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Abstract

This work addresses the timely yet under-001
explored problem of performing inference002
and finetuning of a proprietary LLM owned003
by a model provider entity on the confiden-004
tial/private data of another data owner entity, in005
a way that ensures the confidentiality of both006
the model and the data. Hereby, the finetuning007
is conducted offsite, i.e., on the computation in-008
frastructure of a third-party cloud provider. We009
tackle this problem by proposing ObfuscaTune,010
a novel, efficient and fully utility-preserving011
approach that combines a simple yet effective012
obfuscation technique with an efficient usage of013
confidential computing (only 5% of the model014
parameters are placed on TEE). We empirically015
demonstrate the effectiveness of ObfuscaTune016
by validating it on GPT-2 models with differ-017
ent sizes on four NLP benchmark datasets. Fi-018
nally, we compare to a naive version of our019
approach to highlight the necessity of using020
random matrices with low condition numbers021
in our approach to reduce errors induced by the022
obfuscation.023

1 Introduction024

Large Language Models (LLMs) such as GPT-4025

(Achiam et al., 2023) are increasingly used due026

to their state-of-the-art performance in diverse027

tasks and productivity benefits (Noy and Zhang,028

2023). While LLMs excel in zero-shot and few-029

shot predictions with in-context learning (Mann030

et al., 2020), finetuning them on domain-specific031

data can significantly outperform foundation mod-032

els in tasks like chip design(Thakur et al., 2023;033

Wu et al., 2024; Liu et al., 2023).034

Model providers keep their proprietary models035

private due to the exorbitant costs of training them1.036

To enable their users to customize or apply the pro-037

prietary models to their data, model owners provide038

finetuning and inference services, e.g., OpenAI039

1Training GPT-4 costed more than $100M (Knight, 2023)

finetuning API2 and GitHub Copilot3 respectively. 040

Hereby, the users have to share their data with the 041

model owners to use these services. Due to con- 042

cerns of privacy leakage and competitive disadvan- 043

tage, several users and commercial entities are not 044

willing to share their private or confidential data. 045

For e.g., Samsung banned the usage of ChatGPT 046

after sensitive code was leaked (Ray, 2023). Hence, 047

approaches that enable the inference and finetun- 048

ing of proprietary LLMs of one stakeholder on the 049

confidential/private data of another stakeholder in 050

a privacy-preserving way are crucially needed. 051

We define the following requirement that poten- 052

tial methods addressing this problem must fulfill: 053

(a) Model confidentiality: prevent leakage of the 054

proprietary model parameters, (b) Data confiden- 055

tiality: prevent data leakage, (c) Utility: the perfor- 056

mance and results of the inference and finetuning 057

should be comparable with and without protection, 058

(d) Efficiency: the computational time, memory 059

footprint and communication should remain accept- 060

able. To the best of our knowledge, no prior work 061

fulfill all of these requirements simultaneously. In 062

the following, we discuss different categories of 063

prior works. 064

Prior approaches based on differential privacy 065

(DP) for inference (Igamberdiev and Habernal, 066

2023; Majmudar et al., 2022) and finetuning (Yu 067

et al., 2021) focus on protecting the data. However, 068

they do not provide any protection for the model 069

parameters and incur significant utility losses (Req. 070

(a) and (c) are not fulfilled). Another line of work 071

uses cryptographic techniques, e.g., multi-party 072

computation (MPC) and homomorphic encryption 073

(HE) (Li et al., 2022; Liu and Liu, 2023). While 074

the confidentiality of both the model and the data 075

can be ensured, their substantial slowdown and 076

communication costs are not suitable for real-time 077

2https://platform.openai.com/docs/guides/fine-tuning
3https://docs.github.com/en/copilot
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applications (Req. (d) is not fulfilled). Another078

proposal (Xiao et al., 2023) considers sending a079

distilled version of the model to the client where080

adapter layers are finetuned on the confidential data.081

At inference time, the finetuned adapter are used082

in combination with the proprietary model on the083

server side. This approach does not protect infer-084

ence data and leads to utility losses of up to 6%085

(Req. (b) and (c) are not fulfilled). The closest086

approach to the present work combines Trusted087

Execution Environments (TEE) with a lightweight088

encryption to address federated learning settings089

(Huang et al., 2024). However, such proposal pro-090

tects only the finetuned LoRA parameters by using091

the TEE and deploys the proprietary LLM on the092

client-side fully or partially (Req. (a) is not ful-093

filled).094

Our contribution in the present work is threefold.095

First, we propose ObfuscaTune, a novel and effi-096

cient approach that combines TEE with a simple097

yet effective obfuscation technique. Our proposed098

approach enables finetuning and inference of LLMs099

in a way that preserves the confidentiality of the100

model and the data with no utility loss and accept-101

able efficiency loss, fulfilling all aforementioned102

requirements. Second, we empirically demonstrate103

the effectiveness of our method by validating it on104

GPT-2 models with different sizes on four NLP105

benchmark datasets. Hereby, only 5% of the model106

parameters are placed on TEE. Finally, we high-107

light the necessity of our obfuscation technique by108

comparing it to a naive obfuscation method.109

2 Method110

We consider a problem setting involving three111

stakeholders: the model provider, the data owner112

and the cloud provider. The objective is to perform113

inference and finetuning of the proprietary LLM of114

the model provider on the confidential/private data115

of the data owner, in a way that ensures the confi-116

dentiality of both the model and the data. Due to117

the high computation and hardware costs required,118

we assume that the finetuning and/or inference is119

performed offsite, i.e., on the computational infras-120

tructure of the cloud provider. We assume that the121

cloud provider is honest-but-curious, i.e., they will122

perform their task correctly but will try to find extra123

information about the other parties assets and data.124

To tackle this problem, we propose125

ObfuscaTune, an approach that addresses126

this problem by combining TEE and a simple yet127

effective obfuscation technique, ensuring model 128

and data confidentiality while preserving utility. 129

Following prior works, we consider the TEE as an 130

isolated secure zone on a potentially adversary host 131

where the data, code and computation processes 132

used are inaccessible from outside (Hou et al., 133

2021; Huang et al., 2024). Figure 14 presents an 134

overview of the ObfuscaTune approach, which we 135

detail next. 136

The model protection is ensured as follows: the 137

model provider sends the proprietary model to the 138

TEE on the cloud provider infrastructure. Within 139

the TEE, the highly parameterized attention and 140

MLP layers are protected using our obfuscation 141

technique that we detail later and then sent outside 142

the TEE. Since large models do not fit inside the 143

TEE, the model layers can be sent there batchwise 144

to be protected before leaving it. The remaining 145

low-parameterized layers, e.g., the input, output, 146

normalization and dropout layers, are kept on the 147

TEE. After these steps, all model parameters are 148

protected, either by TEE or by the obfuscation, and 149

the majority of model parameters are outside of the 150

TEE. We note that the TEE is controlled by authen- 151

tication that ensures that only the data owner can 152

query the model. This prevents the cloud provider 153

from querying the model to perform model steal- 154

ing (Carlini et al., 2024) or embedding inversion 155

attacks (Li et al., 2023; Morris et al., 2023). 156

The data protection in ObfuscaTuneis con- 157

ducted as follows: The data owner sends an en- 158

crypted batch of data directly to the TEE where 159

it is first decrypted and then embedded using the 160

model input layer. The resulting embedding is pro- 161

tected by our obfuscation method before leaving 162

the TEE. The text tokenization can be conducted 163

either before or after transmitting the data on the 164

data owner side or in the TEE, respectively. 165

The obfuscated feedforward pass through one 166

transformer block is executed as follows: Outside 167

the TEE, the obfuscated data embedding is passed 168

through the obfuscated model layers yielding an ob- 169

fuscated intermediate embedding that is sent back 170

to the TEE. The latter is then de-obfuscated and 171

passed through the corresponding model layers on 172

the TEE, depending on the model architecture. Sub- 173

sequently, the resulting embedding is obfuscated 174

again and leaves the TEE to be fed to the next trans- 175

former block. Finally, the output layer is applied in 176

4Will be part of the additional page in the camera ready
version upon paper acceptance.
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the TEE and the model output is sent back to the177

data owner (inference case) or used to computed178

the loss on the TEE and perform backpropagation179

and parameter updates (finetuning case).180

Our obfuscation method obfuscates the model181

parameters and data embeddings by multiplying182

them with random matrices that minimize numeri-183

cal errors. We begin by introducing the obfuscation184

method and later explain how we limit the numer-185

ical errors. Let’s consider a multi-head attention186

layer and first focus on a single attention head with187

key, query, value layers parameterized by Wk, Wq188

and Wv, respectively, and an embedding X as its189

input. We obfuscate the embedding X by multiply-190

ing it with a randomly generated matrix Ra, yield-191

ing X∗, and obfuscate the parameters Wk, Wq and192

Wv by multiplying them with the inverse of that193

random matrix, i.e., R−1
a , yielding W ∗

k , W ∗
q and194

W ∗
v . Note that multiplying the obfuscated data em-195

beddings X with the obfuscated parameters, W ∗
k ,196

W ∗
q and W ∗

v , leads to the same results, Q, K and197

V , of the original non-obfuscated operations (Eq.198

1-3). All obfuscation operations are applied inside199

the TEE. The remaining aforementioned operations200

are performed outside of the TEE.201

The output H of the attention head is computed202

(Eq. 4) and then concatenated with the outputs203

of the other attention heads, yielding Hallheads204

(Vaswani et al., 2017). Hallheads is then multiplied205

by the parameters W ∗
o of the projection layer that206

are obfuscated by another randomly generated ran-207

dom matrix Rb, yielding the obfuscated output O∗208

of the multi-head attention layer (Eq. 5). Finally,209

this obfuscated output is sent to the TEE where is210

it de-obfuscated via multiplication with the inverse211

of the random matrix, i.e., R−1
b . The bias term212

of this last projection layer has to be added after213

de-obfuscation and is therefore kept unobfuscated214

on the TEE. The obfuscation of the MLP layers215

of the proprietary LLM is conducted in an analo-216

gous manner to the obfuscation of the multi-head217

attention layers. Fig. 2 shows an overview of all op-218

erations conducted in GPT-2 (Radford et al., 2019)219

with annotations of which operations are performed220

inside or outside the TEE and on obfuscated or de-221

obfuscated variables.222

Note that using the same or different random223

matrices to obfuscate different transformer blocks224

does not impact our method. Note that the lay-225

ers that are kept on TEE involve non-linearities,226

e.g., layer-norm, and therefore cannot be applied227

to obfuscated variables since the subsequent de-228

obfuscation would not yield the same result. These 229

layers have a low number of parameters compared 230

to the attention and MLP layers placed outside of 231

TEE, e.g., only ca. 5% of the parameters of GPT2- 232

XL are kept on TEE while 95% are obfuscated and 233

placed outside of TEE, in our experiments. 234

Q = (XTRa)(R
−1
a Wq) = X∗TW ∗

q (1) 235

K = (XTRa)(R
−1
a Wk) = X∗TW ∗

k (2) 236

V = (XTRa)(R
−1
a Wv) = X∗TW ∗

v (3) 237

H = Dropout(Softmax(QKT ))V (4) 238

O∗ = HT
allheadsW

∗
o (5) 239

O = O∗R−1
b (6) 240

Note that all data embeddings and parameters 241

that are accessible to the adversary, i.e., the ones 242

that are processed outside of the TEE, are obfus- 243

cated, except for the intermediate embeddings Q, 244

K and V . Note that these embeddings cannot 245

be inverted with state-of-the-art embedding inver- 246

sion attacks (Li et al., 2023; Morris et al., 2023) 247

as these require a high number of model queries. 248

This is not possible in this case, since querying 249

the TEE requires authentication. A potential ad- 250

versary would be interested in recovering a total 251

of 5 unknown variables, i.e., the data embeddings 252

X and the model parameters Wk, Wq, Wv and Wo, 253

while having access to only 4 equations involving 254

them (Eq. 1-3 and Eq. 5). Hence, it is not possible 255

to compute them analytically. For an additional 256

layer of protection, model obfuscation with new 257

randomly generated matrices can be conducted reg- 258

ularly, e.g., every day or every hour, although we 259

believe this is not required. The model obfuscation 260

can be performed very efficiently (ca. 10 seconds 261

on a middle range GPU for a GPT2-XL model). 262

The minimal error property of our obfusca- 263

tion method is designed to limit numerical errors 264

resulting from the inverse computations of the ran- 265

dom matrices as well as errors resulting from ma- 266

trix multiplication between the random matrix and 267

the data embeddings or model parameters. We use 268

only orthogonal random matrices, as they have the 269

minimum condition number of 1 (see Appendix B). 270

We do this by setting our random matrices Ra and 271

Rb to be the Q matrix computed by applying a QR- 272

decomposition to a randomly generated matrix, as 273

Q is always orthogonal. In this case, the inverse 274

computation is fully error-free since the inverse 275

of an orthogonal matrix is its transposed version 276

which is an error-free operation. 277
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3 Experimental evaluation278

The conducted experiments aim to address the fol-279

lowing key questions: (a) What is the impact of280

applying ObfuscaTune on utility, i.e., how do mod-281

els finetuned with ObfuscaTune compare to the282

normally finetuned models? (b) How does our ob-283

fuscation method using orthogonal random matri-284

ces compare to naively using any random matrices?285

We apply our method to GPT2 (Radford et al.,286

2019) models with different sizes, ranging from287

117 million to 1.5 billion parameters. We imple-288

ment ObfuscaTune on top of the nanoGPT im-289

plementation (Karpathy, 2023). All our experi-290

ments perform LoRA-finetuning (Hu et al., 2022).291

Hereby, the LoRA parameters are randomly ini-292

tialized and placed outside of the TEE. We apply293

LoRA to all linear and attention layers. Further294

hyperparameters are specified in the appendix.295

In each ObfuscaTune experiment, we use 2 GPU296

devices, one that is placed outside of TEE and an-297

other that simulates the TEE. We believe this is298

reasonable since high-end GPUs have TEE support299

(Apsey et al., 2023). We evaluate the finetuning300

with ObfuscaTune and with a naive version that301

uses any random matrices on 4 question-answering302

benchmark datasets, including WebQuestions (We-303

bQs) (Berant et al., 2013), OpenBookQA (OBQA)304

(Mihaylov et al., 2018), PIQA (Bisk et al., 2020)305

and SciQ (Welbl et al., 2017). We evaluate all306

models using lm-eval-harness5.307

Setting WebQs OBQA PIQA SciQ
GPT2-Small

Unprotected 16.0 23.0 64.1 91.1
Protected (random) 0.0 15.4 53.1 19.7
Protected (ours) 16.8 23.6 64.8 91.7

GPT2-Medium
Unprotected 24.1 29.2 69.1 92.2
Protected (random) 0.0 14.4 52.0 20.0
Protected (ours) 24.5 28.6 68.9 92.4

GPT2-Large
Unprotected 30.0 35.0 72.1 93.3
Protected (random) 0.0 14.4 52.0 19.7
Protected (ours) 29.7 32.2 72.3 93.0

GPT2-XL
Unprotected 32.4 34.2 74.1 93.5
Protected (random) 0.0 14.8 52.5 20.5
Protected (ours) 32.6 33.2 73.9 93.6

Table 1: Test accuracy results (%) yielded by normally
finetuned models (unprotected) and models which are
protected by ObfuscaTune as well as a naive version of
our method that uses an arbitrary random matrix with a
non-optimized condition number (random).

5https://github.com/EleutherAI/lm-evaluation-harness

CN 1 8 32 128 160 random
Accuracy 16.8 15.5 15.2 14.7 0.3 0.0

Table 2: Test accuracy results (%) yielded by GPT2-
small models finetuned on WebQs with ObfuscaTune
using matrices with different condition numbers (CN).

Table 1 presents our main experimental results. 308

We find that models finetuned with our method 309

achieve a performance comparable to models fine- 310

tuned without model and data protection. This 311

observation is consistent across all model sizes 312

and benchmark datasets. Besides, models that are 313

finetuned with a naive method that uses arbitrary 314

random matrices incur substantial utility loss due 315

to the high accumulation of errors. Furthermore, 316

we evaluate the impact of using random matrices 317

with different condition numbers and empirically 318

confirm that higher condition numbers deteriorate 319

performance (Tab. 2, details in Appendix B). 320

We also measure the percentage of model param- 321

eters present on TEE after model obfuscation to be 322

5.2% for GPT2-XL, which highlights a substantial 323

efficiency increase compared to naively shielding 324

the whole model inside the TEE. Finally, we mea- 325

sure the runtime of the finetuning and find that 326

using ObfuscaTune leads to a slowdown of 1.5x to 327

4.3x, for GPT2-small and GPT2-XL respectively. 328

This is substantially lower than slowdowns yielded 329

by cryptographic techniques, e.g., ca. 102 using 330

MPC (Knott et al., 2021) and 105 using HE (Lou 331

and Jiang, 2021) with significantly smaller models. 332

4 Conclusion 333

This work tackled the timely but underexplored 334

problem of performing offsite inference and fine- 335

tuning of a proprietary LLM owned by a model 336

provider entity on the confidential/private data of 337

another data owner entity, in a way that ensures the 338

confidentiality of both the model and the data. Our 339

proposed approach, ObfuscaTune, achieves this 340

by combining a simple yet effective obfuscation 341

technique with an efficient usage of confidential 342

computing (only 5% of the model parameters are 343

placed on TEE). Our extensive empirical evalua- 344

tion on four NLP benchmark datasets and different 345

models highlights the effectiveness of our method 346

and emphasizes the importance of using random 347

matrices with low condition numbers for preserv- 348

ing high utility. In future work, we will investigate 349

the effectiveness of our approach to RAG-systems. 350
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5 Limitations351

One potential limitation of our work is that despite352

testing on different models and datasets, we fo-353

cused on the same model architecture, i.e., GPT2.354

However, most of the other LLMs are composed on355

the same building blocks, which makes the appli-356

cation of our method to them straightforward. An-357

other limitation might be that while the slowdown358

incured by ObfuscaTune is substantially lower359

than other technologies, e.g., MPC and HE, it might360

still be unsuitable for some applications where effi-361

ciency has a higher importance than privacy362
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We train all models for 10 epochs. We perform493

validation at the end of every epoch and use early494

stopping with a patience of 3. We use a learning495

rate of 3e− 5 and a batch size of 1. We keep the496

other hyperparameters unchanged from (Karpathy,497

2023). For LoRA, we use the hyperparameters:498

r = 16, α = 32 and apply dropout with 0.05. We499

did not perform hyperparameter tuning, which500

highlights the robustness of our method. We did501

all experiments on middle-range GPUs. Each502

experiment took between less than 1 and 8 GPU503

hours, depending on he model size and dataset.504

505

B Effect of the condition number 506

The condition number κ of a matrix A is defined 507

as κ(A) = M
m , where M = max ∥Ax∥

∥x∥ measures 508

how much the mapping induced by that matrix 509

can stretch vectors and m = min ∥Ax∥
∥x∥ measures 510

how much it can shrink vectors. It determines how 511

much a relative error in the input reflects on the out- 512

put for solving linear systems, matrix inversion or 513

matrix-vector multiplication (Golub and Van Loan, 514

2013). Such numerical errors get accumulated and 515

increase with the number of sequential matrix mul- 516

tiplication operations, i.e., the deeper the model the 517

higher the accumulated error. We minimize the nu- 518

merical errors by minimizing the condition number 519

of the random matrix. 520

In this work, we consider the condition number 521

w.r.t the ℓ2 norm. Since orthogonal matrices induce 522

isometries, i.e ∥Ax∥2 = ∥x∥2 for all x, we get 523

κ(A) = 1 for every orthogonal matrix A. Note that 524

singular matrices have the highest (worst) possible 525

condition number, which is ∞, since for a singular 526

matrix A, m = min ∥Ax∥
∥x∥ = 0. On the other side, 527

from the definition we see that the lowest possible 528

κ is 1. 529

Let σmax(A) and σmin(A) respectively be the 530

largest and the smallest singular values of the ma- 531

trix A. For the ℓ2-induced operator norm norm the 532

following holds : 533

∥A∥ = max
∥Ax∥
∥x∥

= σmax(A). 534

On the other hand, for A square and non-singular 535

min
x

∥Ax∥
∥x∥

= min
y

∥y∥
∥A−1y∥

536

=
1

maxy
∥A−1y∥

∥y∥

537

=
1

∥A−1∥
538

=
1

σmax(A−1)
= σmin(A). 539

Finally we get for every square and non-singular 540

matrix A: 541

κ(A) =
σmax(A)

σmin(A)
542

The last equation makes it possible to generate ran- 543

dom matrices R of a given predefined condition 544

number κ(R). First we generate random matrices 545

A and B using the standard normal distribution. 546

We then apply QR-decomposition on A and B to 547

6

https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/
https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/
https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/


Figure 1: Overview of the proposed ObfuscaTune, composed by the three stakeholders: model provider, which
seeks to keep the model confidential, data owner, which uses the model (finetuning or inference) while preserving
privacy of their data, and cloud provider which provides the computation infrastructure, while potentially trying
to eavesdrop on the data or steal the model. ObfuscaTune provides the necessary protection by keeping very few
components of the model within a TEE, and obfuscating the remaining ones, effectively and efficiently preventing
data or model stealing. This Figure will be part of the additional page in the camera ready version upon paper
acceptance.

Figure 2: Detailed architecture of the GPT-2 with M layers using ObfuscaTune. Diagram blocks in green are
within the TEE, while the orange are outside the TEE. This diagram illustrates how the data is successfully sent
from and to the TEE, while being obfuscated while outside the TEE. Note that both the input text and output text
are always within the TEE to prevent inversion attacks. Note that the non-activation applied after the first MLP
(bottom) is applied on the de-obfuscated embedding. The same applies for the softmax non-linear function.
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generate two orthogonal matrices QA and QB . We548

then choose a random positive value for the largest549

singular value of the final matrix R and we set550

σmin(R) = σmax(R)
κ(R) . The remaining singular val-551

ues can be sampled randomly from the uniform552

distribution between σmin(R) and σmax(R). Then553

we construct the diagonal matrix S with the sin-554

gular values on the diagonal. Note that S−1 is the555

diagonal matrix with the inverses of the singular556

values on the diagonal. Then we define R to be557

having the following singular value decomposition:558

R = QASQB. (7)559

And can calculate R−1 = QT
BS

−1QT
A with mini-560

mal rounding errors. We use this approach to gen-561

erate random matrices of a given condition number562

and monitor the effect of the condition number on563

the test accuracy of the final model. The results564

are showcased in table 2 show indeed that it is cur-565

cial to have a low condition number, otherwise the566

training degenerates.567
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