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ABSTRACT

The widespread availability of complex time series data in various domains such
as environmental science, epidemiology, and economics demands robust causal
discovery methods that can identify intricate contemporaneous and lagged re-
lationships in non-stationary, nonlinear, and noisy settings. Existing constraint-
based methods often rely heavily on conditional independence tests that degrade
for limited data samples and complex distributions, while score-based methods
impose strong statistical assumptions. Recent methods address special cases such
as change point detection or distribution shifts, but struggle to provide a unified
solution. We propose the Transformer Integrated Temporal Causal Discovery
(TTCD) Framework, a novel end-to-end approach that learns contemporaneous
and lagged causal relations from non-stationary time series. TTCD introduces a
Non-Stationary Feature Learner integrating temporal and frequency-domain at-
tention with dynamic non-stationarity profiling, and a custom Causal Structure
Learner. A key innovation is reconstruction-guided causal signal distillation, to
distill essential causal signals through the reconstruction process of the trans-
former decoder, which mitigates noise and spurious correlations while preserv-
ing meaningful dependencies. The Causal Structure Learner operates on distilled
reconstructed signals to infer the underlying causal graph without restrictive as-
sumptions on noise distributions or data generation processes. Experiments on
synthetic, benchmark, and real world datasets show that TTCD consistently out-
performs state-of-the-art baselines in both accuracy and consistency with domain
knowledge, demonstrating the approach’s effectiveness for causal discovery in
challenging real world contexts.

1 INTRODUCTION

Time series generated by natural systems such as climate, finance, economics, and healthcare of-
ten exhibit non-linearity, non-stationarity, different noise types, and autocorrelation (Runge et al.,
2019a). These intricate properties pose significant challenges for understanding dependencies
among system components. A common approach to simplify this complexity is to graphically rep-
resent the data generation model using directed acyclic graphs (DAGs), which is a very convenient
way to express complex systems in a highly interpretable manner and also provides causal insight
into the underlying processes (Pearl, 2000). DAG representation of a system plays a vital role in de-
cision making and prediction of future conditions in different applications such as causal inference
(Pearl, 1991; Spirtes et al., 2000), neuroscience (Rajapakse & Zhou, 2007), medicine (Heckerman
et al., 1992), economics (Appiah, 2018; Sanford & Moosa, 2012), etc. However, learning DAGs
from observational time series data is very challenging when controlled experiments with different
population sub-groups are impractical or unethical (Spirtes et al., 2000; Peters et al., 2017).

Several state-of-the-art methods have been developed for causal discovery from temporal data based
on constraint-based and score-based methodologies. Constraint-based methods (Runge et al., 2019b;
Runge, 2020; Gerhardus & Runge, 2020; Entner & Hoyer, 2010; Huang et al., 2020) learn condi-
tional independencies through statistical tests to build DAGs. However, conditional independence
tests (CIT) require a large number of samples to generate reliable test scores and can struggle with
complex data distributions, often generating equivalence classes instead of precise causal graphs

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Shah & Peters, 2020; Huang et al., 2018; Glymour et al., 2019). Errors in the early stage can be
impacted by cascading errors in later stages, and CIT at multiple stages can lead to false detection
results (Li et al., 2019; Triantafillou & Tsamardinos, 2016).

Score-based causal discovery methods use a score function to quantify a predicted causal graph
and optimize it gradually by enforcing the acyclicity constraint (Glymour et al., 2019; Huang et al.,
2018; Triantafillou & Tsamardinos, 2016). By evaluating the entire graph instead of applying se-
quential tests, they mitigate error propagation and multi-stage inconsistencies. However, the large
combinatorial search space of an adjacency matrix makes this optimization challenging and often
requires additional DAG constraints. Zheng et al. (2018) transform this combinatorial problem into
a continuous optimization by formulating an acyclicity constraint using the trace exponential of
the predicted adjacency matrix, enabling gradient-based optimization. Based on this, several neural
network-based methods have been proposed (Zheng et al., 2020; Sun et al., 2023; Pamfil et al., 2020;
Yu et al., 2019; Löwe et al., 2022). But these methods often face the overfitting issue due to noise
or spurious correlations in small-sample settings, and most methods assume stationarity. Recently,
transformer architectures have also been explored to analyze time series data (Wen et al., 2023; Zeng
et al., 2023; Kong et al., 2024).

Causal discovery from non-stationary temporal data remains an active research area (Gong et al.,
2024) and several advanced methods have been proposed in constraint-based (Ferdous et al., 2023;
Zhifeng et al., 2024; Sadeghi et al., 2024) and score-based (Schäck et al., 2017; Liu & Kuang, 2023;
Mameche et al., 2025; Rodas et al., 2021) categories for this task. However, these methods are
designed to address specific scenarios such as change point detection, shift in data distribution, con-
ditional stationarity, change in causal relationships, or summary graphs. Some existing approaches
also require prior knowledge of noise distribution and parametric information of data generation.
Therefore, in this paper, we propose a causal discovery framework capable of capturing causal
structure from non-stationary temporal data without any noise or data distribution assumptions. Our
proposed framework integrates a transformer-based non-stationary feature learner with a custom 2D
convolution to capture causal relationships between each variable and its temporal parents. The
contributions of this paper are three-fold:

• We propose a non-stationary transformer to learn dominant features from time series data
using both temporal and frequency domain attentions with non-stationary profiling and de-
stationary feature learning, which provides specific attention on important features.

• We propose a convolution-based Causal Structure Learner to learn the causal relationships
from distilled signals. The proposed module can identify lagged and contemporaneous
causal links simultaneously using the acyclicity constraint and sparsity penalty into the
optimization process.

• We conduct extensive evaluations of the proposed framework with state-of-the-art causal
discovery methods and ablation studies using synthetic and real world datasets. The pro-
posed framework performs better than state-of-the-art approaches in most cases, making it
a strong contender for time-series causal discovery.

2 RELATED WORKS

Traditional statistical causal discovery methods were not designed to handle non-linear data. While
some methods extend the traditional causal discovery methods to handle non-linear time series data,
such as PCMCI and PCMCI+ (Runge et al., 2019b; Runge, 2020; Bahadori & Liu, 2012), some
approaches utilize neural networks for these extensions (Yu et al., 2019; Tank et al., 2021; Absar
et al., 2023; Zheng et al., 2020; Pamfil et al., 2020; Sun et al., 2023). For instance, DAG-GNN (Yu
et al., 2019) leverages neural networks and gradient-based optimization to identify causal structures.

Recent research has made inroads to propose causal discovery techniques applicable to non-
stationary time-series data, constraint-based methods (Huang et al., 2020; Sadeghi et al., 2024; Fer-
dous et al., 2023; Zhifeng et al., 2024) and score-based methods (Rodas et al., 2021; Schäck et al.,
2017; Liu & Kuang, 2023; Mameche et al., 2025). Causal Discovery from NOnstationary Data
(CD-NOD) (Huang et al., 2020) is a nonparametric framework that identifies causal relations from
non-stationary data based on distribution shift. Causal Discovery from Nonstationary Time Series
(CD-NOTS) extends CD-NOD to find lagged and instantaneous causal links using CITs (Sadeghi
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et al., 2024). Ferdous et al. (2023) proposed CDANs, which reduces the conditioning set by con-
sidering lagged parents and utilizes changing modules to detect causal edges. Zhifeng et al. (2024)
introduced a causal discovery method that divides the time series into several stationary intervals
using a change detection method and applies a stationary method to individual intervals.

Score-based method, State-Dependent Causal Inference (SDCI) (Rodas et al., 2021) assumes the dy-
namics of a non-stationary system change based on different states, and conditioning on each state
applies a probabilistic deep learning approach to learn causal graphs. Schäck et al. (2017) proposed
a method by integrating a time-varying autoregressive method and generalized partial directed co-
herence (PDC), where the Kalman filter is used to predict PDC parameters. Latent Intervened Non-
stationary learning (LIN) (Liu & Kuang, 2023) method assumes data contains both observational
and interventional samples, learns causal graphs for each class using a neural network and acyclic-
ity constraint. SPACETIME (Mameche et al., 2025) method considers changes in time and space
simultaneously to detect causal graphs from multi-context data using Gaussian processes. Fujiwara
et al. (2023) combined Linear Non-Gaussian Acyclic Model (LiNGAM) and the Just-In-Time (JIT)
framework to identify causal relations in nonlinear and non-stationary data.

While these methods have significantly contributed to the field of non-stationary time series causal
discovery, several challenges persist. The constraint-based methods highly rely on conditional inde-
pendence tests and are prone to error propagation. Also, multi-stage tests can lead to an increased
risk of false positives or negatives. Though recent score-based causal discovery methods for non-
stationary temporal data mitigate these issues to some extent, they deal with specific challenges,
like context change, distribution shift, interventional data, conditional and local stationary, etc. Nat-
ural non-stationary temporal data does not match these criteria for all cases. By relaxing specific
conditions on data distribution and data generation mechanism, our proposed framework learns non-
stationary features from natural temporal data and generates effective temporal causal graphs. The
comparison between different existing methods is provided in Appendix A.

3 PRELIMINARIES

Let’s consider a multivariate time series dataset X = {x1, x2, x3, . . . , xn} consisting of n variables,
and each variable is measured for T timesteps. Variable xi(i ∈ {1, ..., n}) at a specific time point
t ∈ T could be caused by other variables at the same timestep (t) and all variables from previous
timesteps (0 to t − 1), following the temporal precedence assumption (the output causal graph of
Figure 1). The effects from previous timesteps, also called lagged effects, can propagate from infinite
earlier time points, but for DAG learning purposes, we will consider a maximum time lag, i.e., lmax.

Definition 1: Consider a time series Xt = (Xi
t)i∈{1,...,n} with continuous distribution. If there is a

lmax > 0 and ∀i ∈ n there are sets PAxi

t ⊆ X
n\i
t , PAxi

0...(t−1) ⊆ X0...(t−1), the structural equation
model is

Xi
t = fi(PAxi

t−lmax
, ..., PAxi

t−1, PAxi

t , eit), (1)

with noise term eit. So the set of possible cause variables of each time series xi at
time t is PAxi ∈ [{X(t−lmax), X(t−lmax+1), ..., X(t−1), Xt} − xi]. The goal is to learn
a causal graph G(V,E) such that its vertices resemble time-lagged and current time vari-
ables, and its directed edges express causal links. So the vertices and edges can be de-
noted as V = {X(t−lmax), X(t−lmax+1), ..., X(t−1), Xt}, E = {(Vi, Vj) : Vi, Vj ∈
{X(t−lmax), X(t−lmax+1), ..., X(t−1), Xt}}, respectively. Let the weighted adjacency matrix of full
temporal causal graph G be denoted by W ∈ R(n×(lmax+1))×n.

The proposed method works based on the following assumptions. Markov and Faithfulness As-
sumption: Assume P (Xi), i ∈ {1, ..., n} is Markov and faithful to the true/generated causal
graph G (Hasan et al., 2023). Causal Sufficiency Assumption: We assume that there are no hid-
den/unobserved confounders in the data generation process. Causal Consistency Assumption: As-
sume causal relations between the variables are consistent through all time steps. Acyclicity As-
sumption: This assumption states that there are no causal paths that begin and end at the same node.
Assuming temporal precedence in the data ensures acyclicity constraint in the time-lagged part of
W . However, for the contemporary part of W at t, each node can serve as both the source and
target of causal links, required to maintain the acyclicity. Simultaneously learning the lagged and
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contemporaneous parts of the adjacency matrix is very challenging for complex datasets. Since any
variable might be the cause of another effect variable, cycles can occur in the contemporaneous part
of the adjacency matrix.
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Figure 1: Proposed TTCD framework to learn full temporal causal graph. The Non-Stationary
Feature Learner module learns distilled reconstructed features using temporal and frequency domain
attentions, a non-stationary profiling network, and a de-stationary factor block. The Causal Structure
Learner operates on distilled reconstructed signals to generate a full causal graph.

4 PROPOSED METHODOLOGY

The causal graph generating task can be treated as an unsupervised learning process of the adjacency
matrix W given T observations of a multivariate time series data X . To learn a directed adjacency
matrix W of the full temporal causal graph G, we propose a framework based on unsupervised deep
neural networks. The proposed framework learns the instantaneous (Xt → Xt) and time-lagged
({X(t−lmax), X(t−lmax+1), ..., X(t−1)} → Xt) causal links for maximum time lag (lmax > 0). Our
proposed framework is illustrated in Figure 1, which consists of two modules: a Non-Stationary
Feature Learner module and a Causal Structure Learner module. Non-Stationary Feature Learner
leverages a transformer-based encoder with a specialized attention mechanism to learn latent repre-
sentations from temporal and frequency domain features. The decoder reconstructs the input signal
from these latent representations, and we use the reconstructed output (prior to denormalization)
as input to the causal structure learner. This design serves two purposes: it ensures dimensional
alignment with the original data space, and it filters out spurious fluctuations and noise while retain-
ing meaningful dynamics. The Causal Structure Learner module contains N nonsequential custom
causal layers (Causal Conv2D) to learn time-lagged and instantaneous causal relationships of each
input variable to its parent variables. Following a similar analogy used by Zheng et al. (2020) and
DAG-GNN (Yu et al., 2019), we will learn causal links from parameters of Causal Conv2D layers.
Here, the links learned by this module are always unidirectional. The unique design of this module
helps to learn the causal links for each input variable independently. Finally, the results of each
causal layer are aggregated to generate a causal graph of the input data. Causal graph identifiability
of the proposed model is inspired by Peters et al. (2013; 2011) and follows a similar behavior. Please
refer to Appendix B for details.

4.1 NON-STATIONARY FEATURE LEARNER

The Non-Stationary Feature Learner module of our proposed framework learns latent representa-
tion from input time series data leveraging non-stationary attention introduced by Liu et al. (2022).
Motivated by the boosted performance of their model, we follow a similar transformer strategy to
learn features from non-stationary temporal data. The input data is divided into sequential chunks
(In ∈ R(T×(lmax+1)×n)) to maintain inherent temporal order, and an embedding is generated for
each chunk (E ∈ R(T×(lmax+1)×de)). Encoder block of the transformer takes this embedding as
input to compute attention scores using non-stationary attention and learns the latent representation.
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The non-stationary transformer can learn important features of input time series; however, the non-
stationarity cannot be fully covered through attention only, because the data normalization process
attenuates non-stationary characteristics. Due to normalization, sequences from distinct time series
can appear statistically identical, causing the model to generate uniform attention without being
aware of important features. This ignorance of crucial non-stationary features limits the quality of
the learned features and weakens the overall performance. To tackle this problem, we explicitly de-
rive non-stationary components from raw input and integrate them into attention computation such
that the transformer can retain significant non-stationarity in its representations. We achieve this
by introducing a Non-Stationary Profiling network and a de-stationarizing module, De-Stationary
factor learning Block (DSB). Specifically, the Non-Stationary Profiling Network extracts dynamic,
localized statistics—such as local variability or higher-order moments—capturing sample-specific
distributional profiles that are often suppressed by standard normalization. These learned profile vec-
tors (γ(i)

Q , γ
(i)
K ∈ RT×de ) work as meta-conditioning signals that adapt the transformer’s attention

weights for each input dynamically. This makes the transformer data-adaptive, not just parameter-
adaptive, and goes beyond fixed decomposition.

Q(i) = Q⊙ γ
(i)
Q ,K(i) = K ⊙ γ

(i)
K

where
[
γ
(i)
Q , γ

(i)
K

]
= Profile

(
X(i)) (2)

The De-Stationary Factor Learning Module (DSB) is designed to explicitly restore and amplify
the intrinsic non-stationary characteristics of time series data, which are often attenuated or lost
due to standard normalization and sequence embedding steps. In our framework, the non-stationary
profiling network focuses on local features, and the DSB captures broader, global non-stationary
profiles. As shown in Figure 1, the DSB comprises a convolution layer and several linear layers
with ReLU activations. This block learns scaling factor τ ∈ RT×1 (equivalent to σ2) and shifting
vector ∆ ∈ RT×(lmax+1) (equivalent to µ) utilizing raw input data and its computed mean µx and
standard deviation σx. These learned de-stationary factors are then integrated with the attention
computing mechanism (Equation 3) to learn varying attention considering non-stationarity.

Attn(Q,K, V, τ,∆) = Softmax(
τQK⊤ + I∆⊤

√
de

)V, (3)

where Q, K and V represent the query, key and value matrices of the transformer with dimension
RT×(lmax+1)×de , respectively, and I is a vector of all ones. These learned de-stationary factors are
used inside the attention module to multiply learned attention values. Additionally, these learned
de-stationary factors are shared by all attention modules used in the whole transformer.

Recent studies by Zhou et al. (2022), Yi et al. (2023), and Li et al. (2025) have demonstrated that
integrating frequency domain attention significantly improves the model’s capacity to disentangle
non-stationary time series and identify latent causal drivers. So, we integrate a Frequency Domain
Attention alongside the standard temporal attention to further enhance the model’s ability to capture
complex non-stationary patterns. A Fourier Transform is applied to convert time-domain signals
into frequency spectra (Fre ∈ R(T×((lmax+1)/2)×de)), enabling the network to selectively attend
to distinct spectral bands and periodic components of non-stationarity in the signal. This frequency
domain attention is fused with the time domain latent features conditioned by local profile vectors
and de-stationary factors, enabling the model to simultaneously exploit localized distribution and
frequency-based dependencies. This multiview representation enhances the learner’s ability to detect
time-lagged and instantaneous causal links that are modulated by complex non-stationary dynamics.
The learned latent representation (RT×(lmax+1)×de ) of the encoder module is provided as input
to the transformer decoder module together with generated input data embeddings. The decoder
module also uses non-stationary attention blocks with de-stationary factors to reconstruct input data
(RT×(lmax+1)×n). The distilled signals learned by the decoder module are provided as input to the
proposed Causal Structure Learner module to learn causal relationships. The output of the decoder
module is still on an unnormalized scale. Therefore, the de-normalization block is used to shift the
output back to the original scale of the input data.

4.2 CAUSAL STRUCTURE LEARNER

We propose this novel module to learn lagged and instantaneous causal links of each variable using
distilled reconstructed signals (RT×(lmax+1)×n) learned by the decoder block. This consists of a
separate custom Causal Conv2D layer for each variable, and these layers are organized in a non-
sequential pattern. The Causal Conv2D layer takes input in a similar structure as shown in the full
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causal graph on the right side of Figure 1, with lagged data followed by data from the current time
point. Each Causal Conv2D layer is designed to learn causal links of an input variable, for example,
to x1 from all possible parents PAx1 ∈ {x1

(t−lmax)
, x1

(t−lmax+1), ..., x
1
(t−1), x

2
(t−lmax)

, x2
(t−lmax+1),

..., x2
(t−1), x

2
t , ..., x

n
(t−lmax)

, xn
(t−lmax+1), ..., x

n
(t−1), x

n
t }of that variable following Definition-1. The

variable itself cannot be included in the set of its parent variables. Let’s assume we have a time series
dataset with 4 variables, and for lagged effects, consider a maximum time lag lmax = 4. So, the
input data size will be (4× 5), one row for each variable and lmax + 1 = 5 columns for lagged and
contemporaneous data. To learn a causal graph for 4 variables, as shown in Figure 2, we have to
employ 4 Causal Conv2D layers. Each of these layers predicts the expectation of a target variable in
the current timestep t given all lagged and instantaneous parents (Equation 4).

E[xi|PAxi

] = f
Wxi (PAxi

) (4)

Here, fWxi () denotes the function learned for target variable xi and W xi

represents the set of
weight parameters of that layer. The adjacency matrix is derived from learned weights of these
Causal Conv2D layers. Each weight parameter of a layer related to a target variable represents the
strength of causal links from its potential parent. If a weight parameter W xk

ij = 0, this means that the

target variable xk is independent of the cause variable xi at timestep j. Conversely, if W xk

ij > 0, the
target variable xk has a causal edge from parent variable xi at a specific time lag j. After training
weight parameters of all target variables, we apply a thresholding operation to prune causal links
with weak dependency strength, W xk

ω = (W xk

> ω), where ω is a minimum threshold limit. After
thresholding, the weight parameters of all variables represent the adjacency matrix of the generated
causal graph.
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Figure 2: Example of the proposed custom causal layers with four variables and a time lag of 4.

4.3 OPTIMIZATION

To train the proposed framework, we optimize these four terms in the objective function: transformer
reconstruction loss, target variable estimation loss, acyclicity constraint, and sparsity loss. Recon-
struction loss: In the Non-Stationary Feature Learner module, we learn latent representations and
reconstruct them to the input data through the transformer’s encoder-decoder structure. Therefore, to
optimize this module, we use the mean squared error (MSE) loss of input data X and reconstructed
output X̂ , which is defined as:

Lr =
1

T

T∑
i=1

∥∥∥X − X̂
∥∥∥2

2
(5)

Acyclicity Constraint: To optimize the Causal Structure Learner module we have to ensure acyclic-
ity property of the causal graph. To enforce acyclicity in the adjacency matrix of the learned causal
graph, we use an equality constraint similar to that of Zheng et al. (2018), formulated as h(W ) = 0.
The function h(W ) is defined using the trace exponential (tr) of the elementwise product of the
adjacency matrix with itself. h(W ) = tr eW⊙W − n, here n is the number of variables. We cannot
use the learned adjacency matrix W directly in this equality function because W contains both time-
lagged (t−lmax, t−lmax+1, . . . , t−1) and contemporaneous (t) edges of the causal graph. Lagged
causal edges always redirect from previous timesteps to the current timestep t, and are acyclic. We
have to apply acyclicity constraint only to the contemporaneous part of the adjacency matrix W t.

h(W t) = tr( eW
t⊙W t

)− n = 0 (6)

The function h(W t) will be equal to 0 if and only if the corresponding matrix W t does not have any
cycle. However, we cannot directly integrate this equality constraint into a continuous optimization
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framework. But the equality constraint h(W t) = 0 can be solved using continuous optimization
after converting this into an unconstrained problem (Zheng et al., 2018). Therefore, we transform
this equality constraint into an unconstrained subproblem using the augmented Lagrangian method.
The continuous form of this constraint is defined as:

h(W t) = 0 ≈ min
[ρ
2
|h(W t)|2 + αh(W t)

]
, (7)

where α > 0 is the Lagrange multiplier, ρ > 0 is the penalty parameter of the augmented La-
grangian.

Target Variable Estimation Loss: The proposed Causal Structure Learner module estimates each
target variable by using all possible parents to learn the adjacency matrix W ∈ R(n×(lmax+1))×n

of the desired causal graph. To improve this estimation quality, we must consider the difference
between estimated and actual values of target variables. Therefore, we define a mean squared error
loss (Ltve) between true values and estimated values obtained through causal connections:

Ltve(W ) =
1

T
||X −WX||2F (8)

Sparsity Loss: We incorporate an additional penalty to enforce sparsity in the learned adjacency ma-
trix using the L1 norm of W ∈ R(n×(lmax+1))×n. This penalty term helps to generate fewer causal
links with strong relationships. While Lr, Ltve, and the acyclicity constraint (Equation 7) drive the
model to find dense and overly connected relationships to minimize loss, potentially increasing the
number of non-zero weights—the L1 norm of W try to reduce less significant weights to zero to
keep a minimum number of non-zero entries. The sparsity loss is defined as Ls = λ||W ||1, where
λ is the sparsity penalty regularization. By combining all loss terms, the objective function of the
proposed framework becomes:

min
W

[
Lr + Ltve(W ) +

ρ

2
|h(W t)|2 + αh(W t) + Ls

]
, (9)

where the 3rd and 4th terms are augmented Lagrangian for the acyclicity constraint. This objective
function can be minimized using any state-of-the-art continuous optimizer.

5 EXPERIMENTAL SETUP

We describe datasets and evaluation metrics used for performance comparison in this section. Our
model is developed using the PyTorch library, and all experiments are conducted on Google Colab
Runtime with CPU for easy reproducibility. A fixed random seed value is used for randomized data
to make the experimental results reproducible. The implementation code and datasets used for this
study are available at https://anonymous.4open.science/r/TTCD/README.md.

Synthetic Datasets: We used two synthetic datasets to evaluate the performance of our proposed
causal discovery method. As we know the ground truth causal graph for synthetic datasets, we can
measure and compare generated causal graphs easily. We generated a time series dataset (Dataset-
1) consisting of four variables using Gaussian white noise ε following a similar data generation
process presented in (Huang et al., 2020), which contains both lagged and instantaneous links. A
mathematical description and the true causal graph for this dataset are provided in Appendix C.
Non-stationary characteristic is incorporated into the generation process of this dataset to mimic the
dynamic properties of real world natural system.

The other synthetic dataset (Dataset-2) follows a similar data generation process presented in (Kang
et al., 2022). For this dataset, we used exponential nonlinearity and noise signals from the Poisson
distribution. The mathematical equations of this dataset also given in Appendix C. All the variables
of this dataset are also non-stationary.

Real World Datasets: Two real world Earth/atmospheric science datasets, namely Turbulence Ki-
netic Energy (TKE) and Arctic Sea Ice, and FMRI benchmark data were used to evaluate our work.
These natural datasets exhibit high variability, non-stationarity, and complex interactions. TKE
refers to the mean kinetic energy per unit mass of eddies in turbulent flow (Hinze, 1975). The tempo-
ral TKE data used in this study represent the TKE evolution during a typical cumulus-topped bound-
ary layer day (local time 05:00–18:00) over the DOE Atmospheric Radiation Measurement (ARM)
Southern Great Plains Central Facility. This data file is generated from an idealized numerical simu-
lation using the Weather Research & Forecasting Model (Skamarock et al., 2019) with modifications
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from the Large-Eddy Simulation (LES) Symbiotic Simulation and Observation (LASSO) activity,
which is developed through the US Department of Energy’s ARM facility (Gustafson et al., 2020;
Endo et al., 2015). The dataset also includes TKE vertical shear production (SH) and buoyancy
production (BU ) terms, which together yield the net TKE tendency (TEND). Their ground-truth
relationships are shown in Figure 3b (Appendix C), and non-stationarity test results are available in
Appendix E.

Arctic sea ice is an important component of the world’s climate system and plays a significant role
in the rise of extreme weather events. Huang et al. (2021) conducted a causal discovery analysis to
investigate the links between the melting Arctic sea ice and atmospheric variables. We use the same
11 atmospheric variables with the sea ice extent employed in (Huang et al., 2021). This time series
data contains monthly averages from 1980 to 2018 over the Arctic region north of 60N. The variable
names and non-stationary test results for this dataset are provided in Appendix D and E respectively.

The FMRI benchmark dataset (Smith et al., 2011) provides rich, realistic simulated blood-oxygen-
level-dependent (BOLD) time series for modeling brain networks. Activity between 5 brain regions
is measured in this dataset, considering the change in blood flow. Each brain region is considered a
node and 2400 samples are recorded for each node. The ground truth causal graph of this dataset is
also provided for performance evaluation.

Evaluation Metrics: We evaluate the performance of our proposed causal discovery method using
Structural Hamming Distance (SHD), F1 Score and False Discovery Rate (FDR). SHD represents
the number of edge corrections (deletion, insertion) to match the predicted graph with the true causal
graph. FDR explains the rate of predicted wrong edges from all predicted edges considering the
direction of each edge. F1 Score calculates the harmonic mean of precision and recall. The F1 score
ranges from 0 to 1 and a higher value means a better prediction of the true graph. In contrast, lower
SHD and FDR represent better performance of the causal discovery method.

6 RESULTS

In this section, we present the comparative results of time series causal discovery between the pro-
posed method and state-of-the-art methods. To evaluate the performance of our proposed method,
we considered 8 SOTA methods as baselines: CD-NOD (Huang et al., 2020), LIN (Liu & Kuang,
2023), PCMCI+ (Runge, 2020), DYNOTEARS (Pamfil et al., 2020), NTS-NOTEARS (Sun et al.,
2023), PCMCI (Runge et al., 2019b), NOTEARS-MLP (Zheng et al., 2020), and DAG-GNN (Yu
et al., 2019). The first six methods can learn causal graphs for time series data; among these,
CD-NOD (Huang et al., 2020) and LIN (Liu & Kuang, 2023) work on non-stationary data. Al-
though the LIN method assumes both intervention and observation samples, in our experiments,
we set the intervention parameter to 0 to model observation data, which means no intervention
is applied to the data. While the NOTEARS-MLP (Zheng et al., 2020), and DAG-GNN (Yu
et al., 2019) methods were proposed for non-temporal data, we include these methods due to their
strong performance and widespread usage in different domains (Entner & Hoyer, 2010; Huang
et al., 2021). We transformed the lagged and instantaneous data into a long sequence such as
{x1

t−5, x
2
t−5, x

3
t−5, x

4
t−5, x

1
t−4, x

2
t−4, x

3
t−4, x

4
t−4, . . . , x

1
t , x

2
t , x

3
t , x

4
t}, so that we could apply trans-

formed dataset to the non-temporal methods to find lagged and current time causal relationships.
For fair comparison, we carefully tuned hyperparameters for each method to get the best evaluation
scores. The hyperparameters used for all baseline methods are provided in Appendix F.

To evaluate the performance of the baseline methods, we compared the predicted causal graph in
the full temporal graph setting, considering both edge direction and time lag of each edge. The
qualitative comparison is reported in Table 1, where the best scores are marked in bold, and under-
lined values represent the second best scores. From Table 1, we can see that our proposed method
obtained the best results on Synthetic Dataset-1, TKE, and Arctic Sea Ice datasets, and comparable
results for other datasets. For Dataset-2, the TCDF method yielded the same SHD and FDR scores
but a lower F1 score, indicating this method predicted fewer edges than the ground truth edges. For
the FMRI dataset, DAG-GNN method achieved the best F1 score, where the proposed method gen-
erated a better FDR score with the same SHD. As this dataset represents chain-like relationships, the
proposed method failed to detect all target edges, eventually generating fewer edges with high causal
strengths. Baseline methods for non-stationary data also performed well on FMRI dataset. Overall,
these comparative results demonstrate that our proposed framework is capable of generating better
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Table 1: Comparative analysis of the full causal graph predicted by different baseline methods for
synthetic and real world datasets.

METHOD DATASET-1 DATASET-2 TKE ARCTIC SEA ICE FMRI
SHD↓F1↑ FDR↓ SHD↓F1↑ FDR↓ SHD↓F1↑ FDR↓ SHD↓F1↑ FDR↓ SHD↓F1↑ FDR↓

PCMCI 24 0.36 0.75 36 0.14 0.90 9 0.18 0.87 62 0.31 0.68 7 0.53 0.60
PCMCI+ 21 0.43 0.71 29 0.25 0.83 5 0.44 0.66 50 0.32 0.57 5 0.66 0.50
NOTEARS-MLP 9 0.18 0.50 21 0.32 0.77 4 0.33 0.66 71 0.38 0.68 14 0.30 0.80
NTS-NOTEARS 17 0.32 0.75 18 0.18 0.84 6 0.40 0.71 53 0.10 0.76 5 0.54 0.50
DAG-GNN 13 0.31 0.70 17 0.11 0.90 7 0.22 0.83 66 0.21 0.76 3 0.75 0.37
DYNOTEARS 18 0.25 0.80 27 0.12 0.90 8 0.00 1.00 65 0.21 0.75 4 0.66 0.42
CD-NOD 10 0.37 0.57 16 0.00 1.00 5 0.54 0.62 54 0.25 0.63 4 0.50 0.33
LIN 61 0.21 0.88 98 0.13 0.93 4 0.33 0.66 56 0.31 0.63 4 0.60 0.40
TCDF 10 0.16 0.66 9 0.18 0.50 6 0.25 0.80 51 0.21 0.63 7 0.22 0.75
CAUSALFORMER 9 0.31 0.50 16 0.11 0.88 8 0.00 1.00 55 0.43 0.59 10 0.00 1.00
PROPOSED TTCD 8 0.50 0.42 9 0.40 0.50 1 0.80 0.00 46 0.45 0.50 3 0.66 0.25

quality causal graphs for non-stationary temporal data and can identify true causal edges with fewer
spurious causal links compared to state-of-the-art baseline models.

6.1 ABLATION STUDY

A comparative study of the proposed framework and its different variants is performed to verify the
effectiveness of each component in our framework. In the TTCD Normal Transformer variant, we
used a standard transformer rather than a non-stationary transformer, keeping the Causal Structure
Learner unchanged. The TTCD w/o DSB variant removes the de-stationary factor learning block
(DSB) to evaluate its contribution, and TTCD w/o Frequency excludes the frequency-domain at-
tention from non-stationary transformer while keeping other modules unchanged. The evaluation
results in Table 7 show that the non-stationary transformer learns informative latent features better
than a standard transformer on multivariate non-stationary data. Moreover, removing either DSB
or frequency domain attention block degrades performance across all datasets, demonstrating their
effectiveness for robust causal discovery.

7 CONCLUSION

In this paper, we propose TTCD, a score-based causal structure learning method for non-stationary
time series data that integrates the non-stationary transformer and a custom Causal Conv2D module.
The proposed method leverages the temporal and frequency domain attentions enhanced by non-
stationary profiling and de-stationary factor learning networks to learn important non-stationary
features and refined reconstructed signals. The custom causal structure learner keeps the causal
contributor of each target/effect variable isolated from other target variables, which helps to esti-
mate a better causal structure from distilled signals. Unlike many existing methods, the proposed
framework does not require prior knowledge about variable independence, noise distribution, or the
underlying data generation process. We conducted extensive experiments on synthetic, benchmark,
and real world complex time series datasets to demonstrate the performance of the proposed causal
discovery framework. Experimental analysis demonstrates that the TTCD framework achieves su-
perior causal graph learning capability compared to state-of-the-art baselines. In the future, we will
analyze more benchmarks and real world datasets from other domains and evaluate the sensitivity
of different parameters.

Table 2: Ablation analysis between the proposed framework and its different variants.

DATASET TTCD TTCD W/O DSB TTCD W/O FREQUENCY TTCD NORMAL XFORMER
SHD↓F1↑ FDR↓ SHD↓F1↑ FDR↓ SHD↓ F1↑ FDR↓ SHD↓ F1↑ FDR↓

DATASET-1 8 0.50 0.42 10 0.28 0.60 12 0.25 0.71 13 0.13 0.83
DATASET-2 9 0.40 0.50 11 0.15 0.75 12 0.14 0.80 14 0.13 0.77
TKE 1 0.80 0.00 6 4 0.50 0.60 4 0.33 0.66 14 0.22 0.77
ARCTIC SEA ICE 46 0.45 0.50 63 0.34 0.66 50 0.46 0.54 63 0.35 0.66
FMRI 3 0.66 0.25 6 0.36 0.66 7 0.36 0.66 7 0.22 0.75
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van Nes, J. Peters, Rick Quax, Markus Reichstein, Marten Scheffer, Bernhard Scholkopf, Peter
Spirtes, George Sugihara, Jie Sun, Kun Zhang, and Jakob Zscheischler. Inferring causation from
time series in earth system sciences. Nature Communications, 10, 2019a. URL https://api.
semanticscholar.org/CorpusID:189819550.

Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. Detecting
and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5
(11):eaau4996, 2019b. doi: 10.1126/sciadv.aau4996.

Agathe Sadeghi, Achintya Gopal, and Mohammad Fesanghary. Causal discovery from nonstationary
time series. International Journal of Data Science and Analytics, pp. 1–27, 2024.

Andrew D Sanford and Imad A Moosa. A bayesian network structure for operational risk modelling
in structured finance operations. Journal of the Operational Research Society, 63:431–444, 2012.
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Appendix

A COMPARISON OF CAUSAL DISCOVERY METHODS

Causal discovery methods consider different assumptions about data distribution and causal structure
of the target system. A comprehensive summary of the assumptions used in different causal discov-
ery methods is provided in Table 3. The four most commonly used assumptions are mentioned in
the columns: acyclicity, stationary or non-stationary data, Markov & Faithfulness assumption, and
causal sufficiency. The last column of the table mentions any specific criteria used by the method.

Table 3: Assumptions used by different existing causal discovery methods.

METHOD ACYCLICITY STATIONARITY MARKOV & CAUSAL OTHERS
FAITHFULNESS SUFFICIENCY

GRANGER CAUSALITY NO YES NO YES LINEAR RELATIONSHIP
PC-STABLE COLOMBO
ET AL. (2014)

YES YES YES YES

PCMCI RUNGE ET AL.
(2019B)

YES YES YES YES

PCMCI+ RUNGE (2020) YES YES YES YES
NOTEARS-MLP ZHENG
ET AL. (2020)

YES NO YES YES LINEAR RELATIONSHIP

NTS-NOTEARS SUN
ET AL. (2023)

YES YES YES YES NONLINEAR RELATIONSHIP

DYNOTEARS PAMFIL
ET AL. (2020)

YES YES YES YES

TCDF NAUTA ET AL.
(2019)

YES YES NO YES ATTENTION WEIGHTS CAPTURE
CAUSAL IMPORTANCE

CD-NOD HUANG ET AL.
(2020)

YES NO YES NO DISTRIBUTION SHIFTS REVEAL
CAUSAL INFLUENCES

TS-FCI ENTNER & HOYER
(2010)

NO YES YES YES

VAR-LINGAM
HYVÄRINEN ET AL. (2010)

YES YES NO YES LINEAR RELATIONSHIP

CAUSALFORMER KONG
ET AL. (2024)

YES YES NO YES

SPACETIME MAMECHE
ET AL. (2025)

YES NO YES YES DISTRIBUTION SHIFT, INDEPENDENT
CHANGES

LIN LIU & KUANG (2023) YES NO YES YES INTERVENTIONAL DATA AND EQUIV-
ALENCE CLASS

TTCD (OURS) YES NO YES YES NONLINEAR RELATIONSHIP

B IDENTIFIABILITY OF CAUSAL GRAPH

Considering the assumptions stated earlier and the given time series follows a nonlinear function
with additive noise, the full-time causal graph G is identifiable from data distribution. This renders
equation 1 follows an identifiable functional model class (IFMOC) Peters et al. (2011; 2013) where
the causal graph is acyclic. Motivated by Peters et al. (2013) we derived the following explanation
of identifiability. Assume we got two different directed acyclic causal graphs G1 and G2 from
the distribution of Xt. Suppose an edge between xi and xj with a time lag p, xi

t−p → yjt which
exist in G1 but not in G2. Based on causal faithfulness assumption, from G1 we have xi

t−p ⊥̸⊥
yjt |{Xk

t−l \ {xi
t−p, y

j
t }, k ∈ n, 1 ≤ l ≤ lmax}. Similarly, the Markov condition on G2 provides

xi
t−p ⊥⊥ yjt |{Xk

t−l \ {xi
t−p, y

j
t }, k ∈ n, 1 ≤ l ≤ lmax}. This creates a contradiction in data

distribution, hence the full-time causal graphs G1 and G2 must be equal and represent the same
IFMOC.
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C SYNTHETIC DATASET AND GROUND TRUTH CAUSAL GRAPH

The synthetic dataset-1 is generated using the following equations and the noise signals used in this
dataset are generated by the Gaussian distribution. Here we used sinusoidal nonlinearity and this
dataset represents both instantaneous and time-lagged causal relationships.

X1
t = 0.5X1

t−5 + 0.5X1
t−2 + ε1

X2
t = 0.1X1

t + 0.7X1
t−1 + 1.5sin(t/50) + ε2

X3
t = 0.8X1

t−1 + ε3

X4
t = 0.2X4

t−1 + 0.4X3
t + 0.4X3

t−1 + 0.4X1
t−1+

sin(
t

50
) + sin(

t

20
) + ε4

The synthetic dataset-2 is generated using the equations given below, and the noise signals used in
this dataset are generated by the Poisson distribution. Here we used the exponential non-linearity
using the term f(x) = x+ 5x2e−

x2

20 . All the variables of this dataset are also non-stationary.

X1
t =

t+ 0.2t

300

X2
t = 0.2f(X2

t−1) + 0.3f(X1
t−1) +N (0, 1)

X3
t = 0.5f(X3

t−1) + 0.2f(X1
t−4) +N (0, 1)

X4
t = 0.7f(X4

t−1) + 0.5f(X3
t−3) + 0.8f(X2

t ) +N (0, 1)

X5
t = 0.6f(X5

t−2) + 0.2f(X1
t−1) +N (0, 1)

The ground truth causal graph of the synthetic dataset-1 is illustrated in Figure 3a. Where X1 is a
common cause of all other variables. The time lag between each cause and effect variable pair is
provided on the edge connecting them. Figure 3b visualizes the true causal relationships between
different variables of the TKE dataset.

X1

X4

X3

X2

SH

BU
TEND

TKE

a) Causal graph of synthetic dataset  b) Causal graph of TKE data 

2, 5

0, 1
1

1

0, 1

1

1 1

1

Figure 3: Causal graph of (a) our synthetic dataset-1 and (b) the real world Turbulence Kinetic
Energy (TKE) dataset.

D ARCTIC SEA ICE DATA

The following 11 atmospheric variables with the sea ice extent are included in the Arctic Sea Ice
Dataset. This time series data contains monthly averages from 1980 to 2018 over the Arctic region
of 60N.
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Table 4: Variables in the Arctic Sea Ice Data.
ABBREVIATION FULL NAME STATIONARY

HFLX HEAT FLUX NO
CC CLOUD COVER NO
SW NET SHORTWAVE FLUX YES

U10M ZONAL WIND AT 10M YES
SLP SEA LEVEL PRESSURE YES
PRE TOTAL PRECIPITATION YES
ICE SEA ICE NO
LW NET LONGWAVE FLUX NO

V10M MERIDIONAL WIND AT 10M YES
CW TOTAL CLOUD WATE PATH YES
GH GEOPOTENTIAL HEIGHT YES
RH RELATIVE HUMIDITY NO

Table 5: Non-stationarity test results for variables of the TKE dataset.

VARIABLES ADF TEST KSSP TEST
P-VALUE STATIONARY P-VALUE STATIONARY

SH 0.32 NO 0.01 NO
BU 0.72 NO 0.01 NO
TEND 0.66 NO 0.01 NO
TKE 0.58 NO 0.01 NO

E NON-STATIONARITY TEST RESULTS FOR REAL WORLD DATASETS

The non-stationarity feature of the real world TKE and Arctic Sea Ice datasets is evaluated using the
Augmented Dickey–Fuller test (ADF) Cheung & Lai (1995) and Kwiatkowski-Phillips-Schmidt-
Shin test (KPSS) Kwiatkowski et al. (1992) statistical test methods for time series data. The ADF
test method assumes a null hypothesis: the time series has a unit root and is not stationary. Then try
to reject the null hypothesis and if failed to be rejected, it suggests the time series is not stationarity.
For the ADF test, if the p-value of a time series is higher than the 0.05 alpha level the null hypothesis
cannot be rejected. So the time series is not stationary. The KPSS test works in a somewhat similar
manner to the ADF test but assumes an inverse null hypothesis. The null hypothesis of the KPSS
method is that the time series is stationary. If the p-value is less than 0.05 alpha level, we can reject
the null hypothesis and derive that the time series is not stationary.

The statistical non-stationarity test results for the TKE dataset are given in Table 5 and the results
for the Arctic Sea Ice data are available in Table 6. The non-stationarity test results revealed that the
TKE dataset contains only non-stationary variables, and both test methods have agreement on the
test outcome. For Arctic Sea Ice dataset, the ADF test found 4 non-stationary variables; on the other
hand KSSP method found 3 non-stationary variables. Therefore, we can say that the Arctic Sea Ice
data have a mixture of both non-stationary and stationary variables.

F HYPERPARAMETERS

To find the best hyperparameters for baseline methods, we started using the parameters suggested
by the authors and gradually tuned those values to obtain better evaluation results. The results
reported in the comparative analysis of the main article are obtained with tuned hyperparameters.
The parameters used to generate evaluation results are given here.

• PCMCI: Conditional Independence Test = ParCorr, tau max = Maximum time
lag, pc alpha = None [So the model will use the optimal value from the list
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5}], alpha level = 0.01

• PCMCI+: Conditional Independence Test = ParCorr, tau max = Maximum time
lag, pc alpha = None [So the model will use the optimal value from the list
{0.001, 0.005, 0.01, 0.025, 0.05}]
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Table 6: Non-stationarity test results for variables of the Arctic Sea Ice dataset.

VARIABLES ADF TEST KSSP TEST
P-VALUE STATIONARY P-VALUE STATIONARY

HFLX 0.10 NO 0.07 YES
CC 0.00 YES 0.02 NO
SW 0.00 YES 0.10 YES
U10M 0.00 YES 0.10 YES
SLP 0.00 YES 0.10 YES
PRE 0.00 YES 0.09 YES
ICE 0.75 NO 0.01 NO
LW 0.28 NO 0.10 YES
V10M 0.00 YES 0.10 YES
CW 0.00 YES 0.10 YES
GH 0.01 YES 0.10 YES
RH 0.11 NO 0.01 NO

• NOTEARS-MLP: lambda1 = 0.01, lambda2 = 0.01, rho = 1.0, alpha = 0.0, w threshold =
0.3

• NTS-NOTEARS: lambda1 = 0.0005, lambda2 = 0.001, w threshold = 0.3, rho = 1.0, alpha
= 0.0, number of lags = Maximum time lag

• DYNOTEARS: tau max = Maximum time lag, w threshold = 0.01, lambda w = 0.05,
lambda a = 0.05

• CD-NOD: indep test = fisherz

• LIN: E(no of intervention)=1, no hidden layer= [1, 2], hidden dim= [3, 4]

• Proposed Method: lambda1 = 0.9, alpha=1.0, rho = 1.0 w threshold = 0.002, 0.004, 0.007,
0.17

G ABLATION STUDY

To understand the effectiveness of the proposed non-stationary transformer with the custom Causal
Conv2D module, we created one variant of the proposed framework without using a transformer.
The architecture of this model variant is illustrated in Figure 4. Here, we replaced the transformer
from the Non-Stationary Feature Learner with a comparatively simple convolutional neural network
module. The module learns latent temporal features of the input data and integrates the factors
learned by the de-stationary factor learning MLP. Finally, these rescaled latent features are pro-
vided to the Causal Structure Learner module to generate the causal graph. To optimize the Causal
Conv2D model, we used three components of the combined loss function: target estimation loss
(Lte), acyclicity constraint, and L1 regularization of the learned adjacency matrix. The input data
reconstruction loss is not included in the objective function, as we did not use an autoencoder archi-
tecture.

N
orm

alization

Conv2D Reshape
Layer(T,N,L+1,m)

De-stationary
Factor Block

Input Data (N,T)

Causal 
      Conv2D

Causal 
      Conv2D

C
oncatenate

(N
)

Causal Conv2D

Causal Structure Learner

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

t - 4 t - 3 t - 2 t - 1 t

Output Causal Graph

Figure 4: The structure of Causal Conv2D model without the transformer. Instead of using a
non-stationary transformer, a Conv2D block is used to learn non-stationary features with the de-
stationary factor MLP.

For TTCD Causal Conv1D, we used a 1D variant of the proposed custom Causal Conv2D layer.
To incorporate this Conv1D layer into the model, we flattened the latent representation generated
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by non-stationary transformer of the proposed architecture. The same training and optimization
process was utilized for both models. From the experimental analysis of these ablation models, we
can see that the non-stationary transformer and Custom causal Conv2D layer improve the causal
graph learning performance of the proposed model with a significant margin for each evaluation
score.

Table 7: Ablation study on normal transformer (TTCD-Without-Transformer) and 1D design of the
causal structure learner (TTCD-Causal-Conv1D).

DATASET PROPOSED TTCD TTCD-CAUSAL-CONV1D TTCD-WITHOUT-TRANSFORMER
SHD↓ F1↑ FDR↓ SHD↓ F1↑ FDR↓ SHD↓ F1↑ FDR↓

DATASET-1 8 0.50 0.42 15 0.12 0.87 12 0.33 0.66
DATASET-2 9 0.40 0.50 10 0.11 0.90 10 0.16 0.66
TKE 1 0.80 0.00 7 0.22 0.83 5 0.44 0.66
ARCTIC SEA ICE 46 0.45 0.50 59 0.39 0.63 61 0.39 0.63
FMRI 3 0.66 0.25 8 0.20 0.80
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