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ABSTRACT

The Mixture-of-Experts (MoE) framework efficiently scales large language models
(LLMs) by selectively activating expert subnetworks, reducing computational costs.
However, current MoE methods are costly in computation and include additional
expert modules that require extra training data for tuning, leading to instability
in the optimization process. To address these issues, we introduce FREE-MOE,
a tuning-free MoE method that leverages pre-trained LLMs’ inherent ability to
generalize across a wide range of tasks and domains. FREE-MOE dynamically acti-
vates experts based on specific domains, achieves improvements while 1) requiring
no extra model parameters and 2) being completely tuning-free. Specifically,
we design the DOWP Alg., a Domain-Oriented Weight Purification Algorithm
that purifies the weights in hidden layers and selects the optimal domain-specific
experts of domain-specific experts in the hidden layers of the LLM to optimize
activation decisions. The activated DSS-Experts, Domain-Specific Subnetwork
Experts,can thereby concentrate on specialized task generation, outperforming the
corresponding original model. Moreover, FREE-MOE incorporates a multi-level
trainable router that activates only the most relevant subnetworks during task,
effectively minimizing unnecessary inference computations. Comprehensive evalu-
ations reveals that the DOWP Algorithm consistently achieves general performance
gains of 2% to 3%, reaching up to 6.8% across datasets like MMLU, HumanEval,
GSM8K, and etc. Additionally, when integrated into FREE-MOE framework, our
method demonstrates a cumulative improvement of 1.11% in average. Findings
indicate that FREE-MOE not only enhances overall computational efficiency but
improves the model’s adaptability across any field that encompassed in contempo-
rary language generation model benchmarks, and can be seamlessly applied to any
transformer-based LLMs. Code for this project will be released in reachable future.

1 INTRODUCTION

The demand for more powerful Large Language Models(LLMs) drives relentless expansion (Kaplan
et al., 2020). Yet, the bigger the LLMs, the more they consume: computational resources, time, and
energy, which in turn limits their scalability and application efficiency (Patterson et al., 2021; Strubell
et al., 2019). Integrating the Mixture-of-Experts (MoE) framework with LLMs has emerged as a
highly promising strategy for tackling these challenges, driving significant advancements in the field
(Shazeer et al., 2017). Models like Switch Transformer and GShard have demonstrated that model
capacity can be scaled to trillions of parameters without a proportional increase in computational
costs during inference, setting new benchmarks in various natural language processing tasks (Fedus
et al., 2022; Lepikhin et al., 2020). The key innovation of MoE lies in its use of sparse activation,
where only a portion of the network is activated for any given input, allowing the model to possess
greater capacity without a corresponding increase in computational demand (Zhou et al., 2022).

In a broader sense, the classical MoE approach operates by routing different inputs to specialized
subnetwork experts within the model. These expert subnetworks are typically based on diverse
foundational models, such as support vector machines (Collobert et al., 2002), Gaussian processes
(Tresp, 2000), or hidden Markov models (Jordan & Jacobs, 1994), where the architecture enables
the model to specialize in handling a wide range of tasks, improving its capacity to address complex
and heterogeneous problem domains. Overall, the pioneering work on MoE introduced mechanisms
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Figure 1: The comparison between traditional MoE methods and our FREE-MOE. (a) represents
Sparse MoE with top-1 gating, where the router activates only one expert per input based on the
highest probability score. (b) shows the combination of grouped Domain Mapping and Random
Gating MoE, which improves task-specific relevance but suffers from inefficiencies due to the
random activation of experts. In contrast, (c) illustrates our FREE-MOE, which activates Domain-
Specific Subnetwork Experts from pretrained LLMs using the Domain-Oriented Weight Purification
Algorithm. FREE-MOE optimizes task-specific responses by purifying out domain-relevant weights
to construct experts, achieving a tuning-free effect across diverse tasks.

for dynamically selecting experts, balancing computational load, and addressing challenges such as
training instability and communication overhead in distributed systems.

Despite the tremendous potential of the MoE framework, its practical application continues to
encounter several significant challenges. A key limitation is that maximizing the benefits of MoE
typically requires large-scale, high-quality training data, especially in scenarios where data acquisition
is costly or the quality of available data is inconsistent(Lepikhin et al., 2020). Previous work has
focused on the field of non-trainable token-choice gating(Roller et al., 2021; Zuo et al., 2022;
Gururangan et al., 2022; Ren et al., 2023; Kudugunta et al., 2021), exploring ways to achieve
complete load balancing through specific gating mechanisms without requiring additional gating
network parameters, thereby improving computational efficiency. However, stepping beyond this
perspective, we need to reevaluate how to find more effective tuning-free methods within existing
architectures to achieve a higher degree of tuning-free operation. Meanwhile, pre-trained LLMs,
which have undergone large-scale training, possess strong capabilities to adapt to various tasks and
may offer a new perspective. Therefore, we pose the following question:

Is it possible to leverage the subnetwork structures within the hidden layers of pre-trained LLMs to
enhance task-specific performance and optimize the allocation of computational resources?

Through deeper investigation, we find that LLMs inherently function as implicit expert net-
works—while LLMs do not explicitly employ an MoE framework, the subnetworks activated by their
hidden layers exhibit specialized behavior across different tasks and inputs. This enables pre-trained
LLMs to adapt seamlessly to diverse tasks in tuning-free condition, particularly, without the need
for external experts or the addition of significant new parameters. All that is required is an adaptive
activation mechanism based on weight purification.

Building on this insight, we propose FREE-MOE, a novel tuning-free mixture of experts architecture
designed to leverage the existing subnetwork expert mechanisms within pre-trained LLMs. The key
principle of FREE-MOE is its self-directed purification process, where it identifies the input domain
and selectively purifies the subnetwork weights, retaining only those relevant to the specific task.
This allows FREE-MOE to adaptively activate only the expert subnetworks most pertinent to the
given task. Compared to Sparse MoE and Domain-Mapping & Random Gating MoE architectures,
FREE-MOE achieves improved efficiency and task-specific accuracy without increasing model
complexity, thereby significantly reducing the computational burden typically associated with large
models, as shown in Figure 1.
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Specifically, purification represents the core solution for integrating the MoE framework into LLMs
without additional tuning. This process leverages impurity removal and filtration mechanisms,
applied during purification, to perform domain-driven expert selection. The core concept involves
purifying the hidden layer weights by identifying domain-relevant features from the input, retaining
high-contributing expert weights while filtering out irrelevant ones. This approach fully exploits
the parameter sharing and hierarchical latent feature structures of pre-trained LLMs, achieving
efficient utilization without tuning. In contrast to the simplistic expert selection strategies in Sparse
MoE (Fedus et al., 2022) or the full expert activation of Dense MoE (Wu et al., 2022; Dua et al.,
2022), purification significantly enhances both the accuracy and effectiveness of expert selection,
optimizing model performance for task-specific contexts. Additionally, we define domain-specific
expert derived from the hidden layers after purification, explicitly revealing the latent expertise within
the pre-trained LLM subnetworks and enabling optimized task-oriented configurations. Compared to
the auxiliary load-balancing loss mechanisms in ST-MoE(Zoph et al., 2022), these domain-specific
experts offer superior adaptability, facilitating more efficient resource allocation for specialized tasks
and substantially improving task-specific model performance. Lastly, we introduce a Trainable
Router that dynamically monitors task requirements and domain characteristics, enabling real-time
domain identification and efficient allocation of computational resources. Unlike the static mappings
employed in Domain Mapping & Random Gating MoE (Ren et al., 2023), our method employs a
more granular and dynamic domain activation strategy. This not only enhances operational efficiency
but also leads to notable improvements in real-world task performance.

In this work, we present several key innovations that position FREE-MOE as a novel approach
to leveraging LLMs within the MoE framework, addressing critical challenges in computational
efficiency and task-specific performance:

• Innovative MoE Architecture FREE-MOE: FREE-MOE utilizes the latent subnetwork structures
within pre-trained LLMs, eliminating the dependency of traditional MoE on large-scale, high-
quality training data, and enabling adaptation to multi-task requirements without the need for
fine-tuning.

• Purification Mechanism on Weights: This mechanism dynamically selects and activates subnet-
work weights relevant to specific tasks, significantly improving the accuracy of expert selection. By
purifying the hidden layer weights in pre-trained LLMs, the domain expertise of its subnetworks is
made explicit.

• A Multi-Level Trainable Dynamic Router: We introduce a novel trainable router capable of
real-time monitoring of task requirements and domain characteristics, dynamically identifying
domains and efficiently allocating computational resources, particularly demonstrating significant
advantages in multi-task scenarios.

• Achieved Significant Performance Improvements Across Multiple Datasets: Our approach
achieved performance gains of 2% to 3% on datasets such as MMLU, MBPP, and GSM8K.
Integrated into the FREE-MOE architecture, cumulative improvements of 1.11% validate the
effectiveness and practicality of the method.

2 RELATED WORKS

2.1 THE MIXTURE OF EXPERTS

The Mixture of Experts (MoE) introduces multiple specialized expert networks, selectively ac-
tivating a subset of experts during each inference to maintain model capacity while significantly
reducing computational costs (Jacobs et al., 1991; Jordan & Jacobs, 1994; Chen et al., 1999; Tresp,
2000; Rasmussen & Ghahramani, 2001). MoE has demonstrated substantial potential in scaling
model size and enhancing performance. Sparse gating MoE layers strike an effective balance between
computational cost and model capacity by selecting only a small number of experts for computation
per input (Shazeer et al., 2017; Riquelme et al., 2021). The GShard framework by Lepikhin et al.
(2020) successfully trained ultra-large-scale models using conditional computation and automatic
sharding techniques. Following this, Fedus et al. (2022) introduced the Switch Transformer, which
further enhances training and inference efficiency through a simplified expert routing mechanism.
To improve expert selection strategies, Zhou et al. (2022) proposed Expert Choice Routing, which
optimizes expert selection and load balancing to enhance model performance and resource utilization.
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In the realm of multi-task learning, Ma et al. (2018) developed the Multi-Gated Mixture-of-Experts
(MMoE) model, which implements task-specific gating mechanisms to capture inter-task relation-
ships. The commonality across MoE methods lies in leveraging sparse activation and expert selection
to achieve a trade-off between model capacity and computational efficiency.

2.2 INTERPRETABILITY OF LLMS MECHANISM

Interpretability of LLMs Mechanism represents a pivotal subfield within the broader study of LLM
interpretability, focusing on uncovering the internal mechanisms of language models (Anthropic,
2023; Bricken et al., 2023). The dominant approach conceptualizes LLMs as “circuits”, examining
neural network hidden representations through feature visualization techniques. This approach has
led researchers to identify larger functional components and uncover three key phenomena: Branch
Specializatio, Weight Hierarchization and Equivariance (Voss et al., 2021; Petrov et al., 2021; Olah
et al., 2020). Recent research has increasingly shifted towards single-layer and multi-layer attention
models. In single-layer attention models, structures such as binary tables and skip-trigram tables can
be derived from the model’s weights. In multi-layer Transformer models, the concept of “induction
heads” has emerged—modules formed by the combination of attention heads from different layers,
designed to learn patterns within context (Elhage et al., 2021). The core of this research lies in
treating neural network components as circuit-like functional modules, while emphasizing that the
“circuits” within LLMs are not static but exhibit a high degree of dynamism and adaptability.

3 METHOD

3.1 DOMAIN-ORIENTED WEIGHT PURIFICATION

The Domain-Oriented Weight Purification, as shown in Figure 2, compresses matrix patches from
hidden layers and ranks them by importance. Less relevant patches are purified, reducing complexity
while preserving critical weights. This process forms the DSS-Expert for optimized task execution.

Clustering-based Classification. Consider multiple datasets DA, DB , . . . , Dn, where each dataset
corresponds to a distinct domain. These datasets are collectively aggregated to form a comprehensive
main knowledge domain set, denoted as D = {DA, DB , . . . , Dn}, where each Di corresponds to a
specific domain that encapsulates specialized knowledge relevant to the given tasks. For a given task
T , the algorithm identifies the most suitable main knowledge domain Dj by computing the posterior
probability P (D | T ), which quantifies the likelihood of the task T belonging to each main domain
D. This selection process is expressed as:

Dj = argmax
D

P (D | T ). (1)

This ensures that the main domain Dj with the highest probability is chosen, aligning the task T with
the most appropriate domain for further processing. Upon selecting the main knowledge domain Dj ,
the next step involves subdividing this domain into finer subdomains using K-means clustering. For
each dataset in Dj , feature representations are extracted via the Transformer’s embedding layer. The
resulting set of feature vectors is denoted as Fj = {Fj1 , Fj2 , . . . , Fjm}, where each Fji represents
the feature vector corresponding to a data point in Dj . The K-means clustering algorithm is then
applied to partition the feature set Fj into k distinct subdomains.

The clustering process aims to minimize the intra-cluster variance, measured by the Euclidean
distance between each feature vector and its respective centroid. This optimization is formalized as
follows:

S∗ = argmin
S

k∑
i=1

∑
F∈Dji

∥∥∥∥∥∥F − 1

|Dji |
∑

F∈Dji

F

∥∥∥∥∥∥
2

= argmin
S

k∑
i=1

∑
F∈Dji

∥F − µi∥2. (2)

By minimizing this objective, the main knowledge domain Dj is effectively partitioned into a set of
subdomains, each with a distinct centroid that captures the local structure of the domain. For any
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Figure 2: Two-step pipeline for our approach. Step 1 demonstrates the DOWP (Domain Oriented
Weight Purification) mechanism, where hidden layers extracted are compressed, sorted for domain-
specific relevance via Equation 4, and further purifying MLP or Self-Attention Layers via Equation 6
to identify and retain the most relevant expert weights. Step 2 illustrates the FREE-MOE pipeline,
in which the router classifies the input by domain, assigning it to its DSS-Expert split from hidden
layers, and the output are generated from the activated expert as the task-specific result.

new task T , its feature representation FT = Embedding(T ) is extracted using the Transformer’s
embedding layer. The task is then assigned to the most relevant subdomain by calculating the
Euclidean distance between FT and the centroid µk of each subdomain. The subdomain that
minimizes this distance is selected as follows:

k = argmin
k

∥FT − µk∥2. (3)

Once the subdomain Djk is identified, the task T will be assigned to this subdomain. Subsequently,
task will be further distributed based on the characteristics of the subdomain, ensuring that the task’s
features align with the knowledge of the subdomain.

Metric Calculation on Patches. After identifying the subdomain Djk , this section is to quantify the
critical information contained within it. Activation values serve as an effective metric for assessing
the importance of neurons and connections within the network because they directly measure how
strongly neurons respond to input features, reflecting their contribution to the network’s output (Han
et al., 2015). To perform this assessment, we begin by scaling the weight matrix W and feature
matrix X . A scaling factor α reduces the dimensionality of the matrices, yielding a smaller matrix of
size βX × βY (where β = 1/α). Each element in this reduced matrix corresponds to a patch Pij ,
which represents a subregion of the original matrix and contains condensed information.

In passing, The scaling process ensures that there is no significant loss of information due to the
Transformer’s self-attention mechanism, which captures global dependencies across the entire input,
facilitating information flow between and within patches (see Appendix A).

Afterwards, to further evaluate the significance of each patch, we calculate the following importance
metric Mij :

Mij =
∑

(m,n)∈Pij

(|Wmn| × ∥Xmn∥2) . (4)

This metric aggregates the weighted contributions of each element within the patch, thereby quanti-
fying its relative importance to the overall network. The use of both weights and activation values
ensures that the local information within each patch is preserved while facilitating efficient global
interactions through the self-attention mechanism.

DSS-Experts Formation. After calculating the importance metrics Mij for all patches, these patches
are sorted in ascending order based on their importance scores: M(1) ≤ M(2) ≤ · · · ≤ M(k),
where M(i) denotes the sorted importance scores, and k represents the total number of patches. This
sorting process helps identify the least important patches for purification. A threshold range θr is
then defined to govern the purification process, specifying the range of importance scores for the
patches to be purified:

θr = {M(i) | M(i) ∈ [θmin, θmax]}. (5)
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Here, θmin and θmax represent the lower and upper bounds of the importance scores targeted for
purification. Patches within this range are considered less crucial to the model’s overall performance
and are therefore purified to reduce complexity while maintaining accuracy.

Following the purification process, the model’s accuracy is re-evaluated to ensure minimal impact
on performance. This accuracy, denoted as acc(θr), serves to validate the effectiveness of the
purification. Subsequently, the outputs from each hidden layer are aggregated, incorporating the
purified information to form the DSS-Expert. This approach allows the DSS-Expert to dynamically
adapt to domain-specific tasks, ensuring optimized performance.

The final step involves optimizing the purification threshold. By iterating through various threshold
ranges θr, the model’s accuracy is assessed for each range, and the optimal threshold θ∗ is identified:

θ∗ = argmax
θr

(
acc(OutputMODEL−θr

)
)
. (6)

This selection of θ∗ ensures the model maintains maximum accuracy while eliminating the least sig-
nificant patches, resulting in a highly efficient and accurate DSS-Expert, where EDSS = MODEL−θ∗ .

Algorithm 1 Pytorch-style pseudocode for DOWP Algorithm.

# D_k: domain-specific data
# theta_init: initial threshold
# theta_max: maximum threshold
# delta_theta: step size

def optimize_threshold(D_k, Perf, theta_init, theta_max, delta_theta):
# Initialize variables
theta = theta_init
best_perf = 0
theta_k_star = theta_init

# Step 1: Extract features and perform clustering
F_k = embedding(D_k)
subdomains = kmeans_clustering(F_k, k)

while theta <= theta_max:
# Step 2: Calculate importance and select patches for purification
importance_scores = calculate_importance(subdomains, theta)
selected_patches = [i for i in range(len(importance_scores))

if importance_scores[i] >= theta]

# Step 3: Purify and evaluate model
purified_model = purify_model(selected_patches)
current_perf = Perf(purified_model, D_k)

# Update best performance and optimal threshold
if current_perf > best_perf:

best_perf = current_perf
theta_k_star = theta

theta += delta_theta

return theta_k_star

Perf: function to evaluate model performance on domain-specific data Dk .

3.2 FREE-MOE ARCHITECTURE

The FREE-MOE Architecture, illustrated in Figure 2, utilizes a multi-level trainable router to dynami-
cally classify tasks into main knowledge domains and then subdomains. This routing mechanism
activates the most relevant DSS-Experts, ensuring efficient and precise task processing by leveraging
purified weights and task-specific parameters.

A Multi-level Trainable Router. We introduce a multi-level trainable router that classifies tasks
through two hierarchical stages. First, the task embedding FT is classified into a main knowledge
domain Dj . Then, in the second stage, the task is further classified into a subdomain Djk within the
selected main domain, as shown:

Djk = Rsub,j(Rmain(FT )). (7)

Here, Rmain(FT ) maps the task embedding to a specific main domain Dj , and Rsub,j(FT ), condi-
tioned on this domain, further assigns the task to a subdomain Djk .

6
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Figure 3: The inference flow through our FREE-MOE. The input tokens ( ) is first embedded and
processed by a trainable (" ) router, where it is initially classified into the main knowledge domain
and further into a sub knowledge domain. The embedded input tokens ( ) is then passed to the
aggregated DSS-Expert, which are dynamically formed from the hidden layers of a frozen (❄ )
pre-trained LLM based on the identified domain, then output tokens ( ) are processed by the chosen
expert to generate the task-specific result.

The router is trained by minimizing cross-entropy loss at both levels, optimizing the classification
process:

LR = CrossEntropyLoss(X) = −
m∑

k=1

yk log (P (D | X)) , (8)

where yk is the true label for domain D, and P (D | X) represents the predicted probability of the
input X being classified into domain D.

The multi-level trainable router classifies tasks hierarchically into main and subdomains. The
classification process is optimized using cross-entropy loss at both levels, enhancing precision across
domains.

FREE-MOE Inference. The inference process in FREE-MOE begins with the input tokens X , which
are first passed through an embedding layer into the embedded representation X̂ . The embedded
tokens X̂ are then fed into the router, a trainable classifier designed to assign the input to the most
relevant domain. The router R classifies the input into a main knowledge domain and then sub
knowledge domain, depending on the characteristics of the task, expressed as:

Dmi = R(X̂). (9)

After classification, the model proceeds DOWP. This step filters out irrelevant weights from the
pre-trained LLM, retaining only those necessary for the selected domain. The purified weights,
denoted as Wpurified, form the core of the DSS-Expert:

Wpurified = DOWP(Wpre-trained, Dmi
). (10)

These purified expert in dynamically activated to process the embedded input X̂ , ensuring that
only the domain-relevant parameters are used for the current task. The embedded input X̂ is then
forwarded through the selected DSS-Expert, which generate the intermediate output Ŷ . Finally, the
intermediate output Ŷ is subjected to a linear transformation and a softmax operation to produce
the final output Y , which represents the model’s prediction for the given task. Whole inference
procedure is shown in Figure 2. By dynamically activating only the most relevant experts and
focusing on task-specific weights, FREE-MOE optimizes both accuracy and computational efficiency.
The process streamlines inference by adapting to the task, ensuring precise and efficient predictions
without unnecessary computational overhead.

4 EXPERIMENTS

In this section, we evaluate the performance of our DOWP, FREE-MOE, comparing our approach
with conventional baseline methods that rely on full network activation, as shown in Figure 4. Our
DOWP algorithm consistently boosts performance across datasets: MMLU, MBPP, HumanEval,
GSM8K and MathQA. When incorporated into the FREE-MOE architecture, it further improves
efficiency, adaptability and stability.

7
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a) LLaMA-2-7b-chat b) LLaMA-2-13b-chat c) Gemma-7b d) Gemma-9b

Figure 4: Performance comparison of different models applying DOWP and FREE-MOE. The radar
charts illustrate the improvements across five datasets among DOWP , FREE-MOE , and
baseline methods .

4.1 SETUP

Datasets. We select three primary domains for our experiments: general, code, and mathematics.
For the general domain, we use the MMLU benchmark(Hendrycks et al., 2021), which tests the
model’s world knowledge and problem-solving skills across diverse subjects. In the code domain, we
leverage the MBPP(Austin et al., 2021) and HumanEval datasets(Chen et al., 2021) to assess coding
capabilities, including language comprehension and algorithmic reasoning. For the mathematics
domain, we utilize GSM8K(Cobbe et al., 2021) and MathQA(Amini et al., 2019), which consist of
elementary-level mathematical problems covering topics such as algebra and probability. We use the
validation sets from MMLU, MBPP, MathQA, and GSM8K as reference data for DOWP, with
final evaluations conducted on their respective test sets. For HumanEval, the MBPP validation set is
used as reference data for DOWP, while the evaluation is performed on the full HumanEval dataset.
In terms of evaluation setup, we use a 5-shot approach to assess model performance on the MMLU
dataset, where the model was provided with five example questions and answers before making
predictions. For the other datasets (MBPP, HumanEval, GSM8K, and MathQA), we conduct
evaluations in a 0-shot setting.

Baseline & Foundation Models. Our experiments utilize four baseline models: LLaMA-2-7b-chat,
LLaMA-2-13b-chat, Gemma-7b, and Gemma-2-9b. The LLaMA-2 series and Gemma models,
based on transformer architecture, are designed for dialogue and natural language understanding
tasks. The 7b, 13b, and 9b variants reflect different parameter sizes, balancing computational
efficiency with task complexity. Each model consists of stacked layers of MLP and Self-Attention
mechanisms, which are essential for capturing long-range dependencies and processing complex
token relationships, making them effective across a range of natural language processing tasks.

Evaluation Metrics. We use accuracy (acc% ↑) as the primary evaluation metric across tasks, defined
as the ratio of correctly answered questions to the total number of questions. For mathematics and
general tasks, accuracy is the sole metric for assessing performance. For coding tasks, we evaluate
model performance using pass@1 and pass@10.

The pass@k(↑) metric allows the model to generate k different solutions for a given problem and
measures the probability that at least one of these k solutions is correct. This is calculated as:

pass@k = 1−
n∏

i=1

(1− Pi) , (11)

where Pi is the probability that the model’s i-th solution is correct, and k is the number of trials.

4.2 MAIN RESULTS.

DOWP. We apply the DOWP algorithm to selected pre-trained language models to assess the
effectiveness of DOWP in enhancing task-specific accuracy across a range of benchmark datasets.
Firstly, the application of DOWP results in consistent performance improvements with an average
gain of 2.04% over the baseline models, as shown in Table 1. Specifically, LLaMA-2-7b-chat’s
accuracy on MMLU increases by 1.98%, while its performance on MBPP (pass@1) rose by 2.08%,
and its accuracy on GSM8K improves by 1.97%. Similar patterns are observed for the other models.
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Notably, Gemma-7b exhibits an increase of 3.26% in MBPP (pass@10) and a 2.4% improvement in
MathQA accuracy, demonstrating DOWP’s efficacy across different models and tasks. Secondly, as
shown in Figure 5, the performance generally lies within the improvement range of 2% to 3% across
tasks, with the highest reaching up to 6.8%. These gains underscore both the algorithm’s effectiveness
and the stability of its enhancements. The results suggest that DOWP enhances large-scale models
by improving accuracy and maintaining stability. Its ability to purify domain-specific weights ensures
efficient operation across diverse datasets and architectures.

Table 1: Performance comparison of DOWP and FREE-MOE with baseline on foundation models.

Method MMLU MBPP HumanEval GSM8K MathQA
acc pass@1 pass@10 pass@1 pass@10 acc acc

LLaMA-2-7b-chat

BASELINE 45.81 19.24 23.60 14.45 19.51 20.24 25.33

DOWP 47.79 21.32 26.40 15.73 20.73 22.21 27.34
Improvement +1.98 +2.08 +2.80 +1.28 +1.22 +1.97 +2.01

FREE-MOE 47.34 20.58 25.80 14.51 19.51 20.79 26.13
Improvement +1.53 +1.34 +2.20 +0.06 ±0 +0.55 +0.80

LLaMA-2-13b-chat

BASELINE 52.34 9.68 13.00 18.66 28.05 31.77 24.86

DOWP 53.18 11.52 16.00 19.45 29.88 34.42 27.57
Improvement +0.84 +1.84 +3.00 +0.79 +1.83 +2.65 +2.71

FREE-MOE 52.93 12.39 14.80 19.13 29.27 33.86 26.34
Improvement +0.59 +2.71 +1.80 +0.47 +1.22 +2.09 +1.48

Gemma-7b

BASELINE 63.56 2.94 9.00 15.31 20.12 57.92 37.12

DOWP 65.30 6.20 15.80 16.77 22.56 59.59 39.57
Improvement +1.74 +3.26 +6.80 +1.46 +2.44 +1.67 +2.45

FREE-MOE 65.05 5.85 13.90 12.93 18.29 59.29 38.79
Improvement +1.49 +2.91 +4.90 −2.38 −1.83 +1.37 +1.67

Gemma-2-9b

BASELINE 69.71 8.36 9.80 12.87 18.90 68.46 50.75

DOWP 71.07 8.52 10.80 15.12 22.56 69.98 51.22
Improvement +1.36 +0.16 +1.00 +2.25 +3.66 +1.52 +0.47

FREE-MOE 70.90 8.28 10.40 14.33 20.73 69.45 50.97
Improvement +1.19 −0.08 +0.60 +1.46 +1.83 +0.99 +0.22
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Figure 5: Accuracy improvement comparison of models using DOWP and Free-MoE methods across
various architectures.

FREE-MOE. To make further comparison, we evaluate the FREE-MOE architecture on the same set of
LLMs to examine its effectiveness. Firstly, applying FREE-MOE also led to noticeable performance
gains of 1.11% in average, though the improvements were generally more moderate compared to
DOWP, as shown in Table 1. In detail, LLaMA-2-7b-chat’s accuracy on MMLU increases by
1.53%, while its performance on MBPP (pass@1) improves by 1.34%, and its accuracy on GSM8K
see a 0.55% rise. Similarly, Gemma-7b’s performance in MBPP (pass@10) increases by 2.91%,
with MathQA showing a 1.67% gain. These results demonstrate that employing FREE-MOE yields
consistent improvements. Secondly, the accuracy improvements under FREE-MOE primarily fall
within the range of 0.5% to 2.5%, with the highest to 4.9%, as shown in Figure 5.

The results suggest that FREE-MOE, while less impactful than DOWP in terms of absolute gains,
offers a viable and stable method for enhancing model performance with minimal additional computa-
tion. Its tuning-free nature make it particularly useful for models that need to balance task specificity,
suggesting that FREE-MOE could be highly beneficial in scenarios where computational resources
are limited, but consistent improvements across a wide range of tasks is still required.
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4.3 ABLATION STUDIES

In the ablation studies, we use the LLaMA-2-7b-chat model due to its stable performance in previous
results. Employing DOWP, we analyze purification ratios, layers, and patch-square configurations.
Furthermore, employing FREE-MOE, we analyze the k-means clustering process.

Table 2: DOWP Performance of Different Purifi-
cation Ratio on MMLU Dataset.

Ratio MMLU(%)

Accuracy

base 45.81
1% 47.75
3% 47.85
5% 47.79

Purification Ratio. We purify the all model
layers (layers 0 to 31) using a 1 × 1 patch-
square configuration and examine different ra-
tios on the MMLU dataset categorized into 12
groups. With a 5% purification ratio, accu-
racy reaches 47.79%, a 1.98% increase over the
45.81% achieves with a 3% ratio. This demon-
strates the 5% ratio effectively balances accu-
racy and computational cost, as shown in Ta-
ble 2.

Table 3: DOWP Performance of Purifying Differ-
ent Sublayers on GSM8K and MathQA Datasets.

Patch Datasets
GSM8K(%) MathQA(%)

Accuracy

base 20.24 25.33
MLP 21.61 26.87

Self-Attention 23.42 25.90
Combination 22.21 27.34

Purification Sublayers. We then apply a 5%
purification to MLP layers and Self-Attention
layers, from layers 0 to 31, evaluating the
impact on the GSM8K and MathQA, divided
into 8 categories. Results shows purifying
the Self-Attention layers yields the best on
GSM8K, with a 3.18% improvement. On
MathQA, the combination performs best,
reaching a 2.01% increase, as shown in Ta-
ble 3.

Table 4: DOWP Performance of Different Patch
Size on MBPP and HumanEval Datasets.

Patch MBPP(%) HumanEval(%)

@1 @10 @1 @10

pass@k

base 19.24 23.60 14.45 19.51
1× 1 20.80 26.00 15.73 20.73
2× 2 19.88 25.60 15.67 20.12
4× 4 18.58 24.00 14.88 20.73

16× 16 18.40 24.40 13.97 17.68

Patch-square Configuration. Besides, based
on 5% purification ratio, we evaluate differ-
ent patch-square configurations on the MBPP
and HumanEval, divided into 3 categories. For
MBPP, the 1×1 patch-square achieves the best
performance on pass@1 with a 1.56% improve-
ment, and on pass@10 with a 2.40% increase.
Similarly, on HumanEval, the 1 × 1 configu-
ration lead with 1.28% gains for pass@1 and
1.22% for pass@10 respectively over the base-
line, as shown in Table 4.

Table 5: FREE-MOE Performance of Different K-
means on MMLU Dataset.

K MMLU(%)

Accuracy
10 47.46
12 47.79
14 47.27

K-means Clustering. Finally, we examine the
impact of different K values applied in FREE-
MOE in the K-means clustering step on the
MMLU dataset, divided into 12 categories. We
vary the number of clusters from 8 to 16, the re-
sults show that with K=12, the accuracy reaches
the highest value of 47.79%, outperforming
other cluster settings, as shown in Table 5.

5 CONCLUSION

In this work, we introduced FREE-MOE, a novel framework designed to address tuning-related
challenges in the MoE architecture. Specifically, We proposed the DOWP Alg. and incorporated a
trainable router to dynamically activate domain-specific subnetworks. FREE-MOE achieves 1) tuning-
free, 2) highly portable, and 3) parameter efficiency, and can integrate into any transformer-based
LLM without model-specific adjustments. The experiments demonstrated consistent performance
improvements, validating FREE-MOE’s capability to optimize task-specific responses and its potential
for wide application in pre-trained LLMs. Our method thus presents a promising solution for
enhancing large model scalability and adaptability.
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Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts. In
Advances in Neural Information Processing Systems, volume 34, pp. 8583–8595, 2021.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason E Weston. Hash layers for large sparse
models. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=lMgDDWb1ULW.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations, 2017.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 3645–3650. Association for Computational Linguistics, 2019. doi: 10.18653/v1/
P19-1355. URL https://doi.org/10.18653/v1/P19-1355.

12

https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2110.03742
https://arxiv.org/abs/2303.10845
https://arxiv.org/abs/2303.10845
https://openreview.net/forum?id=lMgDDWb1ULW
https://openreview.net/forum?id=lMgDDWb1ULW
https://doi.org/10.18653/v1/P19-1355


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Volker Tresp. A bayesian committee machine. Neural Computation, 12(11):2719–2741, 2000.

Chelsea Voss, Gabriel Goh, Nick Cammarata, Michael Petrov, Ludwig Schubert, and Chris Olah.
Branch specialization. Distill, 6(4):e00024–008, 2021.

Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong Chen, Xiyang Dai, and Lu Yuan. Residual
mixture of experts, 2022. URL https://arxiv.org/abs/2204.09636.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Y. Zhao, Andrew M. Dai,
Zhifeng Chen, Quoc V. Le, and James Laudon. Mixture-of-experts with expert choice routing.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=jdJo1HIVinI.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL
https://arxiv.org/abs/2202.08906.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Jianfeng Gao,
and Tuo Zhao. Taming sparsely activated transformer with stochastic experts. In ICLR, 2022. URL
http://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#Zuo00KHZGZ22.

13

https://arxiv.org/abs/2204.09636
https://openreview.net/forum?id=jdJo1HIVinI
https://openreview.net/forum?id=jdJo1HIVinI
https://arxiv.org/abs/2202.08906
http://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#Zuo00KHZGZ22


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A SCALING HIDDEN LAYERS INTO PATCHES MAINTAINS INFORMATION IN
SELF-ATTENTION AND MLP

In Transformer models, the Self-Attention and MLP layers are critical for capturing global contextual
information and performing non-linear transformations on feature representations. The scaling of
hidden layers into patches might raise concerns about the potential loss of information, but this
process is designed to preserve both local and global relationships in the model.

Global Context Preservation in Self-Attention. The Self-Attention mechanism ensures that every
token in the input sequence can attend to all other tokens, capturing global dependencies. This
operation is described by:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (12)

Where: Q, K, and V are the Query, Key, and Value matrices. dk is the dimensionality of the Key
vectors. By scaling hidden layers into patches, each patch retains local interactions within the patch.
Meanwhile, the Self-Attention mechanism ensures that global interactions between patches are
maintained. This is because the attention mechanism operates across all patches, allowing the model
to propagate global information and maintain context across the entire sequence of patches. As a
result, the scaled matrix retains the full global context, ensuring no information is lost during patch
scaling.

Patch Scaling and Information Compression. When the hidden layers are scaled by a factor α, the
resulting reduced matrix of size βX × βY (β = 1/α) has elements that correspond to patches in the
original matrix. Each patch Pij captures a compressed representation of the information within the
original matrix. By aggregating the contributions from each element in a patch, the scaled matrix
effectively compresses the local information, while Self-Attention ensures that this compressed
representation continues to interact globally. The importance of each patch is calculated as:

θij =
∑

(m,n)∈Pij

(|Wmn| × ∥Xmn∥2) (13)

This compression allows for efficient representation of both local and global information, preserving
the integrity of the original model.

MLP Layer and Information Flow. Following Self-Attention, the MLP layer processes the globally-
contextualized output. The MLP is defined as:

MLP(h) = σ(W2 · ReLU(W1 · h)) (14)

Where: h is the output from Self-Attention. W1 and W2 are the weight matrices in the MLP.
σ is the activation function (typically ReLU). The MLP performs non-linear transformations on
the compressed feature representations from the patches. Since the MLP does not rely on spatial
relationships, it processes the patch-level information without any risk of information loss. The
critical feature transformations in the MLP are unaffected by the scaling process, ensuring that the
information flow remains intact.

B PROCEDURE OF DOWP TO SELECT THE BEST θ

In this section, we present the procedure for selecting the optimal threshold θ in the Domain-Oriented
Weight Purification (DOWP) method. The goal is to assess the impact of varying θ values on
performance across multiple datasets and domains, specifically MMLU, GSM8K, MathQA, and
HumanEval. Each table provides a comprehensive comparison of the DOWP performance over
different ranges of θ, from 50% to 100%, highlighting its effectiveness in selecting the most relevant
experts in various domains.
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Table 6: Performance comparison of DOWP throughout all MMLU domains with different θ.
cluster id Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)
mmlu 0 2047 57.79 58.72 58.96 59.26 59.99 59.94 60.67 60.23 60.77 60.92 60.92 14.58
mmlu 1 1518 35.57 34.72 34.32 35.70 35.38 35.31 35.84 35.44 36.17 35.77 36.17 10.81
mmlu 2 895 23.02 24.02 22.57 23.35 23.02 22.01 22.46 22.68 22.79 22.57 24.02 6.37
mmlu 3 1586 48.93 47.92 49.37 48.99 49.87 49.50 49.43 50.44 50.88 51.01 51.01 11.29
mmlu 4 212 27.83 28.77 28.30 25.94 28.77 26.89 27.83 26.89 27.36 26.89 28.77 1.51
mmlu 5 1477 59.58 59.04 60.39 59.51 60.12 60.80 60.93 61.61 61.61 61.75 61.75 10.52
mmlu 6 322 35.09 32.92 33.85 34.78 33.54 34.78 33.54 34.16 35.09 35.09 35.09 2.29
mmlu 7 434 27.65 25.58 29.95 26.96 26.96 27.19 28.11 29.72 27.19 29.49 29.95 3.09
mmlu 8 2016 55.21 55.36 55.46 55.51 56.15 55.56 56.35 57.04 57.19 57.44 57.44 14.36
mmlu 9 1839 46.66 47.53 46.82 46.49 47.36 47.74 47.36 48.02 48.45 48.29 48.45 13.09
mmlu 10 1174 30.92 30.15 31.26 31.09 30.49 30.15 30.83 32.03 32.28 31.86 32.28 8.36
mmlu 11 522 42.34 45.21 44.25 42.91 46.74 45.40 46.74 47.32 46.36 47.13 47.32 3.72

Table 7: Performance comparison of DOWP throughout all GSM8K domains with different θ.
cluster id Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)
gsm8k 0 240 12.92 15.00 15.83 18.75 13.75 17.08 16.67 17.50 15.83 16.67 18.75 18.20
gsm8k 1 8 0.00 12.50 12.50 37.50 25.00 12.50 12.50 37.50 0.00 12.50 37.50 0.61
gsm8k 2 225 17.78 21.78 18.22 24.00 22.67 22.67 22.22 21.78 20.44 24.00 24.00 17.06
gsm8k 3 361 18.28 16.90 19.67 20.50 19.94 23.82 21.05 23.82 21.61 23.82 23.82 27.37
gsm8k 4 113 13.27 17.70 9.73 15.04 15.93 19.47 17.70 13.27 17.70 16.81 19.47 8.57
gsm8k 5 193 12.44 10.88 12.95 13.99 15.03 17.62 20.73 18.65 17.10 19.69 20.73 14.63
gsm8k 6 6 33.33 16.67 50.00 33.33 33.33 16.67 33.33 33.33 16.67 50.00 50.00 0.45
gsm8k 7 173 16.18 14.45 17.92 23.12 17.34 19.08 17.34 19.65 18.50 19.65 23.12 13.12

Table 8: Performance comparison of DOWP throughout all MathQA domains with different θ.
cluster id Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)
mathqa 0 289 19.03 19.72 20.42 23.53 26.99 28.72 26.30 22.84 26.30 22.15 28.72 9.68
mathqa 1 318 24.53 24.84 24.21 22.96 31.45 23.58 29.87 29.25 26.42 25.79 31.45 10.65
mathqa 2 453 20.75 22.30 27.15 22.96 24.06 25.39 23.18 26.49 25.39 22.96 27.15 15.18
mathqa 3 107 24.30 27.10 28.97 20.56 28.04 27.10 28.04 20.56 22.43 20.56 28.97 3.58
mathqa 4 238 24.37 20.17 29.83 21.01 22.69 29.41 22.69 27.31 29.41 28.15 29.83 7.97
mathqa 5 269 26.77 20.45 24.91 25.65 29.37 27.14 25.65 21.56 23.79 29.00 29.37 9.01
mathqa 6 659 24.28 19.58 20.49 21.40 20.64 22.91 21.55 18.97 20.64 19.88 24.28 22.08
mathqa 7 652 20.09 21.47 21.32 24.08 22.70 22.70 25.92 24.54 23.47 22.55 25.92 21.84

Table 9: Performance comparison of DOWP throughout all HumanEval domains with different θ.
cluster id Metric Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

humaneval 0 pass@1 44 11.82 17.05 15.68 14.77 15.00 16.36 17.05 15.23 15.45 14.77 17.05 26.83
humaneval 1 pass@1 75 8.27 9.47 10.80 10.67 13.07 15.33 12.67 13.20 13.47 13.33 15.33 45.73
humaneval 2 pass@1 45 6.89 12.22 11.11 9.33 14.22 14.00 15.11 14.00 14.89 15.11 15.11 27.44

humaneval 0 pass@10 44 18.18 25.00 25.00 18.18 22.73 18.18 25.00 18.18 20.45 20.45 25.00 26.83
humaneval 1 pass@10 75 10.67 14.67 13.33 12.00 18.67 18.67 16.00 17.33 17.33 16.00 18.67 45.73
humaneval 2 pass@10 45 8.89 15.56 15.56 13.33 15.56 15.56 17.78 15.56 20.00 17.78 20.00 27.44

Table 10: Performance comparison of DOWP throughout all MBPP domains with different θ.
cluster id Metric Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)
mbpp 0 pass@1 185 35.68 34.32 33.89 38.16 34.05 35.19 37.51 34.65 36.65 36.38 38.16 37.00
mbpp 1 pass@1 53 17.74 15.47 20.19 27.92 22.83 25.47 23.96 20.75 19.62 22.08 27.92 10.60
mbpp 2 pass@1 262 7.29 6.18 5.84 6.34 6.56 8.09 6.56 6.45 7.75 7.52 8.09 52.40

mbpp 0 pass@10 185 40.54 43.24 42.16 42.16 40.54 41.08 44.32 39.46 42.70 42.16 44.32 37.00
mbpp 1 pass@10 53 24.53 26.42 28.30 32.08 28.30 35.85 30.19 26.42 26.42 33.96 35.85 10.60
mbpp 2 pass@10 262 9.16 9.16 9.92 9.16 10.31 11.83 9.92 10.31 11.83 11.45 11.83 52.40
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C THRESHOLD-BASED PERFORMANCE ANALYSIS ACROSS DATASETS

This appendix provides a comprehensive analysis of the performance trends observed across varying
threshold θ values for the datasets GSM8K, MathQA, HumanEval, MBPP, and MMLU. Each
dataset, representing a distinct domain such as mathematics, programming, and general knowledge,
showcases unique response patterns when applying the FREE-MOE framework. As θ increases, we
observe noticeable fluctuations in accuracy, highlighting the dynamic behavior of domain-specific
subnetworks. The results consistently demonstrate that activating experts based on purified domain-
specific weights yields stable improvements across tasks, while maintaining computational efficiency.
This analysis reinforces the scalability and adaptability of FREE-MOE, validating its ability to
enhance task-specific accuracy without the need for fine-tuning.

(a) GSM8K (b) MathQA

(c) HumanEval (d) MBPP

(e) MMLU
Figure 6: Accuracy comparison of DOWP across different thresholds θ for various datasets including
GSM8K, MathQA, HumanEval, MBPP, and MMLU. Each subfigure (a-e) shows performance
variations with respect to the θ values, highlighting dataset-specific accuracy trends.
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