multimodal hallucination.026
We publicly release VOLCANO models of 7B027
and 13B sizes along with the data and code at028
http://www.omitted.link/.029

1 Introduction030

Large multimodal models (LMMs) enable instruct-031

tuned large language models (LLMs) to compre-032

hend the visual features conveyed by vision en-033

coders with the help of substantial image-text or034

video-text pairs (Alayrac et al., 2022; Liu et al.,035

2023b,c; Chen et al., 2023; Peng et al., 2023; Dai036

et al., 2023; Zhu et al., 2023; Ye et al., 2023a; Li037

et al., 2023a; Zhang et al., 2023b; Su et al., 2023;038

Maaz et al., 2023). Recently, with the introduction039

of fine-tuning methods such as visual instruction040

tuning, LMMs are evolving into assistants capable041
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Who is sitting on the bench?

A person is sitting on the bench.
C r i t i q u e

Generate the feedback given initial answer
referring to question and image.

This response is incorrect because there is no person
in the given image. Therefore, the answer should be modified

to say that no one is sitting on the bench in the image.

Rev ise

Adjust the initial response considering the feedback and image.

No one is sitting on the bench in the image.
Dec ide

Who is sitting on the bench?
A. A person is sitting on the bench.
B. No one is sitting on the bench in the image.
Answer with the option's letter from the given choices directly.

B.

No one is sitting on the bench in the image.

Figure 1: Overview of VOLCANO. This example il-
lustrates the process undertaken by VOLCANO for a
question in the MMHal-Bench dataset. Before giving
the response, VOLCANO goes through a critique-revise-
decide process. It critiques its initial response with nat-
ural language feedback, revises the response based on
the feedback, and decides whether to accept the revised
answer.

of understanding the world through multiple chan- 042

nels, akin to humans (Liu et al., 2023b,c). 043

Despite the impressive performance on various 044

benchmark tasks and qualitative outcomes ob- 045

served, these models grapple with an issue called 046

multimodal hallucination, where they produce re- 047

sponses that do not align with the visual informa- 048

tion given in the question. Recent work (Zhai et al., 049
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2023) demonstrates that multimodal hallucinations050

can occur when the vision encoder fails to ground051

images accurately. In other words, LMMs tend052

to rely more on their own parametric knowledge053

than on provided visual features, causing them to054

respond with guesses and generate multimodal hal-055

lucinations. Wang et al. (2023b) empirically show056

that the model attends to the previous tokens more057

than image features when it generates hallucinated058

tokens.059

In this paper, we propose a novel method that060

utilizes natural language feedback to enable the061

model to correct hallucinated responses by offering062

detailed visual information. Building on this hy-063

pothesis, we introduce VOLCANO1, a multimodal064

self-feedback guided revision model. VOLCANO065

is trained to first generate an initial response based066

on the given image and question, then sequentially067

revises it until it determines that no more improve-068

ment is required. We collect our multimodal feed-069

back and revision data for training using proprietary070

LLMs.071

To verify the efficacy of VOLCANO in reducing072

multimodal hallucination, we evaluate its perfor-073

mance on multimodal hallucination benchmarks074

(Sun et al., 2023; Li et al., 2023d; Liu et al., 2023a).075

The results demonstrate consistent performance im-076

provements across all benchmarks. Notably, when077

compared to previous works aiming at mitigating078

multimodal hallucination (Zhou et al., 2023; Sun079

et al., 2023; Yin et al., 2023), VOLCANO showcases080

an 24.9% enhancement, underscoring its effective-081

ness in addressing the challenge. Furthermore, on082

multimodal understanding benchmarks (Liu et al.,083

2023e; Yu et al., 2023), VOLCANO is also effective084

in understanding and reasoning about visual con-085

cepts.086

Through qualitative analysis, we find that the gen-087

erated feedback attends on the image with higher088

intensity and disperses the attention widely across089

the image. These findings explain that feedback090

carries fine-grained visual information and suggest091

that even if the vision encoder fails to properly092

ground, the feedback can still guide LLMs to im-093

prove upon a hallucinated response, supporting our094

claim.095

Our work’s contributions can be summarized as096

follows:097

1. We introduce VOLCANO, a self-feedback098

1We call our model VOLCANO because it frequently erupts
LLaVA

guided revision model that effectively miti- 099

gates multimodal hallucination. It achieves 100

state-of-the-art on multimodal hallucination 101

benchmarks and multimodal understanding 102

benchmarks. 103

2. Our qualitative analysis shows that VOL- 104

CANO’s feedback is effectively rooted on the 105

image, conveying rich visual details. This un- 106

derscores that feedback can offer guidance 107

and reduce multimodal hallucination, even 108

when a vision encoder inadequately grounds 109

the image 110

3. We open-source VOLCANO (7B & 13B), along 111

with the data and code for training. 112

2 Related work 113

2.1 Multimodal hallucination 114

Unlike language hallucination where fabrication 115

of unverifiable information is common (Ji et al., 116

2023; Zhang et al., 2023c; Li et al., 2023c), the 117

majority of multimodal hallucination occurs 118

within verifiable information given the input 119

visual content. Multimodal hallucination is mostly 120

studied as a form of object hallucination where 121

a generation contains objects inconsistent with 122

or absent from the target image (Rohrbach et al., 123

2018; Biten et al., 2022; Li et al., 2023d; Liu et al., 124

2023a; Zhai et al., 2023), with misrepresentations 125

of a scene or environment being documented until 126

recently (Sun et al., 2023). To uncover the cause of 127

failure in grounding, previous works analyze either 128

the visual or language side. Zhai et al. (2023) 129

pinpoints the lack of preciseness in visual features 130

produced by the vision encoder. Other studies 131

(Li et al., 2023d; Liu et al., 2023a; Wang et al., 132

2023b) focus on the tendency of LLMs to generate 133

words more in line with common language patterns 134

rather than the actual visual content. The error 135

may be further exacerbated by autoregressive text 136

generation (Rohrbach et al., 2018; Zhang et al., 137

2023a; Zhou et al., 2023). 138

139

2.2 Learning from feedback 140

Learning from feedback can align LLMs to desired 141

outcomes, for instance to better follow instructions 142

via human preference feedback (Ouyang et al., 143

2022), preference feedback generated by AI itself 144

(Lee et al., 2023; Dubois et al., 2023), or even fine- 145

grained feedback (Wu et al., 2023; Lightman et al., 146
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2023). Compared to preference and fine-grained147

feedback which provide scalar values as training148

signals, natural language feedback provides more149

information (Scheurer et al., 2022; Ma et al.,150

2023) and has been effective for language models151

to correct outputs, especially for self-correction152

(Welleck et al., 2022; Pan et al., 2023). Inspired by153

successful iterative self-refining language models154

(Madaan et al., 2023; Ye et al., 2023b; Shinn et al.,155

2023), to the best of our knowledge, we are the156

first to achieve improvement in multimodal modals157

through iterative self-feedback guided refinement.158

159

2.3 Mitigating multimodal hallucination160

Previous methods for mitigating multimodal hal-161

lucinations have varied in their focus, including162

enhancing the quality of instruction tuning data,163

model training methodologies, and implementing164

post-hoc refinements. LRV-Instruction dataset (Liu165

et al., 2023a) ensures the balance of both negative166

and positive instructions and VIGC (Wang et al.,167

2023a) iteratively generates and corrects instruc-168

tions to reduce hallucinated samples in training169

data. Adapting reinforcement learning from human170

feedback (RLHF) to train a single reward model171

as in LLaVA-RLHF (Sun et al., 2023) or training172

multiple or even without no reward models as in173

FDPO (Gunjal et al., 2023) has proven effective as174

well. LURE (Zhou et al., 2023) trains a revision175

model to detect and correct hallucinated objects176

in base model’s response. Woodpecker (Yin et al.,177

2023) breaks down the revision process into multi-178

ple subtasks where three pre-trained models apart179

from the base LMM are employed for the subtasks.180

Unlike models using reinforcement learning, our181

approach does not require reward model train-182

ing. Also, contrary to revision-only methods, our183

method trains a model to self -revise, eliminating184

the need of extra modules. Furthermore, we intro-185

duce natural language feedback prior to the revi-186

sion process. This feedback serves a dual purpose:187

it revisits the visual features for enhanced clarity188

and specifically pinpoints the hallucinated elements189

that require correction, thereby enriching the infor-190

mation available for more effective revision.191

3 VOLCANO192

VOLCANO employs a single LMM to generate ini-193

tial responses, feedback, and revisions, as well194

as decisions to accept revisions. It follows a se-195

Algorithm 1 Feedback guided self-revision

1: Input: model M , image I , question Q
2: Rinitial = M(I,Q)
3: Rbest = Rinitial

4: for up to 3 iterations do
5: F = M(I,Q,Rbest)
6: Rrevised = M(I,Q,Rbest, F )
7: Rdecided = M(I,Q,Rbest, Rrevised)
8: if Rdecided == Rbest then
9: break

10: else
11: Rbest = Rrevised

12: return Rbest

quential procedure of an iterative critique-revision- 196

decide loop. In section 3.1, we introduce the pro- 197

cess by which VOLCANO self-revises its responses 198

iteratively. Section 3.2 describes the collection of 199

multimodal feedback and revision data used to train 200

VOLCANO. Finally, section 3.3 provides detailed 201

information about the models and data used in our 202

study. The overall process is explained in Algo- 203

rithm 1 and illustrated in Figure 2. 204

3.1 Iterative self-revision 205

VOLCANO employs a single model to generate im- 206

proved responses through a sequential process of 207

four stages. First, similar to other LMMs, it gen- 208

erates an initial response Rinitial for the image I 209

and question Q and initializes the best response 210

Rbest with Rinitial. This stage is performed only 211

once in the process of creating the final response. 212

Second, it generates feedback F based on the Rbest 213

(stage 1). Using this feedback, it self-revises the 214

Rbest (stage 2). Since there is no guarantee that the 215

revised response Rrevised will be better than the ex- 216

isting Rbest, there is a need to determine which re- 217

sponse is better for the given Q and I . At this point, 218

VOLCANO is given the Q, I , and both responses, 219

and it goes through the process of deciding which 220

response is better (stage 3). The order of Rrevised 221

and Rbest in stage 3 is randomized to prevent the 222

positions from affecting the results (Wang et al., 223

2023c). If the model decides that Rrevised is better 224

than Rbest, then Rbest is updated with Rrevised and 225

the procedure from stage 1 to stage 3 is repeated, 226

with the predetermined maximum number of iter- 227

ations. Otherwise, the loop is early-stopped, and 228

Rbest is selected as the final output. 229
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Question

What are the colors of the dogs
from right to left?

Iter 1

The colors of the dogs
from right to left are

brown, black, and brown.

• Critique
The response is imperfect

because it incorrectly
states that the colors of the
dogs from right to left are
brown, black, and brown.
(...) the correct colors of
the dogs from right to left

are brown and black.

• Revise
The colors of the dogs
from right to left are
brown and black.

Decide

Iter 2
. . . . . . . . . . . . . . . . . . . . . . . . . .→

The colors of the dogs
from right to left are
brown and black.

• Critique
The response is correct.
The colors of the dogs

from right to left are indeed
brown and black. Well

done!

• Revise
The colors of the dogs
from right to left are
brown and black.

Decide
≥

Figure 2: Overall process of VOLCANO. VOLCANO is a multimodal self-feedback guided revision model that
takes an image and a question and then generates an improved response based on the self-feedback.

Image

Question

Image information
Question

Reference answer

(Prediction
→

B a s e m o d e l

C h a t G P T

Prediction

Feedback

Figure 3: Data collection.

3.2 Data collection230

To train VOLCANO, we collect initial responses for231

visual questions from an open-source LMM and232

generate feedback and revisions using a proprietary233

LLM as shown in Figure 3 (Akyürek et al., 2023;234

Madaan et al., 2023; Ye et al., 2023b; Wang et al.,235

2023d; Kim et al., 2023).236

Since current proprietary LLMs cannot process237

images, we provide object details in text and im-238

age captions as a proxy for image. For each data239

instance, we feed the proprietary LLM image in-240

formation consisting of object details and captions,241

question, initial response, and gold answer as ref-242

erence answer, allowing the model to evaluate the243

given inputs and produce feedback.244

The proprietary LLM might exploit the gold an-245

swer to generate the feedback, which can cause246

potential inaccuracies in feedback during inference247

time when it is not provided. To avoid this, we248

give the LLM clear prompts to use text-formatted249

image details when generating feedback. When250

constructing the revision data, we set up the system251

to predict the existing gold answer as the output, us-252

ing the feedback data, image, question, and initial253

response obtained from the previous steps as input,254

without involving any separate model generation255

process.256

3.3 Implementation details 257

Data To construct multimodal feedback and revi- 258

sion data, we utilize the LLaVA-SFT-127k dataset 259

(Sun et al., 2023). We only use the first turn of 260

each instance in the dataset. When finetuning VOL- 261

CANO, we use the llava-1.5-mix665k as the visual 262

instruction dataset (Liu et al., 2023b). 263

Model For proprietary LLM, we employ Ope- 264

nAI’s gpt-3.5-turbo2. We use the LLaVA-SFT+ 265

7B model3 to generate the initial response when 266

creating feedback data and LLaVA-1.5 7B4 and 267

13B5 as backbone models of VOLCANO (Liu et al., 268

2023b,c). 269

4 Experiments 270

4.1 Benchmarks 271

Multimodal hallucination benchmarks We use 272

POPE (Li et al., 2023d), GAVIE (Liu et al., 2023a), 273

and MMHal-Bench (Sun et al., 2023) as our mul- 274

timodal hallucination benchmarks. POPE and 275

GAVIE are benchmarks for assessing object-level 276

hallucinations in images. POPE comprises 9k ques- 277

tions asking if a specific object is present or not 278

in an image. GAVIE is composed of 1k ques- 279

tions evaluating how accurately the response de- 280

scribes the image (accuracy) and how well the re- 281

sponse follows instructions (relevancy) using GPT- 282

4. MMHal-Bench aims to evaluate the overall hal- 283

lucination of LMMs, consisting of realistic open- 284

ended questions. It comprises 96 image-question 285

pairs across 8 question categories and 12 object top- 286

ics. GPT-4 evaluates an overall score by comparing 287

2gpt-3.5-turbo
3LLaVA-RLHF-7b-v1.5-224
4llava-v1.5-7b
5llava-v1.5-13b
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Model MMHal-Bench POPE GAVIE
Score ↑ Hal rate ↓ Acc ↑ F1 ↑ Acc score ↑ Rel score ↑ Avg score ↑

MiniGPT-4 7B - - 68.4 74.5 4.14 5.81 4.98
mPLUG-Owl 7B - - 51.3 67.2 4.84 6.35 5.6
InstructBLIP 7B 2.1 0.58 71.5 80.0 5.93 7.34 6.64
LLaVA-SFT+ 7B 1.76 0.67 81.6 82.7 5.95 8.16 7.06
LLaVA-RLHF 7B 2.05 0.68 81.8 81.5 6.01 8.11 7.06
LLaVA-SFT+ 13B 2.43 0.55 83.2 82.8 5.95 8.2 7.09
LLaVA-RLHF 13B 2.53 0.57 83.1 81.9 6.46 8.22 7.34

LLaVA-1.5 7B 2.42 0.55 86.1 85.1 6.42 8.2 7.31
LLaVA-1.5 13B 2.54 0.52 86.2 85.2 6.8 8.47 7.64
VOLCANO 7B 2.6 0.49 88.2 87.7 6.52 8.4 7.46
VOLCANO 13B 2.64 0.48 88.3 87.7 6.94 8.72 7.83

Table 1: Results of multimodal hallucination benchmarks. The MMHal-Bench score is measured on a 0-5 scale.
Hallucination rate (Hal rate) is measured as the proportion of scores less than 3. Additionally, GAVIE’s Acc score
(Accuracy score) and Rel score (Relevancy score) are measured on a 0-10 scale, with Avg score representing the
average of Acc and Rel scores. Detailed evaluation results for each benchmark by question type are in Table 6 and
Table 7.

the model’s response to the correct answer based on288

the given object information. If the overall score is289

less than 3, it is considered to have hallucinations.290

Multimodal understanding benchmarks We use291

MM-Vet (Yu et al., 2023) and MMBench (Liu et al.,292

2023e) as benchmarks to measure the general per-293

formance of LMMs. MM-Vet is a benchmark con-294

sisting of 16 tasks designed to evaluate LMM’s abil-295

ity in complex multimodal tasks. It has about 218296

instances. GPT-4 measures the score by comparing297

the LMM’s response to the gold answer. MMBench298

comprises 4,377 multiple-choice questions aimed299

at assessing visual perception and visual reasoning.300

We utilize a dev split of MMBench in this study.301

4.2 Baselines302

We use Openflamingo (Awadalla et al., 2023),303

MiniGPT-4 (Zhu et al., 2023), mPLUG-Owl (Ye304

et al., 2023a), InstructBLIP (Dai et al., 2023), Ot-305

ter (Li et al., 2023a), LLaVA-SFT+, and LLaVA-306

RLHF (Sun et al., 2023) as baseline models. For307

the multimodal hallucination corrector baseline, we308

employ LURE (Zhou et al., 2023) and Woodpecker309

(Yin et al., 2023). LURE utilize MiniGPT-4 13B310

as its backbone model. Woodpecker use GPT-3.5-311

turbo as its corrector, Grounding DINO (Liu et al.,312

2023d) as its object detector and BLIP-2-FlanT5-313

XXL (Li et al., 2023b) for its VQA model.314

4.3 Results315

VOLCANO achieves the best performance in316

the multimodal hallucination benchmarks. As317

shown in Table 1, VOLCANO consistently outper-318

forms the base model, LLaVA-1.5 and other exist-319

Model MMHal-Bench
Score ↑ Hal rate ↓

LURE 1.9 0.58
Woodpecker 1.98 0.54
VOLCANO 7B 2.6 0.49

LLaVA-RLHF 7B 2.05 0.68
VOLCANO– 7B 2.19 0.59

Table 2: Results of competitive test. VOLCANO– 7B
is a model fine-tuned with multimodal feedback and
revision data on LLaVA-SFT+ 7B.

ing LMMs in the multimodal hallucination bench- 320

mark. It show strong performance in benchmarks 321

that measures scores using proprietary LLMs 322

(MMHal-Bench, GAVIE) and a benchmark evalu- 323

ating with conventional metrics like accuracy and 324

F1 score (POPE). Notably, results from GAVIE 325

demonstrate that VOLCANO not only provides ac- 326

curate answers for a given image but also enhances 327

its ability to follow instructions. 328

Natural language self-feedback is effective in 329

revising responses. Table 2 shows VOLCANO’s 330

effectiveness by comparing it with previous stud- 331

ies designed to tackle multimodal hallucination. It 332

reduces hallucination more than LURE and Wood- 333

pecker, which try to revise responses without feed- 334

back. This suggests that specific feedback is crucial 335

for correcting multimodal hallucination. Unlike the 336

two methods that need a separate model to revise, 337

VOLCANO efficiently gives better responses with 338

just one model. In addition, Woodpecker converts 339

visual information into text and feeds it to the pro- 340

prietary LLM corrector. Its improvement in hallu- 341

cination is less significant compared to VOLCANO. 342
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Model MMBench MM-Vet
Acc ↑ Acc ↑

Openflamingo 9B 6.6 24.8
MiniGPT-4 13B 24.3 24.4
InstructBLIP 14B 36.0 25.6
Otter 9B 51.4 24.7
LLaVA-SFT+ 7B 52.7 30.4
LLaVA-RLHF 7B 52.7 29.8
LLaVA-SFT+ 13B 59.6 36.1
LLaVA-RLHF 13B 59.6 36.4

LLaVA-1.5 7B 59.9 31.2
LLaVA-1.5 13B 67.7 36.1
VOLCANO 7B 62.3 32.0
VOLCANO 13B 69.4 38.0

Table 3: Results of multimodal benchmarks. The de-
tailed evaluation results for each benchmark by question
type are in Table 8 and Table 9.

From this, we find that for reducing multimodal hal-343

lucination, it is effective to convey visual features344

directly to the corrector model. When compared345

to LLaVA-RLHF, which reduces LLM hallucina-346

tion using RLHF, VOLCANO consistently performs347

better. LLaVA-RLHF 7B employs LLaVA-SFT+348

7B as its core architecture. To ensure a fair com-349

parison, we fine-tune this model using multimodal350

feedback and revision data, resulting in the devel-351

opment of a VOLCANO– 7B. The result shows that352

giving natural language feedback, which the model353

can directly understand, is more powerful than pro-354

viding feedback in scalar value form.355

VOLCANO is also effective for general multi-356

modal understanding tasks. As multimodal hal-357

lucination decreases, it is expected that the LMM358

can answer user questions about images more accu-359

rately. In this sense, we anticipate that VOLCANO360

would score high in benchmarks measuring general361

LMM’s performance. To prove this, we evaluate362

VOLCANO on benchmarks assessing LMM’s com-363

plicated visual reasoning and perception capabil-364

ities (Table 3). It achieves superior performance365

compared to existing LMMs. Notably, as shown366

in Table 8, when measuring the math score related367

to a model’s arithmetic capability, VOLCANO 13B368

impressively scored about twice as high as LLaVA-369

1.5 13B.370

4.4 Ablation studies371

Module ablation We test the influence of each372

stage in reducing multimodal hallucination. As373

shown in Table 4, when we skip iterative self-374

revision and only use the initial response as the final375

response, it scores lower than going through both376

Model MMHal-Bench
Score ↑ Hal rate ↓

Only prediction 2.45 0.52
No decision 2.33 0.56
VOLCANO 7B 2.6 0.49

Table 4: Results of module ablation. The "Only pre-
diction" is the result of performing only stage 1 for
VOLCANO 7B. "No decision" is the outcome of com-
pleting stages 1 and 2.

Model MMHal-Bench
Score ↑ Hal rate ↓

Iter 1 2.54 0.51
Iter 2 2.58 0.5
Iter 3 (VOLCANO 7B) 2.6 0.49

Table 5: Results of iteration ablation.

processes. Surprisingly, even after just complet- 377

ing stage 1 and without self-revision, it still scores 378

higher than the base model LLaVA-1.5 7B. This 379

shows that merely fine-tuning with multimodal 380

feedback and revision data can effectively reduce 381

the hallucination rate. We observe a decrease in 382

performance when the revised response is given 383

as the final output without executing stage 3, com- 384

pared to when a decision is made. This highlights 385

the role of stage 3 in decreasing hallucination as it 386

can prevent unnecessary revisions. This also sug- 387

gests that while it is hard for the model to produce 388

the right answer initially, distinguishing between 389

right and wrong answers is relatively easier. 390

Iteration ablation We test how the number of max 391

iterations affects the VOLCANO’s performance. As 392

shown in Table 5, as the max iteration count in- 393

creased, the hallucination rate decreased. This 394

demonstrates that multiple revisions can refine the 395

answers. However, there also exists a trade-off: as 396

the iteration count goes up, the inference time also 397

increases. 398

399
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Ques t ion Initial response
What is the color of the pot? The color of the pot is red

Initial (all tokens)

Feedback
The response is incorrect. The color of the pot in the image is not red, but rather silver.
The image clearly shows a silver pot filled with red berries, and there is no indication of
a red pot in the image. Therefore, the correct color of the pot is silver, not red. The
response should be revised to reflect this.

Feedback (all tokens) Feedback ('rather silver.') Feedback ('red berries')

Global features Local features

- 0.04

- 0.03

- 0.02

- 0.01

Figure 4: Case study of image feature attention in initial response and feedback generation. For the heatmaps
above, the intensity of the highlight behind each token corresponds to the magnitude of attention weight from the
token to image features, with darker highlights indicating higher attention weights. For the heatmaps below, values
at or above the 0.995-th quantile are represented with the maximum color intensity on the colorbar.

5 Qualitative analysis400

We qualitatively analyze how feedback from VOL-401

CANO is effective in reducing multimodal hallu-402

cination. Using results on MMHal-Bench where403

VOLCANO 7B revision is selected as the final an-404

swer, we compare the visual information content405

between initial response and feedback, focusing on406

amount (5.1) and coverage (5.2).

Initial Feedback

0.002

0.004

0.006

0.008

0.010

Figure 5: Image feature attention in initial response
and feedback generation. Attention weights are av-
eraged across instances in MMHal-Bench where VOL-
CANO’s revision enhance the initial response.

407

5.1 Amount of visual information408

Through manual inspection, we observe that the409

initial response often correctly identifies object-410

level information but frequently misinterprets de-411

tails such as object attributes or relationships be-412

tween objects. On the contrary, we discover that413

feedback tends to describe the image contents more414

comprehensively.415

To delve deeper into this phenomenon, we take416

inspiration from Wang et al. (2023b) by visualiz-417

ing how attention weights connect output tokens 418

to input image features during the generation of 419

both initial responses and feedback. Specifically, 420

we focus on the top-3 attention weights across hid- 421

den layers and attention heads. These weights are 422

averaged to form a consolidated view. As there 423

is a difference in the initial response length and 424

feedback length, we choose the minimum k of the 425

two and averaged top-k weights from the output.6 426

As shown in Figure 5, image features are more 427

strongly attended by feedback compared to initial 428

response. Interestingly, even though attention to 429

input would be more dispersed when generating 430

feedback due to the inclusion of the initial response 431

as additional input, an increased concentration on 432

large areas of image features is visible. This sug- 433

gests that visual information is largely contained in 434

the feedback text, supporting our manual observa- 435

tion beforehand. 436

5.2 Coverage of visual information 437

We further investigate the coverage of information 438

to identify whether the visual information correctly 439

aligns with both global and local image features. 440

We perform a case study on an instance that asks 441

the color of a pot (Figure 4). The initial response in- 442

correctly answers "red" while the feedback makes 443

it clear that the answer should be "silver". 444

The correction can be explained by the difference 445

in distribution of attention to image features during 446

6This approach is chosen based on experiments with dif-
ferent aggregation methods—max, mean, and top-k-mean
pooling. We find that the top-3 configuration provided the
clearest visualization for our analysis.
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each generation. Based on the global features vi-447

sualization, when VOLCANO generates the initial448

response, it only focuses on features correspond-449

ing to the pot. When generating feedback, VOL-450

CANO attends to the entire image including the451

areas corresponding to the pot and red berries in452

the it. Specifically, the local features visualization453

show that in the process of improving the initial454

response, it indeed focuses on the exact areas of the455

image corresponding to key color descriptors "red"456

and "silver" when generating these words. From457

these findings, we infer that VOLCANO can grasp458

a more holistic view of the image and distinguish459

information in local features at the same time.460

In summary, existing LMMs may generate answers461

based on their prior knowledge if the visual fea-462

tures lack clarity, leading to multimodal halluci-463

nation. We suggest that VOLCANO can alleviate464

multimodal hallucination as it is capable of acquir-465

ing fine-grained visual information from its feed-466

back. The feedback can effectively encompass a467

sufficient quantity of a broad spectrum of image468

features.469

6 Conclusion470

In our work, we suggest a novel approach that uti-471

lizes feedback as visual signals to direct the model472

to refine responses that do not accurately reflect473

the image. Building on this approach, we present474

VOLCANO, a multimodal self-feedback guided re-475

vision model. VOLCANO has not only achieved476

state-of-the-art results on a multimodal hallucina-477

tion benchmark but also demonstrated its effective-478

ness by improving performance compared to base-479

line models on multimodal understanding bench-480

marks. Through qualitative analysis, we demon-481

strate that the feedback produced by VOLCANO is482

well-grounded on the image, which means that it483

can provide the model with rich visual information.484

This helps reducing multimodal hallucination.485

Limitations486

In this study, we demonstrate through evaluation487

and analysis in benchmarks that VOLCANO can ef-488

fectively alleviate multimodal hallucination. How-489

ever, it requires more time to execute as it needs490

to call the model multiple times, compared to di-491

rectly generating a response. To address this, we492

introduce stage 3, which allows for early stopping,493

thereby reducing the execution time.494
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A Appendix 723

A.1 Detailed results 724

In this section, we describe the detailed results from 725

the benchmarks used in our work. The benchmarks 726

are designed to evaluate the performance of LMMs 727

from multiple perspectives, encompassing various 728

sub-tasks and types of questions. For MMHal- 729

Bench, the questions are categorized into 8 types: 730

Attribute, Adversarial, Comparison, Counting, Re- 731

lation, Environment, Holistic, and Other (Table 6). 732

POPE evaluates three types of questions: random, 733

popular, and adversarial (Table 7). MM-Vet is com- 734

posed of sub-tasks designed to measure 6 LMM 735

capabilities: Recognition, OCR (Optical Character 736

Recognition), Knowledge, Language generation, 737

Spatial awareness, and Math (Table 8). MMBench 738

is structured to evaluate across L-1, L-2, and L-3 739

dimensions. We followed previous works and con- 740

ducted evaluations for the L-2 dimension. The L-2 741

dimension tasks include Coarse Perception (CP), 742

Fine-grained Single-instance Perception (FP-S), 743

Fine-grained Cross-instance Perception (FP-C), At- 744

tribute Reasoning (AR), Relation Reasoning (RR), 745

and Logic Reasoning (LR) (Table 9). 746

A.2 Prompts 747

Prompt for generating multimodal feedback We 748

introduce the prompt used in generating our multi- 749

modal feedback dataset. For a LLM that cannot see 750

images, we included the image contents in the form 751

of text within the prompt, allowing it to provide 752

feedback as if it had seen the image and initial re- 753

sponse. We utilized object information and a gold 754

caption as the image contents. In instances where 755

no objects are present in the dataset, we didn’t use 756

a separate object detector to prevent the model’s 757

errors from propagating into the feedback. Instead, 758

only the gold caption is provided in such cases. 759

Additionally, to avoid erroneously generating feed- 760

back that suggests the presence of hallucination 761

merely due to the use of different expressions, even 762
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when the initial response aligns sufficiently with763

the image information but uses different terms from764

the gold answer, we crafted the prompt to treat syn-765

onyms or paraphrases as correct answers. Draw-766

ing inspiration from previous research (Kim et al.,767

2023), we structured the prompt to ensure that it768

encapsulates these aspects well.769

Prompts for inference at each stage For all770

prompts, we did not explicitly provide an image771

feature prompt. Instead, the image features are con-772

catenated with the question during the tokenization773

process before being input to the model. Addition-774

ally, the prompt for the decision process is based775

on the work of (Liu et al., 2023b).776

A.3 Computation777

For this research, we used an NVIDIA A100-778

SXM4-80GB GPU and an AMD EPYC 7513 32-779

Core Processor running at 2.0778 GHz. Training780

VOLCANO 7B required 8 GPUs and took a total781

of 15 hours, while training VOLCANO 13B took782

30 hours. While the time taken to evaluate each783

dataset varies, VOLCANO takes about 2 to 3 times784

longer to complete the entire process compared to785

existing baselines that only generate responses.786

A.4 Hyperparameters787

We used a batch size of 128, a learning rate of 2e-5,788

and trained for 1 epoch. The maximum length is789

set to 2048, with no weight decay. We employed a790

cosine scheduler for learning rate adjustments, with791

a warmup ratio of 0.03. Additionally, we incorpo-792

rated gradient checkpointing and used deepspeed793

zero stage 3. The maximum number of iterations794

for self-revision is 3. When generating responses,795

we utilized greedy decoding following LLaVA-1.5.796

797
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Model Attribute ↑ Adversarial ↑ Comparison ↑ Counting ↑ Relation ↑ Environment ↑ Holistic ↑ Other ↑ Score ↑ Hal rate ↓

Kosmos-2 2 0.25 1.42 1.67 1.67 2.67 2.5 1.33 1.69 0.68
IDEFIC 9B 1.58 0.75 2.75 1.83 1.83 2.5 2.17 1.67 1.89 0.64
IDEFIC 80B 2.33 1.25 2 2.5 1.5 3.33 2.33 1.17 2.05 0.61
InstructBLIP 7B 3.42 2.08 1.33 1.92 2.17 3.67 1.17 1.08 2.1 0.58
InstructBLIP 13B 2.75 1.75 1.25 2.08 2.5 4.08 1.5 1.17 2.14 0.58
LLaVA-SFT+ 7B 2.75 2.08 1.42 1.83 2.17 2.17 1.17 0.5 1.76 0.67
LLaVA-RLHF 7B 2.92 1.83 2.42 1.92 2.25 2.25 1.75 1.08 2.05 0.68
LLaVA-SFT+ 13B 3.08 1.75 2 3.25 2.25 3.83 1.5 1.75 2.43 0.55
LLaVA-RLHF 13B 3.33 2.67 1.75 2.25 2.33 3.25 2.25 2.42 2.53 0.57

LLaVA-1.5 7B 3.17 1.25 3.17 2.5 2.33 3.17 1.5 2.25 2.42 0.55
LLaVA-1.5 13B 3.5 2 2.67 2.33 1.67 3.33 2.58 2.25 2.54 0.52
VOLCANO 7B 3.42 2.42 3.08 1.75 2.75 3.75 1.33 2.33 2.6 0.49
VOLCANO 13B 3 1.75 3.42 1.67 2.33 3.75 2.75 2.42 2.64 0.48

Table 6: Results of MMHal-Bench

Model Random Popular Adversarial Overall
Acc ↑ F1 ↑ Yes (%) Acc ↑ F1 ↑ Yes (%) Acc ↑ F1 ↑ Yes (%) Acc ↑ F1 ↑

Shikra 86.9 86.2 43.3 84 83.2 45.2 83.1 82.5 46.5 84.7 84.0
InstructBLIP 88.6 89.3 56.6 79.7 80.2 52.5 65.2 70.4 67.8 77.8 80.0
MiniGPT-4 79.7 80.2 52.5 69.7 73 62.2 65.2 70.4 67.8 71.5 74.5
mPLUG-Owl 54 68.4 95.6 50.9 66.9 98.6 50.7 66.8 98.7 51.9 67.2
LLaVA-SFT+ 7B 86.1 85.5 44.5 82.9 82.4 47.2 80.2 80.1 49.6 83.1 82.7
LLaVA-RLHF 7B 84.8 83.3 39.6 83.3 81.8 41.8 80.7 79.5 44 82.9 81.5
LLaVA-SFT+ 13B 86 84.8 40.5 84 82.6 41.6 82.3 81.1 43.5 84.1 82.8
LLaVA-RLHF 13B 85.2 83.5 38.4 83.9 81.8 38 82.3 80.5 40.5 83.8 81.9

LLaVA-1.5 7B 88.2 87.3 41.9 87.3 86.2 41.8 85.2 84.2 44 86.9 85.9
LLaVA-1.5 13B 88 87.1 41.7 87.4 86.2 41.3 85.5 84.5 43.3 87.0 85.9
VOLCANO 7B 89.9 89.4 43.9 88.5 87.9 45.1 86.2 85.7 46.6 88.2 87.7
VOLCANO 13B 90.2 89.7 44.3 88.1 87.4 44.5 86.6 86.1 46.7 88.3 87.7

Table 7: Results of Pope

Model rec ↑ ocr ↑ know ↑ gen ↑ spat ↑ math ↑ total ↑

Transformers Agent (GPT-4) 18.2 3.9 2.2 3.2 12.4 4 13.4
MiniGPT-4-8B 27.4 15 12.8 13.9 20.3 7.7 22.1
BLIP-2-12B 27.5 11.1 11.8 7 16.2 5.8 22.4
MiniGPT-4-14B 29.9 16.1 20.4 22.1 22.2 3.8 24.4
Otter-9B 27.3 17.8 14.2 13.8 24.4 3.8 24.7
OpenFlamingo-9B 28.7 16.7 16.4 13.1 21 7.7 24.8
InstructBLIP-14B 30.8 16 9.8 9 21.1 10.5 25.6
InstructBLIP-8B 32.4 14.6 16.5 18.2 18.6 7.7 26.2
LLaMA-Adapter v2-7B 3 8.5 20.3 31.4 33.4 22.9 3.8 31.4

LLaVA-1.5 7B 37 21 17.6 20.4 24.9 7.7 31.2
LLaVA-1.5 13B 40.6 28 23.5 24.4 34.7 7.7 36.1
VOLCANO 7B 36.7 23.5 18.2 22 27.6 3.8 32
VOLCANO 13B 42.9 30.4 24.5 29.2 32.7 15 38

Table 8: Results of MM-Vet
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Model LR ↑ AR ↑ RR ↑ FP-S ↑ FP-C ↑ CP ↑ Overall ↑

OpenFlamingo 6.7 8 0 6.7 2.8 2 4.6
OpenFlamingo v2 4.2 15.4 0.9 8.1 1.4 5 6.6
MMGPT 2.5 26.4 13 14.1 3.4 20.8 15.3
VisualGLM 10.8 44.3 35.7 43.8 23.4 47.3 38.1
LLaMA-Adapter 11.7 35.3 29.6 47.5 38.6 56.4 41.2
µ-G2PT 13.3 38.8 40.9 46.5 38.6 58.1 43.2
mPLUG-Owl 16.7 53.2 47.8 50.2 40.7 64.1 49.4
Otter 32.5 56.7 53.9 46.8 38.6 65.4 51.4
Shikra 25.8 56.7 58.3 57.2 57.9 75.8 58.8
Kosmos-2 46.7 55.7 43.5 64.3 49 72.5 59.2
PandaGPT 10 38.8 23.5 27.9 35.2 48.3 33.5
MiniGPT-4 20.8 50.7 30.4 49.5 26.2 50.7 42.3
InstructBLIP 19.1 54.2 34.8 47.8 24.8 56.4 44

LLaVA-1.5 7B 30.8 73.1 53.9 67 57.2 77.2 59.9
LLaVA-1.5 13B 41.7 69.7 63.5 70 59.3 80.2 67.7
VOLCANO 7B 30.8 65.2 59.1 67.7 54.5 72.8 62.3
VOLCANO 13B 38.3 70.6 67 72.4 62.8 82.2 69.4

Table 9: Results of MMBench

Figure 6: Prompt for generating multimodal feedback
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Figure 7: Prompts for inference at each stage
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