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Abstract

We present a neural network structure, FramePack, to train next-frame (or next-
frame-section) prediction models for video generation. FramePack compresses
input frame contexts with frame-wise importance so that more frames can be en-
coded within a fixed context length, with more important frames having longer
contexts. The frame importance can be measured using time proximity, feature
similarity, or hybrid metrics. The packing method allows for inference with thou-
sands of frames and training with relatively large batch sizes. We also present drift
prevention methods to address observation bias (error accumulation), including
early-established endpoints, adjusted sampling orders, and discrete history repre-
sentation. Ablation studies validate the effectiveness of the anti-drifting methods in
both single-directional video streaming and bi-directional video generation. Finally,
we show that existing video diffusion models can be finetuned with FramePack,
and analyze the differences between different packing schedules.

1 Introduction

Forgetting and drifting are the two most critical problems in next-frame-prediction models for video
generation. “Forgetting” refers to the fading of memory as the model struggles to remember earlier
content and maintain consistent temporal dependencies. “Drifting” refers to the degradation of visual
quality due to error accumulation over time (also called exposure/observation bias).

A fundamental dilemma emerges when attempting to simultaneously address both forgetting and
drifting: any method that mitigates forgetting by enhancing memory may also increase error
accumulation/propagation, thereby exacerbating drifting; any method that reduces drifting by
interrupting error propagation needs to weaken temporal dependencies (e.g., masking or re-noising
the history), thus worsening the forgetting. This is a fundamental trade-off that hinders the scalability
of next-frame prediction models.

A naive solution to forgetting is to encode more frames. But this approach quickly becomes
computationally intractable due to the quadratic attention complexity of transformers (even with
optimizations like Flash Attention [10], etc.). Moreover, video frames contain significant temporal
redundancy, making naive full-context approaches very inefficient. The substantial duplication of
visual features across consecutive frames suggests the potential to design effective compression
systems to facilitate memorization.

Drifting is influenced by memorizing mechanisms in several ways. The source of drifting lies in
the initial errors that occur in individual frames, while the effect is the propagation and accumulation
of these errors across subsequent frames, and the eventual drifting out of the train distribution. A
stronger memorization mechanism, on one hand, can lead to better temporal consistency and reduce
the occurrence of initial errors. On the other hand, it also memorizes more errors and thus accelerates
error propagation when errors do occur. This paradoxical relationship between memory mechanisms
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and drifting necessitates carefully designed training/sampling methods to facilitate error correction
or interrupt error propagation.

In this paper, we propose FramePack as an anti-forgetting memory structure along with anti-drifting
sampling and training methods. The FramePack structure addresses the forgetting problem by
compressing input frames based on their relative importance, ensuring that the total transformer
context length converges to a fixed upper bound. We consider both time-proximity-based and
feature-similarity-based importance measures. Afterwards, we propose anti-drifting sampling
methods that break the causal prediction chain and incorporate bi-directional contexts by planning
single or multiple endpoint frames. We also present an anti-drifting training method to convert frame
history into discrete tokens so as to reduce the history disparity between training and inference. We
show that these methods effectively reduce the occurrence of errors and prevent their propagation.

We demonstrate that existing pretrained video diffusion models (e.g., HunyuanVideo [28], Wan [48],
etc.) can be finetuned with FramePack. Our experiments reveal several findings: because next-frame
prediction generates smaller tensor sizes per step compared to full-video generation, it enables more
balanced diffusion schedulers with less extreme flow shift timesteps. We also show that the efficient
implementations of FramePack can process thousands of frames with 13B models even on laptops
(e.g., 6GB or 8GB GPU memory).

2 Related Work

2.1 Anti-forgetting and Anti-drifting

The trade-off between forgetting and drifting is also evidenced by previous discussions. CausVid [65]
shows that when the video generator is causal, the quality degradation appears at the end of the video
and the high-quality part may be subject to an upper bound length. DiffusionForcing [6] discussed
that the cause of this drift may be related to error accumulation in models’ observation disparity
between training and inference. Wang et al. [51] discussed that a model with stronger memory may
suffer more from drifting and error accumulation.

Noise scheduling and augmentation in history frames modify noise levels at specific timesteps,
video times, or image frequencies to mitigate drifting. These methods generally reduce the dependency
on past frames. DiffusionForcing [6] and RollingDiffusion [39] are typical examples. Our ablation
studies investigate the influence of adding noise to history frames.

Classifier-Free Guidance (CFG) over history frames applies different masks or noise levels
to opposite sides of guidance to amplify the forgetting-drifting trade-off. HistoryGuidance [41]
demonstrates this approach. Our ablation studies include guidance-based noise scheduling.

Anchor frames can be used as planning elements for video generation. StreamingT2V [20] and
ART-V [54] use reference images as anchors. Video planning approaches [32, 73, 22, 60, 3, 61] use
image or video anchors for content planning.

Compressing latent space can improve the efficiency of video diffusion models. FlexTok [2] adjusts
token context length to achieve different levels of visual content compression. LTXVideo [17] shows
that a highly compressed latent space can be used for diffusing videos efficiently. PyramidFlow [25]
diffuses video latents in a pyramid and re-noises downsampled latents in that pyramid to reduce
computation costs. FAR [16] proposes a multi-level causal attention structure to establish long-short-
term causal context pacifying and KV caches. HiTVideo [76] uses hierarchical tokenizers to enhance
the video generation with autoregressive language models.

Memory in world models often involves different modeling of long-term memory. Typical examples
are 3D geometry like mesh and proxy [38, 50, 67, 66]. Training diffusion models with domain data
can also bake the memory into the model, with full model training [1, 46] or low-rank methods [21].
Retrieval-based memory mechanisms like WorldMem [58] are efficient when the task prioritizes
reconstructing history contents.

2.2 Long Video Generation

Extending video generation beyond short clips remains an open problem. LVDM [19] generates
long videos using latent diffusion, while Phenaki [47] creates variable-length videos from sequences

2



of text prompts. Gen-L-Video [49] applies temporal co-denoising for multi-text conditioned videos,
and FreeNoise [37] extends pretrained models without additional training via noise rescheduling.
NUWA-XL [62] implements a Diffusion-over-Diffusion architecture with coarse-to-fine processing,
while Video-Infinity [44] overcomes computational constraints through distributed generation.
StreamingT2V [20] produces consistent, dynamic, and extendable videos without hard cuts, and
CausVid [65] transforms bidirectional models into fast autoregressive models through distillation.
Recent advances include GPT-like architecture (ViD-GPT [15]), multi-event generation (MEVG [36]),
attention control for multi-prompt generation (DiTCtrl [5]), precise temporal control (MinT [55]),
history-based guidance (HistoryGuidance [41]), unified next-token and full-sequence diffusion
(DiffusionForcing [6]), SpectralBlend temporal attention (FreeLong [33]), video autoregressive
modeling (FAR [16]), and test-time training (TTT [9]). Harvey et al. [18] proposes a flexible
approach for modeling long contexts with dilatation (Hierarchy-2) and propagation. Generating
longer videos often requires efficient architectures, e.g., linear attention [4, 59, 52, 8, 68, 26], sparse
attention [56, 71, 72, 57], low-bit computation [30, 74, 29], low-bit attention [70, 69], hidden state
caching [35, 31], distillation [42, 34, 63, 64], etc.

3 Packing Frame Context

We consider a video generation model that predicts next frames repeatedly to form a video. For
simplicity, we consider next-frame-section prediction models using Diffusion Transformers (DiTs)
that generate a section X of S unknown frames so that X ∈ RS×h×w×c, conditioned on a section
F of T input frames so that F ∈ RT×h×w×c. All definitions of frames and pixels refer to latent
representations, as most modern models operate in latent space.

For next-frame (or next-frame-section) prediction, S is typically 1 (or a small number). We focus on
the challenging case where T ≫ S. With per-frame context length Lf (typically Lf ≈ 1560 for each
480p frame in Hunyuan/Wan/Flux), the vanilla DiT yields total context length L = Lf (T + S). This
causes a context length explosion when T is large. We observe that the input frames have different
importance when predicting the next frame, and we can prioritize them according to their importance.

3.1 Time Proximity Based Packing

We first consider a baseline case where the temporal proximity reflects frame importance (Fig. 1-
(a)). More advanced cases involving similarity-based importance are covered in §3.2. With frames
temporally closer to the prediction target being more relevant, we enumerate all frames with F0

being the most important (e.g., the most recent) and FT−1 being the least (e.g., the oldest). We
define a length function ϕ(Fi) that determines each frame’s context length after VAE encoding and
transformer patchifying by applying progressive compression

ϕ(Fi) =
Lf

λi
, (1)

where λ > 1 is a compression parameter. The frame-wise compression is achieved by manipulating
the transformer’s patchify kernel size in the input layer (e.g., λ = 2, i = 5 means a kernel size where
the product of all dims equals 25 = 32 like the 3D kernel 2× 4× 4, or 8× 2× 2, etc.). The total
context length then follows a geometric progression

L = S · Lf + Lf ·
T−1∑
i=0

1

λi
= S · Lf + Lf · 1− 1/λT

1− 1/λ
, (2)

and when T → ∞, the total context length converges to limT→∞ L = (S + λ
λ−1 ). This bounded

context length makes FramePack’s compression bottleneck invariant to the input frame number T .

Since most hardware supports efficient matrix processing by powers of 2, we mainly discuss the
case of λ = 2 in this paper. Note that we can represent arbitrary compression rates by duplicating
(or dropping) several specific terms in the power-of-2 sequence: considering the accumulation∑+∞

i=0
1
2i = 2

2−1 = 2, if we want to loosen it a bit, for example to 2.625, we can duplicate the terms
1
2 and 1

8 so that 1
1 +

1
2 +( 12 )+

1
4 +

1
8 +( 18 )+

1
16 + ... = 1

2 +
1
8 +

∑+∞
i=0

1
2i = 2.625. Following this,

one can cover arbitrary rates by converting the rate value to binary bits and then translating every bit.
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(a) Time-proximity-based permutation:

(b) Feature-similarity-based permutation:
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Figure 1: FramePack variants. We present frame packing methods using time proximity or feature
similarity. We discuss several typical kernel structures. This list does not necessarily cover all popular
variants, and more structures can be developed in a similar way.

Packing schedules The patchifying operations in most DiTs are 3D, and we denote the 3D kernel
as (pf , ph, pw) representing the steps in frame number, height, and width. A same compression rate
can be achieved by multiple possible kernel sizes, e.g., the compression rate of 64 can be achieved by
(1, 8, 8), (4, 4, 4), (16, 2, 2), (64, 1, 1), etc. Compression levels can be duplicated and combined with
higher compression rates. We discuss more packing ways in Fig. 1-(c): duplication allows for same
kernel sizes in frame width and height, making the compression more compact; temporal kernel can
compress contiguous frames into a single tensor; symmetric progression treats both beginning and
ending frames as equally important.

Independent patchifying parameters Empirical evidence shows that using independent
parameters for the different input projections at multiple compression rates facilitates stabilized
learning. We assign the most commonly used input compression kernels as independent neural
network layers: (2, 4, 4), (4, 8, 8), and (8, 16, 16). For higher compressions (e.g., at (16, 32, 32)),
we first downsample (e.g., with 2× 2× 2) and then use the largest kernel (8, 16, 16). We initialize
their separated weights by interpolating from the pretrained patchifying projection (e.g., the (2, 4, 4)
projection of HunyuanVideo/Wan).

Tail options While in theory FramePack can process videos of arbitrary length with a fixed,
invariant context length, frames may fall below a minimum unit size (e.g., a single latent pixel) when
the input length becomes extremely large. We discuss 3 options to process the tail frames: (1) simply
delete the tail; (2) allow each tail frame to increase the context length by a single latent pixel; (3)
apply global average pooling to all tail frames and process them with the last kernel. In our tests, the
visual differences between these options are relatively negligible.

RoPE alignment When encoding inputs with different compression kernels, the different context
lengths require RoPE (Rotary Position Embedding) [43] alignment. RoPE generates complex numbers
with real and imaginary parts for each token position across all channels, which we refer to as “phase”.
We directly downsample (using average pooling) such phases to match the compression kernels.

3.2 Feature Similarity Based Packing and Hybrid Approach

The aforementioned frame ordering F0...T−1 can be seen as a result of sorting all history frames
using their time positions. We note that such sorting can also use other metrics like feature similarity
(Fig. 1-(b)). For instance, consider a typical cosine similarity

simcos(Fi, X̂) =
∑
p

(Fi)p · X̂⊤
p

∥(Fi)p∥∥X̂p∥
, (3)

where the sum is taken over pixels p. This measures the cosine similarity between each history
frame and the estimated next frame section. Sorting the history frames using simcos(·) will produce a
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(a) Vanilla (b) Anti-drifting 

(c) Inverted anti-drifting (d) Planned anti-drifting (e) History discretization

Codebook
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Figure 2: Anti-drifting sampling and training methods. We present sampling approaches to
generate frames in different temporal orders. The shadowed squares are the generated frames in each
iteration, whereas the white squares are the iteration inputs. We also discuss the method to convert
the frame history into a discrete representation.

permutation F0...T−1 with F0 being the most similar and FT−1 being the least. This permutation can
directly replace the aforementioned time proximity. Since similarity-based permutation may change
abruptly when processing contiguous frames, we also consider a smooth time proximity modeling

simtime(Fi, X̂) = e−(time(Fi)−time(X̂))2 , (4)

where time(·) gets the frames’ starting time measured in seconds. Consider the weighting

simhybrid(Fi, X̂) = simcos(Fi, X̂) + λtime simtime(Fi, X̂) , (5)

where λtime is a weighting parameter. Sorting the history frames using simhybrid(·) will produce a
permutation that transits relatively smoothly as the generating window moves forward in time. This
hybrid approach is suitable for world model datasets (mainly video games) that require returning to
previously visited views of scenes or events. Similar sorting can also be applied to facial identity
metrics to facilitate movie generation applications that emphasize consistent human actors. This
method will be evaluated in ablation experiments in the supplementary materials.

4 Drift Prevention

Drifting is a common problem in next-frame prediction models where visual quality degrades as
video length increases. We discuss anti-drifting approaches by adjusting the sampling processes and
history representations as shown in Fig. 2.

4.1 Planned Endpoints and Adjusted Sampling Order

One possible explanation of drifting is that the modeling of the chained conditional probability
P(Xt|Xt−1) fails to approximate P(Xt) due to imperfect estimations. This perspective indicates
that a strict causal system is more vulnerable to drifting than bi-directional models that directly
approximate P(Xt|Xt1 ,Xt2) where t1 < t < t2.

Endpoint planning The vanilla sampling method shown in Fig. 2-(a) can be modified into Fig. 2-
(b), where the first iteration simultaneously generates both beginning and ending sections, while
subsequent iterations fill the gaps between these anchors. This simple method can get rid of drifting
in specific cases when the video motions are in a relatively small range, or when the motion patterns
are repeated or periodic (e.g., dancing, talking, spinning, etc.), or when the motion content follows
some texture patterns (e.g., fire flame, water flow, etc.).
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Inverted sampling (image-to-video) A variant by inverting the sampling order in Fig. 2-(b) into
Fig. 2-(c) is effective for image-to-video generation. In image-to-video, the first frame is a ground-
truth user input, whereas the last frame is a generated endpoint that is not guaranteed to perfectly
preserve the quality of the user input. All generations in Fig. 2-(c) keep the direction to approximate
the high-quality user input, leading to iteratively refined generations.

Multiple endpoints The endpoint planning can be repeated with different prompts before filling in
the gaps, resulting in a planned sequence of generation (Fig. 2-(d)). Note that though the drifting
might still happen in the endpoint-wise, in certain cases, when the prompted sections are distant
enough, the error accumulation becomes almost negligible. This method is more flexible than single
endpoint planning and supports more dynamic motions and more complicated storytelling.

RoPE with random access These sampling methods require modifications to RoPE to support
non-consecutive phases (time indices of frames). This is achieved by skipping the blank phases
(indices) in the time dimension.

4.2 History Discretization

Another potential cause of drifting is the difference between training and inference distributions over
the history frames. This indicates that drifting can be mitigated if the history representation is not
sensitive enough to distinguish between the training and inference frames. Discrete integer tokens are
well-suited to reduce the mode gap between training and inference distributions. This perspective is
supported by empirical evidence that discrete autoregressive systems (e.g., LLMs) often demonstrate
less obvious drifting than continuous autoregressive systems for visual content diffusion.

We discretize the history as in Fig. 2-(e). Consider a dataset Φ ∈ R(B×T×H×W )×C of precomputed
latent videos, a K-Mean over all latent pixels will yield a codebook Ω ∈ RK×C where K ∈ Z+ is
an adjustable number. Any latent frame F ∈ RT×H×W×C can be quantized by Q(·) with

Q(F )p = argmin
k

||Fp − Ωk||2 , (6)

where p is pixel position, and Q(F ) ∈ [0,K − 1]T×H×W is a matrix of indices over the codebook Ω.
The matrix of indices can be converted back to latent videos by ΩQ(F ) ∈ RT×H×W×C . We replace
all history frames F with ΩQ(F ) during training.

Intuitively, when K = 1, the history becomes meaningless as one single color, and the drifting is
eliminated at the cost of giving up memory (errors do not accumulate but sections become unrelated);
when K → ∞, the effect is equivalent to no discretization, and the drifting remains. We show with
ablation study that a suitable K can minimize the error propagation while simultaneously producing
plausible consistency between sections.

5 Experiments

5.1 Ablative Naming

To simplify the presentation of the experiments, we use a common naming convention for all ablative
structures. A FramePack name is represented as a string such as td_f16k4f4k2f1k1_g9_x_f1k1.
We explain the meaning of this notation:

Kernel: A kernel name is like k1h2w2. The k stands for “kernel”, and k1h2w2 indicates a patchify
kernel with shape (1, 2, 2), where the temporal size is 1, the height is 2, and the width is 2.

Kernel (simplified): For simplicity, since kernels that are multiples of (1, 2, 2) are commonly used,
we use abbreviated notation such as k1 that only denotes the temporal dimension. Specifically, k1
represents k1h2w2 (the kernel (1, 2, 2)), k2 represents k2h4w4 (the kernel (2, 4, 4)), etc.

Encoding frames: The notation f16k4 indicates that 16 frames are encoded by the kernel k4 (the
simplified k4h8w8) with kernel size (4, 8, 8).

Packing: The notation f16k4f2k2f1k1 shows a way to encode 19 contiguous frames: the first 16
frames are encoded by the kernel k4 (the kernel (4, 8, 8)), the next 2 frames are encoded by the kernel
k2 (the kernel (2, 4, 4)), and the last 1 frame is encoded by the kernel k1 (the kernel (1, 2, 2)).
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Tail: We append the notation with td, ta, or tc to indicate the tail frames before or after packing,
such as td_f16k4f4k2f1k1. The three options are as discussed in Section 3.1. Herein, the “delete”
option td deletes the tail. The “append” option ta compresses each tail frame by performing a 3D
pooling of (1, 32, 32) and then encodes with the nearest kernel, and the “compress” option tc uses
global average pooling for all tail frames and compresses them with the nearest kernel.

Skipping: The notation x skips an arbitrary number of frames (including 0 frames).

History Discretization: The notation +d means converting history into discrete space.

Generating: The notation g9 means generating 9 frames.

With the above naming convention, we can represent all ablative structures in a compact form. Note
that this naming also implies the sampling approach as discussed in Section 4.1:

td_f16k4f4k2f1k1_g9: The vanilla sampling that generates frames in temporal order.

td_f16k4f4k2f1k1_g9+D: The vanilla sampling with history discretization.

td_f16k4f4k2f1k1_g9_x_f1k1: The anti-drifting sampling with an endpoint frame.

f1k1_x_g9_f1k1f4k2f16k4_td: The inverted anti-drifting sampling in inverted temporal order.

5.2 Base Model and Implementation Details

We implement FramePack with Wan and HunyuanVideo. We implement both the text-to-video and
image-to-video structures, though both are naturally supported by next-frame-section prediction
models and do not need architecture modifications. We report results with HunyuanVideo in the
main paper (see also supplementary for Wan results). We conduct all experiments using H100 GPU
clusters with training details in the supplementary. Note that FramePack achieves a batch size of
about 64 on a single 8×A100-80G node with the 13B HunyuanVideo model at 480p resolution
LoRA training with window size 2 or 3 (or batch size 32 of window size 4 or 5), making FramePack
suitable for personal or laboratory-scale training and experimentation. We follow the guidelines of
LTXVideo [17]’s dataset collection pipeline to gather data at multiple resolutions and quality levels
(see also supplementary for more details).

5.3 Quantitative Evaluation

We discuss the metrics for evaluating ablative architectures. The tested inputs consist of 512 real user
prompts for text-to-video and 512 image-prompt pairs for image-to-video tasks. All test samples
were curated from real users to ensure diversity and real-world applicability. For quantitative tests,
we by default use 30 seconds for long videos and 5 seconds for short videos.

Metrics Multiple metrics for video evaluations are consistent with common benchmarks, e.g.,
VBench [24], VBench2 [75], etc. Clarity: The MUSIQ [27] image quality predictor trained on
SPAQ [14]. This metric measures artifacts like noise and blurring. Aesthetic: The LAION aesthetic
predictor [40]. This metric measures the aesthetic values perceived by a CLIP-based estimator.
Motion: The video frame interpolation model [23] modified by VBench to measure the smoothness
of motion. Dynamic: The RAFT [45] modified by VBench to estimate the degree of dynamics. Note
that the “dynamic” metric and “motion” metric represent a trade-off, e.g., a still image may rank
high on motion smoothness but will be penalized by low dynamic degrees. Semantic: The video-text
score computed by ViCLIP [53]. This metric measures the overall semantic consistency between
the generated video and the prompt. Anatomy: The ViT [13] pretrained by VBench for identifying
the per-frame presence of hands, faces, bodies, etc. Identity: The facial feature similarity using
ArcFace [11] with face detection by RetinaFace [12].

Drifting measurement We observe that when drifting occurs, a significant difference emerges
between the beginning and ending portions of a video across various quality metrics. We define the
start-end contrast ∆M

drift for an arbitrary quality metric M as:

∆M
drift(V ) = |M(Vstart)−M(Vend)| , (7)

where V is the tested video, Vstart represents the first 15% of frames, and Vend represents the last 15%
of frames. This start-end contrast can be applied to different metrics M (e.g., motion score, image
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Table 1: Ablation study. We evaluate different FramePack configurations across multiple global
metrics, drifting metrics, and human assessments. The table is divided into 4 groups based on
sampling approach: vanilla sampling, anti-drifting sampling, and inverted anti-drifting sampling, and
vanilla sampling with discrete history. The tests are conducted with HunyuanVideo as base. Bests in
bold. ELO differences within ±16 are considered ties.

Variant
Global Metrics ↑ Drifting Metrics ↓ Human

Clarity Aesthetic Motion Dynamic Semantic Anatomy Identity ∆Clarity
drift ∆Motion

drift ∆Semantic
drift ∆Anatomy

drift ELO ↑ Rank* ↓
td_f8k8f4k4f2k2f1k1_g9 67.33% 65.94% 94.53% 92.91% 20.06% 66.97% 71.72% 3.25% 3.45% 7.45% 16.56% 1090 5
td_f64k8f16k4f4k2f1k1_g9 67.71% 66.71% 95.09% 93.91% 21.39% 66.56% 71.50% 3.22% 3.38% 7.25% 16.43% 1070 5
td_f512k8f64k4f8k2f1k1_g9 67.74% 66.44% 94.27% 92.91% 21.90% 67.73% 71.35% 3.18% 3.32% 7.05% 15.95% 1085 5
td_f512k16f64k8f8k2f1k1_g9 66.13% 64.52% 94.77% 94.18% 19.21% 65.72% 71.51% 3.25% 3.45% 7.85% 17.62% 1068 5
td_f16k4f4k2f1k1_g9 67.37% 65.05% 95.97% 91.66% 19.15% 65.38% 71.73% 3.22% 3.48% 6.65% 17.36% 1072 5
td_f16k4f2k2f1k1_g1 65.81% 64.39% 94.91% 94.92% 19.20% 64.16% 69.70% 3.43% 3.77% 9.81% 20.89% 1030 6
td_f16k4f2k2f1k1_g4 66.57% 64.99% 94.00% 82.85% 19.40% 65.97% 69.06% 3.36% 3.68% 8.55% 19.09% 1050 6
td_f16k4f2k2f1k1_g9 67.15% 65.29% 94.08% 92.97% 20.73% 66.46% 71.08% 3.18% 3.42% 7.45% 18.05% 1074 5
tc_f16k4f2k2f1k1_g9 67.62% 65.07% 94.02% 90.33% 21.71% 71.70% 71.01% 3.15% 3.25% 7.25% 17.21% 1088 5
ta_f16k4f2k2f1k1_g9 67.02% 66.44% 94.11% 91.09% 21.48% 71.92% 72.18% 3.12% 3.18% 7.05% 17.66% 1092 5

td_f8k8f4k4f2k2f1k1_g9_x_f1k1 68.46% 66.95% 96.46% 75.55% 22.88% 85.10% 75.84% 2.95% 2.85% 5.95% 15.87% 1135 3
td_f64k8f16k4f4k2f1k1_g9_x_f1k1 68.21% 67.75% 95.74% 85.97% 22.79% 81.09% 76.29% 2.92% 2.98% 5.95% 15.99% 1140 3
td_f512k8f64k4f8k2f1k1_g9_x_f1k1 68.62% 67.72% 95.05% 76.50% 22.44% 82.01% 76.65% 2.88% 2.92% 5.75% 15.94% 1118 4
td_f512k16f64k8f8k2f1k1_g9_x_f1k1 68.35% 67.89% 97.73% 76.48% 22.75% 78.40% 76.16% 2.85% 2.85% 5.55% 14.04% 1115 4
td_f16k4f4k2f1k1_g9_x_f1k1 68.42% 67.59% 96.74% 74.37% 23.69% 79.14% 77.37% 2.82% 2.78% 5.35% 14.90% 1138 3
td_f16k4f2k2f1k1_g1_x_f1k1 65.32% 67.97% 95.26% 81.69% 19.97% 74.57% 77.93% 2.78% 2.72% 4.95% 14.80% 1080 5
td_f16k4f2k2f1k1_g4_x_f1k1 69.92% 67.49% 97.84% 71.90% 21.12% 74.84% 77.53% 2.75% 2.65% 4.95% 14.98% 1100 4
td_f16k4f2k2f1k1_g9_x_f1k1 69.51% 69.15% 96.97% 77.41% 23.03% 83.10% 69.25% 2.72% 2.58% 4.75% 13.73% 1142 3
tc_f16k4f2k2f1k1_g9_x_f1k1 69.62% 68.42% 96.45% 82.27% 23.08% 81.68% 69.08% 2.68% 2.52% 4.55% 13.54% 1145 3
ta_f16k4f2k2f1k1_g9_x_f1k1 69.21% 68.84% 97.87% 76.22% 22.77% 81.70% 75.23% 2.65% 2.45% 4.35% 13.76% 1150 3

f1k1_x_g9_f1k1f2k2f4k4f8k8_td 69.62% 67.87% 97.93% 88.79% 23.73% 86.99% 78.63% 2.55% 2.35% 4.15% 12.71% 1210 1
f1k1_x_g9_f1k1f4k2f16k4f64k8_td 69.56% 67.48% 97.42% 86.68% 24.48% 86.35% 78.06% 2.45% 2.25% 3.95% 12.52% 1215 1
f1k1_x_g9_f1k1f8k2f64k4f512k8_td 69.35% 67.89% 97.85% 88.21% 24.66% 76.99% 79.56% 2.35% 2.15% 3.75% 12.13% 1220 1
f1k1_x_g9_f1k1f8k2f64k8f512k16_td 69.20% 68.76% 99.11% 89.18% 24.35% 77.62% 79.88% 2.35% 2.05% 3.55% 11.10% 1235 1
f1k1_x_g9_f1k1f4k2f16k4_td 69.25% 67.40% 98.59% 89.01% 24.24% 77.31% 79.16% 2.45% 1.95% 3.35% 9.22% 1225 1
f1k1_x_g1_f1k1f2k2f16k4_td 69.74% 67.04% 98.09% 79.85% 24.89% 77.27% 80.86% 2.55% 2.15% 3.75% 11.37% 1150 3
f1k1_x_g4_f1k1f2k2f16k4_td 70.28% 68.11% 98.30% 79.45% 24.87% 77.95% 80.23% 2.45% 2.05% 3.75% 11.12% 1175 2
f1k1_x_g9_f1k1f2k2f16k4_td 70.73% 67.97% 98.11% 88.76% 25.79% 78.45% 84.01% 2.35% 1.95% 3.65% 11.98% 1228 1
f1k1_x_g9_f1k1f2k2f16k4_tc 70.48% 68.74% 98.16% 89.18% 27.01% 87.21% 81.04% 2.18% 1.85% 2.54% 11.71% 1230 1
f1k1_x_g9_f1k1f2k2f16k4_ta 70.81% 67.31% 98.15% 80.72% 25.60% 85.60% 82.76% 2.25% 1.77% 2.95% 9.85% 1232 1
td_f8k8f4k4f2k2f1k1_g9+D 69.12% 66.53% 96.91% 93.07% 24.79% 82.58% 73.34% 2.43% 2.74% 4.45% 14.37% 1225 1
td_f64k8f16k4f4k2f1k1_g9+D 69.35% 65.99% 97.21% 92.83% 22.43% 81.88% 72.90% 2.22% 2.44% 4.49% 13.74% 1170 2
td_f512k8f64k4f8k2f1k1_g9+D 69.26% 67.24% 96.28% 91.01% 24.63% 82.58% 71.07% 2.26% 2.01% 5.46% 13.00% 1169 2
td_f512k16f64k8f8k2f1k1_g9+D 69.93% 67.26% 97.60% 93.61% 23.87% 81.27% 73.39% 2.93% 2.92% 5.11% 15.70% 1139 3
td_f16k4f4k2f1k1_g9+D 69.49% 67.25% 96.95% 92.39% 23.40% 88.67% 72.08% 2.30% 2.63% 6.74% 13.51% 1223 1
td_f16k4f2k2f1k1_g1+D 68.16% 65.47% 95.94% 93.15% 23.97% 75.24% 71.78% 2.66% 3.70% 6.40% 16.83% 1145 3
td_f16k4f2k2f1k1_g4+D 68.16% 65.80% 95.26% 92.97% 22.97% 69.87% 71.91% 2.70% 3.73% 5.69% 17.06% 1142 3
td_f16k4f2k2f1k1_g9+D 69.78% 67.22% 96.91% 91.39% 24.40% 77.62% 74.95% 2.30% 2.49% 4.12% 14.11% 1222 1
tc_f16k4f2k2f1k1_g9+D 69.42% 66.24% 96.01% 92.53% 23.06% 79.15% 72.76% 2.87% 2.43% 5.51% 13.67% 1218 1
ta_f16k4f2k2f1k1_g9+D 68.51% 67.77% 96.90% 93.92% 23.24% 79.90% 70.01% 2.27% 2.41% 4.31% 15.85% 1216 1

* Based on the ELO scores and tie rules, the ranks are divided into: 1030-1050 (Rank 6), 1068-1092 (Rank 5), 1100-1118 (Rank 4), 1135-1150 (Rank 3), 1169-1175 (Rank 2), and 1210-1235 (Rank 1).

quality, etc.). The magnitude of ∆M
drift(V ) directly indicates the severity of drifting. Since video

models may generate frames in different temporal orders (either forward or backward), we use the
absolute difference to ensure our metric remains direction-agnostic.

Human assessments We collect human preferences from A/B tests. Each ablative architecture
yields 100 results. The A/B tests are randomly distributed among ablations, and we ensure that each
ablation covers at least 100 assessments. We report ELO-K32 score and the relative ranking.

Ablative results As shown in Table 1, we note several discoveries. (1) The inverted anti-drifting
sampling method achieves the best results in 4 out of 7 metrics, and achieves the best performance in
all drifting metrics. (2) However, the inverted anti-drifting sampling has a relatively small dynamic
range. (3) While vanilla sampling achieved the highest dynamic score, this is likely attributable to
drifting effects rather than genuine quality, evidenced by relatively low ELO scores. (4) The vanilla
sampling with discrete history achieves highly competitive human scores while having a much larger
dynamic range. (5) We also observe that differences between specific configuration options within
the same sampling approach are relatively small and random, suggesting that the overall architecture
contributes more to the general difference.

History discretization parameter The history discretization is influenced by the parameter K
with higher K giving stronger anti-drifting effects but also more challenging learning for smooth tran-
sitions between sections. In our tests, K = 128 gives strong drift reduction with relatively minimal
training difficulties. We provide more detailed ablations for K in the supplementary materials.

Additional evaluations We test feature-similarity-based packing with video game (world model)
benchmarks in the supplementary material. See also supplementary material for Wan results and
more details of decomposed metrics.
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Table 2: Comparison with relevant methods. We compare across the same global metrics, drifting
metrics, and human assessments. The tests are conducted with HunyuanVideo as base. Bests in bold.
ELO differences within ±16 are considered ties.

Method
Global Metrics ↑ Drifting Metrics ↓ Human

Clarity Aesthetic Motion Dynamic Semantic Anatomy Identity ∆Clarity
drift ∆Motion

drift ∆Semantic
drift ∆Anatomy

drift ELO ↑ Rank ↓
Repeating image-to-video 56.73% 56.15% 94.34% 91.21% 17.74% 69.41% 73.06% 9.51% 3.92% 9.95% 19.88% 1015 5
Anchor frames (resembling StreamingT2V [20]) 69.58% 67.35% 99.96% 74.97% 25.76% 85.01% 79.52% 2.85% 2.15% 3.45% 9.25% 1173 2
Causal attention (resembling CausVid [65]) 62.88% 59.41% 96.98% 88.27% 19.15% 72.74% 75.32% 7.45% 3.15% 6.75% 15.96% 1087 4

DiffusionForcing [6] (σtrain random, σtest = 0.1) 66.08% 65.76% 96.32% 91.59% 23.14% 75.93% 74.47% 4.84% 2.54% 3.33% 10.99% 1170 2
DiffusionForcing [6] (σtrain random, σtest = 0.5) 67.41% 66.66% 92.93% 91.08% 24.03% 77.83% 76.42% 3.55% 2.39% 3.48% 9.40% 1174 2
DiffusionForcing [6] (σtrain random, σtest = 0) 66.99% 64.73% 96.47% 90.45% 21.09% 80.62% 78.77% 8.41% 3.80% 8.47% 17.44% 1095 4
DiffusionForcing [6] (σtrain = 0.1, σtest = 0.1) 66.19% 68.60% 94.89% 91.89% 22.49% 76.12% 78.27% 6.82% 3.79% 5.08% 10.78% 1149 3
History guidance (resembling HistoryGuidance [41]) 68.05% 68.74% 97.01% 73.39% 24.88% 81.84% 83.42% 7.35% 2.21% 5.25% 12.78% 1152 3

Inverted anti-drifting (f1k1_x_g9_f1k1f2k2f16k4) 71.15% 68.71% 99.45% 89.29% 28.15% 86.53% 82.11% 2.25% 1.85% 2.68% 8.58% 1220 1
Vanilla + discrete history (f16k4f2k2f1k1_g9+D, K = 256) 70.01% 68.76% 95.65% 91.74% 28.37% 86.41% 82.22% 3.13% 2.05% 2.89% 8.74% 1224 1

5.4 Comparison to Alternative Architectures

We discuss several relevant alternatives to generate videos in various ways. The involved methods
either enable longer video generation, reduce computational bottlenecks, or both. To be specific, we
implement these variants on top of HunyuanVideo default architecture (33 latent frames) using a
simple naive sliding window with half context length for history inputs.

Repeating image-to-video: Directly repeat the image-to-video inference to make longer videos.

Anchor frames: Use an image as the anchor frame to avoid drifting. We implement a structure that
resembles StreamingT2V [20].

Causal attention: Finetune full attention into causal attention for easier KV cache and faster inference.
We implement a structure that resembles CausVid [65].

DiffusionForcing: We conduct a detailed ablation study with DiffusionForcing [6]. We focus on the
history noise scheduling using the same scheduling as SkyreelV2 [7] that multiplies the diffusion
timestep on history frames with σtrain during training and σtest in inference to delay the denoising on
history latents. Intuitively, σtest = 0 is equivalent to clean latents for history (no noise added to the
history). We consider these ablations: (1) σtrain being random with σtest = 0.1; (2) σtrain being random
with σtest = 0.5; (3) σtrain being random with σtest = 0; (4) σtrain = 0.1 and σtest = 0.1. Usually
higher σtest reduces the reliance on the history, which is beneficial for interrupting error accumulation,
thus mitigates drifting, but at the cost of aggravating forgetting.

History guidance: Delay the denoising timestep on history latents but also put the completely noised
history on the unconditional side of CFG guidance. This will speed up error accumulation, thus
aggravating drifting, but also enhance memory to mitigate forgetting. We implement a structure that
resembles HistoryGuidance [41].

As shown in Table 2, we observe several findings. (1) The inverted anti-drifting sampling achieves the
best results across all drifting metrics, while having a relatively small dynamic range. (2) The vanilla
sampling with discrete history is very competitive in drifting measurements, while having a relatively
larger dynamic range. (3) Human perception prefers the two proposed candidates as evidenced by the
ELO score. (4) See also the supplementary material for more detailed explanations, analysis, and
comparisons with DiffusionForcing candidates.

6 Conclusion

In this paper, we presented FramePack, a neural network structure that aims to address the forgetting-
drifting dilemma in next-frame prediction models for video generation. FramePack applies progres-
sive compression to input frames based on their importance, ensuring the context length converges to
a fixed upper bound. We discussed both time-proximity-based packing and feature-similarity-based
packing. We also discussed the anti-drifting training methods with history discretization, and the
anti-drifting sampling methods using bi-directional context planning and scheduling. Experiments
suggest that FramePack can process a large number of frames, improve model responsiveness, and
allow for higher batch sizes in training. The approach is compatible with existing video diffusion
models and supports various compression variants that can be optimized for wider applications.

9



Acknowledgments and Disclosure of Funding

This work was partially supported by the Brown Institute for Media Innovation, by Google through
their affiliation with Stanford Institute for Human-centered Artificial Intelligence (HAI) and by a
Hoffman-Yee HAI grant.

References
[1] E. Alonso, A. Jelley, V. Micheli, A. Kanervisto, A. Storkey, T. Pearce, and F. Fleuret. Diffusion

for world modeling: Visual details matter in atari. In Thirty-eighth Conference on Neural
Information Processing Systems.

[2] R. Bachmann, J. Allardice, D. Mizrahi, E. Fini, O. F. Kar, E. Amirloo, A. El-Nouby, A. Zamir,
and A. Dehghan. FlexTok: Resampling images into 1d token sequences of flexible length, 2025.

[3] H. Bansal, Y. Bitton, M. Yarom, I. Szpektor, A. Grover, and K.-W. Chang. Talc: Time-aligned
captions for multi-scene text-to-video generation. arXiv preprint arXiv:2405.04682, 2024.

[4] H. Cai, J. Li, M. Hu, C. Gan, and S. Han. Efficientvit: Lightweight multi-scale attention for
high-resolution dense prediction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 17302–17313, 2023.

[5] M. Cai, X. Cun, X. Li, W. Liu, Z. Zhang, Y. Zhang, Y. Shan, and X. Yue. Ditctrl: Exploring
attention control in multi-modal diffusion transformer for tuning-free multi-prompt longer video
generation. arXiv preprint arXiv:2412.18597, 2024.

[6] B. Chen, D. Martí Monsó, Y. Du, M. Simchowitz, R. Tedrake, and V. Sitzmann. Diffusion
forcing: Next-token prediction meets full-sequence diffusion. Advances in Neural Information
Processing Systems, 37:24081–24125, 2025.

[7] G. Chen, D. Lin, J. Yang, C. Lin, J. Zhu, M. Fan, H. Zhang, S. Chen, Z. Chen, C. Ma, W. Xiong,
W. Wang, N. Pang, K. Kang, Z. Xu, Y. Jin, Y. Liang, Y. Song, P. Zhao, B. Xu, D. Qiu, D. Li,
Z. Fei, Y. Li, and Y. Zhou. Skyreels-v2: Infinite-length film generative model, 2025. URL
https://arxiv.org/abs/2504.13074.

[8] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Davis, A. Mohiuddin, L. Kaiser, et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020.

[9] K. Dalal, D. Koceja, G. Hussein, J. Xu, Y. Zhao, Y. Song, S. Han, K. C. Cheung, J. Kautz,
C. Guestrin, T. Hashimoto, S. Koyejo, Y. Choi, Y. Sun, and X. Wang. One-minute video
generation with test-time training, 2025. URL https://arxiv.org/abs/2504.05298.

[10] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness, 2022. URL https://arxiv.org/abs/2205.14135.

[11] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4690–4699, 2019.

[12] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou. Retinaface: Single-stage dense face
localisation in the wild, 2019. URL https://arxiv.org/abs/1905.00641.

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. ICLR, 2021.

[14] Y. Fang, H. Zhu, Y. Zeng, K. Ma, and Z. Wang. Perceptual quality assessment of smartphone
photography. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3674–3683, 2020. doi: 10.1109/CVPR42600.2020.00373.

[15] K. Gao, J. Shi, H. Zhang, C. Wang, and J. Xiao. Vid-gpt: Introducing gpt-style autoregressive
generation in video diffusion models, 2024. URL https://arxiv.org/abs/2406.10981.

10

https://arxiv.org/abs/2504.13074
https://arxiv.org/abs/2504.05298
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/1905.00641
https://arxiv.org/abs/2406.10981


[16] Y. Gu, W. Mao, and M. Z. Shou. Long-context autoregressive video modeling with next-frame
prediction, 2025. URL https://arxiv.org/abs/2503.19325.

[17] Y. HaCohen, N. Chiprut, B. Brazowski, D. Shalem, D. Moshe, E. Richardson, E. Levin,
G. Shiran, N. Zabari, O. Gordon, et al. Ltx-video: Realtime video latent diffusion. arXiv
preprint arXiv:2501.00103, 2024.

[18] W. Harvey, S. Naderiparizi, V. Masrani, C. Weilbach, and F. Wood. Flexible diffusion modeling
of long videos, 2022. URL https://arxiv.org/abs/2205.11495.

[19] Y. He, T. Yang, Y. Zhang, Y. Shan, and Q. Chen. Latent video diffusion models for high-fidelity
long video generation. arXiv preprint arXiv:2211.13221, 2022.

[20] R. Henschel, L. Khachatryan, D. Hayrapetyan, H. Poghosyan, V. Tadevosyan, Z. Wang,
S. Navasardyan, and H. Shi. Streamingt2v: Consistent, dynamic, and extendable long video
generation from text. arXiv preprint arXiv:2403.14773, 2024.

[21] Y. Hong, B. Liu, M. Wu, Y. Zhai, K.-W. Chang, L. Li, K. Lin, C.-C. Lin, J. Wang, Z. Yang,
Y. Wu, and L. Wang. Slowfast-vgen: Slow-fast learning for action-driven long video generation,
2024. URL https://arxiv.org/abs/2410.23277.

[22] P. Hu, J. Jiang, J. Chen, M. Han, S. Liao, X. Chang, and X. Liang. Storyagent: Customized
storytelling video generation via multi-agent collaboration. arXiv preprint arXiv:2411.04925,
2024.

[23] Z. Huang, T. Zhang, W. Heng, B. Shi, and S. Zhou. Real-time intermediate flow estimation for
video frame interpolation. In Proceedings of the European Conference on Computer Vision
(ECCV), 2022.

[24] Z. Huang, Y. He, J. Yu, F. Zhang, C. Si, Y. Jiang, Y. Zhang, T. Wu, Q. Jin, N. Chanpaisit,
Y. Wang, X. Chen, L. Wang, D. Lin, Y. Qiao, and Z. Liu. VBench: Comprehensive benchmark
suite for video generative models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024.

[25] Y. Jin, Z. Sun, N. Li, K. Xu, K. Xu, H. Jiang, N. Zhuang, Q. Huang, Y. Song, Y. Mu, and Z. Lin.
Pyramidal flow matching for efficient video generative modeling, 2024.

[26] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International conference on machine learning, pages
5156–5165. PMLR, 2020.

[27] J. Ke, Q. Wang, Y. Wang, P. Milanfar, and F. Yang. Musiq: Multi-scale image quality transformer,
2021. URL https://arxiv.org/abs/2108.05997.

[28] W. Kong, Q. Tian, Z. Zhang, R. Min, Z. Dai, J. Zhou, J. Xiong, X. Li, B. Wu, J. Zhang, et al.
Hunyuanvideo: A systematic framework for large video generative models. arXiv preprint
arXiv:2412.03603, 2024.

[29] M. Li*, Y. Lin*, Z. Zhang*, T. Cai, X. Li, J. Guo, E. Xie, C. Meng, J.-Y. Zhu, and S. Han.
Svdquant: Absorbing outliers by low-rank components for 4-bit diffusion models. In The
Thirteenth International Conference on Learning Representations, 2025.

[30] X. Li, Y. Liu, L. Lian, H. Yang, Z. Dong, D. Kang, S. Zhang, and K. Keutzer. Q-diffusion:
Quantizing diffusion models. In ICCV, 2023.

[31] F. Liu, S. Zhang, X. Wang, Y. Wei, H. Qiu, Y. Zhao, Y. Zhang, Q. Ye, and F. Wan. Timestep
embedding tells: It’s time to cache for video diffusion model. arXiv preprint arXiv:2411.19108,
2024.

[32] F. Long, Z. Qiu, T. Yao, and T. Mei. Videostudio: Generating consistent-content and multi-scene
videos, 2024. URL https://arxiv.org/abs/2401.01256.

[33] Y. Lu, Y. Liang, L. Zhu, and Y. Yang. Freelong: Training-free long video generation with
spectralblend temporal attention. Advances in Neural Information Processing Systems, 37:
131434–131455, 2025.

11

https://arxiv.org/abs/2503.19325
https://arxiv.org/abs/2205.11495
https://arxiv.org/abs/2410.23277
https://arxiv.org/abs/2108.05997
https://arxiv.org/abs/2401.01256


[34] S. Luo, Y. Tan, L. Huang, J. Li, and H. Zhao. Latent consistency models: Synthesizing
high-resolution images with few-step inference. arXiv preprint arXiv: 2310.04378, 2023.

[35] Z. Lv, C. Si, J. Song, Z. Yang, Y. Qiao, Z. Liu, and K.-Y. K. Wong. Fastercache: Training-free
video diffusion model acceleration with high quality. 2024.

[36] G. Oh, J. Jeong, S. Kim, W. Byeon, J. Kim, S. Kim, and S. Kim. Mevg: Multi-event video
generation with text-to-video models. In European Conference on Computer Vision, pages
401–418. Springer, 2024.

[37] H. Qiu, M. Xia, Y. Zhang, Y. He, X. Wang, Y. Shan, and Z. Liu. Freenoise: Tuning-free longer
video diffusion via noise rescheduling. arXiv preprint arXiv:2310.15169, 2023.

[38] X. Ren, T. Shen, J. Huang, H. Ling, Y. Lu, M. Nimier-David, T. Müller, A. Keller, S. Fidler, and
J. Gao. Gen3c: 3d-informed world-consistent video generation with precise camera control,
2025. URL https://arxiv.org/abs/2503.03751.

[39] D. Ruhe, J. Heek, T. Salimans, and E. Hoogeboom. Rolling diffusion models, 2024.

[40] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes,
A. Katta, C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. Advances in Neural Information Processing Systems, 35:
25278–25294, 2022.

[41] K. Song, B. Chen, M. Simchowitz, Y. Du, R. Tedrake, and V. Sitzmann. History-guided video
diffusion. arXiv preprint arXiv:2502.06764, 2025.

[42] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever. Consistency models. In ICML, 2023.

[43] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding. Neurocomputing, 568:127063, 2024.

[44] Z. Tan, X. Yang, S. Liu, and X. Wang. Video-infinity: Distributed long video generation. arXiv
preprint arXiv:2406.16260, 2024.

[45] Z. Teed and J. Deng. Raft: Recurrent all-pairs field transforms for optical flow, 2020. URL
https://arxiv.org/abs/2003.12039.

[46] D. Valevski, Y. Leviathan, M. Arar, and S. Fruchter. Diffusion models are real-time game
engines, 2024. URL https://arxiv.org/abs/2408.14837.

[47] R. Villegas, M. Babaeizadeh, P.-J. Kindermans, H. Moraldo, H. Zhang, M. T. Saffar, S. Castro,
J. Kunze, and D. Erhan. Phenaki: Variable length video generation from open domain textual
description. arXiv preprint arXiv:2210.02399, 2022.

[48] A. Wang, B. Ai, B. Wen, C. Mao, C.-W. Xie, D. Chen, F. Yu, H. Zhao, J. Yang, J. Zeng, J. Wang,
J. Zhang, J. Zhou, J. Wang, J. Chen, K. Zhu, K. Zhao, K. Yan, L. Huang, M. Feng, N. Zhang,
P. Li, P. Wu, R. Chu, R. Feng, S. Zhang, S. Sun, T. Fang, T. Wang, T. Gui, T. Weng, T. Shen,
W. Lin, W. Wang, W. Wang, W. Zhou, W. Wang, W. Shen, W. Yu, X. Shi, X. Huang, X. Xu,
Y. Kou, Y. Lv, Y. Li, Y. Liu, Y. Wang, Y. Zhang, Y. Huang, Y. Li, Y. Wu, Y. Liu, Y. Pan, Y. Zheng,
Y. Hong, Y. Shi, Y. Feng, Z. Jiang, Z. Han, Z.-F. Wu, and Z. Liu. Wan: Open and advanced
large-scale video generative models. In arXiv, 2025.

[49] F.-Y. Wang, W. Chen, G. Song, H.-J. Ye, Y. Liu, and H. Li. Gen-l-video: Multi-text to long
video generation via temporal co-denoising. arXiv preprint arXiv:2305.18264, 2023.

[50] H. Wang and L. Agapito. 3d reconstruction with spatial memory. arXiv preprint
arXiv:2408.16061, 2024.

[51] J. Wang, F. Zhang, X. Li, V. Y. F. Tan, T. Pang, C. Du, A. Sun, and Z. Yang. Error analyses of
auto-regressive video diffusion models: A unified framework, 2025. URL https://arxiv.
org/abs/2503.10704.

[52] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020.

12

https://arxiv.org/abs/2503.03751
https://arxiv.org/abs/2003.12039
https://arxiv.org/abs/2408.14837
https://arxiv.org/abs/2503.10704
https://arxiv.org/abs/2503.10704


[53] Y. Wang, Y. He, Y. Li, K. Li, J. Yu, X. Ma, X. Li, G. Chen, X. Chen, Y. Wang, et al. Internvid:
A large-scale video-text dataset for multimodal understanding and generation. In The Twelfth
International Conference on Learning Representations, 2023.

[54] W. Weng, R. Feng, Y. Wang, Q. Dai, C. Wang, D. Yin, Z. Zhao, K. Qiu, J. Bao, Y. Yuan, C. Luo,
Y. Zhang, and Z. Xiong. Art•v: Auto-regressive text-to-video generation with diffusion models.
arXiv preprint arXiv:2311.18834, 2023.

[55] Z. Wu, A. Siarohin, W. Menapace, I. Skorokhodov, Y. Fang, V. Chordia, I. Gilitschenski, and
S. Tulyakov. Mind the time: Temporally-controlled multi-event video generation. arXiv preprint
arXiv:2412.05263, 2024.

[56] H. Xi, S. Yang, Y. Zhao, C. Xu, M. Li, X. Li, Y. Lin, H. Cai, J. Zhang, D. Li, et al. Sparse
videogen: Accelerating video diffusion transformers with spatial-temporal sparsity. arXiv
preprint arXiv:2502.01776, 2025.

[57] Y. Xia, S. Ling, F. Fu, Y. Wang, H. Li, X. Xiao, and B. Cui. Training-free and adaptive sparse
attention for efficient long video generation, 2025.

[58] Z. Xiao, Y. Lan, Y. Zhou, W. Ouyang, S. Yang, Y. Zeng, and X. Pan. Worldmem: Long-
term consistent world simulation with memory, 2025. URL https://arxiv.org/abs/2504.
12369.

[59] E. Xie, J. Chen, J. Chen, H. Cai, H. Tang, Y. Lin, Z. Zhang, M. Li, L. Zhu, Y. Lu, et al. Sana:
Efficient high-resolution image synthesis with linear diffusion transformers. arXiv preprint
arXiv:2410.10629, 2024.

[60] Z. Xie, D. Tang, D. Tan, J. Klein, T. F. Bissyand, and S. Ezzini. Dreamfactory: Pioneering multi-
scene long video generation with a multi-agent framework. arXiv preprint arXiv:2408.11788,
2024.

[61] D. Yang, C. Zhan, Z. Wang, B. Wang, T. Ge, B. Zheng, and Q. Jin. Synchronized video story-
telling: Generating video narrations with structured storyline. arXiv preprint arXiv:2405.14040,
2024.

[62] S. Yin, C. Wu, H. Yang, J. Wang, X. Wang, M. Ni, Z. Yang, L. Li, S. Liu, F. Yang, et al. Nuwa-xl:
Diffusion over diffusion for extremely long video generation. arXiv preprint arXiv:2303.12346,
2023.

[63] T. Yin, M. Gharbi, T. Park, R. Zhang, E. Shechtman, F. Durand, and W. T. Freeman. Improved
distribution matching distillation for fast image synthesis. arXiv preprint arXiv:2405.14867,
2024.

[64] T. Yin, M. Gharbi, R. Zhang, E. Shechtman, F. Durand, W. T. Freeman, and T. Park. One-step
diffusion with distribution matching distillation. In CVPR, 2024.

[65] T. Yin, Q. Zhang, R. Zhang, W. T. Freeman, F. Durand, E. Shechtman, and X. Huang. From
slow bidirectional to fast causal video generators. arXiv preprint arXiv:2412.07772, 2024.

[66] H.-X. Yu, H. Duan, J. Hur, K. Sargent, M. Rubinstein, W. T. Freeman, F. Cole, D. Sun,
N. Snavely, J. Wu, and C. Herrmann. Wonderjourney: Going from anywhere to everywhere. In
CVPR, 2024.

[67] H.-X. Yu, H. Duan, C. Herrmann, W. T. Freeman, and J. Wu. Wonderworld: Interactive 3d
scene generation from a single image. In CVPR, 2025.

[68] W. Yu, M. Luo, P. Zhou, C. Si, Y. Zhou, X. Wang, J. Feng, and S. Yan. Metaformer is actually
what you need for vision. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10819–10829, 2022.

[69] J. Zhang, H. Huang, P. Zhang, J. Wei, J. Zhu, and J. Chen. Sageattention2: Efficient attention
with thorough outlier smoothing and per-thread int4 quantization, 2024. URL https://arxiv.
org/abs/2411.10958.

13

https://arxiv.org/abs/2504.12369
https://arxiv.org/abs/2504.12369
https://arxiv.org/abs/2411.10958
https://arxiv.org/abs/2411.10958


[70] J. Zhang, J. Wei, P. Zhang, J. Zhu, and J. Chen. Sageattention: Accurate 8-bit attention for
plug-and-play inference acceleration. In International Conference on Learning Representations
(ICLR), 2025.

[71] J. Zhang, C. Xiang, H. Huang, J. Wei, H. Xi, J. Zhu, and J. Chen. Spargeattn: Accurate
sparse attention accelerating any model inference, 2025. URL https://arxiv.org/abs/
2502.18137.

[72] P. Zhang, Y. Chen, R. Su, H. Ding, I. Stoica, Z. Liu, and H. Zhang. Fast video generation with
sliding tile attention, 2025.

[73] C. Zhao, M. Liu, W. Wang, W. Chen, F. Wang, H. Chen, B. Zhang, and C. Shen. Moviedreamer:
Hierarchical generation for coherent long visual sequence. arXiv preprint arXiv:2407.16655,
2024.

[74] T. Zhao, T. Fang, E. Liu, W. Rui, W. Soedarmadji, S. Li, Z. Lin, G. Dai, S. Yan, H. Yang,
et al. Vidit-q: Efficient and accurate quantization of diffusion transformers for image and video
generation. arXiv preprint arXiv:2406.02540, 2024.

[75] D. Zheng, Z. Huang, H. Liu, K. Zou, Y. He, F. Zhang, Y. Zhang, J. He, W.-S. Zheng, Y. Qiao,
and Z. Liu. VBench-2.0: Advancing video generation benchmark suite for intrinsic faithfulness.
arXiv preprint arXiv:2503.21755, 2025.

[76] Z. Zhou, Y. Yang, Y. Yang, T. He, H. Peng, K. Qiu, Q. Dai, L. Qiu, C. Luo, and L. Liu.
Hitvideo: Hierarchical tokenizers for enhancing text-to-video generation with autoregressive
large language models. arXiv preprint arXiv:2503.11513, 2025.

14

https://arxiv.org/abs/2502.18137
https://arxiv.org/abs/2502.18137


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect this
submission’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Experimental expositions includes both advantages and disadvantages of
different options (as well as their trade-offs).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Though this submission is not dense in theory, basic context upper bounds are
supported by simple geometric progressions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This work contains details and codes to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This work provides open access.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided. Ablation studies cover important parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bar is not very common in video benches like VBench, but significance
measurement of ELO scores are considered.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See also implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See also broader impacts, safeguards, and licenses in appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: See also broader impacts, safeguards, and licenses in appendix.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See also broader impacts, safeguards, and licenses in appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Does not have new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: See also user study / ELO details in the Appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is not used in developing this method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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