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ABSTRACT

We introduce Audio-Agent, a multimodal framework for audio generation, edit-
ing and composition based on text or video inputs. Conventional approaches for
text-to-audio (TTA) tasks often make single-pass inferences from text descrip-
tions. While straightforward, this design struggles to produce high-quality audio
when given complex text conditions. In our method, we utilize a pre-trained TTA
diffusion network as the audio generation agent to work in tandem with GPT-4,
which decomposes the text condition into atomic, specific instructions, and calls
the agent for audio generation. Consequently, Audio-Agent generates high-quality
audio that is closely aligned with the provided text or video while also support-
ing variable-length generation. For video-to-audio (VTA) tasks, most existing
methods require training a timestamp detector to synchronize video events with
generated audio, a process that can be tedious and time-consuming. We propose a
simpler approach by fine-tuning a pre-trained Large Language Model (LLM), e.g.,
Gemma2-2B-it, to obtain both semantic and temporal conditions to bridge video
and audio modality. Thus our framework provides a comprehensive solution for
both TTA and VTA tasks without substantial computational overhead in training.

1 INTRODUCTION

Multimodal deep generative models have gained increasing attention these years. Essentially, the
models are trained to perform tasks based on different kinds of input called modalities, mimick-
ing how humans make decisions from different kinds of senses such as vision and smell Suzuki &
Matsuo (2022). Compared to other generation tasks such as image generation or contextual under-
standing, audio generation is less intuitive as it is harder to precisely measure the generated sound
quality using human ears. Additionally, previous works mainly focus on generating music-related
audio, which is more structured compared to naturally occurring audio Copet et al. (2024); Mele-
chovsky et al. (2023). Some recent works have focused on generating visually guided open-domain
audio clips Chen et al. (2020); Zhou et al. (2018).

Recent researches on audio generation are mainly focused on text-to-audio generation (TTA) and
video-to-audio generation (VTA). For TTA task Xue et al. (2024); Kreuk et al. (2022), current
datasets lack high-quality text-audio pairs. Existing datasets such as AudioCaps Kim et al. (2019)
or Clotho Drossos et al. (2020) usually contain multiple event descriptions mixed into one single
sentence without fine-grained details and object bindings. This complicates training, particularly
when handling long continuous signals with complex text conditions Huang et al. (2023). We define
complex text conditions as long event descriptions containing a series of events without explicitly
describing the sound, such as “A man enters his car and drives away”. While previously not fully
studied, this type of condition is more realistic as it does not require any detailed specification in
terms of the characteristics of the audio result, offering more flexibility to the user and producer for
areas such as movie dubbing and musical composition. If we train these models from scratch, it
often demands extensive computational resources Liu et al. (2024); Ghosal et al. (2023).

The VTA task, or conditional Foley generation, remains unexplored until recently Wang et al.
(2024); Zhang et al. (2024b). One main challenge is that video clips typically contain excessive
visual information not always relevant to audio generation. Moreover, synchronization is hard be-
tween video and audio output, with recent solutions such as temporal masking Xie et al. (2024)
proving inadequate for complex scenarios. Due to efficiency considerations, current methods often
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I want to generate "A series of machine gunfire and two 
gunshots firing as a jet aircra� flies by followed by so�music
playing"

1. ‘A series of machine gunfire.’, start_time = 0, end_time = 4; 
2. ‘Two gunshots firing.’, start_time = 4, end_time = 6; 
3. ‘A jet aircra� flies.’, start_time = 0, end_time = 6; 
4. ‘So� music playing.’, start_time = 6, end_time = 10.

I want to combine "A man knocks the door while a woman talks 
inside the house" with "A dog barking"

1. ‘A man knocking on the door.’, start_time = 0, end_time = 3; 
2. ‘A woman talking inside the house.’, start_time = 1, end_time = 6; 
3. ‘A dog barking.’, start_time = 3, end_time = 10.

I want to generate "A man enters into his car and 
drive away."

1. ‘Car door opening.’, start_time = 0, end_time = 2; 
2. ‘Car door closing.’, start_time = 2, end_time = 4; 
3. ‘Car engine starting.’, start_time = 3, end_time = 5; 
4. ‘Car driving away.’, start_time = 5, end_time = 10.

Now I want to add "honk the horn" a�er the man 
entering the car, before driving away

1. ‘Car door opening.’, start_time = 0, end_time = 2; 
2. ‘Car door closing.’, start_time = 2, end_time = 4;
3. ‘Car horn honking.’, start_time = 4, end_time = 5; 
4. ‘Car engine starting.’, start_time = 5, end_time = 7; 
5. ‘Car driving away.’, start_time = 7, end_time = 10.

A B

C

Figure 1: Example showing Audio-Agent’s ability to generate, compose and edit multiple audio de-
scriptions together. (A): Multi-turn editing; (B): Generation based on long description; (C): Multiple
audio descriptions composition

encode video features by extracting a few random frames Xie et al. (2024); Dong et al. (2023), which
hinders learning temporal information. Bridging the modality gap Liang et al. (2022) between video
and audio thus becomes the key to solving the problem.

While achieving state-of-the-art results, conventional approaches often perform inference in a single
pass based on a given text description. This approach struggles to produce high-quality audio when
faced with complex or lengthy text conditions. In this paper, we introduce Audio-Agent, which
breaks down intricate user inputs using GPT-4 into multiple generation steps. Each step includes
a description along with start and end times to effectively guide the audio generation process. Our
framework integrates two key tasks: Text-to-Audio (TTA) and Video-to-Audio (VTA). We leverage
a pre-trained TTA diffusion model, Auffusion Xue et al. (2024), with essential adaptations, serving
as the backbone for our generation process. In the TTA task, Auffusion focuses solely on generating
simple, atomic text inputs. Our framework supports audio generation, editing, and composition, as
illustrated in Figure 1. For the VTA task, we recognize that models such as GPT-4 and other large
language models lack sufficient temporal understanding of video clips. To address this problem,
we employ moderate fine-tuning to align the two modalities. We utilize the smaller Gemma2-2B-it
model, which has 2 billion parameters, and fine-tune an adapter and a projection layer to convert
visual inputs into semantic tokens. We then implement cross-attention guidance between the diffu-
sion layers of Auffusion. This approach eliminates the need for additional training on a temporal
detector, as the semantic tokens inherently contain time-aligned information.

The summary of our contributions is as follows: 1) we propose Audio-Agent which utilizes a pre-
trained diffusion model as a generation agent, for both TTA and VTA tasks; 2) For TTA, Audio-
Agent can handle complex text input, which is broken down into simple and atomic generation con-
ditions for the diffusion model to make inference on; 3) For VTA, we fine-tune an open-source LLM
(Gemma2-2B-it) to bridge the modality gap between video and audio modalities to align the un-
derlying semantic and temporal information. Through extensive evaluation, our work demonstrates
on-par results compared to the state-of-the-art task-specific models trained from scratch, while ca-
pable of producing high-quality audio given long and complex textual input. We hope our work can
motivate more relevant works on multi-event long-condition TTA generation, which to our knowl-
edge has not yet been fully explored despite its high potential in various content generations where
high-quality audio is essential.

2 RELATED WORK

LLM-based Agent Method Recent progress in large language models has enabled relevant research
on making LLM a brain or controller for the agent on performing various tasks, such as robot task
planning and execution Driess et al. (2023) or software development Rawles et al. (2024); Yang et al.
(2023). LLM demonstrates the capacity of zero-shot or few-shot generalization, making task transfer
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I want to generate “People playing 
basketball in a stadium while rolling 
thunder.”

A

GPT-4

Auffusion

0s 7s

10s7s

0s 10s

1.Sound of a basketball bouncing on the 
court
2. People cheering and shouting
3. Thunder claps rolling

Q

Figure 2: Overview of the TTA part. We use GPT-4 to convert a complex audio generation process
into multiple generation steps and combine inference results.

possible without significant change of its parameters Xi et al. (2023). In our work, we harness the
action-planning ability of LLM. Upon receiving the text condition from the user, LLM generates
a plan with detailed steps on how to call the diffusion model which serves as a generation agent.
By dividing the task into simpler sub-tasks, we can ensure the generation quality with fine-grained
event control for TTA generation.

Diffusion-based Audio Generation AudioLDM Liu et al. (2024) is among the pioneering works
that introduce the latent diffusion method to audio generation. Subsequent works such as
Tango Ghosal et al. (2023) and Auffusion Xue et al. (2024) use pre-trained LLM such as Flan-
T5 for text encoding, which has been widely adopted. We notice that this method can be seamlessly
adapted to VTA tasks when we can find a similarly effective way of utilizing LLM for encoding the
visual content. For the TTA task, we choose Auffusion as our generation agent due to its outstanding
performance on fine-grained alignment between text and audio.

Coarse-to-fine Audio Generation Current works such as AudioLM Borsos et al. (2023), VALL-
E Wang et al. (2023) and MusicLM Agostinelli et al. (2023) use multiple codebooks and Residual
Vector Quantization (RVQ) Défossez et al. (2022) to create diverse audio representations. In Au-
dioLM, the model first predicts semantic tokens that capture crucial information for overall audio
quality, such as rhythm and intonation, while subsequent layers add details to enhance the richness
of the generated sound. However, these discrete designs suffer from generation quality compared
to their continuous-valued counterparts. Moreover, the model has to perform prediction over multi-
layers, which inevitably increases computational demands for both training and inference Meng
et al. (2024). In our case for the VTA task, we fine-tune an LLM to predict an intermediate discrete
representation as semantic tokens using a language modeling approach. The discrete semantic to-
kens then serve as a condition for the diffusion model to generate continuous predictions. In this
way, our method simplifies the generation procedure while maintaining the advantages of audio
generation using the language modeling approach.

3 METHOD

Audio-Agent comprises three major components: 1) GPT-4 as a brain for action planning; 2) a
lightweight LLM to convert video modality into semantic tokens; and 3) a pre-trained TTA diffusion
model as the generation backbone. Our model structure is illustrated in Figure 2 and Figure 3.
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Semantic Tokens

People cheering and shouting

Prompt

Text Encoder

Text features

Image Encoder

Video features

LLM

Cross Attention

Cross Attention

Denoising U-Net

temporal 
connector

Figure 3: Overview of the generation backbone. We build on top of the pre-trained Auffusion model
for both TTA and VTA generation.

3.1 PRELIMINARIES

Audio Latent Diffusion Model Recent research adapted the successful latent diffusion models from
the image domain to the audio domain. A typical audio latent diffusion model such as Auffussion
first converts the audio wave into mel spectrogram, followed by VAE encoding into the relevant
latent space. Inference is the reverse process, where the predicted latent is decoded by VAE and then
converted back from mel spectrogram into audio wave through a vocoder such as HiFi-GAN Kong
et al. (2020). The latent diffusion process can be regarded as the same as the standard latent diffusion
model on image generation Rombach et al. (2022).

Semantic token AudioLM Borsos et al. (2023) was among the first to propose a two-stage method
for speech synthesis. In their method, the semantic tokens are derived from representations pro-
duced by an intermediate layer of w2v-BERT Chung et al. (2021). We choose an open-sourced
HuBERT Hsu et al. (2021) model to produce the semantic representation, since HuBERT can model
long-term temporal structure in a generative framework. Although only the smallest Hubert model
has its quantizer released and open-sourced, we found that the released small model is already
enough to assist the diffusion model in generating high-quality and temporally aligned predictions.

3.2 GPT-4 AS AN ACTION PLANNER FOR TTA TASK

Given a long, complex text condition, we ask GPT-4 to decompose the description into simple
and atomic generation steps. GPT-4 has the freedom to decide how many steps to generate. We
additionally restrict GPT-4 to keep the minimum number of necessary generation steps. This step
instruction produces a good balance avoiding either extreme of being too abstract or too specific
with unnecessary details. We also inform GPT-4 that the user may revise the text requirement in
subsequent conversations so that our framework can perform multi-turn conversational generation.
The output of GPT-4 consists of a JSON file, which contains a series of function calls of the agent
model with text description provided. In addition, to support variable length generation and multi-
event generation, GPT-4 also provides the start time and end time for each call which can overlap
with each other. After obtaining the generation result for each step, we add waveforms together
based on their time range. See Appendix A.1 for a prompt example.

3.3 AUDIO TOKENIZER AND VIDEO TOKENIZER

Following Kharitonov et al. (2021), we utilize the 9th layer of the Hubert-Base model to derive
the semantic tokens. The quantizer of Hubert-Base contains 500 centroids. Given an audio clip
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Table 1: Comparison of functionalities between recent audio generation framework. For Audi-
oLDM2 and Auffusion half check marks are assigned because the corresponding model was trained
only on 10 seconds of audio clips. In theory, it also supports long audio generation, but the quality
is not assured, see Figure 5

.

Method VTA generation TTA generation
Multi-turn editing Composition Long complex generation

Diff-Foley ✓ ✗ ✗ ✗
FoleyCrafter ✓ ✗ ✗ ✗
AudioLDM2 ✗ ✗ ✗
Auffusion ✗ ✗ ✗
Ours ✓ ✓ ✓ ✓

as ground truth, Hubert acts as an audio tokenizer that applies K-mean clustering and converts the
audio into discrete semantic tokens, where each token has a value ranging from 0 to 499 to represent
the respective centroids. Hubert-Base has a frame rate of 50Hz, thus a 10-second audio will result
in 500 semantic tokens.

To efficiently capture both visual and temporal information while compressing the video data, we
employ CLIP as a frame-wise feature tokenizer. CLIP is compatible with arbitrary frame sampling
strategies, enabling a more flexible frame-to-video feature aggregation scheme as noted by Cheng
et al. (2024). We pool the information within each frame to reduce the sequence size, resulting in a
vector fr of size N ×D, where N is the number of frames and D is the CLIP hidden size. We set
the frame rate to 21.5 Hz and use CLIP ViT-L/14 by default.

Inter-frame information is crucial for the model to achieve temporal alignment. Previous meth-
ods Iashin & Rahtu (2021); Du et al. (2023) require extracting both RGB and optical flow informa-
tion within and across frames. In our design, we add a temporal connector after obtaining frame-
wise features. The temporal connector consists of a 1D convolution block and a projection layer.
The convolution block aggregates the inter-frame features together while preserving the temporal
order. The projection layer projects the features into LLM’s embedding space.

3.4 LLM FOR SEMANTIC TOKEN GENERATION ON VTA TASK

Semantic tokens allow us to represent continuous audio information in discrete semantic form. We
denote the continuous audio ground truth as a ∈ RC×L, where C is the number of channels and
L is the time of the audio clip times sample rate. The Hubert audio tokenizer applies the K-means
algorithm to convert the representation into LLM-aware acoustic tokens. Specifically, we obtain the
indices s ∈ {0, ..., 499}N from the audio by comparing it with the encoded audio with centroids,
and N is the sequence length.

During training and inference, we feed the model with encoded video embedding and caption, to-
gether with the instruction prompt. To better differentiate the video input with text condition and
instruction, we wrap the encoded video feature with special tokens as modality indicators. Specif-
ically, we wrap the video caption with ⟨Caption⟩, ⟨/Caption⟩ indicators and video embedding in
an embedded sequence of ⟨Video⟩, ⟨/Video⟩ indicators. In doing so, we avoid the possibility of
confusing the LLM with different kinds of information. See Appendix A.2.

To jointly model different modalities in a unified model, we further extended the LLM’s text vo-
cabulary Vt = {vi}Nt

i=1with acoustic vocabulary Va = {vj}Na
j=1. The acoustic vocabulary includes

the modality indicators and a series of semantic tokens in the form of ⟨AUD X⟩, where X ranges
from 0 to 499, the same as the number of centroids of the audio tokenizer. The extended audio-text
vocabulary now becomes V = {Vt, Va}.

To further elaborate on the conditional generation tasks performed by LLM: for the VTA task, the
source input Xv = {xi

e}Ni=1 is a sequence of embeddings and xe ∈ RD, where D is the embedding
dimension of LLM. Our LLM backbone is a decoder-only structure with the next token prediction
method. The distribution of the predicted token in the first layer is given by pθLLM

(C1|X) =

5
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I want to generate “A man enters his car
and drives away."

Now I want to add "a man talks" before 
"driving away" and a�er "car engine
starting“.

Could you change "driving away" to
"playing loud music"?

I want to combine "A jet aircra� flies
by" with "People yelling and shouting" 
to describe a scenario of a battlefield. 
You may need to add additional events 
to make the generation more realistic.
The generation length is still 10 
seconds.

Figure 4: A demo example showing Audio-Agent’s conversation ability: First turn: Audio Gener-
ation; second turn: Audio Insertion; third Turn: Audio Editing; last turn: Audio Composition with
high-level semantic instructions. Audio-Agent can choose to respond based on previous turns or
make independent generations.∏

i pθLLM
(ci1|X,C<i

1 ) autoregressively. The objective has thus become:

LLLM = −
T ′∑
i=1

log pθLLM (ci1|X,C<i
1 ), (1)

where T ′ is the number of semantic tokens generated by LLM, θLLM is the parameter of LLM, ci1
is the token generated at step i, C<i

1 are previous tokens, and X is the input condition.

During inference, the LLM will autoregressively predict the next token until ⟨eos⟩ is generated. Our
LLM thus serves as the bridge for connecting between modalities.

In our experiments, we use Gemma2-2B-it Team et al. (2024), a lightweight open-source LLM
developed by Google, which is claimed to have comparable performance to a much larger variant
Gemma-2-9B. We use Low-Rank Adaptor (LoRA) Hu et al. (2021) to finetune Gemma to make it
understand vision/text conditions and generate audio tokens.

3.5 CONDITIONAL AUDIO GENERATION

The audio generation module contains a diffusion model, text-based cross-attention layers and
visual-based cross-attention layers. See Figure 3. Given a query feature Z, text features ctxt and
visual features cvis the output for combining two types of cross-attention is defined as follows:

Znew = Softmax(
QK⊤

txt√
d

)Vtxt + Softmax(
Q(Kvis)

⊤
√
d

)Vvis

where Q = ZWq
txt,Ktxt = ctxtW

k
txt,Vtxt = ctxtW

v
txt,

Kvis = cvisW
k
vis,Vvis = cvisW

v
vis

(2)

The diffusion model and text-based cross-attention layers are from the pre-trained Auffusion model.
During training, we keep the pre-trained part frozen. For the TTA task, we directly feed the step
instructions as text conditions and arrange the output based on the start time and end time, as illus-
trated in Section 3.2. For the VTA task, after obtaining the semantic tokens, we fetch the centroids
from the Hubert model according to the value indices as visual features. Similar to the text-based
condition mechanism, we apply cross-attention on layers of the diffusion model. During inference,
we introduce another parameter for controlling text and visual guidance:
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Znew = Attention(Q,Ktxt,Vtxt) + λ · Attention(Q,Kvis,Vvis) (3)

Thus the final objective for the diffusion process, which is similar to latent diffusion models, is

Lsimple = Ex0,ϵ,ctxt,cvis,t∥ϵ− ϵθ
(
xt, ctxt, cvis, t

)
∥2. (4)

Compared to IP-Adapter Ye et al. (2023), our method introduces the video modality into audio
generation. Furthermore, since the semantic tokens already incorporate temporal information of the
video, we do not need to train an extra timestamp detection module as done by FoleyCrafter Zhang
et al. (2024b) to achieve temporal alignment.

3.6 IMPLEMENTATION DETAILS

For fine-tuning Gemma-2B-it, we set LoRA rank and alpha to be 64 with dropout to be 0.05. We
separately train and fine-tune Gemma-2B-it, the projection layers and the cross-attention layers on
the AVSync15 Zhang et al. (2024a) datasets. The training and evaluation are conducted on NVIDIA
GeForce RTX 4090. Following Ye et al. (2023), we set the λ to be 0.5 as default.

4 EXPERIMENTS

4.1 TRAINING DATASETS

For the TTA task, we evaluate our complex generation ability on AudioCaps Kim et al. (2019)
dataset. We randomly choose either one caption from the test set or concatenate two of them to-
gether with the clause “followed by”. To better compare with other models, we limit our generation
length to the standard 10 seconds. Following Xue et al. (2024), we randomly selected 20 captions
from each category for the generation. Additionally, to demonstrate Audio-Agent’s ability to make
inferences based on complex text conditions, we ask GPT to generate additional long event descrip-
tions containing a series of events without explicitly describing the sound, such as “A man enters his
car and drives away”. The number of complex captions is also 20. The baseline methods include
AudioGen-v2-medium Kreuk et al. (2022), AudioLDM2-large Liu et al. (2024) and Auffusion Xue
et al. (2024).

We use AVSync15 for VTA task. AVSync15 is a curated dataset from VGGSound Sync Chen et al.
(2021) that has 1500 high video-audio alignment pairs, which is ideal for training and demonstrating
temporal alignment between video and audio. Same experiment setting as Zhang et al. (2024b) is
used. To better facilitate evaluation, we include some audio generation results in the supplementary
material.

4.2 EVALUATION METRICS

The evaluation metrics are summarized as follows: For the VTA task, we use the Frechet audio
distance (FAD) to evaluate audio fidelity. Additionally, we utilize the MKL metric Iashin & Rahtu
(2021) and CLIP similarity Wu et al. (2022) for audio-video relevance. Furthermore, to evaluate
the synchronization of the generated audio in the video-to-audio setting, we use the same evaluation
metrics as CondFoleyGen Du et al. (2023), namely # Onset Accuracy, and Onset AP. For the TTA
task, we use CLAP similarity Wu et al. (2023)

4.3 EVALUATION AND COMPARISON

Audio-Agent outperforms other baseline methods on all TTA experiment settings, see Table 2. Ad-
ditionally, our method outperforms the original Auffusion model by a significantly increasing mar-
gin as the text condition becomes longer and more complex. Specifically, we notice that with a
longer text condition, AudioGen Kreuk et al. (2022), AudioLDM2 Liu et al. (2024) and Auffu-
sion Xue et al. (2024) all exhibit missing out events. For example, if the text condition is multi-
event such as “Pigeons cooing and bird wings flapping as footsteps shuffle on paper followed by
motor sounds with male speaking”, all the baseline methods fail to generate the motor sound at the

7
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Figure 5: Comparison with baseline for TTA task. To demonstrate audio generation based on long
complex text conditions, we ask the model to generate audio clips for 20 seconds. The text condition
is drawn from the Two Captions category of Table 2: (A) A river stream of water flowing followed
by typing on a computer keyboard; (B) A woman delivering a speech followed by a male speech and
statics; (C) A vehicle engine revving then accelerating at a high rate as a metal surface is whipped
followed by tires skidding followed by a door shutting and a female speaking; (D). Continuous white
noise followed by a vehicle driving as a man and woman are talking and laughing; We can see that
our method successfully generates multi-event audio at different times based on descriptions, while
Auffusion mixes the generated audio.

end of the audio clip during evaluation. However, our method avoids this problem by utilizing GPT-
4 as a brain/coordinator for caption analysis and generation planning, offering more fine-grained
distinctions between events.

We also notice a significant drop for all methods on complex captions, since none of these methods
has been trained on this type of text condition. Still, we find this type of text condition more practical
in the real world, since it does not require explicit descriptions of the characteristics of sound, but
rather describes the scenario for sound generation, offering more flexibility for the sound producer.
We attach some examples of complex results that we used for evaluation in Appendix A.3.

For the VTA task, our method achieves better visual-audio synchronization compared to other base-
line methods, while subpar the current state-of-the-art method in terms of generation audio quality,
presented in Tables 3 and 4. We consider this reasonable as most of the other baseline methods have
been trained on multiple larger datasets.

Specifically, we find that the temporal connector may negatively affect the generated audio quality on
a small scale. However, for the evaluation of synchronization, we noticed a significant improvement
after the temporal connector was applied, especially for the Onset AP. Without explicit training of a
timestamp detector, our method achieves a better performance in terms of onset Acc and Onset AP,
see Figure 6 for illustration.

Table 2: Evaluation for all baseline models on the TTA task, categorized by the type of text condi-
tions.

Method Single Caption Two Captions Complex Captions
CLAP↑ CLAP↑ CLAP↑

AudioGen Kreuk et al. (2022) 49.34% 44.76% 23.98%
AudioLDM2 Liu et al. (2024) 47.04% 36.03% 23.33%
Auffusion Xue et al. (2024) 50.91% 45.90% 14.40%
Ours 55.17% 53.02% 24.06%

8
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Figure 6: Comparison with baseline for VTA generation task. Compared to the baseline, the event
occurrence is more explicit. Our method can produce audio that is more aligned and better synchro-
nized with the input video.

Table 3: Quantitative evaluation on semantic alignment and audio quality. Specifically, Audio-
Agent achieves on par performance versus state-of-the-art models in terms of Mean KL Divergence
(MKL) Iashin & Rahtu (2021), CLIP Wu et al. (2022) and FID Heusel et al. (2017) on AVSync15
Zhang et al. (2024a).

Method MKL ↓ CLIP ↑ FID ↓
SpecVQGAN (Inception) Iashin & Rahtu (2021) 5.339 6.610 114.44
SpecVQGAN (ResNet) Iashin & Rahtu (2021) 3.603 6.474 75.56
Diff-Foley Luo et al. (2024) 1.963 10.38 65.77
Seeing and Hearing Xing et al. (2024) 2.547 2.033 65.82
FoleyCrafter Zhang et al. (2024b) 1.497 11.94 36.80
Ours (without temporal connector) 2.516 9.06 55.59
Ours (with temporal connector) 2.623 8.55 52.93

Table 4: Quantitative evaluation in terms of temporal synchronization. We report onset detection
accuracy (Onset ACC) and average precision (Onset AP) for the generated audios on AVSync Zhang
et al. (2024a), which provides onset timestamp labels for assessment, following previous studies
Luo et al. (2024); Xie et al. (2024).

Method Onset ACC ↑ Onset AP ↑
SpecVQGAN(Inception) Iashin & Rahtu (2021) 16.81 64.64
SpecVQGAN(ResNet) Iashin & Rahtu (2021) 26.74 63.18
Diff-Foley Luo et al. (2024) 21.18 66.55
Seeing and Hearing Xing et al. (2024) 20.95 60.33
FoleyCrafter Zhang et al. (2024b) 28.48 68.14
Ours (without temporal connector) 28.45 64.72
Ours (with temporal connector) 29.01 69.38
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Table 5: Ablation study on AVSync15 dataset with different LoRA rank for semantic alignment and
audio quality. During experiments, we keep the value of alpha the same as the rank.

Method Trainable Parameters MKL ↓ CLIP ↑ FID ↓
Ours (R=16) 78.31MM 2.702 8.42 58.426
Ours (R=32) 99.08MM 2.543 8.49 55.197
Ours (R=64) 140.61MM 2.623 8.55 52.929

Table 6: Ablation study on AVSync15 dataset with different LoRA rank in terms of temporal syn-
chronization. During experiments, we keep the value of alpha the same as the rank.

Method Trainable Parameters Onset ACC ↑ Onset AP ↑
Ours (R=16) 78.31M 29.74 70.63
Ours (R=32) 99.08M 27.49 70.57
Ours (R=64) 140.61M 29.01 69.38

4.4 ABLATION STUDIES

We include our ablation study on different LoRA rank values during LLM fine-tuning, see Tables 5
and 6. We found that an increase in trainable parameters sometimes does not necessarily improve the
result. Notwithstanding, for a fair comparison, we use the rank value of 60 across all metrics. Addi-
tionally during training, we found that the training of the cross-attention layer can converge within
20,000 steps. We notice that the loss curve is not a reliable indicator of the model’s performance.
The model can achieve a good performance even when the loss curve remains flat.

5 CONCLUSION AND DISCUSSION

5.1 LIMITATION AND FUTURE WORK

Our framework experiences a drop in performance when given complex text conditions for the TTA
task, which is more severe in other baseline methods. We believe it is a worthwhile direction in the
future for understanding long complex captions with improved fine-grained distinctions between
multiple events. We may also utilize the LLM’s versatility involving audio captioning tasks and
video captioning tasks. The above are worthwhile future directions to explore.

5.2 CONCLUSION

In this paper, we present Audio-Agent, a multimodal framework for both text-to-audio and video-
to-audio tasks. Our model offers a conversation-based method for audio generation, editing and
composition, facilitating audio generation conditioned on multievent complex descriptions. For
the video-to-audio task, we propose an efficient method to achieve visual synchronization. Through
extensive experiments, we show that our model can synthesize high-fidelity audio, ensuring semantic
alignment with input. Additionally, our work takes an initial, significant step toward multi-event
long-condition TTA generation which has not been fully explored.
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A APPENDIX

A.1 PROMPT EXAMPLE FOR TTA TASK

We provide our prompt instruction in Table 7 and in context examples in Tables 8 and 9.

A.2 PROMPT EXAMPLE FOR VTA TASK

We provide our prompt instruction in Table 10. The prompt format follows the requirement from
Gemma2-2B-it.

A.3 COMPLEX CAPTIONS FOR TTA TASK

We provide examples of GPT-generated complex captions in Table 11 that we use for TTA task
evaluation.
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Table 7: Our prompt instruction for TTA generation

**You are a dialog agent that assists users in generating audio through
conversation. The user begins by describing the audio they envision,
and you help translate this description into multiple audio captions
suitable for generating. You have a powerful tool at your disposal,
Auffusion, which can generate simple, atomic audio based on textual
descriptions. Your task is to determine how best to utilize this
tool, which may involve multiple calls to Auffusion to produce a
complex audio sequence composed of simpler audio.**

**Here are 10 examples of the types of descriptions Auffusion was
trained on. These should guide you in understanding what constitutes
a s i m p l e and a t o m i c motion:**

1. A muddled noise of broken channel of the TV.
2. A person is turning a map over and over.
3. Several barnyard animals mooing in a barn.
4. An office chair is squeaking.
5. A flying bee is buzzing loudly around an object.
6. Thunder claps far in the distance.
7. Something goes round that is playing its song.
8. A paper printer is printing off multiple pages.
9. A person is making noise by tapping their fingernails on a solid

surface.
10.A person crunches through dried leaves on the ground.

**Instructions:**
1. **User-Provided Description**: The user’s description will include

both straightforward and complex descriptions of audio. The user may
also provide multiple descriptions and ask you to combine them
together.

2. **Auffusion Invocation**: For each audio description, you must decide
how to break down the description into simple, atomic audio. Invoke
the Auffusion API to generate each component of the audio sequence.
Ensure that each call focuses on a straightforward, non-elaborate
audio description.

3. **Plan Generation**: Your response should include a step-by-step plan
detailing each call to Auffusion necessary to create the complete
audio sequence.

4. **Requirement**:
4.1. You should include the start_time and end_time in this call. The

audio length is 10 seconds, and thus you should have at least one
call having end_time=10.

4.2. If the user input has multiple events or asks to combine multiple
description together, you should have overlapping audios happening
in the same range of time. There should have less than three audios
in the same time. Overlapping means one audio having smaller
start_time than another audio’s end_time

4.3. You’re free to generate as many as calls you like, but please keep
the minimum number of calls.

**Response Format:**
- You should only respond in JSON format, following this template:
‘‘‘json
{

"plan": "A numbered list of steps to take that conveys the long-term
plan"

}
‘‘‘
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Table 8: Our in-context examples for TTA generation.

**Examples:**

**Example 1:**
- **User Input**: I want to generate "A clap of thunder coupled with the

running water".
- **Your Output**:
‘‘‘json
{

"plan": "1. Auffusion.generate(’A clap of
thunders.’,start_time=2,end_time=5); 2. Auffusion.generate(’Rain
pouring outside.’,start_time=0, end_time=10)"

}
‘‘‘

**Example 2:**
- **User Input**: I want to combine "Buzzing and humming of a motor"

with "A man speaking" together
- **Your Output**:
‘‘‘json
{

"plan": "1. Auffusion.generate(’A motor buzzing and
humming’,start_time=0,end_time=10); 2. Auffusion.generate(’A man
speaking.’,start_time=3,end_time=6)"

}
‘‘‘

**Example 3:**
- **User Input**: I want to generate "A series of machine gunfire and

two gunshots firing as a jet aircraft flies by followed by soft
music playing"

- **Your Output**:
‘‘‘json
{

"plan": "1. Auffusion.generate(’A series of machine
gunfire.’,start_time=0,end_time=4); 2. Auffusion.generate(’Two
gunshots firing.’,start_time=4,end_time=6); 3.
Auffusion.generate(’A jet aircraft
flies.’,start_time=0,end_time=6); 4. Auffusion.generate(’Soft
music playing.’,start_time=6,end_time=10)"

}
‘‘‘
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Table 9: Our in-context examples for TTA generation (continue).

**Example 4:**
- **User Input**: I want to generate "A crowd of people playing

basketball game."
- **Your Output**:
‘‘‘json
{

"plan": "1. Auffusion.generate(’Sound of a basketball bouncing on the
court.’,start_time=0, end_time=7); 2. Auffusion.generate(’A ball
hit the basket’,start_time=5, end_time=7); 3.
Auffusion.generate(’People cheering and shouting.’,start_time=7,
end_time=10)"

}
‘‘‘
- **Followed up User Input**: I want to change it to "people playing

table tennis".
- **Your Output**:
‘‘‘json
{

"plan": "1. Auffusion.generate(’Sound of a table tennis ball bouncing
on the table.’,start_time=0,end_time=7); 2.
Auffusion.generate(’People cheering and
shouting.’,start_time=7,end_time=10)"

}
‘‘‘
‘‘‘

Table 10: Our prompt instruction for VTA generation

<start_of_turn>user
You are an intelligent audio generator for videos.
You d o n t need to generate the videos themselves but need to generate

the audio suitable for the video, with sementic coherence and
temporal alignment.

I’ll give you the video embedding enclosed by <Video></Video>, also the
video caption enclosed by <Caption></Caption>.

Your goal is to generate the audio indices for the video
You only need to output audio indices, such as <AUD_x>, where x is the

index number.

Your turn:
Given the video <Video><VideoHere></Video> and the video caption

<Caption><CaptionHere></Caption>, the accompanied audio for the
video is:

<end_of_turn>
<start_of_turn>model

Table 11: Examples of our complex caption for TTA generation

1. A man enters his car and drives away
2. A couple decorates a room, hangs pictures, and admires their work.
3. A mechanic inspects a car, changes the oil, and test drives the

vehicle.
4. A group of kids play hide and seek in a large, old house.
5. A woman packs a suitcase, locks her house, and walks to the bus

station.
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