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ABSTRACT

Static analysis tools provide a powerful means to detect security vulnerabilities by
specifying queries that encode vulnerable code patterns. However, writing such
queries is challenging and requires diverse expertise in security and program anal-
ysis. To address this challenge, we present FineNib — an agentic framework that
automatically synthesizes queries in CodeQL, a powerful static analysis engine,
directly from a given CVE metadata. FineNib embeds an LLM in a synthesis loop
with execution feedback, while constraining its reasoning using a custom MCP
interface that allows structured interaction with a Language Server Protocol (for
syntax guidance) and a RAG database (for semantic retrieval of queries and doc-
umentation). This approach allows FineNib to generate syntactically and seman-
tically valid security queries. We evaluate FineNib on 176 existing CVEs across
111 Java projects. Building upon the Claude Code agent framework, FineNib
synthesizes correct queries that detect the CVE in the vulnerable but not in the
patched versions for 53.4% of CVEs. In comparison, using only Claude Code
synthesizes 10% correct queries. Our generated queries achieve an F1 score of
0.7. In comparison, the general query suites in IRIS (a recent LLM-assisted static
analyzer) and CodeQL only achieve F1 scores of 0.048 and 0.073, highlighting
the benefit of FineNib’s specialized synthesized queries.

1 INTRODUCTION

Security vulnerabilities continue to grow at an unprecedented rate, with over 40,000 Common Vul-
nerabilities and Exposures (CVEs) reported in 2024 alone (CVE} 2025). Static analysis, a technique
to analyze programs without executing them, is a common way of detecting vulnerabilities. Static
analysis tools such as CodeQL (Github, |2025)), Semgrep (Semgrep, 2023)), and Infer (Meta, 2025)
are widely used in industry. They provide domain-specific languages that allow specifying vulnera-
bility patterns as queries. Such queries can be executed over structured representations of code, such
as abstract syntax trees, to detect potential security vulnerabilities.

Despite their widespread use, existing query suites of static analysis tools are severely limited in
coverage of vulnerabilities and precision. Extending them is difficult even for experts, as it requires
knowledge of unfamiliar query languages, program analysis concepts, and security expertise. In-
correct queries can produce false alarms or miss bugs, limiting the effectiveness of static analysis.
Correct queries can enable reliable detection of real vulnerabilities, supporting diverse use-cases
such as regression testing, variant analysis, and patch validation, among others (Figure I)).

Meanwhile, CVE databases (MITREL 2025} INIST, [2025} |GitHubl, [2025) provide rich information
about security vulnerabilities, including natural language descriptions of vulnerability patterns and
records of buggy and patched versions of the affected software repositories. This resource remains
largely untapped in the automated construction of static analysis queries. Recent advances in LLMs,
particularly in code understanding and generation, open up the possibility of leveraging this informa-
tion to automatically synthesize queries from CVE descriptions, thereby bridging the gap between
vulnerability reports and practical detection tools.

Synthesizing such queries poses significant challenges. The syntax of static analysis query lan-
guages is low-resource, richly expressive, and evolves continually. A typical query, such as the
one in Figure [2[b) specifying a global dataflow pattern leaves ample room for errors in describing
predicates for sources, sinks, sanitizers, and taint propagation steps. Even if the generated syntax is
correct, success is measured by whether the query can identify at least one execution path travers-
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Figure 1: A CodeQL query capturing a vulnerability pattern is synthesized by FineNib from an
existing CVE and subsequently reused for regression testing, variant analysis, or patch validation.

ing the bug location in the vulnerable version while producing no matches in the patched version.
Achieving this requires understanding the CVE context at the level of abstract syntax trees, such as
code differences that introduce a sanitizer to prevent a flow from a source to a sink. Complicating
matters further, reasoning about the code changes alone is often insufficient: sources, sinks, and
taint propagation steps may reside in parts of the codebase far from the modified functions or files,
and the vulnerability itself may involve non-trivial dataflow chains across these components. Thus,
a correct query must not only integrate information from multiple locations across the program but
also capture the intricate propagation patterns to accurately characterize the vulnerability.

In this paper, we present FineNib — an agentic framework that synthesizes queries in CodeQL, a
powerful static analysis engine, directly from a given CVE metadata. We select CodeQL because
it has the richest query language, which allows capturing complex inter-procedural vulnerability
patterns. FineNib addresses the above challenges by embedding an LLM in a structured synthesis
loop that incorporates execution feedback to verify query correctness and allows interactive reason-
ing using a custom MCP (Model Context Protocol) interface. The MCP interface constrains the
model’s reasoning using a Language Server Protocol (for syntax guidance) and a vector database
of CodeQL queries and documentation (for semantic guidance). By combining these capabilities,
FineNib avoids common pitfalls of naive LLM-based approaches, such as producing ill-formed
queries, hallucinating deprecated constructs, or missing subtle vulnerability patterns, and instead
produces queries that are both syntactically correct and semantically precise.

We evaluate FineNib on CWE-Bench-Java (Li et al., |2025b), which comprises 176 CVEs across 111
Java projects. These CVEs span 42 different Common Weakness Enumeration (CWE) categories
and the projects range in size from 0.01 to 1.5 MLOC. To account for model training cut-offs, we
include 65 CVEs reported during 2025 and target a recent CodeQL version 2.22.2 (July 2025).
Using the Claude Code agent framework, FineNib achieves query compilation and success rates of
100% and 53.4%, compared to 19% and 0% for our best agentic baseline, Gemini CLI. Further, our
generated queries have an F1 score of 0.7 for detecting true positive vulnerabilities, compared to
0.048 for IRIS (Li et al.,|[2025b), a recent LLM-assisted static analyzer, and 0.073 for CodeQL.

‘We summarize our main contributions:

» Agentic Framework for CVE-to-Query Synthesis. We present FineNib, an agentic framework
that translates CVE descriptions into executable CodeQL queries, bridging the gap between vul-
nerability reports and static analysis. FineNib introduces a novel integration of execution-guided
synthesis, semantic retrieval, and structured reasoning for vulnerability query generation.

* Evaluation on Real-World Repositories and CVEs. We evaluate FineNib on 176 CVEs in
Java projects, covering 42 vulnerability types (CWEs) from CWE-Bench-Java. Each project in-
volves complex inter-procedural vulnerabilities spanning multiple files. We show how FineNib
can successfully identify sources, sinks, sanitizers, and taint propagation steps, and refine queries
to ensure they raise alarms on vulnerable versions while remaining silent on patched versions.

* Comparison with Baselines. We compare FineNib against state-of-the-art agent frameworks and
show that FineNib achieves substantially higher compilation, success, and F1 scores. We also
compare FineNib’s synthesized queries with state-of-the-art static analysis frameworks and show
that our queries are more precise and have higher recall.

2 ILLUSTRATIVE EXAMPLE

We illustrate the challenges of vulnerability query synthesis using CVE-2025-27136, an XML Ex-
ternal Entity Injection (XXE) bug found in the repository Robothy/local-s3. Figure2|depicts
the vulnerability snippets, the patch, and the synthesized CodeQL query generated by FineNib.
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module HttpXxeFlow = TaintTracking::Global<HttpXxeFlowConfig>; // Config: HttpRequestSource, XmlParsingXxeSink, ..
import HttpXxeFlow::PathGraph

from HttpXxeFlow::PathNode source, HttpXxeFlow::PathNode sink

where HttpXxeFlow::flowPath(source, sink)
select sink.getNode(), source, sink, "HTTP request data flows to XML parser..", source.getNode(), "HTTP request entry point"

(c) The synthesized CodeQL path query that ties everything together.

Figure 2: Illustration of vulnerability CVE-2025-27136 in repository Robothy/local-s3 which
exhibits an XML External Entity Injection weakness (CWE-611). When the Xm1Mapper is not
configured to disable Document Type Definition (DTD), the function readvalue may declare
additional entities, allowing hackers to inject malicious behavior.

Vulnerability context. The vulnerability arises when the Xm1Mapper object is used to parse user-
provided XML data (Figure[2a). In the vulnerable code, Xm1Mapper . readValue is called on the
HTTP request body without disabling support for Document Type Definitions (DTDs). As a result,
an attacker can inject malicious external entity declarations into the input stream, enabling server-
side request forgery (SSRF) attacks, allowing for access to resources that should not be accessible
from external networks, effectively leaking sensitive information. The patch mitigates the issue by
configuring the underlying XMLInputFactory with the property SUPPORT_DTD=false.

Synthesizing the query. The CodeQL query that can effectively capture the vulnerability pattern
needs to incorporate 1) sources such as Ht t pRequest . get Body calls where untrusted malicious
information enters the program, 2) sinks such as invocations of Xm1Mapper .readValue, where
the XXE vulnerability is manifested, 3) additional taint steps related to how the Xm1Mapper is
constructed and configured, involving non-trivial interprocedural flows spanning multiple files, and
4) sanitizers such as calls to setProperty (SUPPORT_.DTD, false), so that we know that no
alarm should be reported after the vulnerability has been fixed.

In general, the synthesized query must connect all these components to be able to detect the bug
in the vulnerable program, while not reporting the same alarm after the vulnerability has been
fixed. Figure [2b] shows all the components of the CodeQL query (simplified), capturing their in-
dividual syntactic patterns. Lastly, Figure [2c| connects all these components into a coherent path
query by using CodeQL’s TaintTracking: :Global<.>::PathGraph and the SQL-like
from-where-select query, which returns the exact path from source to sink.
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Figure 3: Overall pipeline of FineNib’s iterative synthesis loop between an agentic query generator
and a CodeQL-based validator. The generator uses a vector database and our CodeQL Language
Server as tools while the validator produces compilation, execution, and coverage feedback.

Challenges and solutions. Vulnerability query synthesis must overcome several tightly-coupled
challenges. We hereby state the challenges and explain how FineNib addresses them.

* Rich expressiveness and fragility of syntactic patterns. CodeQL is powerful but syntactically intri-
cate: small mistakes in predicate names, qualifiers, or AST navigation often produce syntactically
valid yet semantically useless queries. FineNib mitigates this fragility through its Language Server
Protocol (LSP) interface for syntax guidance and RAG database for semantic retrieval of existing
CodeQL queries and documentation. These structured interactions guide predicate selection and
AST navigation during synthesis, reducing off-by-name and version-mismatch errors.

* Inter-procedural taint propagation across a large codebase. Sources, sinks, and sanitizers typ-
ically live in different modules or files and are connected by nontrivial inter-procedural flows
(lambdas, factory patterns, etc.). While CodeQL provides robust inter-procedural analysis for
many common patterns, gaps in dataflow still require bridging via additional taint propagation
steps. Through its custom MCP interface, FineNib performs structured reasoning to discover
candidate program points, synthesize custom taint-step predicates (e.g., service registration), and
compose them into a CodeQL path query that tracks data across file and component boundaries.

» Semantic precision: alarm on the vulnerable version, silence on the patched version. A useful
vulnerability query must not only parse correctly but also be discriminative. FineNib enforces this
semantic requirement directly during synthesis. Via an iterative refinement loop, the successful
criteria states that in the fixed program, there should be no alarm being raised about the vulner-
ability. This incentivizes the agent to synthesize sanitizer predicates (e.g., the setProperty
call) and use them to constrain the path query so that sanitizer presence suppresses the alarm. The
resulting query thus captures the exact behavior difference, producing alarms on the vulnerable
snapshot and not on the patched snapshot.

Together, these capabilities let FineNib synthesize a semantically precise CodeQL query that can be
reused for regression testing, variant analysis, or patch validation. We now elaborate on the detailed
design and implementation of FineNib.

3 FINENIB

At a high level, FineNib operates inside a repository-aware iterative refinement loop (Figure [3). In
each iteration, the agent proposes a candidate CodeQL query, a CodeQL-based validator executes
and scores it on both the vulnerable and patched versions of the repository, and the agent uses the
validation feedback to propose targeted repairs. The loop terminates successfully when the validator
accepts a query, or fails after a fixed iteration budget. In this section, we elaborate the major design
components that make the loop effective.

3.1 PROBLEM STATEMENT

The task of vulnerability detection is generally framed as a taint analysis task, where the goal of a
query is to find dataflow paths from a source (e.g., an API endpoint accepting user input) to a sink
(e.g., a database write) that lack proper sanitization (e.g., filtering malicious data).

We formalize the Vulnerability Query Synthesis problem as follows. Assume as input a vulnerable
project version Py, its fixed version Phyed, and a textual CVE description (commonly available
in open vulnerability reports). Let us assume we have inter-procedural dataflow program graphs
for each code version: Gyuin = (Vouln, Evuin) and Gaxed = (Viixed, Pixed)- Let AP denote the
source-level patch between Py, and Pryeq. We represent the patch in the dataflow-graph domain
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as a patch subgraph AG = (AV, AE), where AV is the set of graph nodes that correspond to the
modified program snippets.

A vulnerability path query () evaluated on a graph G returns a set of dataflow paths, denoted as
IT = [Q](G). We write each path 7 € Il as ™ = {(vy, ..., vx), where each v; € V is a node in the
dataflow graph GG. Consecutive nodes (v;, v;41) should be either connected by an existing edge in
E, or an additional taint step specified in the query @, to compensate for missing edges via dataflow
graph construction. Specifically, we call v; the source of path 7 and vy, the sink of 7.

Synthesis task. We aim to synthesize a query () from the vulnerability report satisfying the follow-
ing requirements:

1. Well-formedness. () is syntactically valid (based on the latest CodeQL syntax) and can be
executed on the target CodeQL infrastructure (e.g., dataflow graphs) without runtime errors.
2. Vulnerability detection. () generates at least one path 7 in the vulnerable version that traverses
the patched region:
Ir € [Q)(Gyum) suchthat 7N AV # (.

3. Fix discrimination. () does not report the vulnerability in the fixed version. Concretely, no path
reported on the fixed version should traverse the patched locations:

v € [Q](Gfixed), wehave wNAV ={.

In other words, the synthesized query must be executable, must witness the vulnerability in the
vulnerable version via a path that uses code touched by the fix, and must not attribute the same
(patched) behavior in the fixed version. When only the well-formedness condition is satisfied, we say
that the query @ is valid (denoted as valid(Q)); when all the conditions are satisfied, the query @
is successful (denoted as success(Q; Pouln, Prixed))- Note that these criteria may admit potentially
false positive paths in both versions. It might be possible to consider additional constraints regarding
precision, but it might further complicate synthesis. In practice, we find most queries synthesized
by FineNib already have high precision.

3.2 DESIGN OF FINENIB

Concretely, FineNib proceeds in an iterative refinement loop indexed by ¢ = [0, 1, ...]. Via prompt-
ing, the LLM agent-based synthesizer first proposes an initial candidate query ). For each iteration
i, the validator evaluates (); and produces a feedback report. We consider synthesis successful at
iteration 4 iff success(Q;; Pyuln, Prixea) holds; in that case the loop terminates and @); is returned.
Otherwise, the synthesizer analyzes the feedback and the previous candidate @);, and produces the
next query candidate Q1. The loop stops successfully when success(-) is achieved or fails once
i reaches the pre-configured limit /V (in our implementation N = 10). The remainder of the design
focuses on two aspects: 1) how the agentic synthesizer performs synthesis, and 2) how the validator
generates and communicates feedback. We elaborate on both below.

Agentic synthesizer. In each iteration ¢, the LLM-based agentic synthesizer runs an inner conver-
sation loop of up to M turns. In each turn, the agent either performs internal reasoning or issues a
tool call by emitting a JSON-formatted action. When a tool call succeeds, the tool returns a JSON-
formatted response that is appended to the conversation history. Conversation histories are kept local
to the current refinement iteration (i.e., not carried over between iterations) to keep context compact
and relevant. In practice, we set M = 50, i.e., the agent may interact with tools up to 50 times
before generating a candidate query for validation.

Two design choices are critical for the effectiveness of this loop: 1) the initial prompt that initializes
and constrains the agent’s behavior, and 2) the foolbox of callable tools, each exposed by a custom
Model Context Protocol (MCP) server. We refer to the combined problem of designing these items
as Context Engineering (discussed in Section [3.3).

CodeQL-Based Validator. The validator compiles and executes each candidate query against the
vulnerable and fixed versions and returns a concise, structured feedback report that is used to drive
refinement (Figure [3). The report contains: (i) CodeQL compilation results, (ii) execution counts
(matches on vulnerable and fixed graphs), (iii) recall and coverage statistics, (iv) concrete coun-
terexample traces and hit locations, and (v) a prioritized set of next-step recommendations (e.g., add
qualifiers, synthesize sanitizer checks, or expand taint steps) that are programmatically generated
via a template.
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Figure 4: Illustration of example traces of conversation during the synthesis of the query in the
motivating example (Figure 2. LLM-agent may think, invoke tools that are available in the toolbox,
and receive responses from the MCP servers.

3.3 CONTEXT ENGINEERING FOR AGENTIC SYNTHESIZER

The primary goal of context engineering is to expose the LLM-based agent to the most precise
amount of information: enough for the agent to make progress, but not so much that the LLM
is confused or the cost explodes. As illustrated in Figure [3] FineNib relies on two primary MCP
servers to provide demand-driven, structured information to the agent: a retrieval-augmented vector
database and a CodeQL Language Server interface. We show example traces of conversation loop
in Figure ] and describe the available tools below.

Initial prompt. Each refinement iteration begins with an initial prompt that kicks-off the agentic
conversation loop. The initial prompt in the first iteration contains a query skeleton for reference
(See § [A.T]for an example). In subsequent iterations, the prompt contains a summary of the syn-
thesis goal and constraints, the previous candidate query ;_1, and the validator feedback report.
Concretely, the initial prompt emphasizes: (i) the success predicate (see Success(+)), (i) concrete
counterexamples from previous feedback, and (iii) an explicit list of callable tools and their purpose.

Vector database. We use a retrieval-augmented vector database (ChromaDB MCP server in our im-
plementation) to store large reference corpora without polluting the LLM prompt. The database is
pre-populated with (i) vulnerability analysis notes and diffs, (ii)) Common Weaknesses Enumeration
(CWE) definitions, (iii) same-version CodeQL API documentation, (iv) curated CodeQL sample
queries, and (v) small abstract syntax tree (AST) snippets extracted from the target repository. Dur-
ing a conversation loop, the agent issues compact retrieval queries (e.g., to fetch example CodeQL
queries related to the CWE) and receives ranked documents or snippets on demand.

In practice, we may populate our RAG database with tens of thousands of documents. Even with this
large corpus, we observe that the LLM-agent reliably retrieves exactly the kinds of artifacts it needs:
CodeQL sample queries that inspire overall query structure, small AST snippets that suggest the
precise syntactic navigation, and vulnerability writeups or diff excerpts that help discriminate buggy
from patched behavior. These demand-driven lookups let the agent gather high-quality information
without loading the main prompt with large reference corpora.

CodeQL language server. We expose the CodeQL Language Server (Github), |d) through a MCP
server that the agent can call for precise syntax-aware guidance. Importantly, we developed our
own CodeQL Language Server client and MCP server that ensures syntactic validity (especially for
the given CodeQL version) during query generation. The LLM agent’s MCP client makes the tool
call which is received by the CodeQL MCP server. The MCP server forwards tool calls, such
as complete(file, loc, char), diagnostics(file), and definition(file,
loc, char), to the underlying CodeQL process and returns JSON-serializable responses. Tools
such as completion help the agent fill query templates and discover correct API or AST names,
while diagnostics reveal compile or linter errors (e.g., unknown predicate names) that guide
mutation. Appendix [B]shows the full specification and example request and response schemas.

3.4 DISCUSSION: ALTERNATIVE DESIGNS

We discuss several alternative designs that we considered but found ineffective in practice. Allowing
the agent unrestricted access to compile-and-run CodeQL via MCP led to severe performance degra-
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Table 1: FineNib Query Success by CWE Type

CWE Type Total CVEs  # Success Success (%) Avg Precision
CWE-022 (Path Traversal) 48 31 64.6 0.75
CWE-079 (Cross-Site Scripting) 36 18 50.0 0.621
CWE-094 (Code Injection) 20 12 60.0 0.606
CWE-078 (OS Command Injection) 12 7 58.3 0.628
CWE-502 (Deserialization) 6 4 66.7 0.853
CWE-611 (XXE) 5 3 60.0 0.657
Other CWEs (<4 CVEs) 49 19 38.8 0.504
Total 176 94 534 0.631

dation: compilation and full execution are expensive operations that the LLM soon overused, so we
instead expose only lightweight diagnostics during the conversation and defer full compile-and-run
to the end of each iteration. Permitting free online search for vulnerability patterns or snippets sim-
ilarly proved problematic. It is both costly and easy for the agent to rely on web lookups, which
quickly pollutes the working context and degrades synthesis quality. Equipping the agent with an
extensive set of heterogeneous tools led to confusion and poor tool-selection behavior; in contrast, a
small, well-scoped toolbox yields more reliable actions. Finally, retaining full conversation histories
across refinement iterations induced context rot and ballooning prompt sizes, so we keep histories
local to each iteration. Overall, our current design is a pragmatic trade-off that balances cost, re-
sponsiveness, and synthesis effectiveness.

4 EVALUATION

We answer the following research questions in this work:

* RQ 1: For how many CVEs, can FineNib generate queries successfully?
* RQ 2: How useful is each component of FineNib?
* RQ 3: How does the choice of base agent framework affect FineNib’s effectiveness?

4.1 EXPERIMENTAL SETUP

We develop FineNib on top of the Claude Code framework (Anthropic,2025) and use Claude Sonnet
4 for all our experiments. For agent baselines, we select Codex with GPT-5 (minimal reasoning) and
Gemini CLI with Gemini 2.5 Flash. For each CVE and agent baseline, we use a maximum of 10
iterations (N = 10). For static analysis baselines, we select IRIS |Li et al| (2025b) and CodeQL
(version 2.22.2) query suites. Experiments were run on machines with the following specifications:
an Intel Xeon Gold 6248 2.50GHz CPU, four GeForce RTX 2080 Ti GPUs, and 750GB RAM.

Dataset. We used CWE-Bench-Java (Li et al., 2025b) and its latest update, which added new CVEs
from 2025. We were able to successfully build and use 111 (out of 120) Java CVEs evaluated in
IRIS (L1 et al., [2025b), and 65 (out of 91) 2025 CVEs. Each sample in CWE-Bench-Java comes
with the CVE metadata and fix commit information associated with the bug.

4.2 EVALUATION METRICS

Besides Valid(Q) and Success(Q; Pyuln, Prxed ), We use the following terms and metrics when eval-
uating FineNib and baselines on the problem of vulnerability query synthesis:

_ Hr € [QI(Grum) [ T VAV # 0}
[QN(Gvum)] ’

Rec(Q) = 137 € [Q[(Gvum), m N AV # 0], Prec(Q)

~ Prec(Q) - Rec(Q)
Prec(Q) + Rec(Q)

F1(Q) =

4.3 RQI1: FINENIB EFFECTIVENESS

FineNib vs. state-of-the-art QL. Table|l|shows FineNib’s overall query synthesis success rate
by CWE. Table [2| shows the notable increase in precision between CodeQL, IRIS, and FineNib. We
have successfully synthesized 53.4% of the CVEs. For half the queries FineNib correctly synthe-
sized CodeQL, detect the CVE, did not find false positives when executed on the fixed version of
the CVE’s repository. The lack of true positive recall is why CodeQL and IRIS have significantly
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Table 2: Recall Performance Comparison Across Methods (Shared CVEs: 130)
Method Recall Rate (%) Avg Precision Avg F1 Score

CodeQL 20.0 0.055 0.073
IRIS 354 0.031 0.048
FineNib 80.0 0.672 0.700

Recall Rate Comparison by CWE Type Across Different Methods (Shared CVEs: 102)

100 == CodeQL mem SB Snyk RIS B TOOL |
92.9°

78.9% 79.4%

804

65.5%

60 4

Recall Rate (%)

40 4

CWE-022 CWE-078 CVVE—079 C\‘\"E‘—OM Overall
CWE Type

Figure 5: Recall Rate Comparison by CWE Type Across Different Methods (102 CVEs).

lower precision. CodeQL’s queries are broad, categorized by CWE queries. IRIS generates all of
the predicates for potential sources and sinks wit CodeQL, and does not generate sanitizer or taint
step predicates.

Impact of training cut-off. We also want to take note that Claude Sonnet 4’s training cut-off
is March 2025. Table [3] shows that FineNib performs consistently regardless of CVEs before or
after the cut-off period. The CodeQL version, 2.22.2, was released in July 2025. New versions of
CodeQL often include analysis improvements and new QL packs la).

Table 3: Tool Performance Before vs After Training Cutoff

CVE Period Total CVEs #Recall Success (%) Avg Precision Avg F1 Score
Pre-2025 (2011-2024) 111 64 57.7 0.676 0.702
2025+ (Post-cutoff) 65 30 46.2 0.555 0.583
Overall 176 94 534 0.631 0.658

4.4 RQ2: ABLATION STUDIES

For ablations, we chose 20 CVEs and ran FineNib with one of the FineNib components removed (Ta-
ble ). The ablation with no tools refers to only running Claude Code with the iterative feedback
system. The high recall rate when removing access to the AST cache while lowered recall rates
without the LSP server or documentation access show that the LSP and documentation lookup im-
pact the synthesis performance more. We also include FineNib’s performance on the same set of
CVEs, and point out its significantly higher query success rate and precision score. Claude Code
without tools scored a high recall rate, yet failed to synthesize queries without false positives when
executed on the fixed version.

4.5 RQ3: STATE OF THE ART AGENT COMPARISON

FineNib can be transferred to other coding agents by MCP configuration changes, since its tools are
MCEP servers. Changing agents involves using a different CLI command to start the coding agent,
which was a minor adjustment for using FineNib. We used Gemini CLI with Gemini 2.5 Flash, and
Codex with GPT-5 minimal. We evaluated their performance on 20 CVEs, and although there were
no successful queries, we achieved an increase in compilation success for both agents compared to
using the agents without FineNib in Table[3]
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Table 4: Ablation Study (out of 20 CVEs)

Variant % Successful Recall Rate  Avg Precision Avg F1 Score
FineNib 55% 80% 0.67 0.69
w/o LSP 25% (—30%) 55% (—25%) 0.32 0.36
w/o Doc/Ref  20% (—35%) 55% (—25%) 0.32 0.36
w/o AST 25% (—30%) 80% (+0%) 0.41 0.47
w/o Tools 10% (—45%) 55% (—25%) 0.33 0.36

Table 5: LLM-agent baselines’ compilation rate on 20 CVEs.

Agent Baselines  Configuration Compilation Rate (%)
Gemini CLI Gemini 2.5 Flash (with tools) 24

Gemini CLI Gemini 2.5 Flash (without tools) 19

Codex GPT 5 (with tools) 24

Codex GPT 5 (without tools) 0

5 RELATED WORK

LLMs and vulnerability detection. LLMs have been used extensively for vulnerability detection
and repair using techniques such as fine-tuning and prompt engineering (Zhou et al.| 2024). LLMs
have also been combined with existing program analysis tools for vulnerability detection. The com-
bination of LLMs can be used from vulnerability analysis like IRIS’s (Li et al., 2025b)) source and
sink identification, however IRIS depends on a limited set of CWE templates derived from CodeQL’s
CWE queries. IRIS also only the LLM for identifying sources and sinks. KNighter synthesizes CSA
checkers given a fix commit of a C repository(Yang et al.| |2025)), however the checkers are written in
C which has more available training data. MocQ’s uses an LLM to derive a subset DSL of CodeQL
and Joern, and then provides a feedback loop to the LLM though prompting via API calls is used
rather than an agent with tools and MocQ uses significantly higher iterations, with a max threshold
of 1,000 iterations per vulnerability experiment. (Li et al.| 2025a).

LLM agents and tool usage. SWE-agent pioneered the idea of autonomous LLM agents using
tools for software engineering tasks Yang et al.| (2024). LSPAI|Go et al.|(2025)), an IDE plugin, uses
LSP servers to guide LLM-generated unit tests. Hazel, a live program sketching environment, uses
a language server (Blinn et al., [2024)) to assist code completions synthesized by LLMs. The Hazel
Language Server provides the typing context of a program hole to be filled.

Low resource LLM code generation. SPEAC uses ASTs combined with constraint solving to
repair LLM-generated code for low resource programming languages (Mora et al., [2024). SPEAC
converts a buggy program into an AST and uses a solver to find the minimum set of AST nodes to
replace, to satisfy language constraints. MultiPL-T generates datasets for low resource languages by
translating high resource language code to the target language and validates translations with LLM
generated unit tests (Cassano et al., 2024).

6 CONCLUSION AND LIMITATIONS

We present FineNib, an agentic framework for synthesizing syntactically correct and precise Cod-
eQL queries given known vulnerability patterns. We will also open source our CodeQL LSP MCP
server and FineNib. In future work, we plan to explore efficient ways to synthesize, and to combine
our synthesized queries with dynamic analysis tools.

Limitations. We omit CVEs where the vulnerability involves non-Java code such as configuration
files or other languages. FineNib can be used with exploit generation to find vulnerabilities that are
realized during dynamic execution. For supporting other languages that can be queried by CodeQL,
the vector database can be filled with references, documentation, and example queries in other Cod-
eQL supported languages. We also want to note that Claude Sonnet 4’s official training cut-off is
March 2025, however the 2025 CVEs evaluated were reported between January to August 2025.
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A CODEQL QUERIES

A.1 CoODEQL QUERY STRUCTURE TEMPLATE

The template below is given to the LLM agent at the start of the iterative query synthesis task.
The prompt instructs the LLM to use the AST nodes, along with the CodeQL LSP and CodeQL
references in the vector database, to fill in this template. The prompt also takes note to find similar
queries related to the given CVE’s vulnerability.

Jx*
* (@name [Vulnerability Name based on analysis]
@description [Description derived from the vulnerability pattern]
@problem.severity error
@security-severity [score based on severity]
@precision high
@tags security
@kind path-problem
@id [unique-id]

R =T = T T S R S
%k % % % % %

10 */

11 import java

12 import semmle.code. java.frameworks.Networking

13 import semmle.code. java.dataflow.DataFlow

14 import semmle.code.java.dataflow.FlowSources

15 import semmle.code. java.dataflow.TaintTracking

16 private import semmle.code.java.dataflow.ExternalFlow

18 class Source extends DataFlow: :Node {

19 Source () {

20 exists ([AST node type from analysis]

21 /+ Fill based on AST patterns for sources identified in Phase 1 & 2 */
2 and this.asExpr () = [appropriate mapping]

25}

27 class Sink extends DataFlow: :Node ({

28 Sink () {

29 exists ([AST node type] |

30 /+ Fill based on AST patterns for sinks */
31 and this.asExpr () = [appropriate mapping]

32 ) or

33 exists ([Alternative AST pattern] |

34 /* Additional sink patterns from analysis */
35 and [appropriate condition]

38}
40 class Sanitizer extends DataFlow: :Node {

41 Sanitizer () {
4 exists ([AST node type for sanitizers] |

11


https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2404.02525
https://arxiv.org/abs/2404.02525

o~

© ® N kW

Under review as a conference paper at ICLR 2025

/+ Fill based on sanitizer patterns from Phase 1 & 2 */

}

module MyPathConfig implements DataFlow::ConfigSig {
predicate isSource (DataFlow: :Node source) {
source instanceof Source

}

predicate isSink (DataFlow: :Node sink) {
sink instanceof Sink

}

predicate isBarrier (DataFlow::Node sanitizer) {
sanitizer instanceof Sanitizer

}

predicate isAdditionalFlowStep (DataFlow::Node nl, DataFlow::Node n2) {{
/+ Fill based on additional taint steps from analysis #*/
}}
+}

module MyPathFlow = TaintTracking::Global<MyPathConfig>;
import MyPathFlow: :PathGraph

from
MyPathFlow: :PathNode source,
MyPathFlow: :PathNode sink
where
MyPathFlow: :flowPath (source, sink)
select
sink.getNode (),
source,
sink,
"[Alert message based on vulnerability]l",
source.getNode (),
"[source description]”

A.2 ITERATIVE FEEDBACK EXAMPLE

The following is an excerpt from the prompt used in a new context window that instructs the agent to
improve the last iteration’s query. The feedback is derived from automatically running synthesized
queries against the fixed and vulnerable versions of the CVE’s repository, and comparing the query’s
results against the changed methods in the CVE fix commit diff. The feedback also includes any
successful method hits, false positive method hits, and which fixed methods have not been detected
by the query.

Objective
Refine the CodeQL query based on previous iteration feedback to

— improve wvulnerability detection.

## Previous Iteration Feedback
Iteration 2 Results

## Previous Query (Iteration 2)

[ al
/o k
* @name AntiSamy XSS Bypass in Style Tags

12
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* (@description Detects potential XSS vulnerabilities where

— AntiSamy HTML sanitization fails to properly filter malicious

— sStyle tags with event handlers

* (@problem.severity error

* @security-severity 6.1

* @precision high

* @tags security

* @kind path-problem

* @id java/antisamy-style-xss—bypass
*/

import java
import semmle.code. java.dataflow.DataFlow
import semmle.code. java.dataflow.TaintTracking

class MaliciousHtmlInput extends DataFlow::Node {
MaliciousHtmlInput () {
exists (StringLiteral sl |

this.asExpr() = sl and
(
sl.getValue () .matches ("%<style%onload%>%") or
sl.getValue () .matches ("%$<style%Sonclick%>%") or
sl.getValue () .matches ("%<style%onerror%>%") or
sl.getValue () .matches ("%<style%onmouseover%>%") or
sl.getValue () .matches ("%$style%alerts") or
sl.getValue () .matches ("%<style%javascript%") or
sl.getValue () .matches ("%<style%expression%")
)
) or
exists (Parameter p |
this.asParameter () = p and
(
p.getName () .toLowerCase () .matches ("%$html%") or
p.getName () .toLowerCase () .matches ("%$inputs") or
p.getName () .toLowerCase () .matches ("%content%")

}

class AntiSamyProcessing extends DataFlow: :Node {

AntiSamyProcessing () {
exists (MethodCall mc |
this.asExpr () = mc and

mc.getMethod () .hasName ("scan") and
mc.getMethod () .getDeclaringType () (RefType)
.hasQualifiedName ("org.owasp.validator.html",

) or

exists (MethodCall mc |
this.asExpr () = mc and
mc.getMethod () .hasName ("getCleanHTML") and
mc.getQualifier () .getType () . (RefType)

.hasQualifiedName ("org.owasp.validator.html",
— "CleanResults")

}

class PotentialXssOutput extends DataFlow::Node {
PotentialXssOutput () {

13
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67 exists (MethodCall mc |

68 this.asExpr () = mc and

69 (

70 mc.getMethod () .hasName ("contains") and

71 exists (StringlLiteral sl |

7 mc.getAnArgument () = sl and

73 (

74 sl.getValue () .matches ("%alerts") or

75 sl.getValue () .matches ("$scripts") or

76 sl.getValue () .matches ("%$javascript%") or

77 sl.getValue () .matches ("$Sonload%s") or

78 sl.getValue () .matches ("$onclicks")

79 )

80 )

81 )

82 ) or

83 exists (MethodCall mc |

84 this.asExpr() = mc and

85 mc.getMethod () .hasName ("getCleanHTML") and

86 mc.getQualifier () .getType (). (RefType)

87 .hasQualifiedName ("org.owasp.validator.html",
— "CleanResults")

88 )

89 }

90 }

91

92 class ImproperSanitizationBarrier extends DataFlow::Node {

93 ImproperSanitizationBarrier () {

94 exists (MethodCall mc |

95 this.asExpr() = mc and

96 mc.getMethod () .hasName ("assertTrue") and

97 exists (LogNotExpr lne |

98 mc.getAnArgument () = lne and

99 lne.getExpr (). (MethodCall) .getMethod () .hasName ("contains™")

100 )

101 )

102 }

103}

104

15 module AntiSamyXssConfig implements DataFlow::ConfigSig {

106 predicate isSource (DataFlow: :Node source) {
107 source instanceof MaliciousHtmlInput

108 }

109

110 predicate isSink (DataFlow: :Node sink) {

111 sink instanceof PotentialXssOutput
112 }
113

114 predicate isBarrier (DataFlow: :Node sanitizer) {

115 sanitizer instanceof ImproperSanitizationBarrier

116 }

117

118 predicate isAdditionalFlowStep (DataFlow::Node nl, DataFlow: :Node
— DZ) {

119 exists (MethodCall mc |

120 nl.asExpr () = mc.getQualifier () and

121 n2.askExpr () = mc and

122 mc.getMethod () .hasName ("scan") and

123 mc.getMethod () .getDeclaringType () . (RefType)

14
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.hasQualifiedName ("org.owasp.validator.html", "AntiSamy")

) or

exists (MethodCall mc |
nl.asExpr() = mc.getQualifier () and
n2.askExpr () = mc and

mc.getMethod () .hasName ("getCleanHTML")
)

}

module AntiSamyXssFlow = TaintTracking::Global<AntiSamyXssConfig>;
import AntiSamyXssFlow::PathGraph

from
AntiSamyXssFlow: :PathNode source,
AntiSamyXssFlow: :PathNode sink
where
AntiSamyXssFlow::flowPath (source, sink)
select
sink.getNode (),
source,
sink,
"Potential XSS vulnerability: HTML input with malicious style
— tags may bypass AntiSamy sanitization",
source.getNode (),
"malicious HTML input"

[

Compilation Results
COMPILATION SUCCESS: Query syntax is wvalid

Execution Results

ﬂﬂ Query Evaluation Summary (Iteration 2)

Results: Vulnerable=8, Fixed=8

Method Recall: Vulnerable=True, Fixed=True

True Positive Methods: Vulnerable=2, Fixed=2

Coverage: 1/1 target methods

PARTIAL: Query hits targets but has false positives in fixed
— version

Method location format is path/to/hit/file.java:[Class of hit
— method] : [Hit method]

Successfully targeted methods:

« —src/main/java/org/owasp/validator/html/scan/MagicSAXFilter. java:MagicSAXFilte
False positives (hits in fixed version):

— src/main/java/org/owasp/validator/html/scan/MagicSAXFilter. java:MagicSAXFilter
Detailed Evaluation Analysis
+*+xMethod Coveragex+: 1/1 target methods
x+File Coveragexx: 1/1 target files
x+x3uccessfully targeted filesx*x*:

- MagicSAXFilter. java

x*xSuccessfully targeted methodsx*x*:
- startElement

x*xFalse positives (hit in fixed version) xx:

15
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- startElement

x*+Evaluation Summaryxx*:

— Vulnerable DB File Recall: True

— Fixed DB File Recall: True

— Vulnerable DB Method Recall: True

— Fixed DB Method Recall: True

— Total Query Results: Vulnerable=8, Fixed=8
— Code Flow Paths: Vulnerable=8, Fixed=8

Next Steps
We want vulnerable DB method recall and we donﬂt want fixed DB

— method recall!
x*+«Priority++: Reduce false positives by adding more specific
— conditions to avoid hitting the methods listed above.

A.3 FINENIB SYNTHESIZED QUERY EXAMPLES

Below are examples of successful synthesized queries. The queries successfully find > 0 true
positive method hits on the vulnerable CodeQL database of the CVE’s source code, and no false
positive method hits on the fixed version’s CodeQL database. For reference queries to compare
with, CWE queries can be found on the official CodeQL repository
CVE-2025-27136, CWE-611 - Improper Restriction of XML External Entity Reference

J x*
* @name XML External Entity vulnerability in WstxInputFactory
— without secure configuration
* (@description WstxInputFactory used in XmlFactory without
— disabling DTD support and external entities allows XXE
— attacks

@problem.severity error

@security-severity 9.1

@precision high

@tags security

@kind path-problem

@id java/wstxinputfactory—-xxe

S

*/

import java

import semmle.code. java.dataflow.DataFlow

import semmle.code. java.dataflow.FlowSources

import semmle.code. java.dataflow.TaintTracking
private import semmle.code.java.dataflow.ExternalFlow

class WstxInputFactoryCreation extends DataFlow::Node {
WstxInputFactoryCreation () {
exists (MethodCall mc |

mc.getMethod () .hasQualifiedName ("com.ctc.wstx.stax",
— "WstxInputFactory", "newInstance") or
mc.getMethod () .hasQualifiedName ("com.ctc.wstx.stax",
— "WstxInputFactory", "newFactory")

|
this.asExpr () = mc

) or

exists (ClassInstanceExpr cie |

— cle.getConstructedType () .hasQualifiedName ("com.ctc.wstx.stax",

— "WstxInputFactory") and

16
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this.asExpr () = cie
) or
// Include variable access to WstxInputFactory instances (like
— "input" parameter)
exists (Variable v, VarAccess va |
v.getType () . (RefType) .hasQualifiedName ("com.ctc.wstx.stax",
— "WstxInputFactory") and
va.getVariable() = v and
this.asExpr() = va

)

36
37
38
39
40
41
4
43

class UnsafeXmlFactoryUsage extends DataFlow: :Node {
UnsafeXmlFactoryUsage ()
exists (ClassInstanceExpr xmlFactoryCall

// XmlFactory constructor with WstxInputFactory parameter

xmlFactoryCall.getConstructedType ()
.hasQualifiedName ("com.fasterxml. jackson.dataformat.xml",
— "XmlFactory") and
xmlFactoryCall.getArgument (0) = this.asExpr ()
) or
exists (ClassInstanceExpr xmlMapperCall, ClassInstanceExpr
— xmlFactoryCall |
// XmlMapper constructor using XmlFactory with
— WstxInputFactory
xmlMapperCall.getConstructedType ()
.hasQualifiedName ("com.fasterxml. jackson.dataformat.xml",
— "XmlMapper") and
xmlFactoryCall.getConstructedType ()
.hasQualifiedName ("com.fasterxml. jackson.dataformat.xml",
— "XmlFactory") and
xmlMapperCall.getArgument (0) = xmlFactoryCall and
xmlFactoryCall.getArgument (0) = this.asExpr ()

55
56
57
58
59

class WstxInputFactorySanitizer extends DataFlow::Node {
WstxInputFactorySanitizer () {
exists (MethodCall setPropertyCall, VarAccess factoryVar |

— setPropertyCall.getMethod() .hasQualifiedName ("javax.xml.stream",
— "XMLInputFactory", "setProperty") and
setPropertyCall.getQualifier () = factoryVar and
(
// DTD support disabled
(exists (Field f |
setPropertyCall.getArgument (0) = f.getAnAccess () and
f.hasName ("SUPPORT_DTD") and

— f.getDeclaringType () .hasQualifiedName ("javax.xml.stream",
— "XMLInputFactory")

) and

exists (Field f |
setPropertyCall.getArgument (1) = f.getAnAccess () and

f.hasName ("FALSE") and
f.getDeclaringType () .hasQualifiedName (" java.lang",
— "Boolean")

17
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75 )) or

76 // External entities disabled

77 (exists (Field £ |

78 setPropertyCall.getArgument (0) = f.getAnAccess () and

79 f.hasName ("IS_SUPPORTING_EXTERNAL_ENTITIES") and

80
— f.getDeclaringType () .hasQualifiedName (" javax.xml.stream",
— "XMLInputFactory")

81 ) and

82 exists (Field f |

83 setPropertyCall.getArgument (1) = f.getAnAccess () and

84 f.hasName ("FALSE") and

85 f.getDeclaringType () .hasQualifiedName (" java.lang",

— "Boolean")
86 ))
87 ) and
88 this.asExpr () = factoryVar
89 )
90 }
91 }
92
93 module WstxInputFactoryFlowConfig implements DataFlow::ConfigSig {

94 predicate isSource (DataFlow: :Node source) {

95 source instanceof WstxInputFactoryCreation

96 }

97

98 predicate isSink (DataFlow: :Node sink) {

99 sink instanceof UnsafeXmlFactoryUsage

100 }

101

102 predicate isBarrier (DataFlow::Node sanitizer) {

103 sanitizer instanceof WstxInputFactorySanitizer

104 }

105

106 predicate isAdditionalFlowStep (DataFlow::Node nl, DataFlow: :Node

— n2 ) {

107 // WstxInputFactory passed to XmlFactory constructor

108 exists (ClassInstanceExpr xmlFactoryCall |

109 xmlFactoryCall.getConstructedType ()

110 .hasQualifiedName ("com.fasterxml. jackson.dataformat.xml",
— "XmlFactory") and

111 xmlFactoryCall.getArgument (0) = nl.asExpr () and

112 n2.askExpr () = xmlFactoryCall

113 ) or

114 // XmlFactory passed to XmlMapper constructor

115 exists (ClassInstanceExpr xmlMapperCall |

116 xmlMapperCall.getConstructedType ()

117 .hasQualifiedName ("com.fasterxml. jackson.dataformat.xml",
— "XmlMapper") and

118 xmlMapperCall.getArgument (0) = nl.asExpr () and

119 n2.askExpr () = xmlMapperCall

120 )
121 }
122}
123
124 module WstxInputFactoryFlow =
— TaintTracking::Global<WstxInputFactoryFlowConfig>;
125 import WstxInputFactoryFlow::PathGraph
126
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127 from

128 WstxInputFactoryFlow: :PathNode source,

129 WstxInputFactoryFlow: :PathNode sink

130 where

131 WstxInputFactoryFlow: :flowPath (source, sink)

132 select

133 sink.getNode (),

134 source,

135 sink,

136 "WstxInputFactory used without secure configuration flows to XML
— parser, allowing XXE attacks",

137 source.getNode (),

138 "WstxInputFactory usage"

CVE-2025-0851, CWE-22 - Path Traversal

1 /x*
2 * @name Archive path traversal vulnerability (ZipSlip) -
— CVE-2025-0851
3 * @description Archive entries with path traversal sequences can

— write files outside the intended extraction directory
@problem.severity error

@security—-severity 9.8

@precision high

@tags security

@kind path-problem

@id java/archive-path-traversal-cve-2025-0851

%k %k % % %

10 */

12 import java
13 import semmle.code.java.dataflow.DataFlow
14 import semmle.code.java.dataflow.TaintTracking

16 /A%
17 * Sources: Archive entry names from ZipEntry.getName () and
— TarArchiveEntry.getName ()
18 */
19 class ArchiveEntryNameSource extends DataFlow::Node ({
20 ArchiveEntryNameSource () {
21 exists (MethodCall mc |
2 mc.getMethod () .getName () = "getName" and
[ (mc.getMethod () .getDeclaringType () .hasQualifiedName ("java.util.zip",
— "ZipEntry") or mc.getMethod /()
23 .getDeclaringType ()
— .hasQualifiedName ("org.apache.commons.compress.archivers.tar",
— "TarArchiveEntry")
24 ) and
25 this.asExpr () = mc
26 )
27 }
28}
29
0/
31 * Sinks: Path resolution operations that lead to file creation
) */
33 class PathCreationSink extends DataFlow: :Node {
34 PathCreationSink () {
35 // Arguments to Path.resolve() calls
36 exists (MethodCall resolveCall |

19



37
38
39
40
41
42
43
44
45
46
47
43
49
50
51

52
53
54
55
56
57
58
59
60
61
62

63
64
65

66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83

84
85

86
87

Under review as a conference paper at ICLR 2025

resolveCall.getMethod () .getName () = "resolve" and
resolveCall.getMethod () .getDeclaringType ()
.hasQualifiedName ("java.nio.file", "Path") and
this.asExpr () = resolveCall.getAnArgument ()

)

or

// Arguments to file creation operations

exists (MethodCall fileOp |
(

fileOp.getMethod () .getName () = "createDirectories" or
fileOp.getMethod () .getName () "newOutputStream" or
fileOp.getMethod () .getName () "write" or
fileOp.getMethod () .getName () = "copy"

) and

— fileOp.getMethod () .getDeclaringType () .hasQualifiedName ("java.nio.file",
— "Files") and
this.asExpr() = fileOp.getAnArgument ()

)

}
J x*

* Sanitizers: Proper validation that prevents path traversal
*/
class PathTraversalSanitizer extends DataFlow: :Node ({
PathTraversalSanitizer () {
// The validateArchiveEntry method call that properly
— validates paths
// This blocks flow after the validation call is made
exists (MethodCall validateCall |
validateCall.getMethod () .getName () = "validateArchiveEntry"
— and
(
// Any variable assigned from validateArchiveEntry call
- result
exists (Variable v |
this.asExpr() = v.getAnAccess () and

exists (AssignExpr assign |
assign.getDest () = v.getAnAccess () and
assign.getRhs () = validateCall
)
)
or
// Variables passed through validateArchiveEntry calls
this.asExpr () = validateCall.getAnArgument () and
exists (ExprStmt stmt | stmt.getExpr() = validateCall)
)
)
or
// Proper ".." validation with exception throwing (complete

— pattern)

exists (MethodCall containsCall, IfStmt ifStmt, ThrowStmt

— throwStmt |
containsCall.getMethod () .getName () = "contains" and
containsCall.getAnArgument () . (StringLiteral) .getValue() =
— ".." and
ifStmt.getCondition () .getAChildExpr* () = containsCall and
ifStmt.getThen () .getAChildx () = throwStmt and
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88 this.asExpr () = containsCall.getQualifier ()

89 )

90 or

91 // Path normalization combined with startsWith validation

92 exists (MethodCall normalizeCall, MethodCall startsWithCall |

93 normalizeCall.getMethod () .getName () = "normalize" and

94 normalizeCall.getMethod () .getDeclaringType ()

95 .hasQualifiedName ("java.nio.file", "Path") and

96 startsWithCall.getMethod() .getName () = "startsWith" and

97 startsWithCall.getMethod () .getDeclaringType () .

98 hasQualifiedName ("java.nio.file", "Path") and

99 DataFlow: :localFlow (DataFlow: :exprNode (normalizeCall),

100 DataFlow: :exprNode (startsWithCall.getQualifier())) and

101 this.asExpr () = normalizeCall.getQualifier ()

102 )

103 }

104}

i0s

06/ *

107 * Additional predicate to detect validation barriers at method
— level

108 */

109 predicate hasValidationCall (Callable method) {

110 exists (MethodCall validateCall |

111 validateCall.getEnclosingCallable() = method and

112 validateCall.getMethod () .getName () = "validateArchiveEntry"

113 )

4}

s

ne module PathTraversalConfig implements DataFlow::ConfigSig {

117 predicate isSource (DataFlow: :Node source) {
118 source instanceof ArchiveEntryNameSource
119 }
120
121 predicate isSink (DataFlow: :Node sink) {
122 sink instanceof PathCreationSink
123 }
124
125 predicate isBarrier (DataFlow::Node sanitizer) {
26 sanitizer instanceof PathTraversalSanitizer
127 }
128
129 predicate isBarrierIn(DataFlow: :Node node) {
130 // Barrier at method entry if method contains
— validateArchiveEntry call
131 node instanceof DataFlow::ParameterNode and
132 hasValidationCall (node.getEnclosingCallable ())
133 }
134
135 predicate isAdditionalFlowStep (DataFlow::Node nl, DataFlow: :Node
— n2 ) {
136 // Flow through variable assignments and declarations
137 exists (LocalVariableDeclExpr decl |
38 decl.getInit () = nl.asExpr () and
139 n2.askExpr() = decl.getVariable () .getAnAccess()
140 )
141 or
142 exists (AssignExpr assign |
143 assign.getRhs () = nl.asExpr () and
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}

modu

<
impo

from
—

wher

Pa

n2.askExpr () = assign.getDest ()
)
or
// Flow through string manipulation methods that preserve
— taint
exists (MethodCall mc |

mc.getAnArgument () = nl.asExpr () and
n2.asExpr () = mc and
(
mc.getMethod () .getName () = "removelLeadingFileSeparator"
mc.getMethod () .getName () = "trim" or
mc.getMethod () .getName () = "toString" or
mc.getMethod () .getName () = "substring"
)
)
or
// Flow through Path operations
exists (MethodCall pathOp |
pathOp.getAnArgument () = nl.asExpr () and
n2.asExpr () = pathOp and
pathOp.getMethod () .getName () = "resolve" and

pathOp.getMethod () .getDeclaringType ()
.hasQualifiedName ("java.nio.file", "Path")

le PathTraversalFlow =
TaintTracking::Global<PathTraversalConfig>;

rt PathTraversalFlow: :PathGraph

PathTraversalFlow: :PathNode source,
PathTraversalFlow: :PathNode sink

e

thTraversalFlow: :flowPath (source, sink) and

// Focus on the specific vulnerable files and methods

(

)

source.getNode () .getEnclosingCallable () .getDeclaringType ()
.hasName ("TarUtils") or

source.getNode () .getEnclosingCallable () .getDeclaringType ()
.hasName ("ZipUtils")

and
source.getNode () .getEnclosingCallable () .getName () = "untar"
source.getNode () .getEnclosingCallable () .getName () = "unzip"
and

// Only report flows where validation is NOT properly done

not hasValidationCall (source.getNode () .getEnclosingCallable())

sele

ct sink.getNode (), source, sink,

"Archive entry name from $@ flows to file system operation

SN
—
SO

without proper path traversal validation, allowing ZipSlip

attack.",
urce.getNode (), "archive entry name"

CCVE-2025-27528, CWE-502 - Deserialization of Untrusted Data

Jx*
* @

name MySQL JDBC URL parameter injection vulnerability
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* (@description Detects MySQL JDBC URLs with dangerous bracket
— parameters that bypass inadequate filtering in vulnerable
— code

* (@problem.severity error

* @security-severity 8.8

* @precision high

* @tags security

* @kind path-problem

* @id java/mysqgl-jdbc-url-injection

import java
import semmle.code.java.dataflow.DataFlow
import semmle.code. java.dataflow.TaintTracking

class MySQLDangerousBracketUrlSource extends DataFlow::Node {
MySQLDangerousBracketUrlSource () {
// String literals with dangerous MySQL parameters in bracket
— notation
exists (StringLiteral 1lit |
lit.getValue () .matches ("*mysglx") and

lit.getValue () .matches ("*[*]+") and

(
lit.getValue () .matches ("+xallowLoadLocalInfilex") or
lit.getValue () .matches ("+allowUrlInLocalInfilex") or
lit.getValue () .matches ("+autoDeserializex") or
lit.getValue () .matches ("*allowPublicKeyRetrieval«") or
lit.getValue () .matches ("+*serverTimezonex") or
lit.getValue () .matches ("+xuser+") or
lit.getValue () .matches ("*passwordx*")

) and

this.asExpr () = lit

)

or

// Parameters to filterSensitive method that may contain
— dangerous bracket content

exists (Method m, Parameter p |

m.hasName ("filterSensitive") and
m.getDeclaringType () .getName () = "MySQLSensitiveUrlUtils"
— and

p = m.getAParameter () and

this.asParameter () = p

}

class VulnerableCodePatternSink extends DataFlow::Node ({
VulnerableCodePatternSink () {
// The vulnerability: calls to filterSensitive in vulnerable
— code patterns
exists (Method m, MethodCall filterCall |
m.hasName ("filterSensitive") and
m.getDeclaringType () .getName () = "MySQLSensitiveUrlUtils"
— and
filterCall.getMethod() = m and
this.asExpr () = filterCall and
// Key vulnerability condition: this code exists where
— filterSensitiveKeyByBracket method is NOT available
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// In the vulnerable version, filterSensitiveKeyByBracket
— doesn't exist
not exists (Method bracketMethod |
bracketMethod.hasName ("filterSensitiveKeyByBracket") and
bracketMethod.getDeclaringType () .getName () =
— "MySQLSensitiveUrlUtils" and
bracketMethod.getDeclaringType () = m.getDeclaringType ()

)
or
// Additional sink: method calls that use the result of
— I1nadequate filtering
exists (MethodCall mc, MethodCall filterCall |
filterCall.getMethod () .hasName ("filterSensitive") and
filterCall.getMethod () .getDeclaringType () .getName () =
— "MySQLSensitiveUrlUtils" and
DataFlow: :localFlow (DataFlow: :exprNode (filterCall),
— DataFlow: :exprNode (mc.getArgument (_))) and
this.asExpr () = mc and
// Only vulnerable if no proper bracket filtering exists in
< the same class
not exists (Method bracketMethod |
bracketMethod.hasName ("filterSensitiveKeyByBracket") and
bracketMethod.getDeclaringType () .getName () =
— "MySQLSensitiveUrlUtils" and
bracketMethod.getDeclaringType () =
— filterCall.getMethod() .getDeclaringType ()

}

class ProperBracketFilteringSanitizer extends DataFlow::Node ({
ProperBracketFilteringSanitizer () ({
// The proper bracket-based sanitization method (present only
— 1n fixed version)
exists (MethodCall mc |
mc.getMethod () .hasName ("filterSensitiveKeyByBracket") and
mc.getMethod () .getDeclaringType () .getName () =
— "MySQLSensitiveUrlUtils" and
this.asExpr () = mc

}

module MySQLJDBCUrlInjectionConfig implements DataFlow::ConfigSig
= |
predicate isSource (DataFlow: :Node source) {
source instanceof MySQLDangerousBracketUrlSource

}

predicate isSink (DataFlow: :Node sink) {
sink instanceof VulnerableCodePatternSink

}

predicate isBarrier (DataFlow::Node sanitizer) {
sanitizer instanceof ProperBracketFilteringSanitizer

}
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101 predicate isAdditionalFlowStep (DataFlow::Node nl, DataFlow: :Node
— n2) {

102 // Flow through string concatenation operations

103 exists (AddExpr addExpr |

to4 nl.asExpr () = addExpr.getlLeftOperand() and

105 n2.askExpr () = addExpr

106 )

107 or

108 exists (AddExpr addExpr |

109 nl.asExpr () = addExpr.getRightOperand() and

110 n2.askExpr () = addExpr

111 )

112 or

13 // Flow through variable assignments

114 exists (Assignment assign |

115 nl.asExpr () = assign.getSource () and

i16 n2.askExpr () = assign.getDest ()

217 )

118 or

119 // Flow through return statements

120 exists (ReturnStmt ret |

121 nl.asExpr () = ret.getResult () and

122 n2.asParameter () =

— ret.getEnclosingCallable () .getAParameter ()
123 )
124 }
125 }
126
27 module MySQLJDBCUrlInjectionFlow =
— TaintTracking::Global<MySQLJDBCUrlInjectionConfig>;
128
19 import MySQLJDBCUrlInjectionFlow::PathGraph
130
11 from MySQLJDBCUrlInjectionFlow::PathNode source,
— MySQLJDBCUrlInjectionFlow::PathNode sink
132 where MySQLJDBCUrlInjectionFlow::flowPath (source, sink)
133 select sink.getNode(), source, sink,
134 "MySQL JDBC URL with dangerous bracket parameters flows to
— vulnerable filtering logic at $@ that lacks proper
— Dbracket-based sanitization",
135 source.getNode (), "dangerous URL source"

A.4 AST EXTRACTION QUERY

Given a fix diff, FineNib automatically parses the changed methods and files, and inserts them into
an AST pretty printing query template. Below is an example of the AST extraction query used for
CVE-2014-7816.

Jx*

@name Expressions and statements for CVE-2014-7816 changed code areas
@description Extract expressions and statements from vulnerability fix areas
@id java/expr—-stmt-diff-CVE_2014_7816

@kind problem

@problem.severity recommendation

S

*/
import java

from Element e, Location 1
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where

1 = e.getLocation() and ((l.getFile () .getBaseName () = "PathSeparatorHandler. java"

and l.getStartLine() >= 1 and l.getEndLine() <= 100) or

(l.getFile () .getBaseName () = "URLDecodingHandler. java"
and l.getStartLine() >= 17 and l.getEndLine () <= 128)

or (l.getFile () .getBaseName () = "ResourceHandler. java"
and l.getStartLine() >= 158 and l.getEndLine() <= 172)

or (l.getFile () .getBaseName ()
and l.getEndLine () <= 29)

or (l.getFile() .getBaseName () = "DefaultServlet.java"
and l.getStartLine () >= 39
and l.getEndLine () <= 150)

or (l.getFile () .getBaseName () = "ServletPathMatches.java"

and l.getStartLine() >= 32

and l.getEndLine () <= 140))
select e,

e.toString () as element,
.getAPrimaryQlClass () as elementType,
.getFile () .getBaseName () as file,
.getStartLine () as startLine,
.getEndLine () as endLine,
.getStartColumn () as startColumn,
.getEndColumn () as endColumn

el el e

B CODEQL LANGUAGE SERVER VIiA MCP

The following are the MCP tool specifications and example usage for our custom CodeQL LSP
client, wrapped as an MCP server.

B.1 TOOL SPECIFICATIONS

codeql _complete Provides code completions at a specific position in a CodeQL file. Supports
pagination for large completion lists and trigger character-based completions.

Inputs:

e file_uri (string): The URI of the CodeQL file

¢ line (number): Line number (0-based)

* character (number): Character position in the line (0-based)

* trigger_character (string, optional): Optional trigger character (e.g., ”.”, ”::”)

e limit (number, optional): Maximum number of completion items to return (default: 50)

* of fset (number, optional): Starting position for pagination (default: 0)
Returns: CompletionList with pagination metadata containing completion items, each with
label, kind, documentation, and text edit information.

Example usage:

{

"tool": "codeqgl_complete",

"arguments": {
"file_uri": "file:///workspace/security—-query.ql",
"line": 5,
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"character": 12,
"trigger_character": ".",
"limit": 25

}

codeql hover Retrieves hover information (documentation, type information) at a specific po-
sition. Provides rich markdown documentation for CodeQL predicates, classes, and modules.

Inputs:

e file_uri (string): The URI of the CodeQL file

¢ 1line (number): Line number (0-based)

* character (number): Character position in the line (0-based)
Returns: Hover | null containing documentation content in markdown or plain text format,
with optional range highlighting.

Example usage:

{
"tool": "codegl_hover",
"arguments": {

"file_uri": "file:///workspace/security-query.ql",

"line": 8,

"character": 15

}

codeql definition Navigates to the definition location for a symbol at a specific position.
Supports both single definitions and multiple definition locations.

Inputs:

e file_uri (string): The URI of the CodeQL file

¢ 1line (number): Line number (0-based)

* character (number): Character position in the line (0-based)
Returns: Location | Location[] | null containing URI and range information for def-
inition locations.

Example usage:

{
"tool": "codegl_definition",
"arguments": {

"file_uri": "file:///workspace/security—-query.ql",

"line": 12,

"character": 8

}

codeql _references Finds all references to a symbol at a specific position across the
workspace. Includes both usage references and declaration references.

Inputs:
e file_uri (string): The URI of the CodeQL file

¢ 1line (number): Line number (0-based)

* character (number): Character position in the line (0-based)
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Returns: Location[] | null containing an array of all reference locations with URI and
range information.

Example usage:

{
"tool": "codeqgl_references",
"arguments": {
"file_uri": "file:///workspace/security—-query.ql",
"line": 6,
"character": 20

}

codeql diagnostics Retrieves diagnostics (errors, warnings, information messages) for a
CodeQL file. Provides real-time syntax and semantic analysis results.

Inputs:
e file_uri (string): The URI of the CodeQL file

Returns: Diagnostic[] containing an array of diagnostic objects with severity, message, range,
and optional related information.

Example usage:

{

"tool": "codegl_diagnostics",
"arguments": {
"file_uri": "file:///workspace/security-query.gl"

}
}

codeql_format Formats a CodeQL file or a specific selection within the file according to Cod-
eQL style guidelines.

Inputs:
e file_uri (string): The URI of the CodeQL file

* range (Range, optional): Optional range to format with start and end positions

Returns: TextEdit [] containing an array of text edits that describe the formatting changes to be
applied.

Example usage:

{

"tool": "codeqgl_format",
"arguments": {
"file_uri": "file:///workspace/security-query.ql",
"range": {
"start": { "line": 10, "character": 0 },
"end": { "line": 25, "character": 0 }

}

codeql update_file Updates the content of an open CodeQL file in the language server. This
allows for dynamic content modification and analysis of unsaved changes.

Inputs:
e file_uri (string): The URI of the CodeQL file
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* content (string): The new complete content of the file

Returns: string containing a success confirmation message.

Example usage:

{

"tool": "codegl_update_file",
"arguments": {
"file_uri": "file:///workspace/security—-query.ql",
"content": "import cpp\n\nfrom Function f\nwhere f.hasName (\"strcpy\")\nselect f

}

C EVALUATION DETAILS

Table 6 is a more detailed breakdown of the successful query synthesis rate by CWE.
C.1 EVALUATION LIMITATIONS

Codex CLI. Claude Code and Gemini CLI allow users to configure how many max turns an
agent can take in a context window. As of 9/23/2025, Codex CLI does not offer this configu-
ration. Thus we were not able to force Codex to always take up to 50 max turns each context window.

IRIS. The original IRIS evaluation consists of 120 Java projects from CWE-Bench-Java.
Many of these projects are old with deprecated dependencies, thus we were only able to build and
use 112 of the projects with CodeQL 2.22.2. As of 9/23/2025, IRIS supports 11 CWEs and out
of the 65 2025 CVEs, we were able to use 24 of them with IRIS. When running some of the IRIS
queries, the amount of sources and sink predicates in the query led to out of memory errors. This
impacted 9 out of the 24 IRIS 2025 CVE queries, thus we treat those as queries with 0 results and
false recall.
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Table 6: FineNib Query Success by CWE Type

CWE Type Total CVEs # Success Success (%) Avg Precision
CWE-022 (Path Traversal) 48 31 64.6% 0.750
CWE-079 (Cross-Site Scripting) 36 18 50.0% 0.621
CWE-094 (Code Injection) 20 12 60.0% 0.606
CWE-078 (OS Command Injection) 12 7 58.3% 0.628
CWE-502 (Deserialization) 6 4 66.7% 0.853
CWE-611 (XXE) 5 3 60.0% 0.657
CWE-287 (Authentication) 4 1 25.0% 0.875
CWE-200 (Information Exposure) 3 0 0.0% 0.667
CWE-400 (Resource Consumption) 3 1 33.3% 0.556
CWE-532 (Information Exposure) 3 3 100.0% 0.686
CWE-770 (Resource Exhaustion) 3 1 33.3% 0.444
CWE-020 (Improper Input Validation) 2 2 100.0% 0.650
CWE-089 (SQL Injection) 2 2 100.0% 1.000
CWE-1333 (ReDoS) 2 0 0.0% 0.000
CWE-284 (Access Control) 2 0 0.0% 0.500
CWE-862 (Authorization) 2 0 0.0% 0.000
CWE-918 (SSRF) 2 1 50.0% 0.500
CWE-023 (Relative Path Traversal) 1 1 100.0% 1.000
CWE-044 (Path Equivalence) 1 1 100.0% 0.667
CWE-083 (Improper Neutralization) 1 1 100.0% 0.052
CWE-1325 (Improperly Controlled Memory) 1 0 0.0% 0.000
CWE-164 (Foreign Code) 1 0 0.0% 0.000
CWE-178 (Case Sensitivity) 1 0 0.0% 1.000
CWE-190 (Integer Overflow) 1 0 0.0% 0.000
CWE-264 (Permissions) 1 0 0.0% 0.000
CWE-267 (Privilege Defined) 1 0 0.0% 0.000
CWE-276 (Incorrect Permissions) 1 0 0.0% 1.000
CWE-285 (Improper Authorization) 1 1 100.0% 1.000
CWE-288 (Authentication Bypass) 1 0 0.0% 0.000
CWE-290 (Authentication Bypass) 1 1 100.0% 1.000
CWE-297 (Improper Certificate) 1 1 100.0% 1.000
CWE-312 (Cleartext Storage) 1 0 0.0% 0.000
CWE-327 (Cryptographic Issues) 1 0 0.0% 0.000
CWE-346 (Origin Validation) 1 0 0.0% 0.200
CWE-352 (CSRF) 1 1 100.0% 0.941
CWE-426 (Untrusted Search Path) 1 0 0.0% 0.000
CWE-835 (Infinite Loop) 1 0 0.0% 0.000
CWE-863 (Authorization) 1 1 100.0% 1.000
Total 176 94 53.4% 0.631
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