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Abstract
We explore a new paradigm of continual learning dubbed Few-Shot Class-
Incremental Tuning (FSCIT), which facilitates continual tuning of vision founda-
tion models to continuously learn new classes with few samples per class. Unlike
traditional Few-Shot Class-Incremental Learning (FSCIL), FSCIT does not assume
the availability of a large in-distribution base session to initially train the model in
a fully supervised setting, prior to the few-shot class-incremental sessions. To this
end, we propose Consistency-guided Asynchronous Contrastive Tuning (CoACT),
a new approach to continually tune foundation models for new classes in few-shot
settings. CoACT comprises three components: (i) asynchronous contrastive tuning,
which learns new classes by including LoRA modules in the pre-trained encoder
while enforcing consistency between two asynchronous encoders; (ii) controlled
fine-tuning, which facilitates effective tuning of a subset of the foundation model;
and (iii) consistency-guided incremental tuning, which enforces additional reg-
ularization during later sessions to reduce forgetting of the learned classes. We
perform an extensive study on 16 diverse datasets where CoACT outperforms the
best baseline method by 2.47% on average and with up to 12.52% on individual
datasets. Additionally, CoACT shows reduced forgetting and robustness in low-shot
experiments. As an added bonus, CoACT outperforms current SOTA on FSCIL.

1 Introduction
Large foundation models pre-trained on web-scale unlabeled data demonstrate robust generalization
on downstream tasks when fine-tuned with a relatively small amount of labelled data [1, 2]. However,
the sheer size of the pre-trained models poses significant challenges for fine-tuning such models,
particularly when learning from limited labelled data [3]. Despite recent advancements such as
parameter-efficient tuning [4, 5] and regularization [3], fine-tuning the model in a few-shot setting
often leads to a decline in the generalization capability of the foundation model. Yet, real-world
applications not only necessitate learning from a few samples but also demand continual learning of
new classes without forgetting previously learned ones. To this end, we introduce a novel continual
learning paradigm, Few-Shot Class-Incremental Tuning (FSCIT), which enables tuning a vision
foundation model to continuously learn new classes with a few samples per class.

In continual learning, Few-shot Class-Incremental Learning (FSCIL) is a closely related area (different
from conventional class-incremental learning [6]) that first trains the model on a large in-distribution
labelled base session in a fully supervised setting, followed by few-shot learning of new classes over
incremental sessions [7, 8]. In practice, such an in-distribution base session with a large number of
classes and a large number of samples per class is difficult to collect, undermining the motivation
of few-shot continual learning. Unlike FSCIL, FSCIT focuses on tuning vision foundation models
in a few-shot class-incremental setup, without assuming the availability of an initial in-distribution
base session. Due to the unavailability of the in-distribution base session, existing methods from the
FSCIL literature can not be directly adopted to FSCIT. Additionally, few-shot tuning methods [9, 3]
for foundation models are also not applicable to FSCIT since they do not facilitate continual tuning.

To address this challenge, we first establish a few baselines by combining the prominent approaches
from FSCIL and few-shot tuning literature to facilitate FSCIT. However, these baselines fall short of
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addressing the critical challenge of preserving the generalizability of the foundation model and pre-
venting catastrophic forgetting of previously learned classes. Next, we propose Consistency-guided
Asynchronous Contrastive Tuning (CoACT), a novel framework for class-incremental tuning of vision
foundation models in few-shot settings. CoACT comprises three components: (i) asynchronous
contrastive tuning, (ii) controlled fine-tuning, and (iii) consistency-guided incremental tuning. Asyn-
chronous contrastive tuning learns from the first incremental session using a novel asynchronous
contrastive loss that strikes a balance between adaptability to learn new classes and retaining general-
izable knowledge of the pre-trained foundation model. To further enhance adaptability, we introduce
controlled fine-tuning, which is a two-step training protocol for training the first incremental session.
Finally, consistency-guided incremental tuning is a novel regularization technique that ensures
effective learning of classes in the following incremental sessions while preventing forgetting of
previously learned classes and preserving the generalization capabilities of the foundation model
at the same time. To achieve this, we enforce consistency between the predictions of the learnable
encoder in the incremental sessions and the frozen encoder from the first incremental session.

We conduct a comprehensive study on 16 diverse image recognition datasets to investigate the
effectiveness of our method. Our comprehensive experiments demonstrate that CoACT achieves a
2.47% average improvement over the best baseline method, with up to 12.79% performance gain on
individual datasets. More importantly, CoACT exhibits reduced forgetting of already learned classes
as the number of classes increases. We provide detailed ablation studies showing the effectiveness of
each component of our method. Additionally, CoACT outperforms current SOTA on FSCIL.

2 Related works
Class-incremental learning is a continual learning process that focuses on continuous learning of
new classes while retaining the knowledge of already learned ones [6]. In practice, machine learning
models often need to learn new classes from a few labelled samples per class [7], while having no
access to samples from already learned classes. This scenario has given rise to a new learning task
called few-shot class-incremental learning or FSCIL [10]. The existing literature on FSCIL can be
broadly categorized into two main groups: methods that continuously train both the encoder and
classifier over each incremental session [8, 11, 12, 13], and methods that keep the encoder frozen
during the incremental learning sessions [14, 15, 16]. While methods in the first group generally offer
greater adaptability to new classes compared to the second group, they require additional constraints
to avoid overfitting to the new classes and thus catastrophic forgetting, and they are not generally
feasible in the context of foundation models as encoders are quite large, resulting in strong overfitting
in few-shot settings. While methods in the second group generally offer greater stability on already
learned classes stability often comes at the cost of adaptability toward learning new classes, and
these methods are generally not compatible with foundation models given lack of control over the
base training of such off-the-shelf models. A number of techniques have recently been proposed to
tune foundation models without the need to re-train them from scratch [17, 18, 19, 20, 21, 22, 23].
Nonetheless, such methods are not designed for continuous tuning of a foundation model since there
are no mechanisms in them to prevent loss of generalization capabilities and catastrophic forgetting.

3 Method
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Figure 1: Illustration of CoACT. (Left) Training on the first incremental
session with asynchronous contrastive tuning and controlled fine-tuning.
(Right) Consistency-guided incremental tuning over continual sessions.

Asynchronous contrastive
tuning. To strike a balance
between adaptability to new
classes and retaining general-
izable knowledge of the foun-
dation model, we introduce
asynchronous contrastive tun-
ing as the first component in
our framework. This involves
fine-tuning the pre-trained
model using our novel Asyn-
chronous Contrastive Learn-
ing (ACL) approach while incorporating LoRA modules into the foumodel. Let hi = f

(i)
θ (hi−1) be

the output of ith layer of the pre-trained encoder, hi−1 be the output of the (i − 1)th hidden layer
of the encoder, and f

(i)
θ be the ith layer of the encoder. With the new learnable LoRA layers, the
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output of the ith layer of the network can be represented as h
′

i = f
(i)
θ (hi−1) + f

(i)
LoRA(hi−1), where,

f
(i)
LoRA is the ith LoRA layer added to the pre-trained encoder. For brevity, we denote the encoder with

learnable LoRA layers as fθ′ . We can train fθ′ on D1
train to learn the first incremental session as:

Lsup = Lce(W
T fθ′ (x), y). However, it has been shown in prior work that cross-entropy alone does

not learn a well-separable embedding space [24] and has a higher over-fitting tendency, especially
in a few-shot setting [3]. To reduce the possibility of overfitting and retain the generalization in the
learnable encoder fθ′ , we regularize its output distribution with a teacher encoder by maximizing their
agreement in the embedding space. Here, the teacher encoder is identical to the pre-trained model
(does not contain the LoRA modules) and learned through the Exponential Moving Average (EMA)
of the student fθ′ as θ

′′
= m · θ′′

+ (1−m) · θ, where θ and θ
′′

are the parameters of the student
(without LoRA) and teacher encoders, and m is the momentum parameter. Given that the teacher
and student encoders differ in their architecture due to the addition of LoRA to the student, learning
occurs asynchronously. This asynchronous encoder design and slow-moving update of the teacher
through EMA ensures that the predictions from the teacher do not fluctuate. Since the teacher encoder
is also initialized from the foundation model, consistency with the teacher effectively regularizes the
student from overfitting. In practice, we maximize the agreement between the embeddings of the
student and teacher encoders on all the samples from each class using a supervised contrastive loss:

LACL = −
∑
i

1

|Ci|
∑
j∈Ci

log
exp(⟨qi, kj⟩/τ)∑
l ̸=i exp(⟨qi, kl⟩/τ)

, (1)

where Ci
def
= {j : yj = yi}, ⟨·, ·⟩ denotes inner product, qi = fθ′ (A1(xi)) and kj = fθ′′ (A2(xj))

are online embeddings and momentum embeddings of augmentations of xi and xj from the student
and the teacher encoder respectively, and A1 and A2 are random augmentations. Finally, we train the
model with the LACL and Lsup as: LACL + λ · Lsup, where λ controls the impact of the ACL loss.

Controlled fine-tuning. To further enhance the adaptability of the model, we enable controlled
fine-tuning of some of the pre-trained layers of the encoder. Since the newly added LoRA modules
are randomly initialized, we begin by training only the LoRA modules of the student encoder with
a higher learning rate for the initial Ec epochs of training. This is followed by a fine-tuning stage
where the last Cl layers of the pre-trained encoder are fine-tuned with a reduced LR (scaled by a
factor of Cf ). We focus on fine-tuning only the last Cl layers, as the later layers of a pre-trained
model are responsible for learning domain-specific fine-grained features, whereas the earlier layers
are more general and transferable to a wide range of tasks [25].

Consistency-guided incremental tuning. While the first two modules facilitate tuning the foun-
dation model (fθ′ ) during the first session, later sessions also require the retention of previously
learned classes. To facilitate this, we propose consistency-guided incremental tuning, which prevents
forgetting by regularizing the output distribution of the student fθ′ when training on the incremental
sessions. More specifically, we enforce consistency between the predictions of the student encoder
and a frozen encoder after the first session, effectively discouraging substantial changes in the learned
representations of the student. Let fθβ be the frozen encoder after the first session, and the frozen
embedding of this encoder be pi = fθβ (A(xi)). We define our consistency regularizer as:

LCR = −
∑
i

1

|Ci|
∑
j∈Ci

log
exp(⟨qi, pj⟩/τ)∑
l ̸=i exp(⟨qi, pl⟩/τ)

. (2)

Finally, we train the model after the first session with: LCR +γLACL +λLsup, where γ and λ controls
the relative importance of the loss functions.

4 Experiments
We present the main results on CoACT on FSCIT in Table 1 on 16 datasets using three different
encoder backbones. With ViT-B/16 as the backbone, while CoACT shows average improvements of
2.66%, 2.54%, and 2.47% improvement over prototype learning, linear tuning, and LoRA, respectively.
Notably, it shows up to a 12.79% improvement on some individual datasets such as Resisc-45. In
general, we find relatively higher improvements for more challenging datasets. For instance, on the 5
datasets with the least accuracy (Country211, FGVCAircraft, GTSRB, Resisc-45, and StanfordCars),
CoACT shows an average improvement of 6.14% over the best baseline method (LoRA). We observe
similar improvements in the performance with the other two encoders (ViT-B/32 and ViT-L/16),
where CoACT outperforms the best baseline (LoRA) by average accuracies of 2.08% and 1.67%.
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Table 1: Performance of CoACT on 16 datasets and its comparison to the baselines.
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Pro. lear.
ViT-B/16 83.47 75.58 7.42 74.10 54.72 62.20 15.51 71.09 15.53 95.31 98.09 88.10 49.83 18.90 65.68 64.72 58.77
ViT-B/32 83.90 74.29 6.79 69.32 52.83 68.91 13.50 63.57 19.84 92.76 97.09 84.57 45.30 16.85 61.29 66.64 57.34
ViT-L/16 85.10 75.04 7.23 76.31 54.33 65.48 19.03 74.66 12.24 98.05 98.82 87.64 54.85 24.69 66.58 60.16 60.01

Lin. tun.
ViT-B/16 83.60 75.58 7.45 74.41 54.72 62.20 15.32 71.18 16.92 95.32 98.09 88.10 49.83 18.96 65.87 64.72 58.89
ViT-B/32 83.87 74.35 6.75 69.84 53.22 68.89 11.29 63.51 26.28 92.75 97.64 85.06 51.17 16.57 61.36 66.58 58.07
ViT-L/16 85.25 75.33 7.26 76.11 54.24 65.32 19.44 74.51 13.01 97.61 98.34 87.34 54.99 25.21 66.99 61.01 60.12

LoRA
ViT-B/16 83.87 75.81 7.45 74.65 54.70 62.20 15.32 71.24 17.23 95.32 98.09 88.10 49.82 18.94 65.90 64.72 58.96
ViT-B/32 83.54 74.72 6.81 69.85 53.22 68.89 10.88 63.52 29.84 92.75 97.55 85.09 49.14 16.09 61.32 66.56 58.11
ViT-L/16 85.15 75.34 7.29 76.26 54.52 65.68 19.13 74.75 12.28 97.88 98.71 87.89 54.85 24.99 66.78 60.56 60.13

CoACT
ViT-B/16 86.86 78.31 7.42 77.38 55.11 62.25 18.98 71.59 26.05 95.34 98.18 87.79 62.62 24.40 66.11 64.45 61.43
ViT-B/32 85.59 77.26 6.85 72.21 54.78 67.71 14.56 68.41 29.99 94.81 98.01 86.21 55.34 20.18 64.49 66.71 60.19
ViT-L/16 87.25 79.27 7.45 78.29 56.19 66.36 21.24 74.99 17.22 97.18 98.18 87.95 62.25 25.43 67.18 62.23 61.79

Next, we report the
forgetting of learned
classes for each
method, measured as
the drop in accuracy
w.r.t. the first session,
in Figure 2 (left). As
we observe, CoACT
has the least amount of
forgetting compared
to the baselines with
approximately 1.5%
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Figure 2: (left) Forgetting of learned classes.
(right) Accuracy breakdown over sessions.

less forgetting than both LoRA and linear tuning, and 3.2%
than prototype learning. We also present a breakdown of
accuracies into the first incremental session, the remaining
incremental sessions, and all sessions in Figure 2 (right).
Here, for all methods, the first session shows particularly
higher accuracy than other sessions since there is no inter-
ference (or forgetting) of other classes. While LoRA and
linear tuning have higher overall accuracy than prototype
tuning, the improvement mainly comes from the higher
accuracy in the first session only. All baselines, however,
perform relatively similarly in the remaining sessions. In
contrast, CoACT shows higher improvement in all sessions.

Table 2: Comparison to prior works on FSCIL on CIFAR-100.

Method Pre-trained Acc. in each session (%) ↑
0 1 2 3 4 5 6 7 8

SAVC [24] ✗ 79.85 73.70 69.37 65.28 61.91 59.27 57.24 54.97 53.12
SoftNet [26] ✗ 79.88 75.54 71.64 67.47 64.45 61.09 59.07 57.29 55.33
BOT [27] ✗ 80.25 77.20 75.09 70.82 67.83 64.86 62.73 60.52 58.75

SAVC* [24] ViT-B/16 82.98 75.35 74.01 71.51 70.64 69.78 68.98 67.84 66.24
BOT* [27] ViT-B/16 83.75 78.14 76.85 73.23 72.95 72.03 71.56 70.66 69.72
SV-T [28] SwinT 86.77 82.82 80.36 77.20 76.06 74.00 72.92 71.68 69.75
CPE-CLIP [29] CLIP-B/16 87.83 85.86 84.93 82.85 82.64 82.42 82.27 81.44 80.52

CoACT (Ours) ViT-B/16 90.46 88.46 88.11 86.94 86.98 86.52 86.39 86.0 84.63

To further evaluate the effectiveness
of our method, we also investigate its
performance in the traditional train-
ing setup of FSCIL. In Table 2, we
compare the performance of CoACT
with prior works on the CIAFR-100
dataset, where we divide the existing
methods into two groups: the first
group, which trains randomly initial-
ized models and the second group
which use a pre-trained encoder. As we observe in the table, CoACT outperforms the previous
SOTA without a pre-trained encoder (BOT [27]) by 25.88% and the SOTA with a pre-trained encoder
(CPE-CLIP [29]) by 4.11%. For a fair comparison with existing methods, we evaluate SAVC [24]
and BOT [27] with the same pre-trained encoder (ViT-B/16) as ours, where both methods show

Table 3: Ablation study.

ACT C.F. C.I.T Acc

✓ ✓ ✓ 61.43
✓ ✗ ✓ 61.31
✓ ✓ ✗ 61.28
✓ ✗ ✗ 60.26
✗ ✗ ✗ 58.77

Ablation study. We present an ablation study on the proposed components
of CoACT in Table 3, where ACT, C.F., and C.I.T stand for asynchronous
contrastive tuning, controlled fine-tuning, and consistency-guided incre-
mental tuning, respectively. Given that the asynchronous contrastive tuning
component of our method could not be removed as it contains the trainable
parameters, we start this study by removing controlled fine-tuning and
consistency-guided incremental tuning modules individually and simultane-
ously. Interestingly, we observe that while individual removal of these components does not show
considerable drops in performance, their concurrent application within our framework results in a
significant boost in performance of 1.17% across 16 datasets. Finally, with the ablation of all three
components and only training a linear classifier, we observe a 2.66% drop in performance.

5 Conclusion
To enable few-shot class-incremental learning with pre-trained large vision models, we propose
CoACT. Our method can effectively tune a foundation model to learn new classes without losing the
generalization of the pre-training or forgetting previously learned classes. Extensive studies show the
effectiveness of our method, achieving higher accuracy, lower forgetting, and robustness in low-shot
settings. CoACT also outperforms prior SOTA in the standard FSCIL setup by a large margin. We
present comprehensive experiments on different components of CoACT and make our code available
to foster rapid developments in the area.
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