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Abstract

This work addresses the timely yet under-
explored problem of performing inference
and finetuning of a proprietary LLM owned
by a model provider entity on the confiden-
tial/private data of another data owner entity, in
a way that ensures the confidentiality of both
the model and the data. Hereby, the finetuning
is conducted offsite, i.e., on the computation in-
frastructure of a third-party cloud provider. We
tackle this problem by proposing ObfuscaTune,
a novel, efficient and fully utility-preserving
approach that combines a simple yet effective
obfuscation technique with an efficient usage of
confidential computing (only 5% of the model
parameters are placed on TEE). We empirically
demonstrate the effectiveness of ObfuscaTune
by validating it on GPT-2 models with differ-
ent sizes on four NLP benchmark datasets. Fi-
nally, we compare to a naive version of our
approach to highlight the necessity of using
random matrices with low condition numbers
in our approach to reduce errors induced by the
obfuscation.

1 Introduction

Large Language Models (LLMs) such as GPT-4
(Achiam et al., 2023) are increasingly used due
to their state-of-the-art performance in diverse
tasks and productivity benefits (Noy and Zhang,
2023). While LLMs excel in zero-shot and few-
shot predictions with in-context learning (Mann
et al., 2020), finetuning them on domain-specific
data can significantly outperform foundation mod-
els in tasks like chip design(Thakur et al., 2023;
Wu et al., 2024; Liu et al., 2023).

Model providers keep their proprietary models
private due to the exorbitant costs of training them'.
To enable their users to customize or apply the pro-
prietary models to their data, model owners provide
finetuning and inference services, e.g., OpenAl

lTraining GPT-4 costed more than $100M (Knight, 2023)

finetuning API? and GitHub Copilot® respectively.
Hereby, the users have to share their data with the
model owners to use these services. Due to con-
cerns of privacy leakage and competitive disadvan-
tage, several users and commercial entities are not
willing to share their private or confidential data.
For e.g., Samsung banned the usage of ChatGPT
after sensitive code was leaked (Ray, 2023). Hence,
approaches that enable the inference and finetun-
ing of proprietary LLMs of one stakeholder on the
confidential/private data of another stakeholder in
a privacy-preserving way are crucially needed.

We define the following requirement that poten-
tial methods addressing this problem must fulfill:
(a) Model confidentiality: prevent leakage of the
proprietary model parameters, (b) Data confiden-
tiality: prevent data leakage, (c) Utility: the perfor-
mance and results of the inference and finetuning
should be comparable with and without protection,
(d) Efficiency: the computational time, memory
footprint and communication should remain accept-
able. To the best of our knowledge, no prior work
fulfill all of these requirements simultaneously. In
the following, we discuss different categories of
prior works.

Prior approaches based on differential privacy
(DP) for inference (Igamberdiev and Habernal,
2023; Majmudar et al., 2022) and finetuning (Yu
et al., 2021) focus on protecting the data. However,
they do not provide any protection for the model
parameters and incur significant utility losses (Req.
(a) and (c) are not fulfilled). Another line of work
uses cryptographic techniques, e.g., multi-party
computation (MPC) and homomorphic encryption
(HE) (Li et al., 2022; Liu and Liu, 2023). While
the confidentiality of both the model and the data
can be ensured, their substantial slowdown and
communication costs are not suitable for real-time
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applications (Req. (d) is not fulfilled). Another
proposal (Xiao et al., 2023) considers sending a
distilled version of the model to the client where
adapter layers are finetuned on the confidential data.
At inference time, the finetuned adapter are used
in combination with the proprietary model on the
server side. This approach does not protect infer-
ence data and leads to utility losses of up to 6%
(Req. (b) and (c) are not fulfilled). The closest
approach to the present work combines Trusted
Execution Environments (TEE) with a lightweight
encryption to address federated learning settings
(Huang et al., 2024). However, such proposal pro-
tects only the finetuned LoRA parameters by using
the TEE and deploys the proprietary LLM on the
client-side fully or partially (Req. (a) is not ful-
filled).

Our contribution in the present work is threefold.
First, we propose ObfuscaTune, a novel and effi-
cient approach that combines TEE with a simple
yet effective obfuscation technique. Our proposed
approach enables finetuning and inference of LLMs
in a way that preserves the confidentiality of the
model and the data with no utility loss and accept-
able efficiency loss, fulfilling all aforementioned
requirements. Second, we empirically demonstrate
the effectiveness of our method by validating it on
GPT-2 models with different sizes on four NLP
benchmark datasets. Hereby, only 5% of the model
parameters are placed on TEE. Finally, we high-
light the necessity of our obfuscation technique by
comparing it to a naive obfuscation method.

2 Method

We consider a problem setting involving three
stakeholders: the model provider, the data owner
and the cloud provider. The objective is to perform
inference and finetuning of the proprietary LLM of
the model provider on the confidential/private data
of the data owner, in a way that ensures the confi-
dentiality of both the model and the data. Due to
the high computation and hardware costs required,
we assume that the finetuning and/or inference is
performed offsite, i.e., on the computational infras-
tructure of the cloud provider. We assume that the
cloud provider is honest-but-curious, i.e., they will
perform their task correctly but will try to find extra
information about the other parties assets and data.

To tackle this problem, we propose
ObfuscaTune, an approach that addresses
this problem by combining TEE and a simple yet

effective obfuscation technique, ensuring model
and data confidentiality while preserving utility.
Following prior works, we consider the TEE as an
isolated secure zone on a potentially adversary host
where the data, code and computation processes
used are inaccessible from outside (Hou et al.,
2021; Huang et al., 2024). Figure 1* presents an
overview of the ObfuscaTune approach, which we
detail next.

The model protection is ensured as follows: the
model provider sends the proprietary model to the
TEE on the cloud provider infrastructure. Within
the TEE, the highly parameterized attention and
MLP layers are protected using our obfuscation
technique that we detail later and then sent outside
the TEE. Since large models do not fit inside the
TEE, the model layers can be sent there batchwise
to be protected before leaving it. The remaining
low-parameterized layers, e.g., the input, output,
normalization and dropout layers, are kept on the
TEE. After these steps, all model parameters are
protected, either by TEE or by the obfuscation, and
the majority of model parameters are outside of the
TEE. We note that the TEE is controlled by authen-
tication that ensures that only the data owner can
query the model. This prevents the cloud provider
from querying the model to perform model steal-
ing (Carlini et al., 2024) or embedding inversion
attacks (Li et al., 2023; Morris et al., 2023).

The data protection in ObfuscaTuneis con-
ducted as follows: The data owner sends an en-
crypted batch of data directly to the TEE where
it is first decrypted and then embedded using the
model input layer. The resulting embedding is pro-
tected by our obfuscation method before leaving
the TEE. The text tokenization can be conducted
either before or after transmitting the data on the
data owner side or in the TEE, respectively.

The obfuscated feedforward pass through one
transformer block is executed as follows: Outside
the TEE, the obfuscated data embedding is passed
through the obfuscated model layers yielding an ob-
fuscated intermediate embedding that is sent back
to the TEE. The latter is then de-obfuscated and
passed through the corresponding model layers on
the TEE, depending on the model architecture. Sub-
sequently, the resulting embedding is obfuscated
again and leaves the TEE to be fed to the next trans-
former block. Finally, the output layer is applied in

*Will be part of the additional page in the camera ready
version upon paper acceptance.



the TEE and the model output is sent back to the
data owner (inference case) or used to computed
the loss on the TEE and perform backpropagation
and parameter updates (finetuning case).

Our obfuscation method obfuscates the model
parameters and data embeddings by multiplying
them with random matrices that minimize numeri-
cal errors. We begin by introducing the obfuscation
method and later explain how we limit the numer-
ical errors. Let’s consider a multi-head attention
layer and first focus on a single attention head with
key, query, value layers parameterized by W, W,
and W, respectively, and an embedding X as its
input. We obfuscate the embedding X by multiply-
ing it with a randomly generated matrix R,, yield-
ing X*, and obfuscate the parameters W}, W, and
W, by multiplying them with the inverse of that
random matrix, i.e., R;l, yielding W7, Wq* and
W, Note that multiplying the obfuscated data em-
beddings X with the obfuscated parameters, W},
W, and W7, leads to the same results, @), K and
V, of the original non-obfuscated operations (Eq.
1-3). All obfuscation operations are applied inside
the TEE. The remaining aforementioned operations
are performed outside of the TEE.

The output H of the attention head is computed
(Eq. 4) and then concatenated with the outputs
of the other attention heads, yielding Hjneads
(Vaswani et al., 2017). Hajheads 1S then multiplied
by the parameters W of the projection layer that
are obfuscated by another randomly generated ran-
dom matrix R, yielding the obfuscated output O*
of the multi-head attention layer (Eq. 5). Finally,
this obfuscated output is sent to the TEE where is
it de-obfuscated via multiplication with the inverse
of the random matrix, i.e., R;l. The bias term
of this last projection layer has to be added after
de-obfuscation and is therefore kept unobfuscated
on the TEE. The obfuscation of the MLP layers
of the proprietary LLM is conducted in an analo-
gous manner to the obfuscation of the multi-head
attention layers. Fig. 2 shows an overview of all op-
erations conducted in GPT-2 (Radford et al., 2019)
with annotations of which operations are performed
inside or outside the TEE and on obfuscated or de-
obfuscated variables.

Note that using the same or different random
matrices to obfuscate different transformer blocks
does not impact our method. Note that the lay-
ers that are kept on TEE involve non-linearities,
e.g., layer-norm, and therefore cannot be applied
to obfuscated variables since the subsequent de-

obfuscation would not yield the same result. These
layers have a low number of parameters compared
to the attention and MLP layers placed outside of
TEE, e.g., only ca. 5% of the parameters of GPT2-
XL are kept on TEE while 95% are obfuscated and
placed outside of TEE, in our experiments.

= (XTR.)(R;'Wy) = XTWy (1)

= (XTR,)(R;'Wy) = X Wy (2)

= (XTR,)(R;'W,) = XTWy - (3)

H = Dropout(SoftmaX(QKT))V “)
O* = Hjheads W ®)
O=0R;"! (©6)

Note that all data embeddings and parameters
that are accessible to the adversary, i.e., the ones
that are processed outside of the TEE, are obfus-
cated, except for the intermediate embeddings @),
K and V. Note that these embeddings cannot
be inverted with state-of-the-art embedding inver-
sion attacks (Li et al., 2023; Morris et al., 2023)
as these require a high number of model queries.
This is not possible in this case, since querying
the TEE requires authentication. A potential ad-
versary would be interested in recovering a total
of 5 unknown variables, i.e., the data embeddings
X and the model parameters Wy, W, W,, and W,,,
while having access to only 4 equations involving
them (Eq. 1-3 and Eq. 5). Hence, it is not possible
to compute them analytically. For an additional
layer of protection, model obfuscation with new
randomly generated matrices can be conducted reg-
ularly, e.g., every day or every hour, although we
believe this is not required. The model obfuscation
can be performed very efficiently (ca. 10 seconds
on a middle range GPU for a GPT2-XL model).

The minimal error property of our obfusca-
tion method is designed to limit numerical errors
resulting from the inverse computations of the ran-
dom matrices as well as errors resulting from ma-
trix multiplication between the random matrix and
the data embeddings or model parameters. We use
only orthogonal random matrices, as they have the
minimum condition number of 1 (see Appendix B).
We do this by setting our random matrices R, and
Ry, to be the () matrix computed by applying a () R-
decomposition to a randomly generated matrix, as
@ is always orthogonal. In this case, the inverse
computation is fully error-free since the inverse
of an orthogonal matrix is its transposed version
which is an error-free operation.



3 Experimental evaluation

The conducted experiments aim to address the fol-
lowing key questions: (a) What is the impact of
applying ObfuscaTune on utility, i.e., how do mod-
els finetuned with ObfuscaTune compare to the
normally finetuned models? (b) How does our ob-
fuscation method using orthogonal random matri-
ces compare to naively using any random matrices?

We apply our method to GPT2 (Radford et al.,
2019) models with different sizes, ranging from
117 million to 1.5 billion parameters. We imple-
ment ObfuscaTune on top of the nanoGPT im-
plementation (Karpathy, 2023). All our experi-
ments perform LoRA-finetuning (Hu et al., 2022).
Hereby, the LoRA parameters are randomly ini-
tialized and placed outside of the TEE. We apply
LoRA to all linear and attention layers. Further
hyperparameters are specified in the appendix.

In each ObfuscaTune experiment, we use 2 GPU
devices, one that is placed outside of TEE and an-
other that simulates the TEE. We believe this is
reasonable since high-end GPUs have TEE support
(Apsey et al., 2023). We evaluate the finetuning
with ObfuscaTune and with a naive version that
uses any random matrices on 4 question-answering
benchmark datasets, including WebQuestions (We-
bQs) (Berant et al., 2013), OpenBookQA (OBQA)
(Mihaylov et al., 2018), PIQA (Bisk et al., 2020)
and SciQ (Welbl et al., 2017). We evaluate all

models using Im-eval-harness>.

Setting WebQs OBQA PIQA SciQ
GPT2-Small

Unprotected 16.0 23.0 64.1 91.1

Protected (random) 0.0 154 53.1 19.7

Protected (ours) 16.8 23.6 64.8 91.7

GPT2-Medium

Unprotected 241 29.2 69.1 92.2

Protected (random) 0.0 14.4 52.0 20.0

Protected (ours) 24.5 28.6 68.9 924
GPT2-Large

Unprotected 30.0 35.0 72.1 93.3

Protected (random) 0.0 144 52.0 19.7

Protected (ours) 29.7 322 72.3 93.0

GPT2-XL
Unprotected 32.4 34.2 74.1 93.5

Protected (random) 0.0 14.8 52.5 20.5
Protected (ours) 32.6 332 73.9 93.6

Table 1: Test accuracy results (%) yielded by normally
finetuned models (unprotected) and models which are
protected by ObfuscaTune as well as a naive version of
our method that uses an arbitrary random matrix with a
non-optimized condition number (random).

>https://github.com/EleutherAl/lm-evaluation-harness

CN 1 8 32 128 160 random

Accuracy 168 155 152 147 03 0.0

Table 2: Test accuracy results (%) yielded by GPT2-
small models finetuned on WebQs with ObfuscaTune
using matrices with different condition numbers (CN).

Table 1 presents our main experimental results.
We find that models finetuned with our method
achieve a performance comparable to models fine-
tuned without model and data protection. This
observation is consistent across all model sizes
and benchmark datasets. Besides, models that are
finetuned with a naive method that uses arbitrary
random matrices incur substantial utility loss due
to the high accumulation of errors. Furthermore,
we evaluate the impact of using random matrices
with different condition numbers and empirically
confirm that higher condition numbers deteriorate
performance (Tab. 2, details in Appendix B).

We also measure the percentage of model param-
eters present on TEE after model obfuscation to be
5.2% for GPT2-XL, which highlights a substantial
efficiency increase compared to naively shielding
the whole model inside the TEE. Finally, we mea-
sure the runtime of the finetuning and find that
using ObfuscaTune leads to a slowdown of 1.5x to
4.3x, for GPT2-small and GPT2-XL respectively.
This is substantially lower than slowdowns yielded
by cryptographic techniques, e.g., ca. 102 using
MPC (Knott et al., 2021) and 10° using HE (Lou
and Jiang, 2021) with significantly smaller models.

4 Conclusion

This work tackled the timely but underexplored
problem of performing offsite inference and fine-
tuning of a proprietary LLM owned by a model
provider entity on the confidential/private data of
another data owner entity, in a way that ensures the
confidentiality of both the model and the data. Our
proposed approach, ObfuscaTune, achieves this
by combining a simple yet effective obfuscation
technique with an efficient usage of confidential
computing (only 5% of the model parameters are
placed on TEE). Our extensive empirical evalua-
tion on four NLP benchmark datasets and different
models highlights the effectiveness of our method
and emphasizes the importance of using random
matrices with low condition numbers for preserv-
ing high utility. In future work, we will investigate
the effectiveness of our approach to RAG-systems.



5 Limitations

One potential limitation of our work is that despite
testing on different models and datasets, we fo-
cused on the same model architecture, i.e., GPT?2.
However, most of the other LLMs are composed on
the same building blocks, which makes the appli-
cation of our method to them straightforward. An-
other limitation might be that while the slowdown
incured by ObfuscaTune is substantially lower
than other technologies, e.g., MPC and HE, it might
still be unsuitable for some applications where effi-
ciency has a higher importance than privacy
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A Hyperparameters

We train all models for 10 epochs. We perform
validation at the end of every epoch and use early
stopping with a patience of 3. We use a learning
rate of 3e — 5 and a batch size of 1. We keep the
other hyperparameters unchanged from (Karpathy,
2023). For LoRA, we use the hyperparameters:
r = 16, a = 32 and apply dropout with 0.05. We
did not perform hyperparameter tuning, which
highlights the robustness of our method. We did
all experiments on middle-range GPUs. Each
experiment took between less than 1 and 8 GPU
hours, depending on he model size and dataset.

B Effect of the condition number

The condition number k of a matrix A is defined

as k(A) = %, where M = max ”H’f""” measures
how much the mapping induced by that matrix
can stretch vectors and m = min 22l measures

[l]|
how much it can shrink vectors. It determines how

much a relative error in the input reflects on the out-
put for solving linear systems, matrix inversion or
matrix-vector multiplication (Golub and Van Loan,
2013). Such numerical errors get accumulated and
increase with the number of sequential matrix mul-
tiplication operations, i.e., the deeper the model the
higher the accumulated error. We minimize the nu-
merical errors by minimizing the condition number
of the random matrix.

In this work, we consider the condition number
w.r.t the £5 norm. Since orthogonal matrices induce
isometries, i.e ||Az|s = ||z||2 for all z, we get
k(A) = 1 for every orthogonal matrix A. Note that
singular matrices have the highest (worst) possible
condition number, which is oo, since for a singular
matrix A, m = min ”@:’i” = 0. On the other side,
from the definition we see that the lowest possible
Kis 1.

Let 0pnaz(A) and o5 (A) respectively be the
largest and the smallest singular values of the ma-
trix A. For the ¢5-induced operator norm norm the
following holds :

A
= Omax A).
el = Omas()

On the other hand, for A square and non-singular

JA]l = max

minllAfr:H:min lyll
z |z v |[A7 Lyl
_ 1
- ATy
aXy
_ 1
A=Y
1

A).

707”(&(14_1) = O'min(
Finally we get for every square and non-singular

matrix A:

Omax (A)
The last equation makes it possible to generate ran-
dom matrices R of a given predefined condition
number x(R). First we generate random matrices
A and B using the standard normal distribution.
We then apply QR-decomposition on A and B to

Kk(A) =
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Figure 1: Overview of the proposed ObfuscaTune, composed by the three stakeholders: model provider, which
seeks to keep the model confidential, data owner, which uses the model (finetuning or inference) while preserving
privacy of their data, and cloud provider which provides the computation infrastructure, while potentially trying
to eavesdrop on the data or steal the model. ObfuscaTune provides the necessary protection by keeping very few
components of the model within a TEE, and obfuscating the remaining ones, effectively and efficiently preventing
data or model stealing. This Figure will be part of the additional page in the camera ready version upon paper

acceptance.
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Figure 2: Detailed architecture of the GPT-2 with M layers using ObfuscaTune. Diagram blocks in green are
within the TEE, while the orange are outside the TEE. This diagram illustrates how the data is successfully sent
from and to the TEE, while being obfuscated while outside the TEE. Note that both the input text and output text
are always within the TEE to prevent inversion attacks. Note that the non-activation applied after the first MLP
(bottom) is applied on the de-obfuscated embedding. The same applies for the softmax non-linear function.



generate two orthogonal matrices ()4 and Q. We
then choose a random positive value for the largest
singular value of the final matrix R and we set
Omin(R) = %ﬁ()}z). The remaining singular val-
ues can be sampled randomly from the uniform
distribution between 0,5, (R) and 0,4, (R). Then
we construct the diagonal matrix .S with the sin-
gular values on the diagonal. Note that S~ is the
diagonal matrix with the inverses of the singular
values on the diagonal. Then we define R to be
having the following singular value decomposition:

R=Q45Q3p. (N

And can calculate R~ = QES _1Q£ with mini-
mal rounding errors. We use this approach to gen-
erate random matrices of a given condition number
and monitor the effect of the condition number on
the test accuracy of the final model. The results
are showcased in table 2 show indeed that it is cur-
cial to have a low condition number, otherwise the
training degenerates.
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