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Abstract

In many practical applications, including
medicine, acquiring all relevant data for machine
learning models is often infeasible due to
constraints on time, cost, and resources. This
makes it important to selectively acquire only
the most informative features, yet traditional
static feature selection methods fall short in
scenarios where feature importance varies
across instances. Here, we propose an active
feature acquisition (AFA) framework, which
dynamically selects features based on their
importance to each individual case. Our method
leverages local explanation techniques to generate
instance-specific feature importance rankings.
We then reframe the AFA problem as a feature
prediction task, introducing a policy network
grounded in a decision transformer architecture.
This policy network is trained to select the next
most informative feature by learning from the
feature importance rankings. As a result, features
are acquired sequentially, ordered by their
predictive significance, leading to more efficient
feature selection and acquisition. Extensive
experiments on multiple datasets demonstrate that
our approach outperforms current state-of-the-art
AFA methods in predictive accuracy and feature
acquisition efficiency. These findings highlight
the promise of an explainability-driven AFA
strategy in scenarios where feature acquisition is
a concern.
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1. Introduction
In traditional machine learning, all features are typically as-
sumed to be available at inference. However, in real-world
settings, feature acquisition is often costly, time-consuming,
and sequential. Developing models that can make accurate
predictions while minimizing feature acquisition is impor-
tant for efficiency and practical implementation. This can be
achieved by selecting a static global subset of features, but
it is suboptimal since the important set of features may vary
across different instances (Kachuee et al., 2019; Covert et al.,
2023b). Furthermore, the chosen subset might not provide
sufficient information for some cases, which requires the
acquisition of more features to ensure a confident prediction.
A more effective strategy is to identify important features
sequentially for each individual instance, a technique known
as active feature acquisition (AFA), which has gained in-
creasing attention in recent years (He & Chen, 2022; von
Kleist et al., 2023; Chattopadhyay et al., 2024).

The literature mainly contains two different ways of ap-
proaching AFA: reinforcement learning (RL)-based and
greedy-based methods. Both approaches aim to develop
a feature selection policy through exploration, as instance-
wise feature importance rankings are typically unavailable.
RL-based methods (Kachuee et al., 2019; Yin et al., 2020;
von Kleist et al., 2023) train policy networks by maximizing
different reward functions. While the RL-based approach
is intuitive for this sequential task and theoretically capa-
ble of finding the optimal policy, empirical evidence shows
that RL-based methods often underperform compared to
greedy-based methods (Gadgil et al., 2024). Greedy-based
methods attempt to predict the next most important avail-
able feature by calculating conditional mutual information
(CMI). To compute CMI, researchers have proposed gener-
ative approaches (Rangrej & Clark, 2021; He et al., 2022)
and methods based on the variational perspective (Covert
et al., 2023b; Gadgil et al., 2024). However, calculating
CMI directly remains challenging, and methods leverag-
ing the variational perspective have demonstrated superior
performance compared to generative alternatives.

In this work, we approached the problem by empirically
observing that local explanation methods, such as SHap-
ley Additive exPlanations (SHAP) (Lundberg & Lee, 2017)
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and LIME (Ribeiro et al., 2016), can be utilized to iden-
tify instance-wise feature importance rankings. With this
insight, we framed the AFA problem as a feature prediction
task rather than a feature exploration one. Specifically, we
trained our policy network to select the next unacquired
feature with the highest importance ranking based on the
current observations. This approach contrasts with feature
exploration, which would involve searching for relevant fea-
tures without predefined rankings, and instead focuses on
prioritizing and acquiring the most informative feature in a
structured, instance-specific manner. Our contributions are
listed below:

• We demonstrated that local explanation methods effec-
tively determine instance-specific feature importance
rankings. Additionally, we showed that an ideal (or-
acle) policy network, following a precomputed fea-
ture acquisition order based on these rankings, out-
performed state-of-the-art (SOTA) AFA techniques
for any fixed feature budget. These findings empir-
ically underscore the potential of explainability meth-
ods in guiding instance-specific feature acquisition.
Similar trends have been observed in the local expla-
nation literature (Petsiuk et al., 2018; Jethani et al.,
2021; 2022), where inserting or removing features
based on explanation-derived rankings leads to im-
provements or degradations in model performance, re-
spectively. However, prior work has not formally com-
pared explanation-based feature ranking approaches
with AFA techniques, leaving a gap in understanding
how these methods align or diverge in sequential fea-
ture acquisition tasks. Our study addresses this gap and
highlights explanation-based rankings as a principled
and effective baseline for AFA.

• We employed a decision transformer architecture
(Chen et al., 2021) as our policy network and trained it
using a two-stage approach. Our method outperformed
SOTA techniques, demonstrating that feature impor-
tance rankings can be accurately inferred without direct
observation.

2. Related work
Generally, the methods in the AFA literature have two net-
works: a policy network for feature acquisition and a predic-
tion network for prediction with available subset of features.
The AFA methods mainly differ in training their policy
networks, so we only highlight those differences.

The AFA problem can be formulated as a Markov decision
process (MDP) (Zubek & Dietterich, 2002; Dulac-Arnold
et al., 2011); based on this formulation, there have been
many RL-based approaches proposed (Dulac-Arnold et al.,
2011; Shim et al., 2018; Kachuee et al., 2019; Yin et al.,

2020; Li & Oliva, 2021; von Kleist et al., 2023). These
methods generally train their policy networks with the ob-
jective of maximizing the defined reward functions. Namely,
they try to approximate the action-value function (i.e., Q-
function). For example, in (Dulac-Arnold et al., 2011), the
Q-function is approximated linearly and later it is extended
in (Janisch et al., 2019) using a deep Q network (Mnih
et al., 2015; van Hasselt et al., 2016). A similar approach
was taken by the opportunistic learning (OPL) method in
(Kachuee et al., 2019). Another type of mainstream meth-
ods (Rangrej & Clark, 2021; He et al., 2022; Covert et al.,
2023b; Chattopadhyay et al., 2023; Gadgil et al., 2024) are
the greedy-based frameworks. These methods acquire the
features by estimating the conditional mutual information
(CMI) between the current available subset of features and
the unacquired features. For CMI estimation, there are
generative approaches (Rangrej & Clark, 2021; He et al.,
2022) that use variational autoencoders (Kingma & Welling,
2013), and discriminative approaches (Covert et al., 2023b;
Chattopadhyay et al., 2023; Gadgil et al., 2024) directly pre-
dicting the feature index with the highest CMI without ex-
plicitly calculating CMI. Although, the MDP formulation is
theoretically appealing, RL-based methods often underper-
form compared to discriminative greedy-based approaches
(Covert et al., 2023b; Gadgil et al., 2024).

Alternative AFA approaches also exist that avoid policy
networks entirely and instead leverage imputation to guide
feature acquisition (Beebe-Wang et al., 2023; Valancius
et al., 2024). These approaches first identify a set of nearest
neighbors from the training data based on the currently avail-
able features, which are then used to generate an ensemble
of imputed instances. For example, AACO (Valancius et al.,
2024) evaluates a set of candidate features by computing a
loss function (weighted combination of the predictive loss
and feature acquisition cost) over the ensemble of imputed
instances, using the true labels of the nearest neighbors.
Also, the method in (Beebe-Wang et al., 2023) applies a
fixed predictor to the ensemble of imputed instances and
then uses an explanation technique, i.e., SHAP (Lundberg
& Lee, 2017), to acquire the next feature with the highest
variance in importance scores for acquisition. Unlike our
proposed framework, the approach in (Beebe-Wang et al.,
2023) relies on a local explanation technique (e.g., SHAP)
at inference time, which is computationally demanding. In
contrast, we used feature rankings derived from explana-
tion methods on the training data to train a policy network,
thereby enabling efficient and scalable feature acquisition.
Conceptually, our approach is closely related to imitation
learning approaches (He et al., 2012a;b), where the policy
network is trained to follow trajectories of another policy,
such as a greedy one (He et al., 2016a).

In addition to AFA methods, related approaches from the
budget learning literature (Trapeznikov & Saligrama, 2013;
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Figure 1. Explainability-driven active feature acquisition framework. a) Our training strategy consists of two stages. This figure shows
how the masked inputs and target feature indices are generated during the first and second stages for a given feature importance ranking φ.
In the first stage, features are selected based on their ranking order φ. In the second stage, features are acquired by the policy network
(qπ). During the first stage, the next feature in the ranking is the target feature index. However, in the second stage, the target feature is the
feature index having the highest ranking order among the ones that are not acquired; because of this, the target feature remains the same
until it is acquired. b) This part of the figure shows how the policy network qπ , based on the decision transformer (Chen et al., 2021),
processes the masked inputs during training for both stages. Sequential data with a context length ℓ, set to 2 in this case, is fed into qπ . At
each time step, qπ receives three tokens: the masked input (xMt ), action (a(i)

t ) and reward (rt). The action token represents the index of
the last acquired feature, and the reward is the output of the predictor network. To ensure causality, future tokens are masked while qπ
predicts the next feature to acquire at any time step. c) This figure illustrates the inference stage for image inputs in the causal transformer
model, where predicted features (or patches) are progressively acquired in a series of sequential acquisition steps.

Nan & Saligrama, 2017; Ekanayake & Zois, 2024) explore
fixed feature acquisition orders, limiting the number of po-
tential feature subsets. These methods aim to identify easily
classifiable instances, enabling the acquisition of a mini-
mal set of features in such cases, thereby reducing overall
acquisition costs.

With regards to the local explanation literature (Ribeiro et al.,
2016; Petsiuk et al., 2018; Jethani et al., 2021; Lundberg
& Lee, 2017), various methods focus on quantifying the
contribution of individual features to model predictions for
each instance. Among these methods, SHAP (Lundberg &
Lee, 2017), based on game-theoretic Shapley values (Shap-
ley, 1953), is particularly popular. SHAP calculations are
computationally intensive, leading to the development of
several approximations (Lundberg & Lee, 2017; Ancona
et al., 2019; Jethani et al., 2022; Covert et al., 2023a). Fast-
SHAP (Jethani et al., 2022), for instance, provides an effi-
cient approximation using a deep explainer model. Alterna-
tively, INVASE (Yoon et al., 2019) and L2X (Chen et al.,
2018) represent approaches that learn to identify relevant
instance-specific feature subsets, aiming either to explain
model predictions or to highlight the most informative fea-

tures for each input. Additionally, global feature importance
methods aim to identify the most relevant static features
across a dataset. For example, the Concrete Autoencoder
(CAE) (Balın et al., 2019) selects features via an autoen-
coder, while SAGE (Covert et al., 2020) extends Shapley
values to quantify global feature importance. For a detailed
overview, we refer readers to recent surveys (Samek et al.,
2021; Bolón-Canedo et al., 2022; Mesinovic et al., 2023).

3. Problem description
Let x ∈ Rd represent a d-dimensional input feature vec-
tor1, and y ∈ {1, 2, ..., C} denote the associated target la-
bel, where C is the number of classes. Additionally, let
M ⊆ [d] ≡ {1, ..., d} be the subset of indices indicating the
available features, and xM be the masked input vector with
these available features. Each j-th feature has an associated
cost cj , and each input x is subject to a budget constraint k.
The objective is to find a predictor fθ, parameterized with
θ, and a policy network qπ , parameterized with π, such that

1Each feature can have different dimension size but ease of ex-
position, in here we have assumed each feature is one dimensional.
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the following constraint objective is minimized:

min
θ,π

ExykEM∼qπ [ℓ(fθ(xM ), y)], s.t.
∑
j∈M

cj ≤ k. (1)

Here, the first expectation is taken over the joint distribu-
tion of x, y, and k. Including k in the joint distribution
accounts for variability in the budget constraint across dif-
ferent instances, reflecting scenarios where the maximum
allowable feature acquisition cost is input-dependent. The
subset M is generated sequentially by the policy network qπ ,
which determines the next missing feature to acquire, i.e.,
argmax qπ(xM ) ∈ [d]\M . Subsequently, the predictor fθ
makes probabilistic predictions for any possible subset M ,
i.e., fθ(xM ) ∈ [0, 1]C×1. For brevity, let the output of fθ
be denoted as ŷ, i.e., ŷ = fθ(xM ) and the output of qπ be
denoted as q̂, i.e., q̂ = σ(qπ(xM )), where σ is the softmax
function. While softmax is also applied to the output of
fθ to obtain probabilistic predictions, we omit it from the
notation for clarity.

Oracle policy network. To establish a theoretical bench-
mark for feature acquisition, we define the oracle policy
network q∗. The oracle policy is assumed to have perfect
knowledge of the true importance ranking of features for
each instance x. At each acquisition step, this policy se-
lects the most important unobserved feature based on this
ranking. The oracle policy network can be formally defined
as follows: Let M∗ ⊆ [d] be the optimal subset of feature
indices selected by the oracle policy, obtained by exhaus-
tively evaluating all feasible subsets that satisfy the budget
constraint specified in Equation 1. Once M∗ is identified,
the oracle constructs an internal ordering

M∗ = {j1, j2, . . . , j|M∗|}, where M∗ ∈ [d],

where features are sorted greedily in descending order of
their importance to the prediction task. The oracle then
acquires features sequentially according to this predefined
order, selecting one feature at each step until all features in
M∗ are obtained. Notably, the internal ordering does not
affect the final outcome, as all features in M∗ are eventually
acquired. Hence, this approach differs from a sequential
greedy policy, which selects features one at a time based
on marginal gains at each step. In this formulation, the
oracle policy q∗ is not a learnable entity but a theoretical
construct. It assumes perfect knowledge of the true im-
portance ranking of features for each instance, which is
typically unavailable in real-world scenarios. Essentially,
this serves as the ideal baseline and sets an upper bound on
the performance achievable by any practical policy network
(i.e., qπ). By comparing qπ against q∗, we can evaluate the
effectiveness of the learned approach in approximating the
optimal feature acquisition strategy. This oracle definition
aligns with that of (Valancius et al., 2024). The main dis-
tinction is that a hard budget constraint is enforced here,

whereas the oracle in (Valancius et al., 2024) incorporates
feature costs into a weighted objective function.

Typically, methods in the literature (Yin et al., 2020; Covert
et al., 2023b) assume that features have identical costs and
that there is a fixed global budget k for all inputs. Given
the available training samples {(xi, yi)}Ni=1, these methods
aim to identify input-specific important features to acquire
them sequentially in order of the most informative feature
to the least one. To achieve this, they train qπ through explo-
ration using reinforcement learning (RL) (Yin et al., 2020)
or information-theoretic (Covert et al., 2023b) formulations,
while simultaneously training the predictor network fθ. In
this work, we took a different approach by assuming access
to feature importance rankings for each training sample.
Consequently, instead of treating it as a feature exploration
problem, we addressed it as a feature prediction problem
(Figure 1).

4. Methodology and experimental settings
Feature importance ranking. In our method, we assumed
access to the feature rankings φi for each training sam-
ple xi, sorted by their importance. While determining
the importance of features for each input is challenging,
we found that local explanation methods can effectively
achieve this goal. We assumed that a model with reason-
able task performance would naturally prioritize the most
important instance-specific features, which can be identi-
fied using explanation methods. We empirically validated
our assumption by demonstrating that when the policy net-
work effectively selects features sequentially based on their
ranking order during inference for each instance, the pre-
dictor achieves superior average performance for a given
budget of k available features, outperforming the current
state-of-the-art methods.

To obtain the ranking order of the features for each training
instance, first, we trained a classifier using {(xi, yi)}Ni=1

with the standard cross-entropy loss minimization. Then,
we run an explanation method (SHAP (Lundberg & Lee,
2017), or LIME (Ribeiro et al., 2016) etc.) to get the feature
importance ranking order φi, where φi(1) is the feature
index with the highest importance and φi(d) is the feature
index with the least importance for the input xi. So our
training set is {(xi, yi, φi)}Ni=1.

Policy network - Decision transformer. By approaching
the problem as a conditional sequence modeling task, like
the “decision transformer” (Chen et al., 2021), we trained
qπ, which is a causal transformer model, with the objec-
tive of next action/token prediction. We fed qπ with se-
quential data and a sequence length (i.e., context length)
of ℓ. At each timestep, there are three tokens includ-
ing the input, the action and the reward as in Chen et al.
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(2021). During training, at timestep t, the input is xi
Mt

,
which is the i’th sample with t many available features
and Mt = {φi(1), ..., φi(t)}2. Whereas, the action ait is
the most recently acquired feature index, i.e., ait = φi(t)
and the reward rit is the output of the predictor with the
current input, i.e., rit = ŷi

t = fθ(x
i
Mt

). The rewards in
RL-based methods (Kachuee et al., 2019; Li & Oliva, 2021)
are typically functions of the predictor output; we followed
a similar idea, but instead of defining a specific function, we
directly fed our policy network with the predictor output.
So, for a given sequence from the timestep t to t+ ℓ−1, the
output of our qπ for the input i is: q̂i

t = qπ(x
i
Mt

, ait, r
i
t)

and q̂i
t+ℓ−1 = qπ(x

i
Mt:t+ℓ−1

, ait:t+ℓ−1, r
i
t:t+ℓ−1), where

t : t+ ℓ− 1 indicates all the tokens from the time step t
to t+ ℓ− 1. We used a mini version of GPT3 architecture
(Radford, 2018) as a transformer model. Please refer to
the decision transformer paper (Chen et al., 2021) for more
details.

Training strategy. To train qπ , we minimized the standard
cross-entropy loss by considering the index of the next fea-
ture that is not acquired with the highest importance (i.e.,
φi(t + 1)) as the true label with the minibatch setting. At
each iteration, the loss function is:

Lq = − 1

Nb

Nb∑
i=1

ti+ℓ−1∑
t=ti

log(q̂i
t,φi(t+1)), (2)

where Nb is the batch size, q̂i
t,φi(t+1) is the φi(t+1)’th ele-

ment of q̂i
t, and ti is randomly sampled integer determining

the initial time step of sequence fed to the model for the i’th
sample. Simultaneously, we trained the predictor fθ also by
minimizing the standard cross-entropy loss:

Lf = − 1

Nb

N∑
i=1

ti+ℓ−1∑
t=ti

log(ŷi
t,y). (3)

During the first stage of training, both fθ and qπ are fed
by the input with the features that are acquired based on
the ranking order provided by the local explanation method.
However during inference, because qπ is not 100% accurate,
the feature subset M̂t, generated by qπ, may not always
contain the top t features with the highest ranking order.
To train both models to handle this new subset of features
not encountered in the first stage, we introduced a second
stage of training. At the beginning of each iteration of
the second stage, we first generated empirical/predicted
feature acquisition φ̂i order for each xi, where φ̂i(t+ 1) =
argmax q̂i

t and M̂t = {φ̂i(1), φ̂i(2), ..., φ̂i(t)}. Then, we
minimized the same losses as in the first stage with the

2Each sample i has its own specific Mt, but we do not specify
through superscript i if it is clear from the context.

3https://github.com/karpathy/minGPT

same strategy. In Lq, the index of the feature, which is
not acquired yet and having the highest order among the
features that are not acquired, is taken as the true label.
For example, if φi(1) /∈ {φ̂i(1), ..., φ̂i(t)} then φi(1) is
taken as the true label; but if φi(1) is acquired and φi(2)
is not acquired then φi(2) is taken as the true label, i.e.,
φi(1) ∈ {φ̂i(1), ..., φ̂i(t)} and φi(2) /∈ {φ̂i(1), ..., φ̂i(t)}.
By this second stage, we trained the predictor fθ to make
its prediction with the subset of features M̂t acquired by qπ .
Also, the policy network qπ is trained to predict the feature
with the highest ranking order among the features that are
not acquired using the input with the imperfect subset of
features M̂t. This second stage helps both networks to
perform better during inference, where the imperfect subset
of features M̂t can only be used. Note that both the predictor
and policy networks are dependent on each other. However,
during training, we prevented the gradient flow from one
network to another. Therefore, each network has its own
independent loss function; because of the dependency, we
trained them simultaneously. At t = 0, there is no feature
acquired yet, i.e., M0 = ∅; so for all i, the outputs of qπ are
the same at t = 0. Consequently, at t = 0, the same feature
must be selected for acquisition across all inputs. In our
approach, we initialized each input with the first feature that,
on average, holds the highest importance ranking based on
the training set. Detailed outlines of both training strategies
are provided in the Appendix.

Implementation details. During training, we fixed the
number of epochs to 200 and 16 for the first and second
stage, respectively. We used Adam optimizer (Kingma &
Ba, 2014) and a cosine scheduler (Loshchilov & Hutter,
2017). Before starting training, we pre-trained the predic-
tor network, as done in (Covert et al., 2023b; Gadgil et al.,
2024). We also employed a different augmentation strat-
egy proposed in (Hoffer et al., 2020). In addition, as with
other methods in the literature (Kachuee et al., 2019; Covert
et al., 2023b; Gadgil et al., 2024), we shared the backbone
between fθ and qπ. We used this backbone in qπ to get the
embedding of the input token. The embedding of action
was extracted using a learnable embedding dictionary. For
the reward embedding, we applied a linear layer followed
by a non-linear activation to transform the output of fθ into
the embedding dimension. In qπ, we set context length ℓ
to 4, number of heads and layers 4 and 3, respectively. We
would like to clarify that we did not conduct an extensive
parameter search in our experiments. The context length
parameter ℓ was selected based on validation performance
on the CIFAR-10 dataset, while the remaining parameters
were chosen heuristically. These values were then held
fixed across all experiments. For ℓ selection, we evaluated
the model’s performance on the CIFAR-10 validation set,
averaging accuracies over the first 20 features. The result-
ing mean accuracies were 78.41%, 78.76%, 79.12%, and
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Figure 2. Model performance. We compared the average classification performance of our AFA method with other well-known methods
across datasets with varying numbers of features. The results were averaged over three independent runs for the image datasets and nine
independent runs for the tabular datasets. These datasets include five tabular datasets, four of which are medical: Spambase, Metabric,
CPS, CTGS, and CKD, as well as four image datasets: CIFAR-10, CIFAR-100, BloodMNIST, and ImageNette. For improved readability,
plots including standard deviations are provided in the Appendix.

78.12% for ℓ = 1, ℓ = 2, ℓ = 4, and ℓ = 8, respectively.
To maintain a consistent effective batch size at each iter-
ation (see Equations 2 and 3), we adjusted the batch size
Nb inversely with ℓ. Based on these results, we selected
ℓ = 4 for all subsequent experiments. In the output of qπ,
we subtracted a large constant from the logits of already
acquired feature indices before applying the softmax layer
to prevent re-acquisition.

Datasets. We conducted experiments on nine datasets (Ta-
ble 1): five tabular datasets (Spambase, Metabric, CPS,
CTGS, and CKD) and four image datasets (CIFAR-10,
CIFAR-100, BloodMNIST, and ImageNette). For image
datasets, we partitioned each image into non-overlapping
patches. For detailed descriptions of the datasets, we refer
readers to the Appendix (A.1).

Model architectures. To test the robustness of our method
across different architectures, we varied predictor architec-
tures. We employed ResNet50 (He et al., 2016b) for Ima-
geNette, ResNet18 (He et al., 2016b) for the CIFAR-10 and
CIFAR-100 datasets, and a custom CNN for the BloodM-
NIST dataset. The custom CNN has four convolution layers
with output channels 16, 32, 64, and 64, each followed by
a ReLU activation and a max pooling layer. The convolu-

Table 1. Summary of datasets used in our experiments. For each
dataset, we list the number of features (d), classes (C), samples,
and image size, along with the utilized patch size when applicable.

Dataset d C # Samples Image size
Patch size

Spambase 57 2 4,601 -
CIFAR-10 64 10 60,000 32× 32

4× 4
CIFAR-100 64 100 60,000 32× 32

4× 4
BloodMNIST 196 8 17,092 28× 28

2× 2
ImageNette 196 10 13,395 224× 224

16× 16
Metabric 489 6 1,898 -
CPS 8 3 418 -
CTGS 23 2 2,139 -
CKD 50 2 1,659 -

tion layers are followed by flattening and linear layers for
classification. For the Spambase dataset, we used a multi-
layer perception (MLP) consisting of 2 hidden layers with
128 neurons, each followed by a ReLU and a dropout layer.
On the medical tabular datasets, we utilized the same MLP
architecture with 1024 hidden layer neurons on Metabric,
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Table 2. Stage-wise classification performance. The table presents our model’s performance after the first and second training stages,
averaged over the first 20 features, on the Spambase, CIFAR-10, CIFAR-100, BloodMNIST, ImageNette, Metabric, CPS, CTGS and CKD
datasets. Mean and standard deviation values were calculated across three independent runs for the image datasets and nine independent
runs for the tabular datasets. Additionally, we included results from an extended first-stage training (250 epochs) to provide a more
rigorous comparison with second-stage performance, illustrating the relative benefits of our two-stage approach versus simply extending
training duration. For the Spambase, CTGS and CKD datasets, we reported the area under the receiver operating characteristic curve
values, while for the remaining datasets, we provided accuracy metrics. For the CPS dataset, the average was calculated over its 8 features,
as the dataset contains only 8 features.

Spam CIFAR10 CIFAR100 BloodMNIST ImageNette Metabric CPS CTGS CKD
# of classes: 2 10 100 8 10 6 3 2 2

First-stage (250) 0.952±.001 75.96±0.16% 45.91±0.36% 79.83±0.19% 73.95±0.25% 62.52±1.27% 67.23±0.48% 0.916±.0002 0.822±.01

First-stage 0.951±.0002 75.76±0.19% 46.05±0.25% 79.25±0.15% 73.76±0.42% 62.48±1.39% 67.21±0.15% 0.916±.0004 0.825±.008

Second-stage 0.955±.0001 78.44±0.15% 46.99±0.15% 83.87±1.05% 78.96±0.12% 69.83±0.41% 67.45±0.13% 0.916±.0001 0.836±.07

512 on CKD, 512 on CTGS and 128 on CPS.

Feature importance ranking calculations. We employed
various local explanation techniques tailored to the charac-
teristics of image and tabular datasets. For image datasets,
we employed FastSHAP (Jethani et al., 2022) to generate
instance-specific feature ranking orders φi for each input
xi, owing to its computational efficiency and ability to han-
dle dynamic feature importance changes during training
with data augmentations. For tabular datasets, we relied on
tree-based models, specifically CatBoost (Prokhorenkova
et al., 2018), to derive feature ranking orders due to their
strong performance on tabular data (Grinsztajn et al., 2022).
Instance-specific rankings were computed using TreeSHAP
(Lundberg et al., 2020), optimized for tree-based models,
via the SHAP package4. These rankings were used in our
main experiments. Additionally, we explored alternative
ranking methods, including INVASE (Yoon et al., 2019),
and LIME (Ribeiro et al., 2016), as well as two SHAP-
based techniques, KernelSHAP (Lundberg & Lee, 2017)
and IME (sampling) (Štrumbelj & Kononenko, 2010), for
tabular datasets.

Comparison with the state-of-the-art methods. We evalu-
ated our method against several existing approaches includ-
ing DIME (discriminative mutual information estimation),
GDFS (greedy dynamic feature selection), CAE (concrete
autoencoder), OPL (RL-based method) and two baseline
methods: center-cropping and random selection. DIME
(Gadgil et al., 2024) prioritizes features by estimating their
mutual information with the response variable in a discrim-
inative framework. GDFS (Covert et al., 2023b) uses a
greedy strategy to select features based on their conditional
mutual information, employing amortized optimization to
approximate the greedy policy. CAE (Balın et al., 2019)
is an unsupervised, end-to-end differentiable method that
employs a concrete selector layer for feature selection, grad-
ually discretizing the selection process by lowering the tem-

4https://pypi.org/project/shap/

Table 3. Model performance using various feature ranking ap-
proaches. Comparison of classification performance across five
tabular datases using feature rankings derived from INVASE, a
learnable instance-wise feature selection method, and various local
explanation methods: TreeSHAP (T-SHAP), LIME, KernelSHAP
(K-SHAP), and IME (sampling). The performance metrics are the
area under the receiver operating characteristic curve for the binary-
classification datasets and accuracy for the multi-class datasets.
Mean and standard deviation values were calculated across nine
independent runs. Results on the Metabric dataset using INVASE
are omitted due to the high computational cost associated with this
ranking method.

Spam Metabric CPS CTGS CKD
# of classes: 2 6 3 2 2

T-SHAP 0.96±0.001 69.8±0.41% 67.5±0.13% 0.92±0.001 0.84±0.07

LIME 0.95±0.002 69.2±0.18% 67.1±0.36% 0.91±0.001 0.82±0.09

K-SHAP 0.96±0.002 69.6±0.33% 67.3±0.56% 0.92±0.001 0.83±0.005

IME 0.95±0.001 69.8±0.10% 67.1±0.61% 0.92±0.001 0.83±0.1

INVASE 0.93±0.002 - 68.4±0.23% 0.91±0.003 0.83±0.09

perature parameter. OPL (Kachuee et al., 2019) is a RL-
based method that employs deep Q-learning, using predic-
tion uncertainty as the reward signal during training. Due
to time constraints, we evaluated OPL only on the tabu-
lar datasets. The baseline methods, center-cropping and
random selection, provide simpler comparisons: center-
cropping selects patches from the center of the input, while
random selection picks patches arbitrarily.

We also evaluated an empirical oracle to approximate the
optimal feature acquisition strategy. Given a predictor fθ,
the ideal feature subset M∗, as determined by the oracle
policy q∗, could theoretically be identified through an ex-
haustive combinatorial search for any given budget k. How-
ever, performing such an optimization for every instance
across multiple values of k is computationally impractical.
Instead, we precomputed the optimal feature acquisition
order for each instance using feature importance rankings
derived from explanation methods. At inference, all fea-
tures were acquired in this predetermined order, ensuring
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Table 4. Alignment between model’s feature acquisition order and the feature importance rankings. This table presents the
percentage overlap between the top T feature indices, ranked by their importance and those acquired by our method for T = 10, 15, 20,
25, and 30 on all datasets except CPS, as it only contains 8 features. Mean and standard deviation values were calculated across three
independent runs for the image datasets and nine independent runs for the tabular datasets.

Spam CIFAR-10 CIFAR-100 BloodMNIST ImageNette Metabric CKD CTGS
# of features (d): 57 64 64 196 196 489 50 23

Top 10 features 77.26±1.06% 36.22±0.27% 47.29±2.25% 40.75±2.38% 11.11±0.11% 59.04±1.01% 66.57±1.44% 79.9±0.4%
Top 15 features 82.15±0.62% 45.83±0.23% 57.13±2.10% 47.94±2.12% 16.30±0.11% 61.5±1.05% 69.6±0.46% 91.1±0.2%
Top 20 features 87.31±0.55% 52.43±0.24% 63.85±1.65% 52.59±1.85% 20.74±0.07% 62.38±0.60% 71.28±0.44% 95.7±0.2%
Top 25 features 87.64±0.29% 57.70±0.25% 68.10±1.14% 55.60±1.68% 25.06±0.06% 62.59±0.38% 74.21±0.21% N/A
Top 30 features 88.15±0.17% 62.53±0.28% 70.83±0.83% 57.82±1.46% 29.07±0.05% 63.05±0.84% 76.84±0.51% N/A

Table 5. Nearest neighbor-based feature acquisition baseline.
Performance of a baseline inspired by AACO, where features are
acquired based on the importance ranking of the nearest training
sample. Predictor networks from our method’s second stage were
reused without retraining.

Spam Metabric CPS CTGS CKD
# of classes: 2 6 3 2 2

Our method 0.96±0.001 69.8±0.41% 67.5±0.13% 0.92±0.001 0.84±0.07

NN 0.95±0.005 68.1±0.75% 67.2±0.22% 0.91±0.009 0.83±0.003

that selections followed their instance-specific importance
rankings. Additionally, to standardize initialization, each
instance began with the feature that exhibited the highest
average ranking across the training set.

5. Results and discussion
Figure 2 demonstrates that our method shows superior, or
comparable performance on all the datasets. For example,
on the ImageNette dataset, with the few number of patches,
our method performs well, achieving 63.64% and 74.95%
average accuracy with two and five available patches among
196 patches, respectively. Additionally, our model achieved
an average AUROC score of 0.8465 on the CKD dataset
with 10 features. Furthermore, the superior performance of
the empirical oracle across all datasets highlights the rela-
tive potential of our approach. To assess the robustness of
our method to random weight initialization and the poten-
tial variability of local explanation techniques, results were
averaged over three independent runs for the image datasets
and nine independent runs for the tabular datasets. Specifi-
cally, for the tabular datasets, we trained three initial models
with different random seeds, producing three distinct fea-
ture ranking orders. For each ranking order, our method
was trained three times to capture the variability of random
network initialization. Due to computational constraints, we
only varied the random initialization of the networks on the
image datasets. To enhance readability, plots with standard
deviation bars are included in the Appendix (Figure A1).
The reported standard deviations (in Figure A1, Table 2, and

Table 3) confirm that our method is robust to both sources
of variability. We found that initializing inputs with three
features, rather than just one, improves training stability.
Based on this, we fixed first three feature acquisition order
and obtained the results shown in Figure 2. The second
and third features were also selected based on their average
importance rankings. Note that fixing the acquisition order
for all d features is equivalent to using static global feature
selection methods like CAE, which is suboptimal, as our
empirical results demonstrate. Therefore, initializing with
more than one feature can negatively impact the achiev-
able upper bound on performance. However, we found that
fixing the acquisition order for a few initial features helps
stabilize training. Additionally, since our method relies on
the feature ranking order, having a better ranking can lead
to improved performance. Our approach can work with
any ranking order, including those provided by humans, but
we have shown that local model explanation algorithms are
effective in providing this order.

The average performance after both stages is shown for all
the datasets in Table 2, highlighting the benefit of the second
stage. The second stage provides significant improvement
on most datasets, except for Spambase, CPS and CTGS that
are relatively simpler compared to others, at least in terms
of number of classes and features. Specifically, the second
stage provides mean classification accuracy increase from
0.94% (on CIFAR-100) to 7.35% (on Metabric). Table 2
also includes results from an extended first-stage training
(250 epochs) to clarify that the performance gains observed
in the second stage are not solely attributable to additional
training epochs. The results of the first-stage training with
250 epochs are nearly identical to those with 200 epochs,
demonstrating the effectiveness of the second-stage training.
However, on BloodMNIST, the additional epochs provide
a meaningful performance increase. To further assess this,
we conducted first-stage training with 300 epochs, yielding
results of 79.73±0.19%, further reinforcing the effectiveness
of the second-stage training.

We also evaluated the robustness and effectiveness of our
method across different feature ranking approaches, includ-
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ing INVASE (Yoon et al., 2019) and LIME (Ribeiro et al.,
2016), as well as two SHAP-based techniques for estimat-
ing feature importance: KernelSHAP (Lundberg & Lee,
2017) and IME (sampling) (Štrumbelj & Kononenko, 2010).
These results (Table 3) indicate that while our method is
robust to different ranking orders, its performance is also
dependent on the quality of the ranking order generated by
the explainability methods. These results were also aver-
aged across nine independent runs, as in Table 2. To further
verify the second point and test the dependency of the rank-
ing orders’ quality on the pre-trained model capacity, we
conducted another ablation experiment on the CIFAR-10
dataset. Specifically, we used ResNet-10, a smaller model
compared to ResNet-18, as the pre-trained model for deter-
mining the feature ranking order, while retaining ResNet-18
as the classification network. We observed that the perfor-
mance of our method decreased from 78.44% to 78.22%
on the test set, and from 79.12% to 78.42% on the valida-
tion set. These results confirm that the pre-trained model’s
capacity impacts the quality of feature ranking order and,
consequently, the performance of our method. In addition,
we evaluated the effectiveness of the decision transformer as
the policy network by comparing our method’s performance
with different architectures. When the decision transformer
was replaced with a ResNet block, the model’s accuracy de-
creased from 78.44% to 76.83% on the CIFAR-10 dataset
and from 46.99% to 46.70% on the CIFAR-100 dataset.
Similarly, substituting the decision transformer with a CNN
block reduced the model’s accuracy from 83.87% to 78.23%
on the BloodMNIST dataset. These results demonstrate the
advantage of using a decision transformer as the policy
network while highlighting that our method remains effec-
tive with alternative architectures. We further evaluated a
nearest-neighbor (NN) based feature acquisition approach
without any policy network, inspired by the AACO method
(Valancius et al., 2024). For each masked test instance, we
first identified its nearest neighbor from the training set, then
determined the next feature to acquire based on that neigh-
bor’s feature importance ranking. Specifically, we selected
the highest-ranked feature (according to the neighbor’s rank-
ing) that had not yet been acquired for the test instance.
The results are presented in Table 5. For this baseline, we
used the same predictor networks from our method’s sec-
ond stage. Additionally, nearest neighbors were identified
using raw feature distances as in AACO, which may not be
effective for image datasets.

In Table 4, we present the overlap ratios between our
method’s acquired feature order and the local explanation
techniques-based feature importance rankings across differ-
ent datasets. As the number of top features (T) increases
from 10 to 30, the percentage overlap generally rises for
all datasets. This trend indicates that our method’s feature
acquisition order increasingly aligns with the feature im-

portance rankings as more features are considered. While
the empirical oracle performances in Figure 2 demonstrate
the practical benefits of using explanability-driven ranking
orders in the AFA problem, Table 4 highlights the degree to
which our method’s acquisition strategy aligns with the fea-
ture importance rankings. We also provide example patch
acquisition trajectories for both our method and the empir-
ical oracle on the Imagenette dataset, illustrated for four
classes in the Appendix (Figure A2).

We emphasize the flexibility of our proposed method, which
can operate with any given feature ordering. In the absence
of a definitive ground truth for feature importance rank-
ings, we rely on explainability methods to generate these
orderings. While such methods are valuable, they may not
always yield optimal rankings in all settings (Kumar et al.,
2020; Catav et al., 2021). As more accurate explanation
techniques emerge, our approach can readily incorporate
them to achieve further performance gains. Although our
method demonstrates improved accuracy over baseline ap-
proaches, it incurs higher training time. However, this can
be mitigated through optimizations such as early stopping
and mixed-precision (half-precision) training. In practical
domains like medicine, AFA is often performed using pre-
trained models customized to specific conditions. In such
settings, explainability tools are commonly employed to
support interpretability and foster clinical trust, which is an
essential criterion for medical AI applications (Hill et al.,
2025; Dai et al., 2024; Xue et al., 2024). Our framework
is designed to take advantage of these precomputed feature
importance rankings, removing the need to recompute ex-
planations during training and thereby enabling efficient
deployment. Finally, we acknowledge that our method as-
sumes uniform feature acquisition costs. While this simpli-
fies the framework, it may not reflect real-world conditions.
Extending the method to incorporate non-uniform acquisi-
tion costs remains an important avenue for future research.

6. Conclusion
Our work introduces an active feature acquisition strategy
by reframing it as a feature prediction task, where the model
learns to acquire features based on explainability-driven fea-
ture importance rankings. Stage-wise results demonstrate
that our two-stage training approach improves feature se-
lection and classification performance on tabular and image
datasets. The findings suggest that our method is robust
across various models, datasets, and settings, and that it ex-
hibits strong practical applicability in real-world scenarios,
including domains such as medicine.

9



Active Feature Acquisition Via Explainability-driven Ranking

Impact statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
This project was supported by grants from the National In-
stitute on Aging’s Artificial Intelligence and Technology
Collaboratories (P30-AG073105), the American Heart As-
sociation (20SFRN35460031), and the National Institutes of
Health (R01-HL159620, R01-AG062109, R01-AG083735,
and R01-NS142076).

References
Acevedo, A., Merino, A., Alférez, S., Ángel Molina, Boldú,
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A. Appendix
A.1. Dataset descriptions

We utilized several datasets in our experiments (Table 1), including ImageNette, CIFAR-10, CIFAR-100, BloodMNIST,
and Spambase. ImageNette (Howard, 2019) is a 10-class subset of the ImageNet dataset (Deng et al., 2009). CIFAR-10
and CIFAR-100 (Krizhevsky, 2009) are subsets of the 80 million tiny images dataset (Torralba et al., 2008), containing
10 and 100 classes respectively. BloodMNIST (Acevedo et al., 2020), derived from the MedMNIST dataset (Yang et al.,
2021; 2023), comprises images of individual normal cells collected from individuals without infection, hematologic or
oncologic diseases, and free of any pharmacologic treatment at the time of blood collection. The patch sizes are 16× 16 for
ImageNette (makes total of 196 patches, d = 196), 4× 4 for the CIFAR-10 and CIFAR-100 datasets (d = 64), and 2× 2
for the BloodMNIST dataset (d = 196). Spambase (Hopkins et al., 1999) is a well-known tabular dataset for classifying
spam emails, consisting of 57 features derived from textual data. Additionally, to assess the applicability of our method
in real-world scenarios, such as healthcare, we conducted experiments on four medical tabular datasets. As part of the
preprocessing, we removed ID columns and categorical columns that were not ranking-based or binary. Columns with
more than 10% missing values were also excluded, while the remaining missing values were imputed with the mean. In the
following and in Table 1, the number of features refers to the count after preprocessing. The Metabric dataset (Curtis et al.,
2012; Pereira et al., 2016) contains targeted gene sequencing data from 1,898 breast cancer samples, where we utilized
mRNA-level Z-scores, which contains 489 features, to predict the Pam50 gene status that is a multi-class classification
task. The cirrhosis patient survival (CPS) dataset (Dickson et al., 1989) includes records from 418 patients, primarily with
primary biliary cirrhosis, along with 8 clinical features, with the task of predicting patient survival states categorized as
death, censored, or censored due to liver transplantation. The AIDS clinical trials group study 175 (CTGS) dataset (Hammer
et al., 1996) contains 2139 records of patients diagnosed with AIDS, 23 features, with a binary classification task to predict
whether a patient has died within a specified time period. Lastly, the chronic kidney disease (CKD) dataset (Kharoua, 2024)
comprises 1659 patient records with 50 clinical features, and the task is to predict whether a patient is diagnosed with
chronic kidney disease in a binary classification setting.

A.2. Pseudocodes

Below, we provide the pseudocode for our first and second training stages, as well as for the inference stage.

Algorithm 1 Pseudocode for the first-stage training of qπ and fθ

Require: Training set {(xi, yi, φi)}Ni=1, batch size Nb, context length ℓ, learning rate γ
1: Pre-train fθ on {(xi, yi)}Ni=1 using random feature selection
2: Initialize qπ
3: for each epoch do
4: for j = 1 to ⌈N/Nb⌉ do
5: Sample minibatch {(xi, yi, φi)}Nb

i=1 (recalculate φi for each iteration if random augmentation is applied)
6: Sample random integer ti for each i
7: Initialize losses: Lq = 0, Lf = 0
8: for tx = 0 to ℓ− 1 do
9: Define t′i = ti + tx

10: Generate masked input: xi
Mt′

i

, where Mt′i
= {φi(1), . . . , φi(t′i)}

11: Compute ŷi
t′i
= rit′i

= fθ(x
i
Mt′

i

)

12: Compute q̂i
t′i
= σ(qπ(x

i
Mti:t

′
i

, aiti:t′i
, riti:t′i

)− 1e6×Mt′i
), where ait′i

= φi(t′i)

13: Update Lf ← Lf − 1
Nb

∑Nb

i=1 log(ŷ
i
t′i,y

i)

14: Update Lq ← Lq − 1
Nb

∑Nb

i=1 log(q̂
i
t′i,φ

i(t′i+1))

15: end for
16: Update parameters θ ← θ − γ∇θLf , π ← π − γ∇πLq

17: end for
18: end for
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Algorithm 2 Pseudocode for the second-stage training of qπ and fθ

Require: Training set {(xi, yi, φi)}Ni=1, batch size Nb, context length ℓ, learning rate γ, fθ and qπ from the first stage
1: for each epoch do
2: for j = 1 to ⌈N/Nb⌉ do
3: Sample minibatch {(xi, yi, φi)}Nb

i=1 (recalculate φi for each iteration if random augmentation is applied)
4: Generate φ̂i for each i
5: Sample random integer ti for each i
6: Initialize losses: Lq = 0, Lf = 0
7: for tx = 0 to ℓ− 1 do
8: Define t′i = ti + tx
9: Generate masked input: xi

M̂t′
i

, where M̂t′i
= {φ̂i(1), . . . , φ̂i(t′i)}

10: Compute ŷi
t′i
= rit′i

= fθ(x
i
M̂t′

i

)

11: Compute q̂i
t′i
= σ(qπ(x

i
M̂ti:t

′
i

, aiti:t′i
, riti:t′i

)− 1e6× M̂t′i
), where ait′i

= φ̂i(t′i)

12: Update Lf ← Lf − 1
Nb

∑Nb

i=1 log(ŷ
i
t′i,y

i)

13: Determine the true label for the qπ network (denote this true label as yiqt′
i

). The true label is the index of the
feature, which is not acquired yet and having the highest SHAP value among the features that are not acquired

14: Lq ← Lq − 1
Nb

∑Nb

i=1 log(q̂
i
t′i,y

i
q
t′
i

)

15: end for
16: Update parameters θ ← θ − γ∇θLf , π ← π − γ∇πLq

17: end for
18: end for

Algorithm 3 Pseudocode for the inference stage
Require: Input x, context length ℓ, fθ, qπ , and the indices of first three features for the initialization

1: Acquire the first three indices in their order for the first three steps
2: for t = 3 to k do
3: Compute rt = fθ(xM̂t

)

4: Compute q̂t = σ(qπ(xM̂max(1,t−ℓ+1):t
, aimax(1,t−ℓ+1):t, r

i
max(1,t−ℓ+1):t)− 1e6× M̂t)

5: Compute φ̂i(t) = argmax q̂t

6: Update the mask M̂t ∪ φ̂i(t)
7: end for
8: Predict ŷk = fθ(xM̂k

)
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A.3. Additional results

We present the same performance results shown in Figure 2, now including standard deviations in Figure A1. We also show
example patch acquisition trajectories for both our method and the empirical oracle in Figure A2. As seen in Figure A1,
our method exhibits relatively low standard deviation values, indicating robustness to fluctuations in explanation-based
rankings and random weight initialization. Figure A2 further demonstrates that our method tends to acquire patches
concentrated near the center of the image, focusing on informative regions aligned with the object’s shape and structure. In
contrast, the empirical oracle, leveraging perfect knowledge of the image, selects scattered but informative regions based on
object-specific cues, as expected.
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Figure A1. Performance comparison with standard deviations. Mean accuracy (or AUROC) and standard deviation values are shown
for our method and baselines across nine datasets. Results were averaged over three independent runs for image datasets and nine
independent runs for tabular datasets. Our method demonstrates consistently strong performance with relatively low variance across
settings. The empirical oracle, shown in black, represents an idealized upper bound. Error bars represent standard deviations.
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Figure A2. Examples of feature/patch acquisition trajectories. Illustrative examples of patch acquisition sequences for four ImageNet
classes: English springer, chain saw, french horn, and garbage truck. The first column shows the original images, while the subsequent
columns show the cumulative patches acquired at steps 5, 10, 15, 20, and 25. For each example, the top row corresponds to the acquisition
trajectory produced by our method, and the bottom row corresponds to the empirical oracle. Our method tends to acquire patches
concentrated in structurally informative regions, whereas the empirical oracle, having full image access, selects scattered but highly
discriminative patches.
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