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ABSTRACT

Recently, the unprecedented advancement of Large Language Models (LLMs) has
revolutionized in numerous applications in the vision-language domain. Inspired
by the extraordinary visual understanding and logical reasoning abilities, we pro-
pose a method that employs LLMs to address the Multi-Modal Contextual Image
Retrieval (MMCIR) problem, where the input hints include both visual and textual
queries. Specifically, given a query comprising a sequence of images and texts,
MMCIR aims to select an image from a gallery that best matches the context of
the query. In this paper, we first construct a Multi-Modal Captioning (MMC)
dataset by enriching existing image captioning datasets from ⟨image, caption⟩
to ⟨reference image, reference caption, text condition, target caption⟩. Then, we
introduce a Context-Aware Captioning (CA-Cap) and a Context-Aware Text
Matching (CA-TM) objective to instruct a frozen LLM for MMCIR. These spe-
cialized objectives enable the LLM to better understand multi-modal inputs and
output visual representation from complex multi-modal contexts. Comprehen-
sive experiments demonstrate the effectiveness of our method on recent Zero-
Shot Composed Image Retrieval (ZS-CIR) benchmarks (i.e., CIRCO, CIRR, and
GeneCIS), and in complex scenarios with dense multi-modal inputs like Visual
Storytelling and Visual Dialog.

1 INTRODUCTION

In this paper, we investigate the problem of Multi-Modal Contextual Image Retrieval (MMCIR),
in which the goal is to retrieve target image(s) using various contextual inputs, encompassing both
images and text in a flexible manner. One particular and significant case is the Composed Image
Retrieval (CIR) task, which aims to retrieve a target image given a multi-modal query consisting of
a reference image and a text condition (i.e., relative caption). Early works (Baldrati et al., 2022a;b;
Delmas et al., 2022; Lee et al., 2021; Liu et al., 2021b) train CIR models in supervised learning
to combine the reference image and relative caption. Recent advancements (Saito et al., 2023;
Baldrati et al., 2023; Vaze et al., 2023; Liu et al., 2023) have shifted the focus towards Zero-Shot
Composed Image Retrieval (ZS-CIR) task, which aspires to perform CIR task without relying on
human-annotated triplets. These methods either train a text-inversion network to combine reference
image and text conditions into CLIP(Radford et al., 2021) text encoder, or automatically build triples
from image-text pairs to train CIR models.

Despite the promising results shown in ZS-CIR benchmarks, these methods have inherent limi-
tations: (1) Relative-Caption Constraint: These methods all utilize text encoders derived from
image-text matching models (e.g., CLIP text encoder) to handle the text condition (i.e., relative
caption). However, studies have shown that such text encoders struggle with understanding object
relations, word order and logic (Yuksekgonul et al., 2022; Ma et al., 2023; Thrush et al., 2022; Wang
et al., 2023), thus limiting their application in free-text condition scenarios. (2) Single-Input Con-
straint: Existing CIR methods are designed to handle queries consisting of only one image and one
text condition, which restricts their applicability in a more complex multi-modal scenario that may
involve multiple images and texts.
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To address these challenges, we propose to incorporate a Large Language Model (LLM) into the
MMCIR problem for several reasons: (1) LLMs excel at understanding not just caption-style con-
ditions but also free-text conditions; (2) LLMs are skilled at processing and integrating contextual
information; and (3) LLMs can manage inputs with extensive context. The subsequent challenge lies
in integrating visual inputs into the LLM and extracting visual information from the LLM context.
Koh et al. (2023a;b) enable a frozen language model to process and output images by leveraging
(a) an image captioning task to learn to process visual input, and (b) an image-text matching task to
learn to produce visual representation. By training on image-caption pairs sourced from the web, the
LLM gains the ability to process multi-modal inputs and outputs. However, empirical evaluations
reveal that the multi-modal LLM, built in this manner, doesn’t achieve the desired performance on
current ZS-CIR benchmarks. It suggests that the multi-modal ability learned only from image-text
pairs is inadequate for scenarios demanding an in-depth understanding of multi-modal context.

In this work, we instruct a frozen LLM to MMCIR via context-aware training. To this end,
we first introduce a Multi-Modal Captioning (MMC) dataset, which is automatically constructed
by an off-the-shelf LLM. Given a web-collected ⟨reference image, reference caption⟩ pair, we
first input the reference caption to an LLM and prompt the LLM to produce a free-text con-
dition. In the subsequent step, the LLM is asked to generate a target image caption, taking
into account both the initial reference caption and the generated text condition. Notably, as this
data generation procedure is text-only, it leverages the LLM’s inherent strengths in text genera-
tion and logical reasoning, resulting in a diverse and coherent dataset. We generate 1 million
4-tuples, i.e., ⟨reference image, reference caption, text condition, target caption⟩, using reference
image-caption pairs from CC3M (Sharma et al., 2018).

Given the proposed MMC dataset, we introduce context-aware training to instruct a frozen LLM to
MMCIR. We propose two tasks namely Context-Aware Captioning (CA-Cap) and Context-Aware
Text Matching (CA-TM) to learn map visual inputs into LLM space and output visual represen-
tation from LLM multi-modal context. Specifically, given the input comprising a reference image
and a text condition, a frozen LLM is tasked either with generating a target caption (i.e., CA-Cap)
or with producing a visual representation to retrieve the target caption (i.e., CA-TM). Compared to
the conventional image-captioning and image-text matching training, our proposed context-aware
training, on the one hand, refines the visual mapping process by incorporating textual context, ef-
fectively integrating visual features into the language model’s semantic space. On the other hand,
the model is trained to extract visual representation from complex multi-modal context, rather than
simply condensing text context into a visual representation (i.e., image-text matching training). Our
main contributions are as follows:

(1) We propose CAT-LLM, a Context-Aware Training enhanced LLM for multi-modal contextual
image retrieval. Trained with proposed context-aware captioning (CA-Cap) and context-aware text
matching (CA-TM) objectives, CAT-LLM adapts well to various MMCIR scenarios.

(2) We construct a Multi-Modal Captioning (MMC) dataset containing 1 million tuples of 4 elements
⟨reference image, reference caption, text condition, target caption⟩. In this work, we utilize MMC
for context-aware training, demonstrating its effectiveness in enhancing multi-modal understanding.

(3) We evaluate CAT-LLM on various MMCIR scenarios. We achieve competitive results on ZS-
CIR benchmarks, i.e., CIRCO, CIRR and GeneCIS, demonstrating the potential of LLM in this field.
In scenarios involving multiple images and texts inputs, i.e., Visual Storytelling and Visual Dialog,
CAT-LLM consistently outperforms other LLM-based retrieval approaches, further demonstrating
the effectiveness of our proposed context-aware training.

2 RELATED WORK

LLMs for Vision-Language Tasks. Recently, there have been many efforts that apply LLMs to
vision-language tasks. Li et al. (2023); Alayrac et al. (2022); Zhu et al. (2023) integrate visual input
into LLMs leveraging an adaptor or cross-attention mechanism. With the LLM’s robust textual
capabilities, they can perform not only conventional vision-language generation tasks like image
captioning and visual question answering but also extend to more complex applications such as
visual dialog and visual story generation. Another line of work (Koh et al., 2023a;b) further explore
the potential of leveraging LLMs for the contextual image retrieval task. In this paper, we utilize
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an LLM to: (1) generate a multi-modal captioning dataset for context-aware training; (2) handle the
multi-modal input and extract a visual representation from LLM multi-modal context.

Zero-Shot Composed Image Retrieval (ZS-CIR). The goal of ZS-CIR is to perform the Composed
Image Retrieval (CIR) task without requiring labeled triplets for training. Pic2Word (Saito et al.,
2023) and CIRCO (Baldrati et al., 2023) map the input image to pseudo text tokens in order to
flexibly compose image and text queries in CLIP text-encoder. Another stream of research (Vaze
et al., 2023; Gu et al., 2023; Liu et al., 2023) automatically construct CIR triplets from widely
available image-caption pairs for CIR model training. Specifically, Vaze et al. (2023) convert image
captions into scene-graph representations and then use the relationships between scene-graphs to
construct text conditions between images. Gu et al. (2023) construct 18M triplets by leveraging LLM
and Stable Diffusion (Rombach et al., 2022). Liu et al. (2023) edit the reference image caption with
pre-defined sentence templates or adopt large-language models to generate a target caption. In this
work, we leverage LLM to perform zero-shot composed image retrieval. Briefly, we map the input
image to LLM embedding space to better compose the input image and text condition. Furthermore,
we construct ⟨reference image, text condition, target image caption⟩ triplets and employ a pseudo
CIR training to improve both visual mapping and text-condition comprehension.

3 METHOD

This section delineates our multi-modal contextual image retrieval framework, as illustrated in Fig-
ure 1. Section 3.1 details the generation process of our Multi-Modal Captioning dataset. In Sec-
tion 3.2, we introduce how to enable a frozen Large Language Model (LLM) to process visual input.
In Section 3.3, we introduce how to extract visual representation from LLM multi-modal context.

3.1 DATA GENERATION

Web-collected weakly paired image-caption data (Sharma et al., 2018; Schuhmann et al., 2022) has
demonstrated its effectiveness in image-text retrieval tasks (Radford et al., 2021), due to its vast scale
and diversity. However, collecting paired data for multi-modal contextual retrieval, which demands
a multi-modal contextual query and a target image, poses significant challenges. The absence of
large-scale training data limits the development of multi-modal contextual image retrieval.

To address this, we propose to automatically generate a large-scale multi-modal captioning dataset
from existing ⟨image, caption⟩ pairs by leveraging an off-the-shelf LLM. Given a reference image
Iref and its associated caption Trefc, we input the Trefc into an LLM along with a task-specific prompt.
The LLM then generates a free-text condition Tcon, which could serve as an editing order to alter
attributes and objects, or describe the differences between the reference image and the target image,
etc. Following this, the LLM is tasked with generating a target caption Ttgtc, incorporating both
the reference caption Trefc and the newly generated text condition Tcon. As a result, we derive a
⟨Iref, Trefc, Tcon, Ttgtc⟩ tuple from a ⟨Iref, Trefc⟩ pair, which can be automatically collected from the
web.

To enhance the performance of the LLM (i.e., Llama2 (Touvron et al., 2023)) in data generation,
we utilize the in-context learning techniques. Specifically, we employ a state-of-the-art LLM, GPT-
41, to generate 20 in-context examples. In practice, we find that GPT-4 can effectively understand
our data generation task and produce diverse samples. During each sample generation process, we
provide Llama2 with a task description and randomly select one in-context example as the task-
specific prompt. This approach ensures diverse and high-quality generated samples. More details
are provided in Appendix C.

3.2 MAPPING VISUAL INPUT TO LLM

Visual Mapping. Following the latest advancements in vision-LLM research (Mokady et al., 2021;
Merullo et al., 2022; Koh et al., 2023b), we employ a linear mapping layer (i.e., an adaptor) that
maps CLIP visual features into the LLM’s embedding space. Given an input image I, we first
utilize a frozen CLIP image encoder, denoted as Eimage, to extract its visual feature. Subsequently, a

1https://openai.com/research/gpt-4
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Figure 1: Framework of CAT-LLM. Given ⟨image, caption⟩ pairs, we feed the caption along with a
task prompt to Llama2 to generate both a text condition and a target caption. By integrating the initial
image with the generated text condition and target caption, we facilitate context-aware training,
enabling a frozen language model to handle multi-modal inputs and output visual representations.

linear mapping layer, represented as fmap, is applied to map this visual feature into the LLM textual
embedding space, yielding n visual vectors V = [v0,v1, ...,vn] = fmap(Eimage(I)). The visual
vector’s dimension matches the LLM’s word embedding dimension.

Naive Image Captioning Objective. Previous methods leverage a conventional image captioning
objective to train this mapping layer by predicting the next token conditioned on both the visual
tokens and previous caption tokens. The objective can be formulated as:

LCap(θm) = − 1

|t|

|t|∑
i=1

logP
(
ti|fmap(Eimage(I)), t<i

)
, (1)

where ti represents the ith token of the caption, θm denotes the weight of mapping layer fmap and
P denotes the frozen language model.

Context-Aware Captioning (CA-Cap) Objective. In this work, we enhance this mapping by in-
corporating it with the generated dataset described in Section 3.1. Given triplet ⟨Iref, Tcon, Ttgtc⟩, the
LLM learns to predict the next token conditioned on the visual vectors V, text conditions tokens and
previous target caption tokens. The context-aware captioning objective is described as:

LCA-Cap(θm) = − 1

|t|

|t|∑
i=1

logP
(
ti|fmap(EImage(Iref)), c1, c2, .., c|c|, t<i

)
, (2)

where ci denotes the ith token of text condition and ti denotes the ith token of target caption.

Compared to the conventional image captioning objective (i.e., Equation 1), our proposed objective
offers distinct advantages. Enhanced Linguistic Visual Mapping: Our training objective refines
the mapping process by incorporating textual cues (i.e., the text condition), leading to a textual-
aware mapping that effectively integrates visual features into the language model’s semantic space.
Enhanced Textual Interaction: During the training process, the language model is required to
query the mapped visual vectors based on the text condition to derive the target caption. This ensures
the mapped visual vectors are optimized to support textual queries.

3.3 EXTRACTING VISUAL OUTPUT FROM LLM

In this section, we introduce how to extract visual representation from LLM. Following (Koh et al.,
2023b), we leverage a learnable token to extract visual information from the LLM multi-modal
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context. Specifically, given LLM contexts Z = z1, z2, ..., zi, where zi can be both a mapped visual
vector or natural language token, we add a ret token after input context to capture visual information
from the multi-modal context. The last hidden state of the ret is used to output visual representation.

Naive Image-Text Matching (ITM) Objective. FROMAGe (Koh et al., 2023b) use an image-text
matching objective to train the ret embedding. Specifically, given a paired image and caption, they
append the ret token after the caption tokens as input to the LLM. The last hidden state of ret is used
as the LLM’s output, denoted as h(ret|C), where C denotes the caption tokens. h(ret|C) is then
projected to CLIP’s latent space through a simple linear layer, represented as p = fproj(h(ret|C)).
An infoNCE (Oord et al., 2018) loss is employed to align the projected embedding and its CLIP
visual feature. The objective can be formulated as:

LITM(ret, θp) = − 1

N

N∑
i=1

(
log

exp(sim(fproj(h(ret|Ci)), ei)/τ)∑N
j=1 exp(sim(fproj(h(ret|Ci)), ej)/τ)

)
, (3)

where θp denotes the weight of project layer fproj, ei = Eimage(Ii) and sim denotes cosine similarity
function.

Context-Aware Text Matching (CA-TM) Objective. Trained with naive image-text matching ob-
jective, ret bridges the LLM context with the CLIP feature space. However, in this case, the ret
token primarily functions as a text summarization token, condensing the text context into the CLIP
feature space, lacking the ability to selectively extract target information based on the given multi-
modal context. To this end, we introduce our context-aware text matching objective to enhance the
multi-modal contextual retrieval ability. Given triplet ⟨Iref, Tcon, Ttgtc⟩, we input the Iref and Tcon to
the LLM with ret attached at the end. In this scenario, ret learns to extract target information from
the multi-modal context to match the target caption Ttgtc. The objective can be formulated as:

LCA-TM(ret, θp, θm) = − 1

N

N∑
i=1

(
log

exp(sim(fproj(h(ret|Vi, Ci)), ei)/τ)∑N
j=1 exp(sim(fproj(h(ret|Vi, Ci)), ej)/τ)

)
, (4)

where V denotes the mapped visual vectors of Iref, C denotes the language tokens of Tcon and e
denotes the CLIP text feature of Ttgtc here. It should be noted that the context-aware text matching
objective also optimizes the visual mapping, as it is related to the visual input V.

Training with a Context-Aware Text Matching objective brings the following benefits: (a) The ret
token is trained under multi-modal contexts, making it better adapted to handle multi-modal inputs
effectively. (b) The ret token learns to selectively extract information based on the multi-modal
context, rather than indiscriminately condensing all the input.

3.4 TRAINING AND INFERENCE

Given the tuples of 4 elements ⟨reference image, reference caption, text condition, target caption⟩
from MMC, we combine the four aforementioned losses with corresponding weight λ to train the
CAT-LLM. The combined loss function is expressed as:

Loverall = λCapLCap + λITMLITM + λCA-CapLCA-Cap + λCA-TMLCA-TM, (5)
The first two losses are based on the ⟨reference image, reference caption⟩ pairs, while the latter two
context-aware losses are based on the triplets ⟨reference image, text condition, target caption⟩.
During inference, we feed the input image and text into the LLM, appending the ret token after-
wards to extract a visual representation from the multi-modal input, denoted as CAT-LLM-(ret). As
an alternative, we can leverage the LLM to autoregressively generate a caption for the multi-modal
input. The caption is then used to obtain a representation from the CLIP text-encoder, denoted as
CAT-LLM-(cap). Finally, we introduce a simple fusion method that sums the last output represen-
tation of these two approaches, denoted as CAT-LLM-(ret+cap). For a clearer understanding, we
provide a detailed illustration of the CAT-LLM inference process in Appendix E.

Implementation Details. Following Koh et al. (2023b), we use the OPT-6.7B (Zhang et al., 2022)
model as our LLM backbone. We employ CLIP ViT-B/16 or ViT-L/14 as our image-text matching
model. The CLIP visual feature is mapped to 4 visual-language tokens through a single linear layer.
The model is trained on MMC for 20000 iterations with a batchsize of 120. Both the LLM and CLIP
model are frozen. The loss weights in Equation 5 are set to 1.
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Figure 2: Example of image retrieval task with varying multi-modal context inputs. CAT-LLM
can handle scenarios with a single image and single text condition inputs, as well as adapt to tasks
like visual storytelling which involve multiple continuous image-text inputs. By designing specific
prompts, CAT-LLM can address unique task settings, such as those in GeneCIS. The prompts de-
signed for different tasks are shown in Appendix D.

4 EXPERIMENTS

As shown in Figure 2, when trained on our multi-modal captioning dataset using proposed context-
aware objectives, CAT-LLM can effectively retrieve the target image with arbitrary multi-modal
input. In this section, we conduct extensive experiments on two multi-modal contextual image
retrieval tasks, namely zero-shot composed image retrieval (ZS-CIR) (in Section 4.1) and dense
multi-modal contextual retrieval (in Section 4.2). Ablation studies on our proposed context-aware
objectives are in Section 4.3.

4.1 ZERO-SHOT COMPOSED IMAGE RETRIEVAL (ZS-CIR)

Benchmarks and Metrics. We evaluate CAT-LLM on three ZS-CIR benchmarks: CIRCO (Baldrati
et al., 2023), CIRR (Liu et al., 2021a) and GeneCIS (Vaze et al., 2023). CIRCO is a new open-
domain ZS-CIR benchmark with multiple annotated ground truths. For CIRCO evaluation, we report
the fine-grained metric of mean Average Precision (mAP@K). The mAP@K metrics are computed
considering all the ground truth images for each query. For CIRR and GeneCIS evaluations, we
report the Recall@K metric.

Baselines and Competing Methods. We compare our approach with several zero-shot baselines
and recent ZS-CIR methods, including: (1) Image-only: The CLIP visual feature of the reference
image is used to retrieve the target image. (2) Text-only: The CLIP text feature of the text condi-
tion is used to retrieve the target image. (3) Image+Text: The CLIP visual feature of the reference
image and the CLIP text feature of the text condition are summed together to retrieve the target im-
age. (4) CLIP-based textual inversion methods: Pic2Word (Saito et al., 2023) and SEARLE (Bal-
drati et al., 2023). (5) Combiner (Baldrati et al., 2022a) trained on constructed triplets: Conbiner-
(GeneCIS)(Vaze et al., 2023), CompoDiff (Gu et al., 2023) and TransAgg (Liu et al., 2023). (6)
LLM-based retrieval method: FROMAGe (Koh et al., 2023b) and CAT-LLM (ours).

Analysis on CIRCO. Table 1 shows the result on CIRCO test set. CAT-LLM-(ret+cap) achieves the
best performance on all metrics, outperforming prior CLIP-based zero-shot methods and LLM-based
methods. FROMAGe achieves inferior performance, indicating that learning from ⟨image, caption⟩
pairs is insufficient to handle challenging multi-modal scenarios. Benefiting from our context-aware
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Table 1: Quantitative results on CIRCO test.

mAP@K

Backbone Method K = 5 K = 10 K = 25 K = 50

L/14

Image-only 2.79 3.18 3.75 4.12
Text-only 2.50 2.64 3.11 3.38
Image + Text 6.37 7.04 8.11 8.72
Pic2Word 8.72 9.51 10.64 11.29
SEARLE 11.68 12.73 14.33 15.12
FROMAGe 4.0 4.44 5.26 5.73
CAT-LLM-(cap) 6.43 6.84 7.77 8.30
CAT-LLM-(ret) 13.55 14.70 16.35 17.28
CAT-LLM-(ret+cap) 15.00 15.73 17.51 18.45

B/16

Image-only 1.30 1.74 2.21 2.52
Text-only 2.59 2.75 3.12 3.30
Image + Text 2.60 3.19 4.12 4.63
CAT-LLM-(cap) 5.35 5.59 6.32 6.68
CAT-LLM-(ret) 12.79 13.28 14.89 15.65
CAT-LLM-(ret+cap) 13.95 14.47 16.00 16.74

Table 2: Quantitative results on CIRR test set.

Recall@K RecallSubset@K

Backbone Method K = 1 K = 5 K = 10 K = 50 K = 1 K = 2 K = 3

L/14

Image-only 7.13 23.04 32.99 56.63 20.55 40.96 61.04
Text-only 20.55 44.17 55.95 78.94 60.74 80.38 90.72
Image+Text 12.27 35.81 48.48 77.04 33.33 57.78 75.95
TransAgg 25.04 53.98 67.59 88.94 55.33 76.82 88.94
CompoDiff 18.24 53.14 70.82 90.35 - - -
Pic2Word 23.90 51.70 65.30 87.80 - - -
SEARLE 24.22 52.41 66.29 88.63 53.71 74.63 87.61
FROMAGe 10.96 31.40 44.33 72.97 34.07 58.84 76.80
CAT-LLM-(cap) 20.68 45.13 56.96 79.61 62.24 81.25 90.75
CAT-LLM-(ret) 22.65 53.16 66.43 90.07 57.33 77.88 89.93
CAT-LLM-(ret+cap) 27.21 57.27 70.24 90.70 63.18 82.39 92.12

B/16

Image-only 6.56 21.33 29.71 52.51 20.72 41.01 60.87
Text-only 20.87 46.15 58.29 80.63 61.98 81.18 91.01
Image+Text 12.46 35.90 48.77 77.35 32.96 56.65 75.11
CAT-LLM-(cap) 20.48 44.51 56.87 80.36 62.48 81.08 90.70
CAT-LLM-(ret) 23.18 53.64 67.16 90.41 57.86 79.13 90.00
CAT-LLM-(ret+cap) 27.88 57.86 70.92 91.59 64.31 82.94 91.49

training, CAT-LLM-(ret) understands the text condition, and efficiently extracts information from
the multi-modal context to retrieve the target image. CAT-LLM-(cap) underperforms on CIRCO,
suggesting that only using generative ability of the language model to extract information from
the multi-modal context leads to suboptimal results. By simply summing the output of the two
approaches, the performance further improves, indicating that CAT-LLM-(ret) and CAT-LLM-(cap)
have different preferences when extracting information from the multi-modal context. We provide
more qualitative results and analysis on CIRCO validation set in Appendix A.4.

Analysis on CIRR. Table 2 shows the results on CIRR test set. Notably, the CIRR benchmark has
a strong bias towards the text modality input (Saito et al., 2023; Baldrati et al., 2023). The Text-
only baseline surpasses the Image+Text baseline a lot and even outperforms most ZS-CIR methods
on the Recallsubset@K metrics. CAT-LLM-(ret+cap) outperforms other methods on most metrics.
CAT-LLM-(cap) performs better on CIRR compared to CIRCO. This suggests that CAT-LLM-(cap)
has a better capability to extract textual information, due to its inherent use of a language model for
caption generation, showing a preference for text modality input.

Analysis on GeneCIS. GeneCIS introduces four unique tasks: Focus Attribute, Change Attribute,
Focus Object, and Change Object. For each task, only a single object name or attribute name is
provided. This setup differs significantly from prior benchmarks such as CIRR and CIRCO, which
often provide caption-style text conditions. Table 3 shows the results. CAT-LLM-(ret) is competitive
with Combiner (GeneCIS), which is trained on triplets crafted from the four tasks. Notably, in
‘Change Attribute’ and ‘Focus Attribute’ settings, only the attribute is provided without further
specifics. For instance, when given the attribute ‘color’, it’s ambiguous whether it refers to the
background or a specific entity’s color. The ambiguous text condition confused our model, leading
to less impressive results.

Table 3: Quantitative results on GeneCIS. † indicates that CLIP model is not frozen.
Focus Attribute Change Attribute Focus Object Change Object

R@1 R@ 2 R@3 R@1 R@ 2 R@3 R@1 R@ 2 R@3 R@1 R@ 2 R@3 Avg R@1

B/16

Image Only 18.1 30.1 40.6 11.5 21.9 30.9 9.4 17.0 25.4 7.6 17.1 25.5 11.7
Text Only 10.3 20.9 30.4 10.2 18.2 26.1 7.4 14.0 23.0 8.1 16.4 24.7 9.0
Image + Text 17.1 29.5 40.5 13.1 22.2 31.9 11.5 20.1 29.2 9.8 20.0 28.9 12.9
Combiner (GeneCIS)† 19.7 31.7 42.1 16.2 27.3 37.5 16.6 27.7 37.2 18.0 32.2 41.6 17.6
CAT-LLM-(cap) 14.1 25.3 35.3 10.6 21.4 30.1 11.5 20.8 28.8 11.0 21.1 29.6 11.8
CAT-LLM-(ret) 19.0 30.4 40.2 14.9 25.2 32.5 17.6 28.4 37.4 19.2 32.7 42.5 17.7
CAT-LLM-(ret+cap) 18.4 30.5 40.3 15.7 25.6 33.8 16.1 28.4 37.6 18.0 30.8 41.7 17.1

L/14

Image Only 18.2 29.6 40.0 9.2 20.2 29.1 9.6 16.2 25.5 6.8 16.0 24.7 11.0
Text Only 12.3 20.2 31.3 8.1 17.7 24.6 8.2 15.3 24.1 7.6 15.4 25.1 9.1
Image+Text 17.6 29.5 40.0 10.6 22.1 31.9 11.8 21.4 29.0 10.3 21.0 31.1 12.6
FROMAGe 19.2 31.1 40.5 12.2 21.7 30.5 13.0 24.5 33.2 12.9 24.7 32.9 14.3
CAT-LLM-(cap) 12.0 24.1 34.1 13.3 23.1 31.7 14.7 24.2 33.7 10.9 20.5 29.0 12.7
CAT-LLM-(ret) 18.5 30.2 40.7 15.2 25.6 34.3 15.3 25.4 34.6 17.2 27.0 37.5 16.6
CAT-LLM-(ret+cap) 17.6 29.3 41.0 15.1 25.7 34.5 14.6 27.2 36.3 15.9 26.8 36.7 15.8

Conclusions on ZS-CIR benchmarks. (1) CAT-LLM achieves remarkable performance across
existing ZS-CIR benchmarks, outperforming prior baselines and methods that do not incorporate
LLM. It showcases the potential of applying LLM in the CIR task. (2) CAT-LLM notably adapts
to a variety of text conditions. In scenarios like the GeneCIS evaluation, which presents unique
text conditions that differ from traditional relative captions, we can design task-specific prompts
to effectively adapt to different tasks. This highlights CAT-LLM’s adaptability to a wide range of
text conditions. (3) CAT-LLM-(ret) and CAT-LLM-(cap) show different preferences to multi-modal
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context information. CAT-LLM-(ret) excels in selectively extracting information from multi-modal
contexts, while CAT-LLM-(cap) tends to text modality information. CAT-LLM can adapt to different
scenarios by dynamically choosing the output mode based on the given input. At the same time, it
indicates that our retrieval token struggles to adaptively extract information from the multi-modal
context, which is the direction of our future improvements.

4.2 DENSE MULTI-MODAL CONTEXTUAL IMAGE RETRIEVAL

To investigate CAT-LLM’s multi-modal contextual retrieval ability in more complex scenarios, we
consider the dense multi-modal contextual retrieval task where the input encompasses multiple im-
ages and texts. Following Koh et al. (2023b), we evaluate the zero-shot dense multi-modal image
retrieval ability on Visual Storytelling (Huang et al., 2016) and Visual Dialogue (Das et al., 2017).
In this section, we only report the results of CAT-LLM-(ret) for comparison with FROMAGe(Koh
et al., 2023b) and GILL(Koh et al., 2023a).

Table 4: Zero-shot contextual image retrieval
on Visual Storytelling. † indicates input im-
ages from the current story sequence are
masked in the retrieval gallery.

Model Inputs R@1 R@5 R@10
CLIP ViT-L/14

1 caption
11.9 25.5 32.2

FROMAGe 11.3 24.6 32.1
CAT-LLM 9.8 22.6 30.4

CLIP ViT-L/14
5 captions

5.9 19.5 28.0
FROMAGe 10.8 23.8 31.7
CAT-LLM 11.8 29.0 39.1
CLIP ViT-L/14

5 captions†
8.8 22.3 29.8

FROMAGe 13.2 28.5 36.7
CAT-LLM 13.8 31.2 40.5
CLIP ViT-L/14

5 captions, 4 images†
2.4 21.3 34.0

FROMAGe 18.2 42.7 51.8
GILL 20.3 45.0 53.7
CAT-LLM 22.4 45.4 55.0

Visual Storytelling Results. Each example in
the Visual Storytelling (VIST) dataset comprises
five temporally ordered image-text pairs, we report
Recall@K of the last image as metric. Following
(Koh et al., 2023b), we explore several experimen-
tal settings featuring different input configurations:
(1) single last caption as input; (2) input consisting
of all five captions; (3) input incorporating five cap-
tions along with four associated images. Table 4
shows the results. CAT-LLM surpasses the image-
text matching model CLIP as well as the LLM-based
model FROMAGe and GILL(Koh et al., 2023a) in
three richer contextual settings. Furthermore, by
comparing the results of ‘1 caption’ and ‘5 captions’
settings, we observe that the performance of CLIP
or FROMAGe doesn’t see a significant improvement
and may even decline from 5 captions. In contrast,
our method largely benefits from this richer textual
context. This underscores our method’s robust capa-
bility in extracting information from extended contexts effectively.

Table 5: Zero-shot text-to-image
retrieval on Visual Dialog
Model R@1 R@5 R@10
CLIP ViT-L/14 17.7 38.9 50.2
FROMAGe 20.8 44.9 56.0
CAT-LLM 24.8 50.1 63.2

Visual Dialog Results. Each sample in Visual Dialog con-
tains one image and a conversation about this image. We
take the conversation as the input context to retrieve the cor-
responding image. Table 5 shows the text-to-image retrieval
results on Visual Dialog. CAT-LLM consistently outperforms
CLIP baseline and prior LLM-based retrieval methods. This
demonstrates CAT-LLM’s ability to extract visual representa-
tions from extensive text contexts, underscoring the effective-
ness of our proposed context-aware training.

4.3 ABLATIONS

Ablations of proposed objectives. Table 6 shows the result of the ablation study on training objec-
tives. We can draw main conclusions that: (1) All of the four objectives have a positive effect on
CAT-LLM; (2) Context-aware text matching (CA-TM) objective significantly improves the perfor-
mance indicating that it helps the retrieval token learn to extract information from the multi-modal
context. (4) A comparison between the ‘w/o CA’ and ‘w/o CA-TM’ results reveals that the Context-
Aware Captioning (CA-Cap) objective markedly improves performance. It indicates that CA-Cap
objective helps to learn a better mapping from visual space to LLM’s space. Note that the CA-Cap
objective is only used to optimize the visual adaptor.

Visualizing the effectiveness of context-aware training In Figure 3, we visualize the impact
of proposed context-aware training to the LLM using a transformer explainable tool described in
Chefer et al. (2021). As the figure shown, our context-aware training enables the model effectively
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Table 6: Ablations of proposed objectives. Results of CAT-LLM-(ret) on CIRCO evaluation set.
Model LCap LITM LCA-Cap LCA-TM mAP@5 mAP@10 mAP@25 mAP@50

Base model ✓ ✓ ✓ ✓ 13.84 14.09 14.87 15.20

Only CA ✓ ✓ 11.21 11.36 12.12 12.66
w/o CA ✓ ✓ 5.31 5.91 6.46 6.68

w/o CA-TM ✓ ✓ ✓ 8.13 8.41 8.87 9.12
w/o CA-Cap ✓ ✓ ✓ 13.53 13.73 14.45 14.79
w/o ITM ✓ ✓ ✓ 12.05 12.10 12.94 13.33
w/o Cap ✓ ✓ ✓ 12.58 13.22 14.15 14.29

composing the visual input and key textual cues to accurately retrieve the target image. For instance,
in the first example, the model retrieves the target by identifying cues like ‘same color’, ‘congested
street’, and ‘stopped’. Conversely, the model without context-aware training tends to concentrate on
visual tokens or with only partial textual cues, leading to incorrect retrieval results.

Query Image Token Relevance Retrieved image Query Image Token Relevance Retrieved image

W/O CA

W/O CA

With CA

With CA

Figure 3: Visualization of the token relevance between retrieval token and the multi-modal context
tokens. The deeper the green, the more significant the influence on the retrieval results. P1, P2, P3
and P4 denote the mapped visual tokens. CA denotes context-aware training.

Table 7: CAT-LLM with various LLMs.
LM Mode mAP@5 mAP@10 mAP@25 mAP@50

Opt-6.7B
(cap) 6.43 6.84 7.77 8.30
(ret) 13.55 14.70 16.35 17.28

(ret+cap) 15.00 15.73 17.51 18.45

Opt-2.7B
(cap) 6.64 7.16 7.95 8.44
(ret) 12.27 13.09 14.66 15.50

(ret+cap) 14.05 14.87 16.52 17.35

LLama2-7B
(cap) 8.87 9.63 10.90 11.52
(ret) 16.00 16.82 18.61 19.59

(cap+ret) 17.28 18.27 20.22 21.17

Can CAT-LLM benefit from stronger LLMs? Table 7
shows the results of CAT-LLM with various LLM back-
bones on CIRCO test set. CAT-LLM effectively inte-
grates different language models, gaining from increased
model size and enhanced language capabilities. The pow-
erful language model, LLama2, markedly enhances the
performance of CAT-LLM. We provide more qualitative
results on Appendix A.2 to illustrate the impact of a
stronger language model backbone.

Table 8: Results of Combiner trained on MMC
Method Training data mAP@5 mAP@10 mAP@25 mAP@50

Pic2Word CC3M 8.72 9.51 10.64 11.29
SEARLE ImageNet1K 11.68 12.73 14.33 15.12
Combiner MMC 11.63 12.46 13.79 14.60
CAT-LLM(ret) MMC 13.55 14.70 16.35 17.28

Can MMC dataset apply to conventional
CIR methods? Table 8 shows the results on
CIRCO test set. We use MMC dataset to train a
Combiner Baldrati et al. (2022a) model, which
is a classic CIR method that employs a simple
combiner component to integrate features from
CLIP image encoder and text encoder. The Combiner model trained on the MMC dataset achieves
comparable results, approaching previous textual inversion-based method SEARlE, demonstrating
the effective of the generated MMC dataset. Although trained on the same MMC dataset, there is
still a significant gap between the Combiner and CAT-LLM, demonstrating the effectiveness of LLM
in MMCIR tasks. In Appendix A.1, we provide additional qualitative results and analyses on the
significant differences between Combiner and CAT-LLM in processing logical words. The training
details of Combiner are described in Appendix E.

5 CONCLUSION

In this paper, we investigated the capabilities of Large Language Models (LLM) for image retrieval
tasks with multi-modal contextual queries. On recent ZS-CIR benchmarks, CAT-LLM surpasses
approaches not utilizing an LLM, underscoring the promising potential of LLMs in this domain.
Compared to previous LLM-based retrieval methods, our proposed context-aware training enhances
the model’s ability to handle multi-modal contexts. We hope that our context-aware training and
multi-modal data generation strategies will inspire further exploration of LLMs for other vision-
language tasks. In the future, we aim to delve deeper into enhancing the visual output mechanisms
and also explore the implications of utilizing richer and more extensive training data.
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A MORE QUALITATIVE RESULTS AND ANALYSIS

A.1 ANALYSIS THE LOGICAL WORDS IN MMCIR TASKS

Different from conventional image-text retrieval, logical words like ‘no’ and ‘instead of’ occur more
frequently in the multi-modal contextual image retrieval scenarios. These logical words pose a
challenge to CIR models that rely on a CLIP text encoder to process textual queries. It is because
the CLIP text encoder struggles in handling words like ‘no’ (Wang et al., 2023), which are critical to
retrieve the correct target images. As shown in Figure 4, the CLIP based model Combiner struggles
to comprehend text inputs containing logical words, leading incorrect retrieval results. In CAT-
LLM, we leverage the aligned CLIP image-text space as the retrieval space. The CLIP text encoder
is utilized to process the target caption in MMC and the generated caption from CAT-LLM-(cap).
In these two scenarios, the text inputs of CLIP text encoder are more likely in a caption-style. The
text conditions, which are more likely to contain logical words, are processed in the language model
space, where the logical words like ’not’ and ’instead of’ can be easily understood.

has chopped carrots instead of an 
omelet

is taken from a lower perspective and 
shows a sandwich instead of vegetables

shows gym equipment and no Christmas 
decorations

is next to fruits instead of flowers

are black instead of blue and the 
walls are not white

has two of them and there is a fridge 
instead of an oven

Combiner CAT-LLM (ret)
Retrieved imageText ConditionReference Image

has a quad bike instead of a motorbike

Figure 4: Examples from CIRCO validation set containing logical words. Both Combiner and CAT-
LLM are trained on proposed MMC dataset.
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A.2 QUALITATIVE RESULTS OF CAT-LLM WITH VARIOUS LM BACKBONES

In Table 7, we quantitatively demonstrate that CAT-LLM benefits from a more advanced Language
Model Llama2. In this section, we provide additional qualitative results to analyze the impact of a
stronger language model on CAT-LLM. We select some hard samples from CIRCO test set and list
the results of CAT-LLM with Opt-6.7B and Llama2-7B. As shown in Figure 5, every test sample has
a complex text condition, requiring comprehensive multi-modal abilities to retrieve the correct im-
age. Overall, benefiting from a more powerful language model, CAT-LLM with Llama2-7B shows
improved performance in understanding these complex multi-modal inputs. For instance, in the first
example, CAT-LLM (Llama2-7B) identifies critical textual cues such as ‘white’, ‘without a wind
shield’, and ‘a similar shape’, effectively retrieving the correct image.

is white without a 
windshield and has a 
similar shape

has a big horn sheep 
instead of a horse and 
shows rocks in the 
background

is a woman who is wearing 
sunglasses and more trees 
are visible in the 
background

is empty and there are 
several bottles of alcohol 
next to it

CAT-LLM (ret)
Llama2-7B

CAT-LLM (ret)
Opt-6.7B

Reference Image Text Condition

is shaped like an animal 
and has candles on it

has the same color and is 
sitting on a chair on the 
grass

are divided into multiple 
fruit crates and the photo 
shows a vehicle

has colorful magnets shaped 
like letters and a few 
photos

is a man, is dressed in the 
same color and has his feet 
in the air

Retrieved Image

Figure 5: Qualitative comparison of CAT-LLM with various LLM backbones on hard samples se-
lected from CIRCO test set. Critical textual cues in each sample are highlighted.
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A.3 FAILURE CASES STUDY

In Figure 6, we list several primary scenarios where CAT-LLM fails. The most significant is the
quantities-related scenarios. When the text condition includes specific numerical requirements, such
as ‘two cats’, CAT-LLM often struggles to retrieve target images with the correct number. Similarly,
when the text condition contains words related to quantity, like ‘fewer’ or ‘more’, CAT-LLM also
fails to accurately identify target images that correctly represent these quantitative relationships.
This limitation mainly stems from CLIP’s restricted capability in object counting, as detailed in
(Radford et al., 2021). CAT-LLM utilizes CLIP’s visual embeddings as its visual input and relies
on CLIP’s aligned image-text space for retrieval, resulting in CAT-LLM being restricted to the same
limitations as CLIP in object counting. Additionally, CAT-LLM struggles with the text condition
such as ‘greyscale’ and ‘shot angle’. These text conditions, instead of relating to the image content,
are associated with the image’s state or attributes. Enhancing CAT-LLM to better address these types
of requirements is one of our future work.

has a different color 
and has fewer people 
in it

shows only one on a 
parquet floor, it is 
seen from the top and 
is open

has two horses 
instead of a 
motorbike and is shot 
in a similar setting

has more than one

has a bench 
instead of a 
chair and there 
are two cats

has more 
people on it

is not on a bench 
and the photo is 
taken in greyscale

is sitting on a 
bench and the 
image is in 
greyscale

is shot from the 
front

are crossing on a 
crosswalk and the 
photo is shot 
from the top

Reference Image Text Condition Retrieved Image Reference Image Text Condition Retrieved Image

Quantities
Related

greyscale
Related

Angles
Related

Figure 6: Failure cases of CAT-LLM.

A.4 QUALITATIVE RESULTS ON CIRCO

Figure 7 shows more qualitative results from the CIRCO validation set. The evaluation samples
from CIRCO are diverse and of high quality. Importantly, they provide multiple ground truth labels
for each input, which helps in a more comprehensive analysis. From the figure, we observe that:
(1) CAT-LLM can effectively handle the multi-modal input and retrieve the target image. (2) Some
failed examples indicate that our method struggles to distinguish quantity. This is an area we aim to
improve in the future. (3) Some false negative samples are highlighted in red. This is primarily due
to during the label annotation, the authors leverage their proposed SEARLE method to coarsely filter
out images from a large gallery, leading to missing some true positives, which can be well retrieved
by CAT-LLM. These false negatives indicate that CAT-LLM has different preferences compared
to conventional CLIP inversion-based methods, suggesting CAT-LLM’s potential to refine existing
benchmarks.
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has a different 
color and there is a 
person touching it 
with their hands

has boats and 
the sky in the 
background

has a dog 
under it

is a woman and 
the umbrella is 

brighter

has three people 
and a blue sky in 
the background

has the same color 
and the photo 
shows one dog 
and no people

are four and 
there is a blue sky 
in the background

is only one, is 
heavily filled and 
is on a wooden 

counter

is set outdoors 
and has grass in 
the background

shows a person 
of the same sex 
holding a baby

Input Context Retrieved Images (first row) and Ground Truths (second row)

Figure 7: Qualitative results on CIRCO validation set. The first row is the ranked images retrieved
by CAT-LLM-(ret), and the second row is the ground truth images. True positives are marked in
yellow and false negatives are marked in red.
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B LIMITATIONS

B.1 LIMITATIONS INHERITED FROM CLIP MODEL

CAT-LLM leverage frozen CLIP model as the base image-text retrieval model. While it benefits
from the strong aligned image-text space provided by CLIP, it also inherits CLIP’s inherent lim-
itations. For example, as shown in Figure 6, CAT-LLM struggles to retrieve the correct images
in scenarios involving queries related to quantities, grey scale and angles. This issue stems from
CLIP’s intrinsic weaknesses, such as object counting, as detailed in Radford et al. (2021). It should
be noted that another significant limitation of CLIP is the weak logical understanding ability of CLIP
text encoder (Wang et al., 2023). Fortunately, as shown in Figure 4 CAT-LLM process the logical
relationship in LLM space, thereby mitigating this issue.

B.2 SLOW INFERENCE SPEED CAUSED BY LLM

A notable limitation of CAT-LLM is its inference speed, constrained by the language model. As
shown in Table 9, we assessed the time consumed by different methods to conduct inference on
100 samples, with a batch size of 1. Due to the inherently slower inference speed of language
models, CAT-LLM(ret) is slower than the conventional CIR model Combiner. The situation in CAT-
LLM(cap) is worse because of the more time-consuming auto-regressive generation process. This
time consumption attributed to the language model is one of the primary limitations of CAT-LLM.
It should be noted that, different from the CIR methods like Combiner which can only process
the query containing single image-text pair (i.e., CIR task), CAT-LLM can process dense scenarios
containing multi-turns queries as demonstrated in Sec 4.2. This is one of the significant motivations
that introduces an LLM into the MMCIR tasks.

Table 9: The time cost of processing 100 samples. The experiment is conduct on the same Nvidia
A100 GPU.

Method CLIP image encoder CLIP text encoder LLM combiner All FPS

Combiner 1.1s 1.1s - 0.1s 2.3s 43.5
CAT-LLM-(ret) 1.2s - 2.3s - 3.5s 28.5
CAT-LLM-(cap) 1.2s 1.0s 25.0s - 27.2s 3.7

B.3 RETRIEVAL MECHANISM

In Section 4.1, we discovered that CAT-LLM-(ret) and CAT-LLM-(cap) has different biases towards
the input context. CAT-LLM-(cap) is good at process the textual cues whereas CAT-LLM-(ret)
excel at integrating image and text but tends to overlook some textual details. CAT-LLM-(ret+cap)
combines the output of CAT-LLM-(ret) and CAT-LLM-(cap) achieves better results on CIRCO and
CIRR benchmark. However, its performance on the more challenging benchmark GeneCIS shows a
decline, indicating its limitations in specific scenarios. Additionally, the auto-regressive generation
process in CAT-LLM-(cap) is time-consuming, posing challenges for real world applications. In the
future, we aim to develop a more robust retrieval mechanism to efficiently extracting information
from LLM space.

C DATA GENERATION

We employ the Llama2/7B-Chat model for our data generation. During each sample generation, we
input the task description and an in-context example as the task prompt, as shown in Figure 8. It
costs approximately 20 A100 GPU days to generate 1 million tuples, using image-caption pairs from
CC3M (Sharma et al., 2018) as source pairs. We visualize some samples from MMC as shown in
Figure 9. As we can see, Llama2 can generate diverse text conditions based on the source caption.
The target caption effectively combines the source caption and the generated text condition.
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I need to construct a multi-modal retrieval dataset. While this is a challenging 
endeavor, one effective method involves generating text-only triplets: source 
captions, text conditions, and target captions. I'd appreciate your assistance in 
creating these triplets based on provided source captions. Here’s how it works:
Source Caption: This is an image’s description that I will provide for you.
Text Condition: Generated based on the source caption, the text condition 
outlines a specific modification or requirement that the target caption (and 
correspondingly, the target image) must adhere to..
Target Caption: This should be crafted using both the source caption and the text 
condition. It will represent a new image that meets the requirements set by the text 
condition, using the original source image as a foundation.
Please ensure that all Source Captions, Text Conditions and Target Captions are 
visually relevant.

User:

Asst.: Understand! Please provide the source captions. I will generate visually relavant 
text conditions and target captions.

User: Source Caption: A group of children flying kites on a windy beach.

Asst.: Great! Here’s the text condition and target caption:
Text Condition: Balloons and make it a mountain setting.
Target Caption: A group of children releasing balloons on a windy 
mountain top

Task Prompt for LLama2/7B-Chat model

User: Source Caption: …….

Asst.: Great! Here’s the text condition and target caption:
Text Condition: …….
Target Caption: .……

Figure 8: Our specialized task prompt for Llama2/7B-Chat model.

Table 10: Prompts for different tasks. The red text means the original input of this task. The blue
text is the output of model.

Task / Objective Text Condition Prompt Retrieval / Captioning Prompt

Training

Cap - It is a photo of {caption}
ITM - A photo of [ret]
CA-Cap Q: What if {text condition}? A: It becomes a photo of {target caption}
CA-ITM Q: What if {text condition}? A: It becomes a photo of [ret]

Inference

CIRCO Q: What if {relative caption}? A: It becomes a photo of [ret]
CIRR Q: What if {relative caption}? A: It becomes a photo of [ret]
GeneCIS (focus object) Q: What if a similar scene with same {object}? A: It becomes a photo of [ret]
GeneCIS (change object) Q: What if this scene appears {object}? A: It becomes a photo of [ret]
GeneCIS (focus attribute) Q: What if this object with same {attribute}? A: It becomes a photo of [ret]
GeneCIS (change attribute) Q: What if this object {attribute}? A: It becomes a photo of [ret]

D PROMPTS DESIGNING

In this paper, we instruct an LLM to multi-modal contextual image retrieval. We design various
prompts for CAT-LLM to adapt to different tasks, as shown in Table 10.
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it 's about a mile 
walk around the lake .

a player works 
around the cage .

fine line style 
butterfly tattoo on 
the right forearm .

traffic makes its way 
along road .

a park bench under 
the autumn leaves

view of the ocean 
from the kitchen .

cats on the kitchen 
window

cartoon smiling 
moon by the night

amidst the beautiful 
tea plantations

Add a bridge 
crossing the lake.

The player should be 
wearing a different 

color jersey.

remove the butterfly 
tattoo.

Add a traffic cone in 
the middle of the 

road.

Change the season 
to winter.

a stormy weather.

Add a bird in the 
background.

showing a sad face

Add a group of 
workers picking tea 

leaves.

A mile walk around the 
lake with a bridge 
crossing the lake.

A player works around 
the cage in green jersey.

a blank patch of skin on 
the right forearm.

Traffic makes its way 
along a road with a 

traffic cone in the middle.

a park bench under the 
winter snow.

View of the ocean from 
the kitchen during a 

stormy weather.

Cats on the kitchen 
window with a bird in 

the background.

cartoon frowning moon 
by the night

Amidst the beautiful tea 
plantations, a group of 
workers diligently pick 

tea leaves.

Source image Source caption Text Condition Target Caption

Figure 9: Data samples selected from MMC. Note that the source image is not visible to the language
model during the text condition and target caption generation.

E INFERENCE ILLUSTRATION

The inference details are illustrated in 10.
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LLM

CLIP Visual
Encoder

Adaptor

CLIP Text
Encoder

concat

Projector

playing with a toy mouse

WordEmb
Layer

LLM

CLIP Visual
Encoder

Adaptor

concat

Playing with 
a toy mouse

WordEmb
Layer

it is a cute orange cat playing …

it is a cute 
orange cat

Autoregressive
generation

next word prediction

Retrieval embedding
CAT-LLM (ret)  (1,N)

Retrieval embedding
CAT-LLM (cap)  (1,N)

Retrieval Gallery

CLIP
Visual

Encoder

Retrieval space

CAT-LLM (cap)

CAT-LLM (ret)

CAT-LLM (ret+cap)

Retrieval embedding
CAT-LLM (ret+cap)  (1,N)

I want to find more pictures of 
my cat playing with a toy mouse

This is a picture
of my cat

sum 

L2
Normalize

L2
Normalize

L2
Normalize

Figure 10: Inference illustration of CAT-LLM(ret), CAT-LLM(cap) and CAT-LLM(ret+cap).

Table 11: Quantitative results on CIRCO test set. We remind that the mAP@k metrics are computed
considering all the ground truth images for each query, the Recall@k metrics are computed consid-
ering only the target image for each query (the one the author used to write the relative caption).

mAP@K Recall@K

Backbone Method K = 5 K = 10 K = 25 K = 50 K = 5 K = 10 K = 25 K = 50

L/14

Image-only 2.79 3.18 3.75 4.12 5.38 10.00 18.00 26.75
Text-only 2.50 2.64 3.11 3.38 5.0 7.12 12.12 17.62
Image + Text 6.37 7.04 8.11 8.72 14.37 21.12 34.75 46.25
Pic2Word 8.72 9.51 10.64 11.29 - - - -
SEARLE 11.68 12.73 14.33 15.12 21.88 32.00 44.75 54.87
FROMAGe 4.0 4.44 5.26 5.73 8.25 13.63 23.50 32.50
CAT-LLM-(cap) 6.43 6.84 7.77 8.30 10.62 14.88 22.50 29.62
CAT-LLM-(ret) 13.55 14.70 16.35 17.28 24.38 33.75 46.25 59.00
CAT-LLM-(ret+cap) 15.00 15.73 17.51 18.45 23.62 34.50 45.62 57.63

B/16

Image-only 1.30 1.74 2.21 2.52 4.50 8.00 15.25 21.75
Text-only 2.59 2.75 3.12 3.30 4.75 6.88 10.88 14.88
Image + Text 2.60 3.19 4.12 4.63 8.62 13.63 24.50 35.00
CAT-LLM-(cap) 5.35 5.59 6.32 6.68 8.50 12.12 17.75 24.00
CAT-LLM-(ret) 12.79 13.28 14.89 15.65 24.00 31.75 44.50 54.12
CAT-LLM-(ret+cap) 13.95 14.47 16.00 16.74 25.00 31.87 44.12 52.38

F COMPLETE RESULTS ON CIRCO

The Complete results including the recall@K metrics are shown on Table 11.
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G TRAINING DETAILS OF COMBINER

In this paper, we train the Combiner (Baldrati et al., 2022a) using proposed MMC dataset. Given
the training data (ref image, text condition, target caption), the Combiner takes reference image and
text condition as input. The ref image and text condition are first encoded by CLIP image encoder
and CLIP text encoder, respectively. These two clip features are then composed into a single vector
through a combiner component (MLPs). A contrasive loss is then used to align the output single
vector and the target feature, i.e., the CLIP text feature of the target caption. The Combiner is
trained on MMC for 6 epochs with a batchsize 1024. The temperature in contrastive loss in set to
15. The CLIP model is frozen during training. Other training parameters are the same as Vaze et al.
(2023).
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