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Abstract

In this work we introduce XLUMINA, an original computational framework de-
signed for the discovery of novel optical hardware in super-resolution microscopy.
Our framework offers auto-differentiation capabilities, allowing for the fast and
efficient simulation and automated design of entirely new optical setups from
scratch. We showcase its potential by rediscovering three foundational experiments,
each one covering different areas in optics: an optical telescope, STED microscopy
and the focusing beyond the diffraction limit of a radially polarized light beam.
Intriguingly, for this last experiment, the machine found an alternative solution
following the same physical principle exploited for breaking the diffraction limit.
With XLUMINA, can we go beyond simple optimization and calibration of known
experimental setups, opening the door to potentially uncovering new microscopy
concepts within the vast landscape of experimental possibilities.

1 Introduction

The space of all possible experimental optical configurations is enormous. For example, if we consider
experiments that consist of just 10 optical elements, chosen from 5 different components (such as
lasers, lenses, phase shifters, beam splitter and cameras), we already get 10 million possible discrete
arrangements. The experimental topology will further increase this number greatly. Finally, each of
these optical components can have tunable parameters (such as lenses’ focal lengths, laser power or
splitting ratios of beam splitters) which lead to additional high-dimensional continuous parameter
space for each of the previously mentioned discrete possibilities. This vast search space contains
all experimental designs possible, including those with exceptional properties. So far, researchers
have been exploring this space of possibilities guided by experience, intuition and creativity — and
have uncovered countless exciting experimental configurations and technologies. But due to the
complexity of this space, it might be that some powerful concepts and techniques have not been
discovered so far, and might never be with a human-driven direct design approach. This is where
Al-based exploration techniques could provide enormous benefit, by exploring the space in a fast,
unbiased way [} 2.

Optical microscopes in today’s sense were invented 300 years ago by Antonj van Leeuwenhoek [3].
Since then, few techniques used in the sciences have seen a similarly rapid development and impact

NeurIPS 2023 Al for Science Workshop.



on diverse fields, ranging from material sciences all the way to medicine [4-7]]. Arguably, optical
microscopy is currently most widely used in biological sciences, where precise labeling of imaging
targets enables fluorescence microscopy with exquisite sensitivity and specificity [I8,9]]. In the past
two decades, several breakthroughs have broadened the scope of optical microscopy in this area even
further. Among them, the discovery of super-resolution (SR) methods, which circumvent the classical
diffraction limit of light, stand out in particular. Examples for versatile and powerful SR techniques
are STED [10]], PALM/F-PALM [11}[12]], (d)STORM (13} [14]], SIM [15], and MINFLUX [16], with
considerable impact in biology [[17H19]], chemistry [20] and material sciences [21]] for example. These
microscopy techniques were designed through the ingenuity and creativity of human researchers.
Crucially, the motivation of our work goes far beyond small-scale optimization of already known
optical techniques. Rather, this work sets out to discover novel, experimentally viable concepts for
advanced optical microscopy that are at-present entirely untapped.

Fundamentally, the simulator is the heart of digital discovery efforts. It translates an experimental
design (one point in the vast space of possible designs) to a physical output. The physical output,
such as a detector or a camera, can then be used in an objective function to describe the desired design
goal. The simulator can either be called directly by gradient-based optimization techniques, or it
can be used for generating the training data for deep-learning-based surrogate models. A simulator
that can be used for automated design and discovery of new experimental strategies must be (1)
fast, (2) reliable, and (3) general. In our manuscript, we present a simulator that fulfills precisely
the aforementioned requirements for advanced microscopy. We leverage its scope with a specific
focus on the area of super-resolution microscopy, which is a set of techniques that has revolutionized
biological and biomedical research over the past decade, highlighted by the 2014 Chemistry Nobel
Prize [22].

We introduce XLUMINA, an efficient framework with auto-differentiation capabilities [23] for
the ultimate goal of discovering new optical design principles. We demonstrate our approach on
three foundational optical layouts: a telescope version, the polarization-based beam shaping as
used in STED (stimulated emission depletion) microscopy [10]] and the sharp focus of a radially
polarized light beam [24]]. The obtained results not only yielded a rediscovery of these foundational
configurations but also unveiled novel solutions following the same underlying physical principle
present in these experiments. Crucially, the motivation of our work goes far beyond small-scale
optimization of already known optical techniques. Rather, the future application of XLUMINA is the
Al-driven discovery of completely novel physical concepts for advanced optical microscopy.

1.1 Previous work

Optimization in microscopy Our approach is radically different from previous strategies that
employ Al for data-driven design of single optical elements [25}26] or data analysis in microscopy,
e.g. denoising, contrast enhancement or point-spread-function (PSF) engineering [27]]. While these
techniques are influential, they are not meant to change the principle of the experimental approach or
the optical layout itself. In contrast, XLUMINA is equipped with tools for simulate, optimize and
automatically design new optical setups and concepts from scratch.

Discovery in quantum optics Numerous works have recently shown how to automatically design
new quantum experiments with advanced computational methods [28431]], that has led to the discovery
of new concepts and numerous blueprints implemented in laboratories [32]. Other simulators such as
Strawberry fields focus specifically on optimization in photonic quantum computing [33].

Design in nanophotonics and photonic materials The field of optical inverse design focuses on
the de-novo design of nano-optical components with practical features[34}35]]. Examples include
on-chip particle accelerators [36], or wavelength-division multiplexers [37]. The main approach is the
development of efficient PDE-solvers for Maxwell’s equations, including efficient ways to compute
the gradients of the vast amount of parameters, usually by a physics-inspired technique called the
adjoint method [38,139]. These techniques are highly computationally expensive [40] due to their
physical targets. We have different physical targets, thus can apply various different approximations
in the beam propagation which significantly speeds up our simulator. Interestingly, the adjoint method
can be seen as a special case of auto-differentiation (which we use) [39].



Classical optics simulators Several open-source software tools, like Diffractio for light diffraction
and interference simulations [41], Finesse for simulating gravitational wave detectors [42], and
POPPY, developed as a part of the simulation package of the James Webb Telescope [43]], facilitate
classical optics phenomena simulations. There are also specialized resources like those focusing on
the design of Laguerre-Gaussian mode sorters utilizing multi-plane light conversion (MPLC) methods
[44]. While these software offer optics simulation capabilities, XLUMINA uniquely integrates
simulation with Al-driven automated design powered with JAX’s autodiff and just-in-time (jit)
compilation capabilities.

2 Software workflow and performance

XLUMINA allows for the simulation of classical optics hardware configurations and enables the
optimization and automated discovery of new setup designs. The software is developed using JAX
[45]], which provides an advantage of heightened computational speed while seamlessly integrating
the auto-differentiation framework [23]]. It is important to remark that our approach is not restricted
to run on CPU (as NumPy-based softwares do): due to JAX-integrated functionalities, by default
runs on GPU or TPU if available, otherwise automatically falls back to CPU.

The first benchmark is to rediscover highly impactful microscopy strategies, such as STED microscopy
[LO] or the sharp focus of a radially polarized light beam [24], as each of these incorporate different
ideas or physical properties of light. To that end, the algorithm is equipped with an optics simulator,
which contains a diverse set of optical manipulation, interaction, and measurement technologies. The
simulator enables, among many other features, to define light sources (of any wavelength and power),
phase masks (i.e., spatial light modulators, SLMs), polarizers, variable retarders (e.g., liquid crystal
displays, LCDs), diffraction gratings, and high NA lenses to replicate strong focusing conditions.
Light propagation and diffraction is simulated by two methods, each available for both scalar and
vectorial regimes: the fast-Fourier-transform (FFT) based numerical integration of the Rayleigh-
Sommerfeld (RS) diffraction integral [46, 47| and the Chirped z-transform (CZT) [48]]. The CZT is
an accelerated version of the RS algorithm, which allows for arbitrary selection and sampling of the
region of interest. Some functionalities of XLUMINA’s optics simulator (e.g., optical propagation
algorithms, planar lens or amplitude masks) are inspired in an open-source NumPy-based Python
module for diffraction and interferometry simulation, Diffractio [41]], although we have rewritten
and modified these approaches to combine them with JAX’s just-in-time (jit) functionality. On
top of that, we developed completely new functions (e.g., LCDs or propagation through high NA
objective lens with CZT methods, to name a few) which significantly expand the software capabilities.
The most important hardware addition on the optical simulator are the SLMs, each pixel of which
possesses an independent (and variable) phase value. They serve as a universal approximation for
phase masks (including lenses) and offer a computational advantage: given a specific pixel resolution,
they allow for unrestricted phase design selection. Such flexibility is crucial during the parameter
space exploration, as it allows the software to autonomously probe all potential solutions. In addition,
we defined under the name of super-SLM (sSLM) a hardware-box-type which consists of two SLMs,
each one independently imprinting a phase mask on the horizontal and vertical orthogonal polarization
components of the field.

To include the automated discovery feature, XLLUMINA’s optical simulator and optimizer are tied
together by the loss function. The software’s workflow is depicted in Fig. [T} We start by feeding
the system an initial random set of optical parameters, which shape the hardware design on a virtual
optical table. The performance of the virtual experiment is computed by the simulator, which leads
to detected light (e.g., captured images at the camera). From those simulated outputs, the objective
function (for instance, the spot size), is computed. To improve the metric of the cost function, the
optimizer adjusts the optical parameters in the initial virtual setup and the cycle is repeated. The
whole process is a back-and-forth between the simulator and the optimizer, refining the setup until a
convergence is observed.

The automated discovery tool is designed to explore the vast parameter space encompassing all
possible optical designs. A direct outcome of running individual optical simulations during each
optimization iteration is the considerable computational expense. Thus, it is essential to reduce
the computation time by maximizing the speed of optical simulation functions. By strategically
leveraging the JAX’s jit functionality, we optimize already existing propagation algorithms to mitigate
this computational constraint. Thus, we evaluate the performance of our optimized functions against
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Figure 1: Workflow of XLUMINA, demonstrating the integrated feedback between the Al discovery
tool and the optics simulator.

their counterparts in Diffractio by propagating a Gaussian beam within a computational window sized
at 2048 x 2048. The average run-time for both Diffractio and our approach is shown in Figure 2.
Generally, our methods significantly enhance computational speeds for simulating light diffraction
and propagation. For instance, we observe a speedup of roughly a factor of 2 for RS and VCZT and
about 2.5 for VRS using the CPU. CZT has less significant speedup, but there is still a 0.5-second
improvement. With GPU utilization, the speed increases by up to three orders of magnitude.
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Figure 2: (a) Average execution time (in seconds) over 5 runs for scalar and vectorial field propagation
using Rayleigh-Sommerfeld (RS, VRS) and Chirped z-transform (CZT, VCZT) in Diffractio and our
approach. GPU times reflect the second run with pre-compiled jitted functions. (b) Convergence
time (in seconds) of BFGS and ADAM optimizers, on CPU and GPU, for computational windows
of sizes up to 500 x 500 pixels. The superior efficiency of the optimizer on GPU allows for highly
efficient optimizations in the large computational windows we use (up to 2048 x2048).

When it comes to the nature of the optimizer, it can be either direct (gradient-based) or deep learning-
based (surrogate models or deep generative models, e.g., variational autoencoders [49]). In this
work, we adopt a gradient-based strategy, where the experimental setup’s parameters are adjusted
iteratively in the steepest descent direction. To chose the optimizer, we evaluate the convergence
time of two gradient-descent techniques: the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
which numerically computes gradients and higher-order derivative approximations, and the adaptive
moment estimation (ADAM), an instance of the stochastic-gradient-descent (SGD) method. While
BFGS is part of the open-source SciPy Python library and operates on the CPU, ADAM is integrated
within the JAX library and runs in both CPU and GPU. Taking advantage of the JAX’s built-in
autodiff framework, the gradients of the loss function are computed analytically. Combined with
the jit functionality, this approach enables the optimizer to efficiently construct an internal gradient
function, thus considerably reducing computational time per iteration. For the evaluation, we simulate
a Gaussian beam interacting with a phase mask. The objective function is the mean squared error
between the detected light and the ground truth, characterized by a Gaussian beam with a spiral
phase imprinted on its wavefront. Initializing with an arbitrary phase mask configuration, we run
both BFGS and ADAM optimizers over different computational windows and devices, as depicted in
Fig. 2p. On the CPU, BFGS exhibits exponential scaling in convergence time, reaching about 6500
seconds for 250 x 250 pixel window. In contrast, ADAM demonstrates superior efficiency, reducing
it to roughly 2600 seconds. GPU optimization performance is even more pronounced, reaching
convergence in approximately 950 seconds for a 500 x 500 pixel window. Given that certain optical
elements, such as phase masks, may operate at resolutions as high as 2048 x 2048 pixels, the resulting



search space can expand to around 8.4 million parameters if two of these elements are included.
This makes the GPU-accelerated ADAM approach more appropriate for efficient experimentation.
Overall, the computational performance of XLUMINA highlights its suitability for running complex
simulations and optimizations with a high level of efficiency.

3 Results and discussion

In this section, we showcase the virtual optical designs generated by XLUMINA. As benchmarks, we
aim to rediscover three foundational experiments, each one covering different areas in optics. By
increasing the complexity of the description of light (from scalar to vectorial fields representation),
we selected: (1) an optical telescope version, (2) polarization-based beam shaping as used in STED
microscopy [10]], and (3) the sharper focus for a radially polarized light beam, as detailed in Ref.
[24].

Optical telescope The simplified model of the telescope comprises two lenses, each one positioned
a focal length apart from their respective input and output planes, f; and fs, respectively, and f1 + fo
from each other. This arrangement performs optical Fourier transformations of input light with
magnifications determined by the ratio f5/ f1. To revisit this design with a magnification of 2z, we
encoded the virtual setup depicted in Fig. [3p, in which traditional lenses are replaced by spatial
light modulators (SLMs). The parameter space includes the distances, 21, z2 and z3 (measured
in millimeters) and the phase masks (measured in radians) of the two SLMs with a resolution of
1024 x 1024 pixels. The training dataset is composed of 14,000 [input, output] intensity sample
pairs. Each sample consists of a Gaussian beam shaped by amplitude masks in various forms (circles,
rectangles, squares and rings), with varying sizes and orientations. The corresponding output for
each input is an inverted version, magnified by a factor of 2. The cost function is the mean squared
error between the dataset’s output and the detected intensity pattern from the virtual setup. The
optimization starts with randomly initialized optical parameters. We select training examples in
batches of 10 and evaluate the current setup response and its loss value. The average loss over the
batch guides the update of the optical parameters, repeating this cycle until convergence is reached.

The obtained results are displayed in Fig. [3p. The solution depicts lens-like quadratic phases in both
SLMs. Notably, the reference model traditionally uses two lenses set at specific distances, yet the
identified distances don’t fulfill such relation. This suggests that phase mask of SLM#1 might be
compensating for this deviation. The challenge ahead lies in effectively balancing the optimization of
millions of phase parameters against a singular distance parameter. On the other hand, we believe
that the more precise solution for SLM#?2 highlights its critical role in imaging. The triangle-shaped
amplitude mask shown in Fig. [3c, not included in the training data, shows the optical setup can invert
but not sufficiently magnify the input shape.
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Figure 3: (a) Virtual telescope arrangement with original lenses replaced by two spatial light modula-
tors (SLMs). Optimized distances correspond to z; = 0.74 mm, zo = 2.58 mm and z3 = 4.14 mm.
(b) Phase mask solutions for SLM#1 and SLM#:2. (c) Input and detected intensity patterns for the
identified optical design.

STED microscopy STED microscopy [10]] is based on excitation and spatially targeted depletion
of fluorophores. In order to achieve this, a Gaussian-shaped excitation beam and a doughnut-shaped



depletion beam are concentrically overlapped. The depletion beam has zero intensity in the center,
where the excitation beam has its maximum. Fluorophores that are not in the center of the beams
are forced to emit at the wavelength of the depletion beam. Their emission is spectrally filtered
out. Only fluorophores in the center of the beams are allowed to fluoresce normally, and only their
emission is ultimately detected. This effectively reduces the area of normal fluorescence, which leads
to super-resolution imaging.

In order to generate a doughnut-shaped beam a spiral phase is imprinted into the wavefront of a
Gaussian beam. To revisit this principle, we virtually construct a simplified version of a STED-type
setup as depicted in Fig. . It consists of two light sources generating Gaussian beams corresponding
to the depletion and excitation beams with wavelengths of 650 nm and 532 nm, respectively. The
excitation and depletion beams are linearly polarized in orthogonal directions. Within the depletion
beam’s optical path, we place an SLM of 2048 x 2048 resolution and a computational pixel size
of 1.95um. After propagating some set distance, a high numerical aperture (NA) objective lens
focuses both beams onto the detector screen. To simulate the basic concept of stimulated emission
with neither time dependency nor fluorophores in the focal plane, we perform a subtraction of the
intensity of the excitation and depletion beams, which results in the effective fluorescence that would
ultimately be detected (negative values are set to zero, resembling a filter that removes residual
depletion intensity). In this instance, the parameter space is defined by the SLM. The loss function
is calculated as the inverse of the normalized intensity, I4.¢, over the detector. Only pixels with
Tget > € - max(Iget), where 0 < e < 1, are considered, with all others set to 0. In particular,

1
L= ——, 1
S I(iy g) W

where N is the camera’s total pixel count and I is the intensity pattern for a given threshold . Thus,
minimizing £ aims to maximize the generation of high intensity beams. For this particular instance,
the detected intensity corresponds to the radial component, |E,|? + |E,|?, of the effective beam.
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Figure 4: (a) Virtual STED-type setup. A 0.9 NA objective lens focuses both light beams into the
detector screen of 0.05um pixel size. (b) STED spiral phase (Hell, S. and Wichmann, J., 1994)
and discovered phase mask. (c) Radial intensity profile in vertical beam section: excitation (green),
depletion (orange), and super-resolution effective STED beam (dotted blue). Lateral position indicates
lateral distance from the optical axis. (d) Effective beam waist (in ;m) as a function of depletion and
excitation intensity ratio (Igep/Ies).

In Fig. @b, we present the STED spiral phase mask [10] and the identified solution for e = 0.7. From
a random initial phase mask in the SLM, the system converged into a pattern alike to the spiral phase.
While the spiral phase mask features a consistent and gradual phase variation across the spiral, this
progression is not as evident in the discovered solution. Furthermore, we would like to emphasize the
remarkably low noise contribution on the identified phase pattern. Other solutions presented noisy
phase patterns which failed to achieve the essential doughnut-shaped depletion beam. Real-world



STED setups demand almost perfect phase patterns; even the minor misalignment can compromise
the super-resolution STED phenomena. Remarkably, without prior knowledge, our system detected
this sensitivity, converging towards a smooth phase pattern. To highlight the doughnut shape of the
depletion beam, we computed the vertical cross-section of the focused intensity patterns for both
excitation and depletion beams (green and orange lines in Fig. AL, respectively) and the effective
beam resulting from stimulated emission (dotted blue line in Fig. k). The behavior across the
horizontal axis yields similar features. Notably, despite both the excitation and depletion beams being
diffraction-limited, the effective response is sub-diffraction. To expand on this Al-discovered solution,
we systematically changed the intensity of the depletion beam relative to the excitation beam. Indeed,
we observed the expected inverse square root scaling of the effective beam diameter relative to the
intensity ratio of depletion and excitation beam (). Such outcomes accentuate the success of our
Al-driven exploration tool in identifying crucial components intrinsic to STED microscopy.

Sharper focus for a radially polarized light beam The final benchmark focuses on the generation
of an ultra-sharp focus for a radially polarized beam, a feature that breaks the diffraction limit in
the longitudinal direction as demonstrated by R. Dorn, S. Quabis and G. Leuchs in Ref. [24]]. This
super-resolution is achieved when a radially polarized beam is tightly focused using a high NA
objective lens [50]. Importantly, by rotating the input polarization by 90° it is possible to switch
from radially to azimuthally polarized beam while maintaining the same doughnut-shaped intensity
distribution. In the last case, however, the longitudinal electric field is zero at the optical axis [51]].
To revisit this principle, we encoded the virtual setup depicted in Fig. [Sh. The light source emits
a 635 nm wavelength Gaussian beam that is linearly polarized. The original optical elements are
replaced by an sSLM, each component of which has a resolution of 2048 x 2048 pixels and a
computational pixel size of 1.46m. Additionally, we place an LCD with variable phase retardance n
and orientation angle 6. The beam then passes through a high NA objective lens before reaching the
detector screen. Relevant data on the sSSLM’s phase masks, optical parameters, and the simulated spot
size are showcased in Fig. [5p and Table[T] The cost function corresponds to £ in Eq. (I)), already used
in the previously discussed STED setup. In this case, however, the measured intensity corresponds to
the electromagnetic field’s longitudinal component, | E,|?.
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Figure 5: (a) Virtual optical setup consisting of a sSSLM (super-spatial light modulator), a liquid
crystal display (LCD) and an objective lens of 0.9 NA focusing the light onto the detector of 0.05 um
pixel size; z; and z, denote for distances. (b) Phase masks for Dorn, R. et. al. (2003). (c) Discovered
phase patterns for Solution #1. (d) Longitudinal intensity profile, I, for Dorn, R. et. al. (2003) and
the identified Solution #1 (black dotted, and green lines, respectively) and radial intensity profile, I,.,
of the diffraction-limited light beam (orange dotted line).

Among the obtained results we identified two interesting solutions, namely Solution #1 and #2,
corresponding to € = 0.7 and 0.5, respectively. The obtained phase patterns for Solution #1, depicted



in Fig. 5k, resemble forked gratings with integer forked dislocations of p = 1 [52]]. Such gratings
are known for producing beams with phase singularities, like doughnut-shaped beams, which play
an important role in optical trapping and manipulation of small particles [53]. The output light
beam is slightly deflected and demonstrates a radial intensity doughnut shape and a longitudinal
intensity with a spot size slightly larger than the simulated for Dorn, R. et. al. [24]] (see Table[I).
With regards to Solution #2, the SLM phase pattern also shows a tilted forked grating of topological
charge p = 1. However, the fringe pattern frequency of this solution is significantly higher than
that of Solution #1. Due to its complexity and reduced clarity, we opted not to include it in the
manuscript. The identified optical parameters are displayed in Table|l} The longitudinal intensity
profiles (assuming all beams on-axis) of Dorn, R. et. al. (2003) and Solution #1 are depicted in Fig.
[k (represented by dotted black and green respectively). For comparison, we also feature the radial
intensity profile of the diffraction-limited linearly polarized beam (dotted orange line in Fig. [5p).
Clearly, the identified solutions surpass the diffraction limit showing similar spot sizes. Remarkably,
the Al generated this solution without prior knowledge of forked grating elements or their specific
use. It found an alternative way to imprint a phase singularity onto the beam and produce pronounced
longitudinal components on the focal plane. Additionally, when the input polarization is rotated by
90° the solution behavior is in agreement with Dorn, R. et. al. (2003): while maintaining the same
doughnut-shaped intensity distribution, the longitudinal field in the focal plane presents a zero in its
center.

Table 1: Optical parameters of LCD retardance 7, orientation 6, propagation distances (z; and z2)
and simulated longitudinal spot size of Dorn, R. et. al. [24] and the identified solutions. Discovered
approaches break the diffraction limit demonstrating similar spot sizes as Dorn, R. et. al (2003).

n(rad) 6 (rad) 2z (mm) 2z, (mm) Spotsize / A\

Dorn, R. et. al. (2003) 0 0 18 1000 0.2289
Solution #1 2.08 2.56 15 19 0.2419
Solution #2 -1.31 0.80 34 20 0.2205

Diffraction-limited / / / / 0.27

Towards large-scale discovery The results we’ve presented thus far predominantly involve optical
setups characterized by a limited number of optical elements. This was crucial for our purpose to
demonstrate how XLUMINA can compute and efficiently rediscover known techniques in advanced
microscopy. However, our ambition extends beyond the optimization. We aim to use XLUMINA to
discover new microscopy concepts. To achieve this, we will start with initial setups with a large and
complex optical topology, inspired by other fields that start with highly expressive initial circuits
[54,155]. From here, XLUMINA should be able to extract much more complex solutions which
humans might not have thought about yet[2]. This is our immediate next goal.

4 Conclusions and outlook

In this work, we present an efficient and reliable simulator for advanced optical microscopy. We
demonstrate its general applicability by discovering three important and complex microscopy tech-
niques. The simulator is developed in a modular way, and we plan to significantly expand it by adding
more physical properties and features exploited in microscopy, for example, detailed coverage of
frequency and time information, which might enable systems such as iSCAT [56], structured illumi-
nation microscopy [S7]], and localization microscopy [S8l]. Additionally, XLLUMINA provides already
the basis for an expansion to complex quantum optics microscopy techniques [39] or other quantum
imaging techniques [60], as a quantum of light (i.e., a photon) is nothing else than an excitation of the
modes of the electromagnetic field. Looking further into the future, one can expect that matter-wave
beams (governed by Schrodinger’s equation, which is closely related to the paraxial wave equation, a
special case of the electromagnetic field) can be simulated in the same framework. This might allow
for the Al-based design of hybrid microscopy techniques using light and complex electron-beams
[61] or coherent beams of high-mass particles [62]. Ultimately, bringing so far unexplored concepts
from diverse areas of physics to microscopy applications is at the heart of Al-driven discovery in this
area, and we hope that this work constitutes a first step in this direction.
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