
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FAST PHYSICS-INFORMED LEARNING VIA DIFFUSION
HYPERNETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-Informed Neural Networks (PINNs) have emerged as a powerful tool
for solving partial differential equations (PDEs), and they have become a key
workhorse in many AI-for-science applications. However, PINNs remain highly
sensitive to factors such as initial conditions, domain geometries, and physical pa-
rameters. As a result, they typically require full retraining when these PDE-defining
parameters change. In this work, we propose a diffusion-based hypernetwork that
distills knowledge from training data to substantially accelerate PINN training. Our
approach leverages a denoising diffusion probabilistic framework to generate PINN
weights conditioned on PDE parameters. Once trained, the hypernetwork can di-
rectly produce PINNs for a family of parametric PDEs without requiring additional
optimization. For more complex problems, the generated weights, used as initializa-
tions, reduce the training time by approximately 46% for the Burgers1D-complex
dataset and 60% for the Wave2D dataset. Furthermore, the model demonstrates ro-
bustness to out-of-distribution PDE parameters, extending its applicability beyond
the training distribution.

1 INTRODUCTION

Artificial intelligence has rapidly become a transformative tool in scientific discovery, enabling
breakthroughs in domains such as weather forecasting (Price et al., 2025), materials design (Moosavi
et al., 2020), climate modeling (Nguyen et al., 2023), and biomedical simulations (Zhang et al.,
2024). At the core of many of these advances is the need to efficiently and accurately solve partial
differential equations (PDEs), which govern a broad range of physical and engineering systems. In
domains that demand repeated PDE solutions, such as parametric studies, uncertainty quantification,
and real-time control, this necessity motivates the development of scalable, data-driven approaches
that can effectively leverage prior knowledge to solve the PDEs, even when their parameters change.

Physics-informed neural networks (PINNs) (Raissi et al., 2019; Cuomo et al., 2022; Rathore et al.,
2024) have emerged as a particularly promising tool for solving PDEs. PINNs work by enforcing
physical constraints through PDE residuals, initial conditions, and boundary conditions. Their
mesh-free formulation allows for flexible handling of complex geometries, irregular domains, and
sparse observations, making them suitable for a wide range of scientific problems. Moreover,
their compatibility with automatic differentiation and modern deep learning frameworks provides
a seamless interface for integrating data and physics within a unified computational model. This
combination of flexibility and rigor has enabled applications in multiple topics (Rao et al., 2021;
Lu et al., 2021b; Zhang et al., 2024). Consequently, PINNs have quickly become a cornerstone
methodology in the broader effort to merge machine learning with scientific computing, bridging
data-driven inference with traditional physics-based simulation.

Despite their success, PINNs suffer from several practical limitations (Rathore et al., 2024). A
key challenge lies in their sensitivity to problem-specific factors, such as initial conditions, domain
geometries, and physical parameters. Even small variations in these settings typically require
retraining of a PINN, often from scratch, which is time-consuming and computationally intensive.
This limitation severely hinders their scalability to parametric PDE families, where one must solve
the same governing equation across many different configurations. A natural idea is to treat problems
with varying PDE parameters as separate tasks and apply meta-learning to transfer knowledge from
previous tasks to new ones. However, our experiments show that existing meta-learning methods (Finn

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

et al., 2017; Nichol et al., 2018) fail to provide any gain in speed or accuracy. We attribute this to
the large scale of PDE problems we aim to solve and the highly nonlinear dependence of weights of
PINNs on their corresponding PDE parameters, which define each problem instance.

Burger1d-simple Wave2d
0

20

40

60

80

100

120

140

T
im

e 
(%

)

Random-init
MAML

Reptile
HD-PINN (Ours)

Burger1d-complex 

Figure 1: Percentage of training time using weights
generated by different methods. The time for train-
ing from random initialization is used as the baseline
(100%). Our HD-PINN significantly reduces training
time compared to training from random initialization
and meta-learning methods such as MAML (Finn et al.,
2017) and Reptile (Nichol et al., 2018).

To address this challenge, we propose a
diffusion-based hypernetwork framework,
termed HD-PINN1 (Hyper Diffusion for
PINNs), to accelerate PINN training. Our
approach leverages denoising diffusion
probabilistic models (Ho et al., 2020) to
learn a distribution over PINN weights con-
ditioned on PDE parameters such as phys-
ical coefficients (e.g., viscosity or diffusiv-
ity), initial and boundary conditions, and
domain geometry. By training on data pairs
of varying PDE parameters and their corre-
sponding PINN weights that solve the asso-
ciated problems, the hypernetwork learns
to directly generate PINN solvers for a tar-
get family of parametric PDEs, eliminat-
ing the need for additional optimization.
For more complex PDE classes, the hyper-
network generated weights provide a high-
quality initialization, substantially reduc-
ing overall training time by approximately
46% for the Burgers1D-complex dataset and 60% for the Wave2D dataset, as noted in Figure 1. More-
over, our experiments show that the trained diffusion-based hypernetwork can provide high-quality
initializations even for problems with PDE parameters outside the training distribution, as long as the
deviations remain within a certain range.

Our main contributions are summarized as follows:

• Diffusion-based hypernetwork for PINNs. To the best of our knowledge, our method is
the first diffusion-driven hypernetwork successfully applied to PINNs, capable of generating
network weights conditioned on diverse PDE parameters;

• Direct PINN weights generation. Once trained, our model directly produces PINN solvers
for a family of parametric PDEs without requiring additional optimization, effectively
functioning as a mesh-free solver;

• Accelerated PINN training via initialization. For problems with higher variability, the
generated weights provide high-quality initializations that substantially reduce training time
while maintaining or improving solution accuracy;

• Robustness to distribution shift. The hypernetwork demonstrates robustness to out-of-
distribution PDE parameters, extending its applicability beyond the training distribution.

2 RELATED WORK

2.1 AI FOR PHYSICS

Deep neural networks have emerged as a powerful tool for scientific computing, providing novel
approaches to solve PDEs and model complex physical phenomena. Among these methods, Physics-
Informed Neural Networks (PINNs) (Raissi et al., 2019) have received significant attention for
their ability to embed the governing equations directly into the training objective. This approach
allows PINNs to learn solutions to PDEs in a mesh-free manner while strictly enforcing physical
constraints. Over the past few years, numerous extensions have been proposed to improve their
practical performance, including strategies for faster convergence (Wang et al., 2021), adaptive
loss weighting to balance competing objectives (Gao et al., 2025), scalable domain decomposition
for large-scale problems (Shukla et al., 2021), and specialized designs for challenging scenarios

1Code is available at anonymous.4open.science/r/HD-PINN-official-412B.

2

anonymous.4open.science/r/HD-PINN-official-412B


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

such as multiphase flows and inverse problems (Sun et al., 2020). PINNs have shown success in
a wide range of scientific domains, from fluid dynamics, including incompressible Navier–Stokes
simulations (Raissi et al., 2020) and cardiovascular hemodynamics (Kissas et al., 2020), to solid
mechanics for elasticity analysis (Rao et al., 2021).

Beyond PINNs, operator learning methods aim to generalize across families of PDEs by directly
approximating mappings between function spaces. Representative examples include DeepONet (Lu
et al., 2021a) with its branch–trunk design, and the Fourier Neural Operator (Li et al., 2020), which
captures long-range dependencies efficiently in Fourier space. These approaches offer faster inference
and improved generalization across parametric PDEs, but remain largely data-driven rather than
physics-informed, making them sensitive to data quality and resolution (McCabe et al., 2023; Morel
et al., 2025). Moreover, many operator-learning methods focus on short-term predictions and often
struggle with stability when extrapolating far into the future.

Together, these developments highlight a growing trend toward data-driven, modular, and transfer-
oriented architectures for accelerating PDE solvers. However, unlike our proposed framework, most
prior methods remain limited to single-instance PDEs and/or involve substantial computational costs.

2.2 HYPERNETWORKS

Hypernetworks, introduced by Ha et al. (2016), are neural networks that generate the weights of a
target network, allowing parameterization conditioned on specific inputs (Chauhan et al., 2024). This
decouples task representations from task-specific training and enables flexible multi-task learning,
conditional modeling, and rapid adaptation. Since their introduction, hypernetworks have been
extended in diverse contexts. For example, Peebles et al. (2022) employ conditional diffusion trans-
formers to generate weights based on prompted losses, while Erkoç et al. (2023) use unconditional
diffusion models to produce MLP weights for neural implicit fields (Mildenhall et al., 2021), achiev-
ing efficient 3D/4D shape synthesis. These successes motivate our application of diffusion-driven
hypernetworks to PINNs, a direction unexplored in AI for science. Other efforts pursue efficient
weight generation and compression: Hedlin et al. (2025) compress full training trajectories into
single-step estimates, Morel et al. (2025) generate operator-network parameters from short PDE
trajectories for fast integration, and Cho et al. (2023) propose Hyper-LR-PINN, which reduces
complexity by producing low-rank PINN representations. Unlike our framework, Hyper-LR-PINN is
restricted to scalar inputs and cannot handle field-level variations such as initial conditions, domains,
or spatially varying coefficients.

2.3 META-LEARNING

Our work is also closely related to meta-learning approaches (Finn et al., 2017; Nichol et al., 2018),
which aim to reduce training costs by transferring knowledge across tasks. However, in parametric
PDE families with high variability, shared initializations often fail to generalize and require extensive
fine-tuning, as evidenced by our experiments and already illustrated in Figure 1. In contrast, our
method learns a conditional mapping from PDE parameters to solver weights, providing task-specific
initialization and overcoming the scalability limits of conventional meta-learning.

3 METHODS

3.1 PRELIMINARIES

Physics-Informed Neural Network. We consider a general partial differential equation (PDE)
defined on a spatial-temporal domain:

F [u](x, t) = 0, x ∈ Ω, t ∈ (0, T ],

B[u](x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(1)

where u(x, t) is the solution of interest, F [·] is a differential operator, B[·] denote the boundary
condition operator, u0(x) is the initial condition, Ω is the spatial domain and [0, T ] is the time
interval.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

PDE 
parameter

Condition
Embedder

AdaLN

Fe
ed

 
Fo

rw
ar

d

Se
lf 

A
tte

nt
io

n

DiT

Noising

Denoising

Figure 2: Illustration of the proposed HD-PINN framework. During training, PINN weights θ1 are
progressively noised into θT . A DiT module is then trained to reverse this process, denoising and
reconstructing PINN weights θ̂1 conditioned on c, which encodes the PDE parameters.

To train a PINN model uθ parameterized by weights θ ∈ Rd, which allows computation of u(x, t) =
uθ(x, t), a set of collocation points is first generated, including Nf points (xf

i , t
f
i ) uniformly

sampled in the whole domain Ω × (0, T ], Nb points (xb
i , t

b
i ) uniformly sampled on the boundary

∂Ω× (0, T ], and N0 points (x0
i , t

0
i ) uniformly sampled at the initial time domain Ω× {0}. When

observational or synthetic data are available, additional Nd points (xd
i , t

d
i ) sampled from available

data are incorporated to further constrain the solution. At each of these points, the neural network is
evaluated and automatic differentiation is used to compute the residuals of the governing PDE, initial
conditions, and boundary conditions. With the evaluated variable values and differentiations, the total
loss L is written as a composition of multiple terms with weights that balance the contributions of
each loss term,

Lpinn = λdataLdata + λpdeLpde + λbcLbc + λicLic, (2)

where

Lpde =
1

Nf

Nf∑
i=1

∥∥∥F [uθ](x
f
i , t

f
i )
∥∥∥2 , Lbc =

1

Nb

Nb∑
i=1

∥∥B[uθ](x
b
i , t

b
i )
∥∥2 ,

Ldata =
1

Nd

Nd∑
i=1

∥∥uθ(x
d
i , t

d
i )− u(xd

i , t
d
i )
∥∥2 , Lic =

1

N0

N0∑
i=1

∥∥uθ(x
0
i , 0)− u0(x

0
i )
∥∥2 . (3)

Regularized Weight Space Distribution. Neural networks like PINNs often admit multiple local
minima that yield comparable solutions, which can lead to a scattered and unstructured weight space.
To facilitate the construction of a well-behaved dataset of optimized weights and support downstream
hypernetwork training, we adopt two complementary strategies. First, all PINNs are initialized
from a shared set of pre-trained weights θinit, ensuring a consistent starting point across training
instances (Erkoç et al., 2023). Second, during the collection of optimized weights, we add a distance
regularization term that penalizes deviations from θinit. This encourages a more compact and coherent
weight space and prevents solutions from drifting too far from a common reference. Mathematically,
the regularized loss is written as

L̃pinn = Lpinn + λreg∥θ − θinit∥2, (4)

where λreg controls the strength of the regularization. This approach produces a structured weight land-
scape, which not only improves stability during training but also facilitates learning of a hypernetwork
that can generate effective weights for a variety of PDE instances.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.2 CONDITIONAL WEIGHT-SPACE DIFFUSION

Problem Setting. Figure 2 illustrates the proposed HD-PINN architecture. The central objective is
to learn a mapping from task-specific PDE conditions to a structured distribution of PINN weights,
effectively capturing the relationship between PDE parameters and corresponding network solutions.
As formalized in Equation 1, the PDE conditions can include physical coefficients (e.g., viscosity,
diffusivity, or density), initial states, boundary conditions, and domain representations such as binary
masks indicating spatial support. To encode these diverse inputs, we employ a conditioner encoder
that produces a compact conditioning vector c. Denote θ0 ∼ pdata(θ | c) as the optimized PINN
weights for a given task. The forward diffusion process then progressively perturbs these weights
according to

θt = γ(t)θ0 + η(t) ϵ, ϵ ∼ N (0, I),
where γ(t) and η(t) define the noise schedule. The model is trained to learn a conditional score
function

sϕ(θ, t, c) ≈ ∇θ log pt(θ | c), (5)
which estimates the gradient of the log-density of the noised weight distribution at time t, conditioned
on the PDE parameters (Vincent, 2011; Song & Ermon, 2019; Song et al., 2021).

At inference time, ground-truth PINN weights are no longer available, so the operation indicated
by the dotted line in Figure 2 is omitted. For a new task with conditions cnew, the reverse-time
stochastic differential equation (or equivalently the probability-flow ODE) is integrated, guided by
the learned conditional score function sϕ. This reverse diffusion process transforms Gaussian noise
into a structured set of weights θ̂0(cnew) that can directly produce or initialize a PINN tailored to the
new PDE instance. This enables rapid deployment of PINN solvers across a family of parametric
PDEs without retraining from scratch.

Training Objective. To optimize ϕ, we adopt the denoising score matching (DSM) loss from
DDPM (Ho et al., 2020). The network ϵϕ is trained to recover Gaussian noise added to the target
PINN parameters. The training loss is defined as

LDSM = E(c,θ)∼D Eτ∼U(1,T ) Eϵ∼N (0,I)

[∥∥∥ϵ− ϵϕ

(√
γ̄τ θ +

√
1− γ̄τ ϵ, τ, c

)∥∥∥2
2

]
, (6)

where D denotes the data distribution, and γ̄τ denotes the cumulative product of noise schedule
coefficients. The model receives as input a noisy version of the target PINN parameters, the diffusion
step τ , and the PDE conditions c, and learns to denoise and recover the original PINN weights θ.

Condition Dropout. To further enhance robustness and prevent overfitting, we apply dropout to the
conditioning vector c during training. This acts as a form of implicit ensemble regularization (Srivas-
tava et al., 2014), discouraging co-adaptation among the conditioning inputs and promoting smoother
mappings from PDE parameters to generated weights. The use of condition dropout helps stabilize
the diffusion process, improves generalization to unseen tasks, and reduces the sensitivity of the
hypernetwork to small perturbations in the input conditions.

4 EXPERIMENTAL RESULTS

We evaluated our HD-PINN framework on multiple standard benchmark datasets that span different
PDE types and complexities. Our experiments demonstrate the effectiveness of hypernetwork-
generated initializations to accelerate PINN training while maintaining the solution accuracy high-
lighted in Figure 1.

4.1 IMPLEMENTATION DETAILS

Dataset. We consider three datasets. Burgers1D-simple consists of 1D Burgers’ equations
with varying initial conditions u0(x) = α1(x− 1)(x+ 1)(x+ α2), where α1 and α2 are uniformly
sampled from (0.5, 1.5) and (−0.5, 0.5), respectively. Burgers1D-complex is derived from
PDEBench (Takamoto et al., 2022) with a broader set of varying initial conditions. Wave2D is
constructed by varying irregular PDE domains specified through binary masks. Additional details
are provided in Appendix A, while the details for generating random PDE domains for Wave2D are
given in Appendix B.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

0.0 0.2 0.5 0.8 1.0
t

°1.0

°0.5

0.0

0.5

1.0

x

°0.75 °0.50 °0.25 0.00
u(t,x)

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

°0.75 °0.50 °0.25 0.00
u(t,x)

0.0 0.2 0.5 0.8 1.0

t

0.00

0.01

0.02

0.03

0.04

R
M

SE

HD-init
Random-init

0.0 0.5 1.0 1.5 2.0

t

0.00

0.02

0.04

0.06

0.08

R
M

SE

HD-init
Random-init

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

t

0.00

0.02

0.04

0.06

0.08

R
M

SE

HD-init
Random-init

t=1.80t=1.40t=1.00t=0.60t=0.20

Burgers1D-simple Burgers1D-complex Wave2D

Figure 3: Evolution of representative solution fields and the associated RMSE statistics, where
dotted lines indicate the mean and shaded regions denote standard deviations, across different time
steps for the PDEs: (left) Burgers1D-simple tasks, PINNs trained completely unsupervised;
(middle) Burgers1D-complex dataset with more challenging initial conditions, PINNs are trained
weakly supervised using 0.5% ground-truth data; (right) Wave2D dataset, PINNs are trained weakly
supervised using 3% ground-truth data. HD-init is capable of generating high-quality initializations
that lead to accurate solutions with low error across different time steps.

Comparing Methods. In addition to closely related meta-learning methods such as MAML (Finn
et al., 2017) and Reptile (Nichol et al., 2018), we compare against some baselines. The first is
Random-init, where each new PINN is trained from scratch with randomly initialized weights. For
our proposed approach, we consider HD-direct, which denotes directly using the PINN weights
generated by the hypernetwork without refinement, and HD-init, which uses these generated weights
as initialization followed by fine-tuning.

Model and Training. PINNs are implemented as small MLPs trained with Adam followed by
L-BFGS. The hypernetwork is based on a DiT backbone with task-specific encoders: an MLP for
Burgers1D initial conditions and a CNN for Wave2D domain masks. The module architectures,
conditioner encoders, and training details are provided in Appendix C, D, and E, respectively.

Metrics. We evaluated all methods by wall-clock training time and accuracy, measured using root
mean square error (RMSE) and normalized relative L2 error (Rel. Error), with reference solutions
obtained via finite differences (Table 1). For ablation, we used the distance correlation (dCor) (Székely
et al., 2007) to quantify the dependence between the PDE parameters and the optimized PINN weights;
the definition is provided in Appendix F and the results are in Appendix G.

4.2 PERFORMANCE ON IN-DISTRIBUTION TEST DATA

4.2.1 DIRECT HYPERNETWORK PREDICTIONS.

We first evaluate our method on the Burgers1D-simple dataset to demonstrate the ability of HD-
PINN to directly generate PINN solvers without additional fine-tuning. In this setup, the hypernetwork
takes the initial condition as input and outputs PINN weights that are immediately applied to solve
the 1D Burgers’ equation, yielding ready-to-use solvers without iterative training.

Figure 3 illustrates a representative trajectory and error evolution, while Table 1 shows that HD-direct
achieves accuracy comparable to the Random-init baseline, confirming that the generated weights
yield reasonable solutions. For completeness, we also report HD-init, where hypernetwork-generated
weights are fine-tuned, requiring minimal extra training. Unlike meta-learning approaches such
as MAML (Finn et al., 2017) and Reptile (Nichol et al., 2018), which rely on a single shared
initialization and struggle with diverse PDE families, HD-PINN explicitly learns a task-to-weights
mapping, enabling task-specific solvers.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Dataset Method Time (s) ↓ RMSE (10−2) ↓ Rel. Error (%) ↓
Random-init 17.5 ± 7.2 1.6 ± 0.8 4.7 ± 1.2

Burgers1D-simple
MAML (Finn et al., 2017) 18.9 ± 6.8 1.6 ± 0.8 4.6 ± 1.3
Reptile (Nichol et al., 2018) 19.6 ± 7.1 1.6 ± 0.8 4.6 ± 1.3
HD-direct (ours) - 2.8 ± 1.3 9.0 ± 4.1
HD-init (ours) 3.0 ± 3.9 1.6 ± 0.8 4.7 ± 1.2

Random-init 180.9 ± 28.7 1.1 ± 1.6 2.5 ± 4.7

Burgers1D-complex
MAML (Finn et al., 2017) 175.3 ± 16.2 1.0 ± 1.5 2.2 ± 3.6
Reptile (Nichol et al., 2018) 176.2 ± 16.4 1.0 ± 1.5 2.2 ± 3.8
HD-direct (ours) - 45.2 ± 32.7 109.9 ± 118.7
HD-init (ours) 97.5 ± 34.6 0.8 ± 1.0 1.7 ± 2.9

Random-init 519.3 ± 59.4 3.8 ± 0.4 4.2 ± 0.4

Wave2D
MAML (Finn et al., 2017) 509.9 ± 64.4 3.8 ± 0.3 4.1 ± 0.3
Reptile (Nichol et al., 2018) 510.3 ± 65.0 3.8 ± 0.3 4.1 ± 0.3
HD-direct (ours) - 16.6 ± 15.8 17.7 ± 16.7
HD-init (ours) 208.5 ± 113.3 3.6 ± 0.6 3.9 ± 0.6

Table 1: Performance comparison for different PINN modes among Random-init, HD-direct (di-
rectly using the weights generated without refinement), and HD-init (uses these generated weights
as initialization followed by fine-tuning) on Burgers1D and Wave2D after fine-tuning. For
Burgers1D-simple, HD-PINN directly yields accurate solutions with negligible need for tuning.
For more challenging cases, the generated PINN weights reduce training time by approximately 46%
on Burgers1D-complex and 60% on Wave2D. Bold indicates the best. Shadow indicates the
second.

0 500 1000 1500
step

10−5

10−4

10−3

10−2

R
M
SE

Burgers1D-simple

0 10000 20000
step

10−3

10−2

10−1

100

101

R
M
SE

Burgers1D-complex

0 2000 4000
step

100

R
M
SE

Wave2D

HD-init Random-init MAML Reptile

Figure 4: Training error plots comparing Random-init, MAML, Reptile, and our HD-init on
Burgers1D-simple, Burgers1D-complex and Wave2D. The step count denotes L-BFGS
iterations until stopping. Additional examples can be found in Appendix I.

4.2.2 REFINE FROM HYPERNETWORK INITIALIZATION.

On simple PDEs, HD-direct can generate near-optimal PINN weights. For more complex PDEs,
however, the ill-conditioned loss landscape makes direct weight generation unreliable, as small
parameter perturbations can cause large degradation (Rathore et al., 2024). In such cases, HD-init
serves as a prior-informed initialization: diffusion-conditioned weights that remain near-optimal
and greatly reduce training time. To test generality, we evaluate on more challenging datasets,
Burgers1D-complex and Wave2D, which involve substantial parameter variations and hinder
direct weight generation. Even so, our method consistently yields high-quality initializations that
accelerate convergence; fine-tuning details are provided in Appendix E.

Quantitative comparisons, summarized in Table 1, show that PINNs initialized with HD-init consis-
tently attain high-performance solutions in much shorter training times compared to Random-init,
while maintaining or even slightly improving accuracy. This indicates that HD-PINN successfully
captures generalized structure across effective PINN weights for different PDE instances, enabling
the generation of problem-specific initializations that accelerate training. In contrast, conventional

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

OOD shift Method Time (s) ↓ Rel. Error (%) ↓
No shift Random-init 17.5 ± 7.2 4.7 ± 1.2

HD-init 3.0 ± 3.9 4.7 ± 1.2

δ = 0.1 Random-init 15.9 ± 10.9 4.0 ± 1.6
HD-init 5.9 ± 8.7 4.0 ± 1.6

δ = 0.2 Random-init 23.3 ± 15.9 4.9 ± 1.9
HD-init 13.7 ± 13.3 4.9 ± 1.9

δ = 0.3 Random-init 24.7 ± 19.4 5.1 ± 1.8
HD-init 15.5 ± 14.1 5.0 ± 1.9

δ = 0.4 Random-init 23.9 ± 22.6 5.2 ± 1.9
HD-init 18.5 ± 17.6 5.3 ± 2.4

0.00 0.10 0.20 0.30 0.40
δ

0.0

20.0

40.0

C
on

su
m

ed
 ti

m
e 

(s
)

Time Cost

HD-init Random-init

Table 2: Out-of-distribution (OOD) evaluation on the Burgers1D-simple dataset with varying
initial conditions (table, left) and corresponding time-to-convergence plot (right). The hypernetwork
is trained on α1 ∼ U(0.5, 1.5) and α2 ∼ U(−0.5, 0.5), and tested under shifted regimes of α1. The
shift δ offsets the training interval, yielding the evaluation domain (0.5−δ, 0.6−δ)∪(1.4+δ, 1.5+δ).
No shift corresponds to the original training range. Bold indicates the best result at the shift level.

meta-learning approaches such as MAML and Reptile, which rely on a shared initialization across
tasks, provide only marginal speed-ups, likely due to the high diversity and large number of tasks
involved in these datasets.

To provide a more intuitive understanding, we visualize representative solutions and corresponding
error distributions over time for Burgers1D-complex and Wave2D in the second and third
columns of Figure 3. These visualizations highlight that PINNs initialized with HD-PINN maintain
low errors across all PDEs time steps, demonstrating the robustness and accuracy of the generated
weights.

Additionally, training logs for representative PINNs on both datasets are shown in Figure 4. The plots
demonstrate that PINNs initialized with HD-init converge more rapidly and achieve high-accuracy
solutions earlier than Random-init. In comparison, MAML and Reptile show modest improvements in
only some cases, with additional examples provided in Appendix I. These observations highlight that
HD-PINN generates high-quality, task-specific initializations that substantially accelerate training,
even under significant parameter variability. Overall, the results confirm that our framework effectively
captures transferable knowledge across diverse PDE instances, enabling the rapid deployment of
PINN solvers for more complex problems.

4.3 OUT-OF-DISTRIBUTION

To rigorously evaluate the out-of-distribution (OOD) robustness of our framework, we asked whether
HD-PINN can generalize beyond the training range of PDE parameters and remain useful under
unseen regimes. This is a crucial step in assessing whether the method can scale to scientific problems
where parameters are not confined to a pre-defined distribution.

4.3.1 OOD FOR BURGERS1D-SIMPLE.

In this test, we trained the hypernetwork on the Burgers1D-simple dataset with initial conditions
parameterized by α1 ∼ U(0.5, 1.5). We then systematically shifted α1 outside this range to create
OOD test sets. The shift is defined relative to the boundaries of the training distribution: for a shift
δ, the new evaluation domain becomes (0.5− δ, 0.6− δ) ∪ (1.4 + δ, 1.5 + δ). This setup allows us
to control the degree of OOD difficulty. For example, δ = 0.1 corresponds to a mild extrapolation
(0.4, 0.5) ∪ (1.5, 1.6), while larger values such as δ = 0.4 represent more severe shifts.

The results in Table 2 show that hypernetwork initialization (HD-init) consistently accelerates
convergence compared to random initialization (Random-init), even under parameter shifts. This
indicates that the hypernetwork encodes transferable structural information about the PDE family. For
small shifts, HD-init yields stable error reduction and significant time savings, while for larger shifts
the benefits gradually diminish, as also seen in the associated figure. Overall, within a reasonable

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Diameter Method Time (s) ↓ Rel. Error (%) ↓
l ≈ 1.20 Random-init 519.3 ± 59.4 4.1 ± 0.3

HD-init 208.5 ± 113.3 3.9 ± 0.5

l ≈ 1.25 Random-init 521.0 ± 58.0 4.1 ± 0.4
HD-init 256.8 ± 128.5 3.9 ± 0.6

l ≈ 1.30 Random-init 512.5 ± 62.9 4.1 ± 0.4
HD-init 269.0 ± 134.1 3.8 ± 0.4

l ≈ 1.35 Random-init 517.6 ± 62.0 4.0 ± 0.3
HD-init 305.4 ± 120.1 3.8 ± 0.7

l ≈ 1.40 Random-init 513.0 ± 63.0 4.0 ± 0.4
HD-init 311.9 ± 120.4 3.8 ± 0.6

1.20 1.25 1.30 1.35 1.40
Region Diameter

200.0

400.0

600.0

C
on

su
m

ed
 ti

m
e 

(s
)

Time Cost

HD-init Random-init

Table 3: Out-of-distribution (OOD) evaluation on the Wave2D dataset with varying domain diameters
(table, left) and corresponding time-to-convergence plot (right). The hypernetwork is trained on
domains with diameter l ≈ 1.20 and tested on larger domains with diameters ranging from l ≈ 1.25
to l ≈ 1.40. Bold indicates the best result at the shift level.

extrapolation range, the hypernetwork provides effective priors that speed up optimization while
remaining robust. For completeness, we also report the performance of HD-direct in Appendix H,
where the hypernetwork’s predicted weights are used without further optimization.

4.3.2 OOD FOR WAVE2D

For this experiment, we evaluate OOD performance using a hypernetwork trained on the Wave2D
dataset from Section 4.2, where the PDE parameter is the domain diameter l ≈ 1.20. By modifying
the parameters of the mask generation algorithm described in Appendix B, we create four OOD test
sets with diameters l ≈ 1.25, 1.30, 1.35, and 1.40. The generated masks are then used as inputs to
the hypernetwork, which produces initialization weights for solving the 2D wave equation on each
corresponding domain.

The results for the Wave2D OOD test are presented in Table 3. Similar to the Burgers1D-simple
case, we observe that using hypernetwork-generated weights as initialization (HD-init) consistently
accelerates convergence compared to random initialization (Random-init). This advantage persists
across all tested domain diameters, indicating that the hypernetwork captures transferable structural
information about PDE solutions that remains useful even when the evaluation domains deviate from
the training regime. As the domain diameter increases, however, the benefits gradually diminish
as shown in the associated plot, reflecting the greater difficulty of extrapolating to larger geometric
shifts.

5 CONCLUSIONS

We introduced a diffusion-based hypernetwork for accelerating the training of physics-informed neural
networks (PINNs) by generating their weights conditioned on problem-specific PDE parameters.
Our approach distills knowledge on the relationship between the PDE parameters that define a
problem and the weights of its corresponding PINN solver. Once trained, the hypernetwork supports
two complementary modes: (i) direct inference, producing PINN weights that solve simple PDE
instances without additional optimization; and (ii) high-quality initialization, providing substantial
reductions in training cost for more complex problems. Moreover, for moderate out-of-distribution
PDE parameters, the trained hypernetwork can still generate usable weights that accelerate PINN
fine-tuning. Collectively, these capabilities point toward a promising pathway for fast, flexible, and
data-driven PDE solvers, bridging generative modeling with scientific machine learning.

In future work, we plan to extend this work to a broader range of PDE-driven applications. We
also aim to further improve the model architecture and training strategies to enhance scalability,
generalization, and robustness.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A Limited Memory Algorithm for
Bound Constrained Optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.
doi: 10.1137/0916069.

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A Clifton. A Brief
Review of Hypernetworks in Deep Learning. Artificial Intelligence Review, 57(9):250, 2024.

Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-Based Meta-Learning
for Low-Rank Physics-Informed Neural Networks. Advances in Neural Information Processing
Systems, 36:11219–11231, 2023.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maizar Raissi, and
Francesco Piccialli. Scientific Machine Learning Through Physics–Informed Neural Networks:
Where we are and What’s Next. Journal of Scientific Computing, 92, 2022.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating
Implicit Neural Fields with Weight-Space Diffusion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14300–14310, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. In Proceedings Of The 34th International Conference On Machine Learning,
volume 70 of Proceedings Of Machine Learning Research, pp. 1126–1135. PMLR, 2017.

Bo Gao, Ruoxia Yao, and Yan Li. Physics-Informed Neural Networks with Adaptive Loss Weighting
Algorithm for Solving Partial Differential Equations. Computers & Mathematics with Applications,
181:216–227, 2025.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Eric Hedlin, Munawar Hayat, Fatih Porikli, Kwang Moo Yi, and Shweta Mahajan. HyperNet Fields:
Efficiently Training Hypernetworks Without Ground Truth by Learning Weight Trajectories. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 22129–22138, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and Paris Perdikaris.
Machine Learning in Cardiovascular Flows Modeling: Predicting Arterial Blood Pressure from
Non-Invasive 4D Flow MRI Data Using Physics-Informed Neural Networks. Computer Methods
in Applied Mechanics and Engineering, 358:112623, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential
Equations. arXiv preprint arXiv:2010.08895, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
Nonlinear Operators via DeepONet Based on the Universal Approximation Theorem of Operators.
Nature Machine Intelligence, 3(3):218–229, 2021a.

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-Informed Neural Networks with Hard Constraints for Inverse Design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021b.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
Multiple Physics Pretraining for Physical Surrogate Models. arXiv preprint arXiv:2310.02994,
2023.

10

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis. Communications of
the ACM, 65(1):99–106, 2021.

Seyed Mohamad Moosavi, Kevin Maik Jablonka, and Berend Smit. The Role of Machine Learning
in The Understanding and Design of Materials. Journal of the American Chemical Society, 142
(48):20273–20287, 2020.

Rudy Morel, Jiequn Han, and Edouard Oyallon. DISCO: Learning to DISCover an Evolution Operator
for Multi-Physics-Agnostic Prediction. In International Conference on Machine Learning, 2025.

Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, and Aditya Grover. Climatelearn: Bench-
marking Machine Learning for Weather and Climate Modeling. Advances in Neural Information
Processing Systems, 36:75009–75025, 2023.

Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning Algorithms. In
Proceedings Of The 32nd International Conference On Neural Information Processing Systems,
pp. 3959–3968. Curran Associates, Inc., 2018.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4195–4205, October
2023.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
Learn with Generative Models of Neural Network Checkpoints. arXiv preprint arXiv:2209.12892,
2022.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. FiLM: Visual
Reasoning with a General Conditioning Layer. In AAAI, 2018.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
Weather Forecasting with Machine Learning. Nature, 637(8044):84–90, 2025.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-Informed Neural Networks: A
Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial
Differential Equations. Journal of Computational Physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden Fluid Mechanics: Learning
Velocity and Pressure Fields from Flow Visualizations. Science, 367(6481):1026–1030, 2020.

Chengping Rao, Hao Sun, and Yang Liu. Physics-Informed Deep Learning for Computational
Elastodynamics Without Labeled Data. Journal of Engineering Mechanics, 147(8):04021043,
2021.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in Training
PINNs: A Loss Landscape Perspective. In Proceedings of the 41st International Conference on
Machine Learning, 2024.

Khemraj Shukla, Ameya D Jagtap, and George Em Karniadakis. Parallel Physics-Informed Neural
Networks via Domain Decomposition. Journal of Computational Physics, 447:110683, 2021.

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.
In Advances in Neural Information Processing Systems, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In 9th
International Conference on Learning Representations, ICLR 2021, 2021.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate Modeling for Fluid Flows Based
on Physics-Constrained Deep Learning Without Simulation Data. Computer Methods in Applied
Mechanics and Engineering, 361:112732, 2020.

Gábor J Székely, Maria L Rizzo, and Nail K Bakirov. Measuring and Testing Dependence by
Correlation of Distances. The Annals of Statistics, pp. 2769–2794, 2007.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine
Learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Computation, 23:1661–1674, 2011.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and Mitigating Gradient Flow Patholo-
gies in Physics-Informed Neural Networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Han Zhang, Raymond H Chan, and Xue-Cheng Tai. A Meshless Solver for Blood Flow Simulations in
Elastic Vessels Using a Physics-Informed Neural Network. SIAM Journal on Scientific Computing,
46(4):C479–C507, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A DATASETS

Burgers1D-simple. The 1D Burgers’ Equation is a widely studied nonlinear PDE that serves as
a prototypical model for transport phenomena, combining the effects of nonlinear advection and
diffusion. It is frequently used in numerical analysis and scientific machine learning as a benchmark
due to its relative simplicity while still capturing essential features of more complex fluid dynamics
systems. The equation is given by

∂u

∂t
+ u

∂u

∂x
=

ν

π

∂2u

∂x2
, (7)

where u(x, t) denotes the scalar field of interest, x is the spatial coordinate, t is time, and ν is the
viscosity coefficient controlling the strength of diffusion relative to nonlinear transport.

For Burgers1D-simple dataset, the problem is defined on the domain x ∈ [−1, 1], t ∈ [0, 1]
with fixed viscosity ν = 0.01 and homogeneous Dirichlet boundary conditions. The initial conditions
are sampled from a parametric family of cubic polynomials, u0(x) = α1(x − 1)(x + 1)(x + α2),
where α1 ∼ U(0.5, 1.5) and α2 ∼ U(−0.5, 0.5), allowing for a diverse set of trajectories. The
corresponding PINN weights θ are optimized without relying on data-informed loss, ensuring that
the network relies solely on PDE residual minimization. This dataset contains 9,000 training pairs
(α,θ) and 1,000 testing pairs.

Burgers1D-complex. This dataset is based on the PDEBench benchmark (Takamoto et al., 2022).
While it also from Burgers’ Equation in 7, it is defined with x ∈ [0, 1], t ∈ [0, 2], viscosity
ν = 0.01, and periodic boundary conditions, which yield more complex solution dynamics. Here,
each PDE instance is uniquely determined by its initial condition u0(x), which governs the trajectory
evolution. For these cases, PINNs are optimized with data-informed losses to stabilize training and
improve solution accuracy. The dataset provides 9,000 (u0,θ) training pairs and 1,000 testing pairs.
Together, these two datasets allow us to evaluate both direct solver generation and initialization under
increasingly challenging settings.

Wave2D. We also construct a dataset for the 2D Wave Equation, which models the propagation of
waves in heterogeneous or irregular domains. The governing PDE is

∂2u

∂t2
− µ2∇2u = 0, (8)

where u(x, y, t) is the wave field and µ = 1 is the wave speed. To induce nontrivial dynamics, the
boundary condition ub(x, y, t) = 1− cos(πt) is imposed, generating inward-propagating waves from
the domain boundary.

To increase problem diversity, the computational domains Ω are randomly generated using stochastic
region growing, producing irregular shapes that challenge the generalization ability of PINN solvers.
For each domain, a data-informed PINN is trained to approximate the wave dynamics, providing a
realistic set of weights that encode both PDE physics and domain-specific geometry. The resulting
dataset contains 15,000 (Ω,θ) training pairs and 4,000 testing pairs.

B IRREGULAR DOMAIN GENERATION

To generate irregular computational domains for the Wave2d dataset, we design a simple yet effective
mask generation procedure. The method starts from an initial disk placed at the center of the domain
and iteratively grows the region by randomly activating neighboring pixels. This ensures that the
resulting mask remains connected while allowing for irregular and non-symmetric shapes. To improve
robustness, we retain only the largest connected component, smooth the boundaries via contour
filling, and finally apply Gaussian blurring followed by thresholding to obtain clean binary masks.
The process produces a diverse collection of irregular shapes that can be used as PDE domains for
training and evaluation.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Algorithm 1 Random Irregular Mask Generation

Require: mask size (h,w), maximum pixels P , disk radius r
Ensure: binary irregular mask M

1: Initialize M ← 0h×w and visited map V ← Falseh×w

2: Place an initial disk of radius r at the center; set M = 1, V = True inside the disk
3: Set pixel counter c← 1 to record number of active pixels in M
4: while c < P do
5: Dilate M with a 4-connected structuring element
6: Identify candidate pixels C ← {(i, j) : dilated(i, j) = 1, V (i, j) = False}
7: if C = ∅ then
8: break
9: end if

10: Randomly select (i, j) ∈ C
11: Set M [i, j]← 1, V [i, j]← True
12: c← c+ 1
13: end while
14: Retain only the largest connected component of M
15: Extract contour of M and redraw it as a filled mask
16: Apply Gaussian blur and thresholding to obtain final binary mask
17: return M

C MODEL ARCHITECTURE AND TRAINING DETAILS

PINN Architecture. The PINNs are implemented as fully connected multilayer perceptrons (MLPs).
For the 1D Burgers’ Equation we use a 3-layer MLP with 20 hidden units per layer, while for the
Wave Equation we adopt a slightly larger 4-layer MLP with 30 units per layer to capture richer
dynamics. The activation function is tanh, which is commonly used in PINNs due to its smoothness
and stability for PDE approximation. Training follows a two-stage procedure: Adam (Kingma & Ba,
2015) with learning rate 1× 10−3 for initial exploration, followed by L-BFGS (Byrd et al., 1995) for
fine-tuning. A weight distance regularization term with coefficient λreg = 1× 10−5 is applied across
all datasets to stabilize optimization.

Hypernetwork Architecture. The hypernetwork builds on the Diffusion Transformer (DiT) (Pee-
bles & Xie, 2023), with customized linear layers to encode and decode the parameters of each PINN
layer. We use a 12-layer transformer with 16 attention heads and hidden dimension 1,536. Task
conditions c are injected through adaptive normalization (Perez et al., 2018) at every layer, enabling
precise task-specific weight generation. To enable classifier-free guidance, we apply token drop with
probability 0.1 during training, replacing dropped embeddings with a constant unconditional vector.
At inference, embeddings are used deterministically.

The diffusion process is trained with a denoising score-matching loss under a linear noise schedule.
Training is performed on a single NVIDIA A100 GPU with batch size 256. Once trained, HD-PINN
can generate weights for many distinct PDE tasks within seconds, with inference time depending
mainly on the number of sampling steps.

D TASK-SPECIFIC ENCODER

Burgers1D. For 1D Burgers’ problems, the conditioning information comes from the sampled
initial condition curve, which encodes the trajectory of the PDE solution. We represent this input
using a 3-layer multilayer perceptron (MLP) with dimensions [d,D,D,D], where d is the number of
sampled spatial points on the curve (default d = 1, 024), and D is the hidden size of the DiT backbone.
Each hidden layer uses the GELU activation, chosen for its smooth nonlinearity and stability in high-
dimensional settings. This encoder effectively compresses the high-dimensional curve input into a
compact representation, while preserving the essential variation in initial conditions. The final output
is a D-dimensional embedding that serves as the conditioning vector for the HD-PINN.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Wave2D. For 2D wave problems, the conditioning input is more complex, as it must capture the
geometry of irregular computational domains. To encode these domain shapes, we design a 3-layer
convolutional neural network (CNN) followed by a linear projection. The inputs are binary masks
of size 32× 32, where each pixel indicates whether the point lies inside the computational domain.
The CNN applies three 5× 5 convolutional layers with channel sizes (1→D/4→D/2→D), each
followed by GELU activation for stable feature extraction. Between convolutional layers, we apply
progressive AdaptiveAvgPool2d operations to reduce the resolution (H→H/2→H/4→ 1)
while retaining global structural information. The resulting feature map is globally pooled and
flattened into a D-dimensional vector, which acts as the conditioning input to HD-PINN.

E FINE-TUNING FROM HD-INIT

We report the performance of PINN finetuned from HD-init on the test set from
Burgers1D-complex and Wave2D dataset in Table 1. The finetuned PINNs are initialized
with the weights generated from HD-init, and then finetuned with the L-BFGS optimizer until con-
vergence. The L-BFGS optimizer is configured with a learning rate of 1.0, a maximum of 10,000
iterations, and a tolerance of 1× 10−9. The training stops when either the maximum iterations or
the tolerance condition is met. For the other methods, the initialized PINNs are tuned using Adam
followed by L-BFGS (Rathore et al., 2024; Cuomo et al., 2022), under the same configurations.

F DISTANCE-CORRELATION

To quantify the statistical dependence between two random variables X ∈ Rp and Y ∈ Rq, we
employ the distance correlation (dCor) (Székely et al., 2007). Unlike the classical Pearson correlation,
which only captures linear dependence, dCor detects both linear and nonlinear associations between
distributions.

Given n paired samples {(xi, yi)}ni=1, let

aij = ∥xi − xj∥, bij = ∥yi − yj∥ (9)

denote the pairwise Euclidean distance matrices. These are then double-centered to remove mean
effects,

Aij = aij − āi· − ā·j + ā··, Bij = bij − b̄i· − b̄·j + b̄··, (10)
where āi· is the ith row mean of aij , ā·j is the jth column mean, and ā·· is the grand mean (similarly
for b).

The distance covariance is then defined as

dCov2(X,Y ) =
1

n2

n∑
i,j=1

AijBij , (11)

and the corresponding distance correlation is

dCor(X,Y ) =
dCov(X,Y )√

dCov(X,X) dCov(Y, Y )
. (12)

By construction, dCor(X,Y ) ∈ [0, 1], where dCor(X,Y ) = 0 if and only if X and Y are independent,
and larger values indicate stronger dependence between the two distributions.

G CONTROLLED INITIALIZATION AND WEIGHT REGULARIZATION

We investigate the effect of the proposed weight-space regularization using the
Burgers1D-simple dataset, with the aim of determining whether explicitly encouraging
structure in the weight space improves the relationship between problem parameters and optimized
PINN solutions. To this end, we measure the dependency between PDE parameters (here, the initial
conditions) and the corresponding trained PINN weights using distance correlation (dCor) (Székely
et al., 2007), which captures both linear and nonlinear associations. In addition, we report the RMSE

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

of PINN predictions relative to ground-truth trajectories computed with a finite-difference method
(FDM) solver.

The results in Table 4 reveal two main observations. First, controlled initialization markedly increases
the correlation between initial conditions and optimized weights, as reflected by the higher dCor
values. Second, when the regularization strength λreg is properly chosen (e.g., 10−5), the predictive
accuracy does not deteriorate and even shows slight improvement compared to random initialization
and unregularized training. This suggests that weight-space smoothing not only preserves accuracy
but may also aid optimization by guiding the network toward more structured solutions.

Overall, these findings indicate that controlled initialization both stabilizes training and produces
weight representations that are better aligned with PDE parameters, making them more suitable for
downstream hypernetwork learning.

Random-init. Controlled-init.
- λreg = 0 λreg = 10−5 λreg = 10−4 λreg = 10−3

dCor ↑ 0.1313 0.5969 0.5972 0.5977 0.5994
mean RMSE(10−3) ↓ 4.8299 4.6288 4.5780 4.6538 4.6571

Table 4: Distance correlation (dCor) computed between 200 pairs of initial conditions and optimized
weights from Burgers1D-simple. Bold indicates best result.

H DIRECT EVALUATION FOR OOD

To complement the OOD evaluation reported in Tables 2 and 3, we also present in Tables 5 and 6
the direct evaluation results on the Burgers1D-simple and Wave2D datasets. These results are
included for completeness and should be regarded as supplementary to the main OOD analysis. As
expected, accuracy decreases more noticeably as the test parameters move farther from the training
range. Nevertheless, the main results in Tables 2 and 3 confirm that the trained hypernetwork still
accelerates fine-tuning for these OOD cases.

OOD shift Method RMSE (10−2) ↓ Rel. Error (%) ↓
No shift HD-direct 2.7 ± 1.3 8.9 ± 4.0

δ = 0.1 HD-direct 10.7 ± 14.7 51.1 ± 78.9

δ = 0.2 HD-direct 26.1 ± 20.4 139.2 ± 168.4

δ = 0.3 HD-direct 30.8 ± 24.0 222.8 ± 295.0

δ = 0.4 HD-direct 34.0 ± 24.5 391.3 ± 553.1

Table 5: Direct evaluation of Out-of-distribution on the Burgers1D-simple dataset with varying
region shift δ.

Diameter Method RMSE (10−2) ↓ Rel. Error (%) ↓
l ≈ 1.20 HD-direct 18.8 ± 19.1 20.5 ± 20.8

l ≈ 1.25 HD-direct 20.5 ± 27.0 21.7 ± 28.5

l ≈ 1.30 HD-direct 19.9 ± 12.9 20.5 ± 13.3

l ≈ 1.35 HD-direct 37.0 ± 16.9 37.2 ± 16.9

l ≈ 1.40 HD-direct 51.2 ± 19.2 50.1 ± 18.8

Table 6: Direct evaluation of Out-of-distribution generalization on the Wave2D dataset with varying
domain diameters l.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

I ERROR PLOTS

I.1 BURGERS1D-COMPLEX.

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 1

0 10000 20000
step

10−3

10−2

10−1

100

R
M

SE

Task 2

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 3

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 4

0 10000 20000
step

10−3

10−2

10−1

100

R
M

SE

Task 5

0 10000 20000
step

10−2

10−1

100

101

R
M

SE
Task 6

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 7

0 10000 20000
step

10−3

10−2

10−1

100

R
M

SE

Task 8

0 10000 20000
step

10−3

10−2

10−1

100

R
M

SE

Task 9

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 10

0 10000 20000
step

10−3

10−2

10−1

100
R

M
SE

Task 11

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 12

0 5000 10000 15000
step

10−3

10−2

10−1

R
M

SE

Task 13

0 5000 10000 15000
step

10−3

10−2

10−1

R
M

SE

Task 14

0 5000 10000 15000
step

10−3

10−2

10−1

100

R
M

SE

Task 15

0 10000 20000
step

10−3

10−2

10−1

100
R

M
SE

Task 16

0 10000 20000
step

10−2

10−1

100

R
M

SE

Task 17

0 10000 20000
step

10−2

10−1

100

R
M

SE

Task 18

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 19

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 20

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 21

0 10000 20000
step

10−3

10−2

10−1

100

101

R
M

SE

Task 22

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 23

0 10000 20000
step

10−2

10−1

100

101

R
M

SE

Task 24

HD-init Random-init MAML Reptile

Figure 5: 24 examples of error curves for the Burgers1D-complex dataset. The step count
denotes training iterations until stopping criteria. In several cases, under the same training budget,
PINNs with random initialization fail to reach similar accuracies. In contrast, HD-init provides more
favorable starting points, accelerates training and achieves comparable or better accuracies with fewer
iterations.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

I.2 WAVE2D.

0 5000 10000
step

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE
Task 1

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 2

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 3

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 4

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 5

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 6

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 7

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 8

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 9

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 10

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1
R

M
SE

Task 11

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 12

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 13

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 14

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 15

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 16

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 17

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 18

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 19

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 20

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 21

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 22

0 5000 10000
step

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 23

0 5000 10000
step

100

2×10−1

3×10−1

4×10−1

6×10−1

R
M

SE

Task 24

HD-init Random-init MAML Reptile

Figure 6: 24 examples of error curves for the Wave2D dataset. The step count denotes training
iterations until stopping criteria. In several cases, under the same training budget, PINNs with random
initialization fail to reach similar accuracies. In contrast, HD-init provides more favorable starting
points, accelerates training and achieves comparable or better accuracies with fewer iterations.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

J PDE TRAJECTORIES

J.1 BURGERS1D-SIMPLE.

x
0.00

0.25

0.50

0.75

t

Task 1

GT

x

Task 1
Rel. error: 0.042

HD-init

x

Task 1
Rel. error: 0.042

random-init

x
0.00

0.25

0.50

0.75

t

Task 2

x

Task 2
Rel. error: 0.026

x

Task 2
Rel. error: 0.025

x
0.00

0.25

0.50

0.75

t

Task 3

x

Task 3
Rel. error: 0.035

x

Task 3
Rel. error: 0.035

x
0.00

0.25

0.50

0.75

t

Task 4

x

Task 4
Rel. error: 0.043

x

Task 4
Rel. error: 0.043

x
0.00

0.25

0.50

0.75

t

Task 5

x

Task 5
Rel. error: 0.037

x

Task 5
Rel. error: 0.037

−1 0 1
x

0.00

0.25

0.50

0.75

t

Task 6

−1 0 1
x

Task 6
Rel. error: 0.060

−1 0 1
x

Task 6
Rel. error: 0.059

0.00

0.25

0.50

u

0.0

0.2

0.4

u

−0.50

−0.25

0.00

u

−0.2

0.0

0.2

0.4

u

0.0

0.2

u

0.0

0.5

u

Figure 7: 6 examples of predicted trajectories for the Burgers1D-simple dataset.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

J.2 BURGERS1D-COMPLEX.

x
0.0

0.5

1.0

1.5

2.0

t
Task 1

GT

x

Task 1
Rel. error: 0.008

HD-init

x

Task 1
Rel. error: 0.009

random-init

x
0.0

0.5

1.0

1.5

2.0

t

Task 2

x

Task 2
Rel. error: 0.003

x

Task 2
Rel. error: 0.001

x
0.0

0.5

1.0

1.5

2.0

t

Task 3

x

Task 3
Rel. error: 0.010

x

Task 3
Rel. error: 0.018

x
0.0

0.5

1.0

1.5

2.0

t

Task 4

x

Task 4
Rel. error: 0.012

x

Task 4
Rel. error: 0.016

x
0.0

0.5

1.0

1.5

2.0

t

Task 5

x

Task 5
Rel. error: 0.029

x

Task 5
Rel. error: 0.062

0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

t

Task 6

0.0 0.5 1.0
x

Task 6
Rel. error: 0.005

0.0 0.5 1.0
x

Task 6
Rel. error: 0.012

−0.5

0.0

0.5

u

1.0

1.5

u

0.5

1.0

1.5

2.0

u

0.0

0.2

u

−0.8

−0.6

−0.4

−0.2

u

−1.5

−1.0

−0.5

u

Figure 8: 6 examples of predicted trajectories for the Burgers1D-complex dataset.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

J.3 WAVE2D.

t=0.40 t=0.80 t=1.20 t=1.60

0.0

0.2

0.4

0.6

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

0.0

0.2

0.4

0.6

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

0.0

0.2

0.4

0.6

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

0.0

0.2

0.4

0.6

1.0

1.2

1.4

1.6

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

0.0

0.2

0.4

0.6

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

0.0

0.2

0.4

0.6

1.0

1.2

1.4

1.6

2.0

2.5

3.0

3.5

4.0

1.0

1.5

2.0

2.5

Ca
se

 0
Ca

se
 1

Ca
se

 2
Ca

se
 3

Ca
se

 4
Ca

se
 5

Figure 9: 6 examples of predicted trajectories for the Wave2D dataset.

21


	Introduction
	Related Work
	AI for Physics
	Hypernetworks
	Meta-learning

	Methods
	Preliminaries
	Conditional Weight-Space Diffusion

	Experimental Results
	Implementation Details
	Performance on In-Distribution Test Data
	Direct Hypernetwork Predictions.
	Refine from Hypernetwork Initialization.

	Out-of-Distribution
	OOD for Burgers1D-simple.
	OOD for Wave2D


	Conclusions
	Datasets
	Irregular Domain Generation
	Model Architecture and Training Details
	Task-Specific Encoder
	Fine-tuning from HD-init
	Distance-Correlation
	Controlled Initialization and Weight Regularization
	Direct Evaluation for OOD
	Error Plots
	Burgers1D-complex.
	Wave2D.

	PDE Trajectories
	Burgers1D-simple.
	Burgers1D-complex.
	Wave2D.


