FAST PHYSICS-INFORMED LEARNING VIA DIFFUSION
HYPERNETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-Informed Neural Networks (PINNs) have emerged as a powerful tool
for solving partial differential equations (PDEs), and they have become a key
workhorse in many Al-for-science applications. However, PINNs remain highly
sensitive to factors such as initial conditions, domain geometries, and physical pa-
rameters. As a result, they typically require full retraining when these PDE-defining
parameters change. In this work, we propose a diffusion-based hypernetwork that
distills knowledge from training data to substantially accelerate PINN training. Our
approach leverages a denoising diffusion probabilistic framework to generate PINN
weights conditioned on PDE parameters. Once trained, the hypernetwork can di-
rectly produce PINNs for a family of parametric PDEs without requiring additional
optimization. For more complex problems, the generated weights, used as initializa-
tions, reduce the training time by approximately 46% for the Burgers1D-complex
dataset and 60% for the Wave2D dataset. Furthermore, the model demonstrates ro-
bustness to out-of-distribution PDE parameters, extending its applicability beyond
the training distribution.

1 INTRODUCTION

Artificial intelligence has rapidly become a transformative tool in scientific discovery, enabling
breakthroughs in domains such as weather forecasting (Price et al., 2025), materials design (Moosavi
et al., [2020), climate modeling (Nguyen et al.| 2023), and biomedical simulations (Zhang et al.,
2024). At the core of many of these advances is the need to efficiently and accurately solve partial
differential equations (PDEs), which govern a broad range of physical and engineering systems. In
domains that demand repeated PDE solutions, such as parametric studies, uncertainty quantification,
and real-time control, this necessity motivates the development of scalable, data-driven approaches
that can effectively leverage prior knowledge to solve the PDEs, even when their parameters change.

Physics-informed neural networks (PINNs) (Raissi et al.| 20195 |(Cuomo et al., [2022; Rathore et al.,
2024) have emerged as a particularly promising tool for solving PDEs. PINNs work by enforcing
physical constraints through PDE residuals, initial conditions, and boundary conditions. Their
mesh-free formulation allows for flexible handling of complex geometries, irregular domains, and
sparse observations, making them suitable for a wide range of scientific problems. Moreover,
their compatibility with automatic differentiation and modern deep learning frameworks provides
a seamless interface for integrating data and physics within a unified computational model. This
combination of flexibility and rigor has enabled applications in multiple topics (Rao et al., 2021}
Lu et al.| [2021b; [Zhang et al.| [2024)). Consequently, PINNs have quickly become a cornerstone
methodology in the broader effort to merge machine learning with scientific computing, bridging
data-driven inference with traditional physics-based simulation.

Despite their success, PINNs suffer from several practical limitations (Rathore et al., [2024). A
key challenge lies in their sensitivity to problem-specific factors, such as initial conditions, domain
geometries, and physical parameters. Even small variations in these settings typically require
retraining of a PINN, often from scratch, which is time-consuming and computationally intensive.
This limitation severely hinders their scalability to parametric PDE families, where one must solve
the same governing equation across many different configurations. A natural idea is to treat problems
with varying PDE parameters as separate tasks and apply meta-learning to transfer knowledge from
previous tasks to new ones. However, our experiments show that existing meta-learning methods (Finn

et al.,[2017; Nichol et al.,[2018)) fail to provide any gain in speed or accuracy. We attribute this to
the large scale of PDE problems we aim to solve and the highly nonlinear dependence of weights of
PINNS on their corresponding PDE parameters, which define each problem instance.

To address this challenge, we propose a

diffusion-based hypernetwork framework, 140 T . .
termed HD-PINN| (Hyper Diffusion for .| Random-init C_JReptile |
PINNS), to accelerate PINN training. Our — [E=Ivame E—_IHD-PINN (Ours)

approach leverages denoising diffusion 1001 mim [

probabilistic models (Ho et al., [2020) to
learn a distribution over PINN weights con-
ditioned on PDE parameters such as phys-
ical coefficients (e.g., viscosity or diffusiv-
ity), initial and boundary conditions, and
domain geometry. By training on data pairs [—I
of varying PDE parameters and their corre- Burgerld-simple - Burgerld-complex ~ Wave2d
sponding PINN weights that solve the asso-

ciated problems, the hypernetwork learns Figure 1: Percentage of training time using weights
to directly generate PINN solvers for a tar- generated by different methods. The time for train-

get family of parametric PDEs, eliminat- ing from random initializgtiqn is used as the bas.elline
ing the need for additional optimization. (100%). Our HD-PINN significantly reduces training
For more complex PDE classes, the hyper- time compareq to training from random 1n1t1.al1zat10n
network generated weights provide a high- and meta-learning methods such as MAML (Finn et al.}
2017) and Reptile (Nichol et al., 2018).

Time (%)
[e2] [ee]
o o

N
S S
—

]

quality initialization, substantially reduc-
ing overall training time by approximately
46% for the Burgers1D-complex dataset and 60% for the Wave2D dataset, as noted in Figure More-
over, our experiments show that the trained diffusion-based hypernetwork can provide high-quality
initializations even for problems with PDE parameters outside the training distribution, as long as the
deviations remain within a certain range.

Our main contributions are summarized as follows:

* Diffusion-based hypernetwork for PINNs. To the best of our knowledge, our method is
the first diffusion-driven hypernetwork successfully applied to PINNs, capable of generating
network weights conditioned on diverse PDE parameters;

* Direct PINN weights generation. Once trained, our model directly produces PINN solvers
for a family of parametric PDEs without requiring additional optimization, effectively
functioning as a mesh-free solver;

* Accelerated PINN training via initialization. For problems with higher variability, the
generated weights provide high-quality initializations that substantially reduce training time
while maintaining or improving solution accuracy;

* Robustness to distribution shift. The hypernetwork demonstrates robustness to out-of-
distribution PDE parameters, extending its applicability beyond the training distribution.

2 RELATED WORK

2.1 AIFOR PHYSICS

Deep neural networks have emerged as a powerful tool for scientific computing, providing novel
approaches to solve PDEs and model complex physical phenomena. Among these methods, Physics-
Informed Neural Networks (PINNs) (Raissi et al., 2019) have received significant attention for
their ability to embed the governing equations directly into the training objective. This approach
allows PINNS to learn solutions to PDEs in a mesh-free manner while strictly enforcing physical
constraints. Over the past few years, numerous extensions have been proposed to improve their
practical performance, including strategies for faster convergence (Wang et al., [2021), adaptive
loss weighting to balance competing objectives (Gao et al.,|2025), scalable domain decomposition
for large-scale problems (Shukla et al., 2021), and specialized designs for challenging scenarios

!Code is available atlanonymous . 4open.science/r/HD-PINN-official-412B|

anonymous.4open.science/r/HD-PINN-official-412B

such as multiphase flows and inverse problems (Sun et al., 2020). PINNs have shown success in
a wide range of scientific domains, from fluid dynamics, including incompressible Navier—Stokes
simulations (Raissi et al.,[2020) and cardiovascular hemodynamics (Kissas et al.| [2020), to solid
mechanics for elasticity analysis (Rao et al.| 2021)).

Beyond PINNs, operator learning methods aim to generalize across families of PDEs by directly
approximating mappings between function spaces. Representative examples include DeepONet (Lu
et al.| 2021a) with its branch—trunk design, and the Fourier Neural Operator (Li et al.,[2020), which
captures long-range dependencies efficiently in Fourier space. These approaches offer faster inference
and improved generalization across parametric PDEs, but remain largely data-driven rather than
physics-informed, making them sensitive to data quality and resolution (McCabe et al., 2023} [Morel
et al.,[2025)). Moreover, many operator-learning methods focus on short-term predictions and often
struggle with stability when extrapolating far into the future.

Together, these developments highlight a growing trend toward data-driven, modular, and transfer-
oriented architectures for accelerating PDE solvers. However, unlike our proposed framework, most
prior methods remain limited to single-instance PDEs and/or involve substantial computational costs.

2.2 HYPERNETWORKS

Hypernetworks, introduced by |[Ha et al.|(2016), are neural networks that generate the weights of a
target network, allowing parameterization conditioned on specific inputs (Chauhan et al.}2024). This
decouples task representations from task-specific training and enables flexible multi-task learning,
conditional modeling, and rapid adaptation. Since their introduction, hypernetworks have been
extended in diverse contexts. For example, [Peebles et al.|(2022) employ conditional diffusion trans-
formers to generate weights based on prompted losses, while [Erkoc et al.| (2023)) use unconditional
diffusion models to produce MLP weights for neural implicit fields (Mildenhall et al., 2021), achiev-
ing efficient 3D/4D shape synthesis. These successes motivate our application of diffusion-driven
hypernetworks to PINNSs, a direction unexplored in Al for science. Other efforts pursue efficient
weight generation and compression: Hedlin et al.| (2025) compress full training trajectories into
single-step estimates, [Morel et al.| (2025) generate operator-network parameters from short PDE
trajectories for fast integration, and |Cho et al.| (2023) propose Hyper-LR-PINN, which reduces
complexity by producing low-rank PINN representations. Unlike our framework, Hyper-LR-PINN is
restricted to scalar inputs and cannot handle field-level variations such as initial conditions, domains,
or spatially varying coefficients.

2.3 META-LEARNING

Our work is also closely related to meta-learning approaches (Finn et al., 2017 [Nichol et al., 2018)),
which aim to reduce training costs by transferring knowledge across tasks. However, in parametric
PDE families with high variability, shared initializations often fail to generalize and require extensive
fine-tuning, as evidenced by our experiments and already illustrated in Figure[I] In contrast, our
method learns a conditional mapping from PDE parameters to solver weights, providing task-specific
initialization and overcoming the scalability limits of conventional meta-learning.

3 METHODS

3.1 PRELIMINARIES

Physics-Informed Neural Network. We consider a general partial differential equation (PDE)
defined on a spatial-temporal domain:
Flu)(x,t) =0, z e, te(0,T],
Blu](z,t) =0, x eI, te(0,T], (1
'U/(:E,O) = 'LLO(.’E), T c Qv
where u(x, t) is the solution of interest, F|-] is a differential operator, 5[-] denote the boundary

condition operator, ug(x) is the initial condition, 2 is the spatial domain and [0, T is the time
interval.

Denoising xT

___Noising ><T | H | =
R S || & &
0, : Or < A
1
—————————— 4
Aad
» A Condition
Ay K 'PDE Embedder R
v parameter ¢ 0

Figure 2: Illustration of the proposed HD-PINN framework. During training, PINN weights 6, are
progressively noised into 8. A DiT module is then trained to reverse this process, denoising and

reconstructing PINN weights 6: conditioned on ¢, which encodes the PDE parameters.

To train a PINN model ug parameterized by weights & € R, which allows computation ofu(zx,t) =
ug(x,t), a set of collocation points is first generated, including Ny points (2,] uniformly

1074

sampled in the whole domain 2 x (0, 7], N, points (z?,%) uniformly sampled on the boundary
0 x (0,T], and Ny points (2?,t?) uniformly sampled at the initial time domain © x {0}. When
observational or synthetic data are available, additional Ny points (¢, t¢) sampled from available

1Y

data are incorporated to further constrain the solution. At each of these points, the neural network is
evaluated and automatic differentiation is used to compute the residuals of the governing PDE, initial
conditions, and boundary conditions. With the evaluated variable values and differentiations, the total
loss L is written as a composition of multiple terms with weights that balance the contributions of
each loss term,

Epinn =)\dataﬁdala +)\pdeﬁpde + Abc‘Cbc +)\ic‘cic; (2)
where
pde = ZHJ—'.UO wl»tf H 5 ‘CbczizHBuB 17 z H s
No 3
1 2
Liata = — N, ZHue (xd,t9) fu(a:,,tqd)H , Lic = VO;Hug(m?,O)fug(m?)H .

Regularized Weight Space Distribution. Neural networks like PINNs often admit multiple local
minima that yield comparable solutions, which can lead to a scattered and unstructured weight space.
To facilitate the construction of a well-behaved dataset of optimized weights and support downstream
hypernetwork training, we adopt two complementary strategies. First, all PINNs are initialized
from a shared set of pre-trained weights 6;,;, ensuring a consistent starting point across training
instances (Erkoc et al.,|2023). Second, during the collection of optimized weights, we add a distance
regularization term that penalizes deviations from 6;,;. This encourages a more compact and coherent
weight space and prevents solutions from drifting too far from a common reference. Mathematically,
the regularized loss is written as

Epinn = £pinn + /\regHG - 0init||2; (4)
where A, controls the strength of the regularization. This approach produces a structured weight land-

scape, which not only improves stability during training but also facilitates learning of a hypernetwork
that can generate effective weights for a variety of PDE instances.

3.2 CONDITIONAL WEIGHT-SPACE DIFFUSION

Problem Setting. Figure[2|illustrates the proposed HD-PINN architecture. The central objective is
to learn a mapping from task-specific PDE conditions to a structured distribution of PINN weights,
effectively capturing the relationship between PDE parameters and corresponding network solutions.
As formalized in Equation T} the PDE conditions can include physical coefficients (e.g., viscosity,
diffusivity, or density), initial states, boundary conditions, and domain representations such as binary
masks indicating spatial support. To encode these diverse inputs, we employ a conditioner encoder
that produces a compact conditioning vector ¢. Denote 8y ~ pyu, (0 | ¢) as the optimized PINN
weights for a given task. The forward diffusion process then progressively perturbs these weights
according to
0; = ’Y(t)ao + U(t)€7 ENN(07I)7

where 7(t) and 7(t) define the noise schedule. The model is trained to learn a conditional score
function

s4(0,t,¢) ~ Vglogp (0] c), 5)
which estimates the gradient of the log-density of the noised weight distribution at time ¢, conditioned
on the PDE parameters (Vincent, 2011;Song & Ermon, [2019}|Song et al., 2021).

At inference time, ground-truth PINN weights are no longer available, so the operation indicated
by the dotted line in Figure [2|is omitted. For a new task with conditions cpey, the reverse-time
stochastic differential equation (or equivalently the probability-flow ODE) is integrated, guided by
the learned conditional score function sg4. This reverse diffusion process transforms Gaussian noise

into a structured set of weights é0<cnew) that can directly produce or initialize a PINN tailored to the
new PDE instance. This enables rapid deployment of PINN solvers across a family of parametric
PDEs without retraining from scratch.

Training Objective. To optimize ¢, we adopt the denoising score matching (DSM) loss from
DDPM (Ho et al.l 2020). The network €4 is trained to recover Gaussian noise added to the target
PINN parameters. The training loss is defined as

2
Lpsm = E(c,0)~D Ernti(1,1) Eenno,1) [He — € (v’yr 0++1-7€ T, C) Hz] , (6

where D denotes the data distribution, and 7, denotes the cumulative product of noise schedule
coefficients. The model receives as input a noisy version of the target PINN parameters, the diffusion
step 7, and the PDE conditions ¢, and learns to denoise and recover the original PINN weights 6.

Condition Dropout. To further enhance robustness and prevent overfitting, we apply dropout to the
conditioning vector ¢ during training. This acts as a form of implicit ensemble regularization (Srivas{
tava et al.,|2014)), discouraging co-adaptation among the conditioning inputs and promoting smoother
mappings from PDE parameters to generated weights. The use of condition dropout helps stabilize
the diffusion process, improves generalization to unseen tasks, and reduces the sensitivity of the
hypernetwork to small perturbations in the input conditions.

4 EXPERIMENTAL RESULTS

We evaluated our HD-PINN framework on multiple standard benchmark datasets that span different
PDE types and complexities. Our experiments demonstrate the effectiveness of hypernetwork-
generated initializations to accelerate PINN training while maintaining the solution accuracy high-
lighted in Figure

4.1 IMPLEMENTATION DETAILS

Dataset. We consider three datasets. Burgers1D-simple consists of 1D Burgers’ equations
with varying initial conditions ug(x) = ay(z — 1)(x + 1)(z + a2), where a1 and a are uniformly
sampled from (0.5,1.5) and (—0.5,0.5), respectively. BurgerslD—complex is derived from
PDEBench (Takamoto et al., |2022) with a broader set of varying initial conditions. Wave2D is
constructed by varying irregular PDE domains specified through binary masks. Additional details
are provided in Appendix [A] while the details for generating random PDE domains for Wave 2D are

given in Appendix

u(t.x) ult,x),
0.75 0.50 025 0.00 0.75 0.50 025 0.00
1=0.20 1=0.60 =1.00 (=1.40 =1.80

00 05 10 15 20
t

HD-init HD-init 0.08 HD-init
0034 7777 Random-init 4 0064 "7 Random-init | -===- Random-init
7 I} [1Y"Z I S S A A P o

= @ \ @ o
Zom Z om Y 2 e i
L‘E‘ : 4 \ 2 R S A

0.01 ’/' 0.024 “\\ I =

0.00 0.00 0.00

00 02 05 08 10 00 05 10 15 20 00 0. 04 06 08 10 12 14 16) 0
t t t
Burgers1D-simple Burgers1D-complex Wave2D

Figure 3: Evolution of representative solution fields and the associated RMSE statistics, where
dotted lines indicate the mean and shaded regions denote standard deviations, across different time
steps for the PDEs: (left) BurgerslD-simple tasks, PINNs trained completely unsupervised;
(middle) Burgers1D-complex dataset with more challenging initial conditions, PINNs are trained
weakly supervised using 0.5% ground-truth data; (right) Wave2D dataset, PINNS are trained weakly
supervised using 3% ground-truth data. HD-init is capable of generating high-quality initializations
that lead to accurate solutions with low error across different time steps.

Comparing Methods. In addition to closely related meta-learning methods such as MAML (Finn
et al.l 2017) and Reptile (Nichol et al. 2018)), we compare against some baselines. The first is
Random-init, where each new PINN is trained from scratch with randomly initialized weights. For
our proposed approach, we consider HD-direct, which denotes directly using the PINN weights
generated by the hypernetwork without refinement, and HD-init, which uses these generated weights
as initialization followed by fine-tuning.

Model and Training. PINNSs are implemented as small MLPs trained with Adam followed by
L-BFGS. The hypernetwork is based on a DiT backbone with task-specific encoders: an MLP for
BurgerslD initial conditions and a CNN for Wave2D domain masks. The module architectures,
conditioner encoders, and training details are provided in Appendix[C} [D] and [E] respectively.

Metrics. We evaluated all methods by wall-clock training time and accuracy, measured using root
mean square error (RMSE) and normalized relative L? error (Rel. Error), with reference solutions
obtained via finite differences (Table[T). For ablation, we used the distance correlation (dCor) (Székely
et al.,2007) to quantify the dependence between the PDE parameters and the optimized PINN weights;
the definition is provided in Appendix[Fand the results are in Appendix [G]

4.2 PERFORMANCE ON IN-DISTRIBUTION TEST DATA
4.2.1 DIRECT HYPERNETWORK PREDICTIONS.

We first evaluate our method on the Burgers1D-simple dataset to demonstrate the ability of HD-
PINN to directly generate PINN solvers without additional fine-tuning. In this setup, the hypernetwork
takes the initial condition as input and outputs PINN weights that are immediately applied to solve
the 1D Burgers’ equation, yielding ready-to-use solvers without iterative training.

Figure [3]illustrates a representative trajectory and error evolution, while Table[I|shows that HD-direct
achieves accuracy comparable to the Random-init baseline, confirming that the generated weights
yield reasonable solutions. For completeness, we also report HD-init, where hypernetwork-generated
weights are fine-tuned, requiring minimal extra training. Unlike meta-learning approaches such
as MAML (Finn et al.l 2017) and Reptile (Nichol et al.| 2018), which rely on a single shared
initialization and struggle with diverse PDE families, HD-PINN explicitly learns a task-to-weights
mapping, enabling task-specific solvers.

Dataset Method Time (s) | RMSE (1072) } Rel. Error (%) |

Random-init 17572 1.6 £ 0.8 47+£12
MAML (Finn et al.|2017) 189+ 6.8 1.6 £ 0.8 4.6 +£1.3
Burgers1D-simple | Reptile (Nichol et al.[[2018) 196 £7.1 1.6 £ 0.8 4.6 +1.3
HD-direct (ours) - 28+13 9.0+4.1
HD-init (ours) 3.0+39 1.6 £ 0.8 47+£12
Random-init 180.9 £ 28.7 1.1+1.6 25+47
MAML (Finn et al.|2017) 1753 £ 16.2 1.0+15 22436
Burgers1D-complex | Reptile (Nichol et al.[[2018) | 176.2 £ 16.4 1.0+ 1.5 22438
HD-direct (ours) - 452 £32.7 109.9 £+ 118.7
HD-init (ours) 97.5 £ 34.6 0.8 +1.0 1.7 +29
Random-init 519.3 £59.4 38+04 42+04
MAML (Finn et al.|[2017) 509.9 £+ 64.4 3.8+£03 41+£03
Wave2D Reptile (Nichol et al./2018) | 510.3 £ 65.0 3.8+03 41+£03
HD-direct (ours) - 16.6 +15.8 17.7+£16.7
HD-init (ours) 208.5 +113.3 3.6 £0.6 3.9+0.6

Table 1: Performance comparison for different PINN modes among Random-init, HD-direct (di-
rectly using the weights generated without refinement), and HD-init (uses these generated weights
as initialization followed by fine-tuning) on BurgerslD and Wave2D after fine-tuning. For
BurgerslD-simple, HD-PINN directly yields accurate solutions with negligible need for tuning.
For more challenging cases, the generated PINN weights reduce training time by approximately 46%
on BurgerslD-complex and 60% on Wave2D. Bold indicates the best. Shadow indicates the
second.

Burgers1D-simple Burgers1D-complex Wave2D
\I
i
100 1
\
2
=
~
‘ ‘ T 1073}, ‘K““““T
0 500 1000 1500 0 10000 20000
step step
HD-init — Random-init ---- MAML ---- Reptile

Figure 4: Training error plots comparing Random-init, MAML, Reptile, and our HD-init on
BurgerslD-simple, BurgerslD-complex and Wave2D. The step count denotes L-BFGS
iterations until stopping. Additional examples can be found in Appendix E}

4.2.2 REFINE FROM HYPERNETWORK INITIALIZATION.

On simple PDEs, HD-direct can generate near-optimal PINN weights. For more complex PDEs,
however, the ill-conditioned loss landscape makes direct weight generation unreliable, as small
parameter perturbations can cause large degradation (Rathore et al., 2024). In such cases, HD-init
serves as a prior-informed initialization: diffusion-conditioned weights that remain near-optimal
and greatly reduce training time. To test generality, we evaluate on more challenging datasets,
BurgerslD-complex and Wave2D, which involve substantial parameter variations and hinder
direct weight generation. Even so, our method consistently yields high-quality initializations that
accelerate convergence; fine-tuning details are provided in Appendix [E}

Quantitative comparisons, summarized in Table m show that PINNS initialized with HD-init consis-
tently attain high-performance solutions in much shorter training times compared to Random-init,
while maintaining or even slightly improving accuracy. This indicates that HD-PINN successfully
captures generalized structure across effective PINN weights for different PDE instances, enabling
the generation of problem-specific initializations that accelerate training. In contrast, conventional

OOD shift Method Time (s) | Rel. Error (%) | ‘ __Time Cost

Noshift ~ Random-init 17.5+7.2 47+12 40,0 T
HD-init 3.0+39 47412 z T T
§=0.1 Random-init 15.9 + 10.9 4.0+ 1.6 £ e d
HD-init 59187 4.0+ 1.6 B 20.0! el 1
g —_——— -
6 =0.2 Random-init 23.3 £ 159 49 +19 Z
HD-init 13.7 + 13.3 49419 S £ T 4
0.0 -
6=0.3 Random-init 24.7 + 194 51+1.8 ‘ ‘ ‘ ‘ .
HD-init 155 + 14.1 50+19 0.00 0.10 0~§0 0.30 040
=04 Random-init 23.9 4 22.6 52+19 o o
HD-init 18.5 + 17.6 53+24 HD-init -#-Random-init

Table 2: Out-of-distribution (OOD) evaluation on the Burgers1D-simple dataset with varying
initial conditions (table, left) and corresponding time-to-convergence plot (right). The hypernetwork
is trained on iy ~ U(0.5,1.5) and ca ~ U(—0.5,0.5), and tested under shifted regimes of a;. The
shift ¢ offsets the training interval, yielding the evaluation domain (0.5—6,0.6 —0)U(1.44-4, 1.5+9).
No shift corresponds to the original training range. Bold indicates the best result at the shift level.

meta-learning approaches such as MAML and Reptile, which rely on a shared initialization across
tasks, provide only marginal speed-ups, likely due to the high diversity and large number of tasks
involved in these datasets.

To provide a more intuitive understanding, we visualize representative solutions and corresponding
error distributions over time for BurgerslD-complex and Wave2D in the second and third
columns of Figure 3| These visualizations highlight that PINNs initialized with HD-PINN maintain
low errors across all PDEs time steps, demonstrating the robustness and accuracy of the generated
weights.

Additionally, training logs for representative PINNs on both datasets are shown in Figure[d] The plots
demonstrate that PINNS initialized with HD-init converge more rapidly and achieve high-accuracy
solutions earlier than Random-init. In comparison, MAML and Reptile show modest improvements in
only some cases, with additional examples provided in Appendix[Il These observations highlight that
HD-PINN generates high-quality, task-specific initializations that substantially accelerate training,
even under significant parameter variability. Overall, the results confirm that our framework effectively
captures transferable knowledge across diverse PDE instances, enabling the rapid deployment of
PINN solvers for more complex problems.

4.3 OUT-OF-DISTRIBUTION

To rigorously evaluate the out-of-distribution (OOD) robustness of our framework, we asked whether
HD-PINN can generalize beyond the training range of PDE parameters and remain useful under
unseen regimes. This is a crucial step in assessing whether the method can scale to scientific problems
where parameters are not confined to a pre-defined distribution.

4.3.1 OOD FOR BURGERS1D-SIMPLE.

In this test, we trained the hypernetwork on the Burgers1D-simple dataset with initial conditions
parameterized by «; ~ U(0.5,1.5). We then systematically shifted a; outside this range to create
OOQOD test sets. The shift is defined relative to the boundaries of the training distribution: for a shift
J, the new evaluation domain becomes (0.5 — 9,0.6 — 6) U (1.4 + 9, 1.5 + 9). This setup allows us
to control the degree of OOD difficulty. For example, § = 0.1 corresponds to a mild extrapolation
(0.4,0.5) U (1.5,1.6), while larger values such as 6 = 0.4 represent more severe shifts.

The results in Table 2] show that hypernetwork initialization (HD-init) consistently accelerates
convergence compared to random initialization (Random-init), even under parameter shifts. This
indicates that the hypernetwork encodes transferable structural information about the PDE family. For
small shifts, HD-init yields stable error reduction and significant time savings, while for larger shifts
the benefits gradually diminish, as also seen in the associated figure. Overall, within a reasonable

Diameter ~ Method Time ()| Rel. Error (%) (300 _ Time Cost
I~1.20 Random-init 5193 +59.4 41+03 - I____I____ ___{____
HD-init 208.5 + 113.3 3.9+0.5 5
— E
l~1.25 Random-init 521.0 £ 58.0 41404 54000
HD-init 256.8 + 128.5 3.9+ 0.6 ?;f
1~ 1.30 Random-init 512.5 +62.9 414+04 2
HD-init 269.0 + 134.1 38+04 g 200:0
l~1.35 Random-init 517.6 £ 62.0 40+03 ‘ ‘ ‘ ‘ ‘
HD-init 305.4 + 120.1 3.8+0.7 120 125 130 135 140
Region Diameter
1~140 Random-init 513.0 £ 63.0 4.0+ 04 - .
HD-init 311.9 + 120.4 3.8+£0.6 HD-init - #-Random-init

Table 3: Out-of-distribution (OOD) evaluation on the Wave 2D dataset with varying domain diameters
(table, left) and corresponding time-to-convergence plot (right). The hypernetwork is trained on
domains with diameter [~ 1.20 and tested on larger domains with diameters ranging from [~ 1.25
to [~ 1.40. Bold indicates the best result at the shift level.

extrapolation range, the hypernetwork provides effective priors that speed up optimization while
remaining robust. For completeness, we also report the performance of HD-direct in Appendix
where the hypernetwork’s predicted weights are used without further optimization.

4.3.2 OOD FOR WAVE2D

For this experiment, we evaluate OOD performance using a hypernetwork trained on the Wave2D
dataset from Section 4.2} where the PDE parameter is the domain diameter [~ 1.20. By modifying
the parameters of the mask generation algorithm described in Appendix [B] we create four OOD test
sets with diameters [~ 1.25,1.30,1.35, and 1.40. The generated masks are then used as inputs to
the hypernetwork, which produces initialization weights for solving the 2D wave equation on each
corresponding domain.

The results for the Wave2D OOD test are presented in Table [3] Similar to the Burgers1D-simple
case, we observe that using hypernetwork-generated weights as initialization (HD-init) consistently
accelerates convergence compared to random initialization (Random-init). This advantage persists
across all tested domain diameters, indicating that the hypernetwork captures transferable structural
information about PDE solutions that remains useful even when the evaluation domains deviate from
the training regime. As the domain diameter increases, however, the benefits gradually diminish
as shown in the associated plot, reflecting the greater difficulty of extrapolating to larger geometric
shifts.

5 CONCLUSIONS

We introduced a diffusion-based hypernetwork for accelerating the training of physics-informed neural
networks (PINNs) by generating their weights conditioned on problem-specific PDE parameters.
Our approach distills knowledge on the relationship between the PDE parameters that define a
problem and the weights of its corresponding PINN solver. Once trained, the hypernetwork supports
two complementary modes: (i) direct inference, producing PINN weights that solve simple PDE
instances without additional optimization; and (i7) high-quality initialization, providing substantial
reductions in training cost for more complex problems. Moreover, for moderate out-of-distribution
PDE parameters, the trained hypernetwork can still generate usable weights that accelerate PINN
fine-tuning. Collectively, these capabilities point toward a promising pathway for fast, flexible, and
data-driven PDE solvers, bridging generative modeling with scientific machine learning.

In future work, we plan to extend this work to a broader range of PDE-driven applications. We
also aim to further improve the model architecture and training strategies to enhance scalability,
generalization, and robustness.

REFERENCES

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A Limited Memory Algorithm for
Bound Constrained Optimization. SIAM Journal on Scientific Computing, 16(5):1190-1208, 1995.
doi: 10.1137/0916069.

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A Clifton. A Brief
Review of Hypernetworks in Deep Learning. Artificial Intelligence Review, 57(9):250, 2024.

Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-Based Meta-Learning
for Low-Rank Physics-Informed Neural Networks. Advances in Neural Information Processing
Systems, 36:11219-11231, 2023.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maizar Raissi, and
Francesco Piccialli. Scientific Machine Learning Through Physics—Informed Neural Networks:
Where we are and What’s Next. Journal of Scientific Computing, 92, 2022.

Ziya Erkoc, Fangchang Ma, Qi Shan, Matthias Niefner, and Angela Dai. Hyperdiffusion: Generating
Implicit Neural Fields with Weight-Space Diffusion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14300-14310, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. In Proceedings Of The 34th International Conference On Machine Learning,
volume 70 of Proceedings Of Machine Learning Research, pp. 1126-1135. PMLR, 2017.

Bo Gao, Ruoxia Yao, and Yan Li. Physics-Informed Neural Networks with Adaptive Loss Weighting
Algorithm for Solving Partial Differential Equations. Computers & Mathematics with Applications,
181:216-227, 2025.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Eric Hedlin, Munawar Hayat, Fatih Porikli, Kwang Moo Yi, and Shweta Mahajan. HyperNet Fields:
Efficiently Training Hypernetworks Without Ground Truth by Learning Weight Trajectories. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 22129-22138, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. Advances in
Neural Information Processing Systems, 33:6840-6851, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and Paris Perdikaris.
Machine Learning in Cardiovascular Flows Modeling: Predicting Arterial Blood Pressure from
Non-Invasive 4D Flow MRI Data Using Physics-Informed Neural Networks. Computer Methods
in Applied Mechanics and Engineering, 358:112623, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential
Equations. arXiv preprint arXiv:2010.08895, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
Nonlinear Operators via DeepONet Based on the Universal Approximation Theorem of Operators.
Nature Machine Intelligence, 3(3):218-229, 2021a.

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-Informed Neural Networks with Hard Constraints for Inverse Design. SIAM Journal on
Scientific Computing, 43(6):B1105-B1132, 2021b.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
Multiple Physics Pretraining for Physical Surrogate Models. arXiv preprint arXiv:2310.02994,
2023.

10

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis. Communications of
the ACM, 65(1):99-106, 2021.

Seyed Mohamad Moosavi, Kevin Maik Jablonka, and Berend Smit. The Role of Machine Learning
in The Understanding and Design of Materials. Journal of the American Chemical Society, 142
(48):20273-20287, 2020.

Rudy Morel, Jiequn Han, and Edouard Oyallon. DISCO: Learning to DISCover an Evolution Operator
for Multi-Physics-Agnostic Prediction. In International Conference on Machine Learning, 2025.

Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, and Aditya Grover. Climatelearn: Bench-
marking Machine Learning for Weather and Climate Modeling. Advances in Neural Information
Processing Systems, 36:75009-75025, 2023.

Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning Algorithms. In
Proceedings Of The 32nd International Conference On Neural Information Processing Systems,
pp- 3959-3968. Curran Associates, Inc., 2018.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4195-4205, October
2023.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
Learn with Generative Models of Neural Network Checkpoints. arXiv preprint arXiv:2209.12892,
2022.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. FiLM: Visual
Reasoning with a General Conditioning Layer. In AAAI 2018.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
Weather Forecasting with Machine Learning. Nature, 637(8044):84-90, 2025.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-Informed Neural Networks: A
Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial
Differential Equations. Journal of Computational Physics, 378:686-707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden Fluid Mechanics: Learning
Velocity and Pressure Fields from Flow Visualizations. Science, 367(6481):1026—1030, 2020.

Chengping Rao, Hao Sun, and Yang Liu. Physics-Informed Deep Learning for Computational
Elastodynamics Without Labeled Data. Journal of Engineering Mechanics, 147(8):04021043,
2021.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in Training
PINNs: A Loss Landscape Perspective. In Proceedings of the 41st International Conference on
Machine Learning, 2024.

Khemraj Shukla, Ameya D Jagtap, and George Em Karniadakis. Parallel Physics-Informed Neural
Networks via Domain Decomposition. Journal of Computational Physics, 447:110683, 2021.

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.
In Advances in Neural Information Processing Systems, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In 9th
International Conference on Learning Representations, ICLR 2021, 2021.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overtfitting. Journal of Machine
Learning Research, 15(56):1929-1958, 2014.

11

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate Modeling for Fluid Flows Based
on Physics-Constrained Deep Learning Without Simulation Data. Computer Methods in Applied
Mechanics and Engineering, 361:112732, 2020.

Gabor J Székely, Maria L Rizzo, and Nail K Bakirov. Measuring and Testing Dependence by
Correlation of Distances. The Annals of Statistics, pp. 2769-2794, 2007.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pfliiger, and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine
Learning. Advances in Neural Information Processing Systems, 35:1596-1611, 2022.

Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Computation, 23:1661-1674, 2011.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and Mitigating Gradient Flow Patholo-
gies in Physics-Informed Neural Networks. SIAM Journal on Scientific Computing, 43(5):A3055—
A3081, 2021.

Han Zhang, Raymond H Chan, and Xue-Cheng Tai. A Meshless Solver for Blood Flow Simulations in
Elastic Vessels Using a Physics-Informed Neural Network. SIAM Journal on Scientific Computing,
46(4):C479-C507, 2024.

12

A DATASETS

Burgers1D-simple. The 1D Burgers’ Equation is a widely studied nonlinear PDE that serves as
a prototypical model for transport phenomena, combining the effects of nonlinear advection and
diffusion. It is frequently used in numerical analysis and scientific machine learning as a benchmark
due to its relative simplicity while still capturing essential features of more complex fluid dynamics
systems. The equation is given by

ou ou v u
o T Yor T mox ™

where u(z,t) denotes the scalar field of interest, x is the spatial coordinate, ¢ is time, and v is the
viscosity coefficient controlling the strength of diffusion relative to nonlinear transport.

For Burgers1D-simple dataset, the problem is defined on the domain = € [—1,1], ¢t € [0, 1]
with fixed viscosity ¥ = 0.01 and homogeneous Dirichlet boundary conditions. The initial conditions
are sampled from a parametric family of cubic polynomials, ug(z) = a1(z — 1)(z + 1)(z + a2),
where oy ~ U(0.5,1.5) and as ~ U(—0.5,0.5), allowing for a diverse set of trajectories. The
corresponding PINN weights @ are optimized without relying on data-informed loss, ensuring that
the network relies solely on PDE residual minimization. This dataset contains 9,000 training pairs
(, 8) and 1,000 testing pairs.

Burgers1D-complex. This dataset is based on the PDEBench benchmark (Takamoto et al., 2022).
While it also from Burgers’ Equation in [7] it is defined with z € [0,1], ¢ € [0,2], viscosity
v = 0.01, and periodic boundary conditions, which yield more complex solution dynamics. Here,
each PDE instance is uniquely determined by its initial condition ug(x), which governs the trajectory
evolution. For these cases, PINNs are optimized with data-informed losses to stabilize training and
improve solution accuracy. The dataset provides 9,000 (ug, 8) training pairs and 1,000 testing pairs.
Together, these two datasets allow us to evaluate both direct solver generation and initialization under
increasingly challenging settings.

Wave2D. We also construct a dataset for the 2D Wave Equation, which models the propagation of
waves in heterogeneous or irregular domains. The governing PDE is

0u P

92 P Viu =0, (®)
where u(x,y,t) is the wave field and u = 1 is the wave speed. To induce nontrivial dynamics, the
boundary condition uy(x,y,t) = 1 — cos(rt) is imposed, generating inward-propagating waves from
the domain boundary.

To increase problem diversity, the computational domains 2 are randomly generated using stochastic
region growing, producing irregular shapes that challenge the generalization ability of PINN solvers.
For each domain, a data-informed PINN is trained to approximate the wave dynamics, providing a
realistic set of weights that encode both PDE physics and domain-specific geometry. The resulting
dataset contains 15,000 (2, 8) training pairs and 4,000 testing pairs.

B IRREGULAR DOMAIN GENERATION

To generate irregular computational domains for the Wave2d dataset, we design a simple yet effective
mask generation procedure. The method starts from an initial disk placed at the center of the domain
and iteratively grows the region by randomly activating neighboring pixels. This ensures that the
resulting mask remains connected while allowing for irregular and non-symmetric shapes. To improve
robustness, we retain only the largest connected component, smooth the boundaries via contour
filling, and finally apply Gaussian blurring followed by thresholding to obtain clean binary masks.
The process produces a diverse collection of irregular shapes that can be used as PDE domains for
training and evaluation.

13

Algorithm 1 Random Irregular Mask Generation

Require: mask size (h,w), maximum pixels P, disk radius r
Ensure: binary irregular mask M
Initialize M < 0"*™ and visited map V' < False
Place an initial disk of radius r at the center; set M = 1, V' = True inside the disk
Set pixel counter ¢ <— 1 to record number of active pixels in M
while ¢ < P do
Dilate M with a 4-connected structuring element
Identify candidate pixels C' < {(i, j) : dilated (s, j) = 1, V (4, j) = False}
if C' = () then
break
9: end if
10 Randomly select (i, 7) € C
11: Set M[i, j] + 1, Vi, j] True
12: c—c+1
13: end while
14: Retain only the largest connected component of M
15: Extract contour of M and redraw it as a filled mask
16: Apply Gaussian blur and thresholding to obtain final binary mask
17: return M

hXxXw

A o

C MODEL ARCHITECTURE AND TRAINING DETAILS

PINN Architecture. The PINNs are implemented as fully connected multilayer perceptrons (MLPs).
For the 1D Burgers’ Equation we use a 3-layer MLP with 20 hidden units per layer, while for the
Wave Equation we adopt a slightly larger 4-layer MLP with 30 units per layer to capture richer
dynamics. The activation function is tanh, which is commonly used in PINNs due to its smoothness
and stability for PDE approximation. Training follows a two-stage procedure: Adam (Kingma & Ba,
2015) with learning rate 1 X 1073 for initial exploration, followed by L-BFGS (Byrd et al., |[1995) for
fine-tuning. A weight distance regularization term with coefficient Ar,e = 1 x 10~ ° is applied across
all datasets to stabilize optimization.

Hypernetwork Architecture. The hypernetwork builds on the Diffusion Transformer (DiT) (Pee+
bles & Xie} 2023)), with customized linear layers to encode and decode the parameters of each PINN
layer. We use a 12-layer transformer with 16 attention heads and hidden dimension 1,536. Task
conditions c are injected through adaptive normalization (Perez et al., 2018) at every layer, enabling
precise task-specific weight generation. To enable classifier-free guidance, we apply foken drop with
probability 0.1 during training, replacing dropped embeddings with a constant unconditional vector.
At inference, embeddings are used deterministically.

The diffusion process is trained with a denoising score-matching loss under a linear noise schedule.
Training is performed on a single NVIDIA A100 GPU with batch size 256. Once trained, HD-PINN
can generate weights for many distinct PDE tasks within seconds, with inference time depending
mainly on the number of sampling steps.

D TASK-SPECIFIC ENCODER

BurgerslD. For 1D Burgers’ problems, the conditioning information comes from the sampled
initial condition curve, which encodes the trajectory of the PDE solution. We represent this input
using a 3-layer multilayer perceptron (MLP) with dimensions [d, D, D, D], where d is the number of
sampled spatial points on the curve (default d = 1,024), and D is the hidden size of the DiT backbone.
Each hidden layer uses the GELU activation, chosen for its smooth nonlinearity and stability in high-
dimensional settings. This encoder effectively compresses the high-dimensional curve input into a
compact representation, while preserving the essential variation in initial conditions. The final output
is a D-dimensional embedding that serves as the conditioning vector for the HD-PINN.

14

Wave2D. For 2D wave problems, the conditioning input is more complex, as it must capture the
geometry of irregular computational domains. To encode these domain shapes, we design a 3-layer
convolutional neural network (CNN) followed by a linear projection. The inputs are binary masks
of size 32 x 32, where each pixel indicates whether the point lies inside the computational domain.
The CNN applies three 5 x 5 convolutional layers with channel sizes (1— D/4— D/2— D), each
followed by GELU activation for stable feature extraction. Between convolutional layers, we apply
progressive AdaptiveAvgPool2d operations to reduce the resolution (H — H/2 — H/4— 1)
while retaining global structural information. The resulting feature map is globally pooled and
flattened into a D-dimensional vector, which acts as the conditioning input to HD-PINN.

E FINE-TUNING FROM HD-INIT

We report the performance of PINN finetuned from HD-init on the test set from
BurgerslD-complex and Wave2D dataset in Table [[] The finetuned PINNs are initialized
with the weights generated from HD-init, and then finetuned with the L-BFGS optimizer until con-
vergence. The L-BFGS optimizer is configured with a learning rate of 1.0, a maximum of 10,000
iterations, and a tolerance of 1 x 10~%. The training stops when either the maximum iterations or
the tolerance condition is met. For the other methods, the initialized PINNs are tuned using Adam
followed by L-BFGS (Rathore et al., [2024} [Cuomo et al., 2022), under the same configurations.

F DISTANCE-CORRELATION

To quantify the statistical dependence between two random variables X € RP and Y € RY, we
employ the distance correlation (dCor) (Székely et al.l[2007). Unlike the classical Pearson correlation,
which only captures linear dependence, dCor detects both linear and nonlinear associations between
distributions.

Given n paired samples {(z;, y;)}7, let
aij = llwi =zl by = llyi = wsll ©)

denote the pairwise Euclidean distance matrices. These are then double-centered to remove mean
effects, _ - -
Aij = Q45 — C_li, - C_L.j + C_L..7 Bij == b,J - bz - b‘j + b.., (10)

where a;. is the ith row mean of a;;, @.; is the jth column mean, and a.. is the grand mean (similarly
for b).

The distance covariance is then defined as

1 n
2
dCov?(X,Y) = — .Zl Aq;Bij, (11)
1,]=
and the corresponding distance correlation is
dCov(X,Y
dCor(X,Y) = ov(X, V) (12)

B v/dCov(X, X) dCov(Y.Y) .

By construction, dCor(X,Y") € [0, 1], where dCor(X,Y") = Oif and only if X and Y are independent,
and larger values indicate stronger dependence between the two distributions.

G CONTROLLED INITIALIZATION AND WEIGHT REGULARIZATION

We investigate the effect of the proposed weight-space regularization using the
BurgerslD-simple dataset, with the aim of determining whether explicitly encouraging
structure in the weight space improves the relationship between problem parameters and optimized
PINN solutions. To this end, we measure the dependency between PDE parameters (here, the initial
conditions) and the corresponding trained PINN weights using distance correlation (dCor) (Székely
et al.,[2007), which captures both linear and nonlinear associations. In addition, we report the RMSE

15

of PINN predictions relative to ground-truth trajectories computed with a finite-difference method
(FDM) solver.

The results in Table@reveal two main observations. First, controlled initialization markedly increases
the correlation between initial conditions and optimized weights, as reflected by the higher dCor
values. Second, when the regularization strength A, is properly chosen (e.g., 10~°), the predictive
accuracy does not deteriorate and even shows slight improvement compared to random initialization
and unregularized training. This suggests that weight-space smoothing not only preserves accuracy
but may also aid optimization by guiding the network toward more structured solutions.

Overall, these findings indicate that controlled initialization both stabilizes training and produces
weight representations that are better aligned with PDE parameters, making them more suitable for
downstream hypernetwork learning.

Random-init. Controlled-init.
- Aeg =0 Apeg = 10—° Areg = 10~% Areg = 10~3
dCor 1 0.1313 0.5969 0.5972 0.5977 0.5994
mean RMSE(1073) | 4.8299 4.6288 4.5780 4.6538 4.6571

Table 4: Distance correlation (dCor) computed between 200 pairs of initial conditions and optimized
weights from Burgers1D-simple. Bold indicates best result.

H DIRECT EVALUATION FOR OOD

To complement the OOD evaluation reported in Tables [2]and 3] we also present in Tables [5] and [6]
the direct evaluation results on the Burgers1D-simple and Wave2D datasets. These results are
included for completeness and should be regarded as supplementary to the main OOD analysis. As
expected, accuracy decreases more noticeably as the test parameters move farther from the training
range. Nevertheless, the main results in Tables[2]and 3] confirm that the trained hypernetwork still
accelerates fine-tuning for these OOD cases.

OOD shift Method RMSE (1072) | Rel. Error (%) |

No shift HD-direct 27+1.3 89+4.0
0=0.1 HD-direct 10.7 £ 14.7 51.1 £789
60=0.2 HD-direct 26.1 £204 139.2 + 168.4
0=0.3 HD-direct 30.8 £24.0 222.8 +295.0
0=04 HD-direct 34.04+24.5 391.3 + 553.1

Table 5: Direct evaluation of Out-of-distribution on the Burgers1D-simple dataset with varying
region shift .

Diameter Method RMSE (1072) | Rel. Error (%) |

l~1.20 HD-direct 18.8 £19.1 20.5 +£20.8
l~1.25 HD-direct 20.5 +£27.0 21.7 £ 28.5
l~1.30 HD-direct 19.9 £ 129 20.5+13.3
1~ 1.35 HD-direct 37.0 £ 169 37.2+169
[~ 1.40 HD-direct 51.24+19.2 50.1 £18.8

Table 6: Direct evaluation of Out-of-distribution generalization on the Wave2D dataset with varying
domain diameters /.

16

I ERROR PLOTS

1.1 BURGERS1D-COMPLEX.

Task 1 Task 2 Task 3 Task 4

0 10000 20000 0 10000 20000 0 10000 20000
step step step
Task 5 Task 7

RMSE

0 10000 20000 0 10000 20000 0 10000 20000 0 10000 20000
step step step step
Task 9 Task 10 Task 11

RMSE

0 10000 20000 0 10000 20000

0 10000 20000
step step step
Task 13 Task 15 Task 16

RMSE

0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 0 10000 20000
step step step step
Task 17 Task 18 Task 19 Task 20

RMSE

0 10000 20000 0 10000 20000 0 10000 20000
step step step
Task 21 Task 23

RMSE

1 .
0 10000 20000 0 10000 20000 0 10000 20000 0 10000 20000
step step step step

HD-init —— Random-init ---- MAML ---- Reptile

Figure 5: 24 examples of error curves for the BurgerslD-complex dataset. The step count
denotes training iterations until stopping criteria. In several cases, under the same training budget,
PINNs with random initialization fail to reach similar accuracies. In contrast, HD-init provides more
favorable starting points, accelerates training and achieves comparable or better accuracies with fewer
iterations.

17

1.2 'WAVE2D.

Task 1 Task 2 Task 3 Task 4
10° 10° 10°
6x107"! 6x107! 6x10°! 6x 107"
2 2 2 2
4% 107" -1 > 4% 107! -1
= 4x Z 4x10 2 4x Z 4x10
31071 3x107! 3x107! 3x107!
2% 10! 210! e 2107 2% 107! -
0 5000 10000 0 5000 10000 0 5000 10000
step step step
Task 5
10° 10° 10° 10°
6x107! 6107 6x107! 6x107!
2 2 2 2
245107 Saxi10! = 4x107! = 4x107!
o 4 ~ &
3% 107! 3x107! 3x107! 3% 10-!
1 1 S e A B S
2% 10 2x 10 2x 10 2x10°f W TRl
0 5000 10000 0 5000 10000
step step
Task 10 Task 11 " Task 12
10° 10° 10° 10
6x 107! 6x 107! 6x 107! 6x107!
2 2 2 2
: -1 4x107! 3} -1 -1
2 4x10 2 4x Z4x10 Z 4x10
3%x10°! 3x107! 3% 10-! 3x107!
_ 1 —1
2% 10! 2x10 2% 10! 2x 10
0 5000 10000 0 5000 10000
step step
Task 16
10° 10° 100 10°
6x107" 6x10°! 6x 107" 6x107!
2 2 2 2
S 4x107! S 4x107! = 4x107! S 4x107!
rx%xm*I m _ = 1 ["‘3x10’I
- 3x 107! 3x10
1 —1
2x10 2% 10-! 2% 101 2x10
0 5000 10000 0 5000 10000 0 5000 10000 0 5000 10000
step step step step
Task 17 Task 18 Task 19 " Task 20
10° 10° 10° 10
6x 107! 6x 107! 6x107! 6x 107!
2 2 2 2
S 4x10°! S 4x107! = 4x107! S 4x107!
4 4 o~
3% 10! 3x107! 3% 107! 3% 107!
R 2% 107! 2x107! 21071
X
0 5000 10000
step
Task 22
10 10° 100
6x 107! 6x 107! 6x107" 6x107"
ja) ja) 53] 53]
2 4x10! Zax10 <400 £ axi0m
X
4 4
3x107! 3x107! * 1 * -1
3x 10 3x 10
—1
2x10 2x 107! 2% 10-! 2x 107! szmz
0 5000 10000 0 5000 10000 0 5000 10000
step step step
HD-init —— Random-init ---- MAML ---- Reptile

Figure 6: 24 examples of error curves for the Wave2D dataset. The step count denotes training
iterations until stopping criteria. In several cases, under the same training budget, PINNs with random
initialization fail to reach similar accuracies. In contrast, HD-init provides more favorable starting
points, accelerates training and achieves comparable or better accuracies with fewer iterations.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

J PDE TRAJECTORIES

J.1

BURGERS1D-SIMPLE.

random-init

0.50

025 =

0.00

0.4

0.2

0.0

0.00

—-025 =

—0.50

0.4

0.2

0.0

—0.2

ask 6 ask 6
el. error: el. error:

>
>

Figure 7: 6 examples of predicted trajectories for the Burgers1D-simple dataset.

19

J.2 BURGERS1D-COMPLEX.

GT HD-init random-init
2.0 T T T 0.5
Task 1 Task 1 Task 1
Rel. error: 0.008 Rel. error: 0.009
1.5F - - - r -
0.0
~ 1.0 - r 1 F] =
05F] E] L] —0.5
0.0 Lo BN B Lo B B] Lo D 8
X X X
2.0 T T
Task 2 ask 2 ask 2
Rel. error: 0.003 Rel. error: 0.001
1.5F B 5 B r B
1.5
< 1.0} 1 r 8 E] =]
05F 1 r 1 r §
% L%_J LM_J b
0.0
X X X
2.0 T T
Task 3 Task 3 Task 3 2.0
Rel. error: 0.010 Rel. error: 0.018
1.5¢ 5 r 1 r -
1.5
«~ 1.0F 1 F B E 1 =
0.5F] F] E {1 o
0.0 B e] | | | | 05
X X X
2.0 T T
Task 4 Task 4 Task 4
Rel. error: 0.012 Rel. error: 0.016
L5¢] b] b] 0.2
< 1.0} 1 F 1 r B =]
0.5 - r & r & 0.0
00 Fe F ST Fered Fe F ST FeSred FeF ST FTEE
X X X
2.0 T T T —
Task 5 Task 5 Task 5 0.2
Rel. error: 0.029 Rel. error: 0.062
L5¢ 1 r 1 r 1 —0.4
< 10 1 r 1 r 1 —06 =
05F] 3] [] —0.8
0.0 SRR ~ — o
X X X
2.0 T T
Task 6 Task 6 Task 6
Rel. error: 0.005 Rel. error: 0.012 05
1.5F - r - r B .
< 1.0} - r B F 8 10 °
0.5 & 5 : r J
BSOS NSO oSSR ONSO SRR
0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure 8: 6 examples of predicted trajectories for the BurgerslD-complex dataset.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

J.3

WAVE2D.

Case 0

Case 1

Case 2

Case 3

Case 4

Case 5

t=0.40 t=0.80 t=1.20 t=1.60

18

06 4.0

16 35
0.4

14 3.0
0.2 1.2 25
0.0 1.0 2.0

18 4.0
0.6

16 35
0.4

14 3.0
0.2 12 25
0.0 1.0 2.0
06 1.8 4.0

16 35
0.4

14 3.0
0.2 12 25

1.0 2.0
0.0
0.6 40

16 as
0.4

14 10
0.2 1.2 2.5

1.0
00 2.0
06 18 4.0

16 35
0.4

14 3.0
0.2 12 25
00 10 2.0
06 4.0

16 35
0.4

14 3.0
0.2 1.2 2.5
00 1.0 2.0

Figure 9: 6 examples of predicted trajectories for the Wave2D dataset.

21

2.5

2.0

15

1.0

2.5

2.0

15

1.0

2.5

2.0

15

1.0

25

2.0

15

1.0

2.5

2.0

15

1.0

2.5

2.0

15

1.0

	Introduction
	Related Work
	AI for Physics
	Hypernetworks
	Meta-learning

	Methods
	Preliminaries
	Conditional Weight-Space Diffusion

	Experimental Results
	Implementation Details
	Performance on In-Distribution Test Data
	Direct Hypernetwork Predictions.
	Refine from Hypernetwork Initialization.

	Out-of-Distribution
	OOD for Burgers1D-simple.
	OOD for Wave2D

	Conclusions
	Datasets
	Irregular Domain Generation
	Model Architecture and Training Details
	Task-Specific Encoder
	Fine-tuning from HD-init
	Distance-Correlation
	Controlled Initialization and Weight Regularization
	Direct Evaluation for OOD
	Error Plots
	Burgers1D-complex.
	Wave2D.

	PDE Trajectories
	Burgers1D-simple.
	Burgers1D-complex.
	Wave2D.

