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Abstract

Reasoning from sequences of raw sensory data is
a ubiquitous problem across fields ranging from
medical devices to robotics. These problems of-
ten involve using long sequences of raw sensor
data (e.g. magnetometers, piezoresistors) to pre-
dict sequences of desirable physical quantities
(e.g. force, inertial measurements). These sen-
sors are typically non-linear, are affected by ex-
traneous variables (e.g. vibration), and exhibit
data-dependent drift. The prediction task is ex-
acerbated by small labeled datasets since obtain-
ing ground-truth labels requires expensive equip-
ment. We present Hierarchical State-Space mod-
els (HiSS), a conceptually simple, new technique
for continuous sequential prediction. Across
six real-world sensor datasets, from tactile-based
state prediction to accelerometer-based inertial
measurement, HiSS outperforms state-of-the-art
sequence models such as causal Transformers,
LSTMs, S4, and Mamba by at least 23% on
MSE. Code, datasets and videos can be found
on https://hiss—csp.github.io

1. Introduction

Sensors are ubiquitous. From air conditioners to smart-
phones, automated systems analyze sensory data sequences
to control various parameters. This class of problems - con-
tinuous sequence-to-sequence prediction from streaming
sensory data - is central to real-time decision-making and
control (Schiitze et al., 2004; Stetco et al., 2019). Yet, it has
received limited attention compared to discrete sequence
problems in domains like language (Devlin et al., 2018) and
computer vision (Deng et al., 2009).

However, to make progress on continuous sequence pre-
diction (CSP), we first need a representative benchmark to
measure performance. Most prior works in CSP focus on a
single class of sensors (Herath et al., 2020; Liu et al., 2020),
making it difficult to develop general-purpose algorithms.
To address this, we created CSP-Bench, a benchmark con-
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Figure 1. CSP-Bench is a publicly accessible benchmark for con-
tinuous sequence prediction on real-world sensory data. We show
that Hierarchical State Space Models (HiSS) improve over conven-
tional sequence models on sequential sensory prediction tasks.

sisting of six real-world labeled datasets. This collection
consists of three datasets created in-house and three curated
from prior work — a cumulative 40 hours of real-world data.

Given data from CSP-Bench, an obvious modeling choice
is to use state-of-the-art sequence models like LSTMs or
Transformers. However, sensory data is high-frequency,
leading to long sequences of highly correlated data. For such
data, Transformers quickly run out of memory, as they scale
quadratically in complexity with sequence length (Vaswani
et al., 2017), while LSTMs require significantly larger hid-
den states (Kuchaiev & Ginsburg, 2017). Deep State Space
Models (SSMs) (Gu et al., 2021; Gu & Dao, 2023) are a
promising new class of sequence models. These models
have been shown to effectively handle long context lengths
while scaling linearly with sequence length in time and mem-
ory complexity, with strong results on audio (Goel et al.,
2022) and language modeling. On CSP-Bench, we find that
SSMs consistently outperform LSTMs and Transformers
with an average of 10% improvement on MSE metrics (see
Section 4). But can we do better? A key insight into con-
tinuous sensor data is that it has a significant amount of
temporal structure and redundancies. While SSMs are pow-
erful for modeling this type of data, they are still temporally
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Figure 2. CSP-Bench is comprised of six datasets. Three datasets — ReSkin Marker Writing, ReSkin Intrinsic Slip and XELA Joystick
Control are tactile datasets collected in-house on two different robot setups as demonstrated above. Three other datasets — RoONIN (Herath
et al., 2020), VECtor (Gao et al., 2022) and TotalCapture (Trumble et al., 2017) are curated open-source datasets.

flat in nature, i.e. every sample in the sequence is reasoned
with every other sample. Therefore, inspired by work in
hierarchical modeling (You et al., 2019; Thu & Han, 2021),
we propose Hierarchical State-Space Models (HiSS). HiSS
stacks two SSMs with different temporal resolutions on top
of each other. The lower-level SSM temporally chunks the
larger full-sequence data into smaller sequences and outputs
local features, while the higher-level SSM operates on the
smaller sequence of local features to output global sequence
prediction. This leads to further improved performance on
CSP-Bench, outperforming the best flat SSMs by 23% me-
dian MSE performance across tasks. We summarize the
contributions of this paper as follows:

1. We release CSP-Bench, the largest publicly accessible
benchmark for continuous sequence-to-sequence predic-
tion for multiple sensor datasets. (Section 2)

2. We show that SSMs outperform prior SOTA models like
LSTMs and Transformers on CSP-Bench. (Section 4.1)

3. We propose HiSS, a hierarchical sequence modeling ar-
chitecture that further improves upon SSMs across tasks
in CSP-Bench. (Section 3)

2. CSP-Bench: A Continuous Sequence
Prediction Benchmark

We address the scarcity of datasets with dense, continuous
labels for sequence-to-sequence prediction by collecting
three touch datasets with 1000 trajectories each and combin-
ing them with three IMU datasets from literature to create
CSP-Bench. For each dataset, we design tasks to predict
labeled sequences from single sensor data to avoid confound-
ing factors. We also include data from varied sources like
cameras and robot movements to facilitate future research

in multi-sensor integration and multimodal learning. The
detailed characteristics of these datasets are summarized in
Appendix A.

2.1. Touch Datasets

Our touch datasets are collected on two magnetic tactile sen-
sor designs: ReSkin (Bhirangi et al., 2021) and Xela (Tomo
et al., 2018). The ReSkin setup consists of a 6-DOF Kinova
JACO Genl robot with a 1-DOF RG2 OnRobot gripper as
shown in Figure 2. Both gripper surfaces are sensorized
witha32mm 30mm 2 mm ReSkin sensor. Each sen-
sor has five 3-axis magnetometers which measure changes
in magnetic flux resulting from the deformation of the skin
on the gripper surface. Appendix B contains more details on
the fabrication and integration of ReSkin into the gripper.

The Xela setup consists of a 7-DOF Franka Emika robot fit-
ted with a 16-DOF Allegro hand by Wonik Robotics. Each
finger on the hand is sensorized with three 4x4 uSkin tactile
sensors and one curved uSkin tactile sensor from XELA
Robotics as shown in Figure 2. Sensor integration was pro-
vided by XELA robotics, which was designed specifically
for the Allegro Hand. While the underlying sensory mode is
the same for both ReSkin and Xela, they differ in spatial and
temporal resolution, physical layout, and magnetic source.

2.2. Curated Public Datasets

In addition to the tactile datasets we release with this paper,
we also test our findings on data from other datasets, par-
ticularly ones using IMU sensor data (illustrated in Figure
2) — the RoNIN dataset (Herath et al., 2020) which con-
tains smartphone IMU data from 100 human subjects with
ground-truth 3D trajectories under natural human motions,
the VECtor dataset (Gao et al., 2022) — a SLAM dataset col-
lected across three different platforms, and the TotalCapture
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Figure 3.(Left) Flat SSM directly maps a sensor sequence to an output sequence. (Right) HiSS divides an input sequence into chunks
which are processed inthunk featuredy a low-level SSM. A high-level SSM maps the resulting sequence to an output sequence.

dataset — a 3D human pose estimation dataset. form achunk featuresequence. Finally, this sequence is
passed through high-levelSSM to generate the output
3. Hierarchical State-Space Models (HiSS) sequence. Models are trained to minimize MSE loss.

. . Why should HiSS work? Sequential sensory data is subject
In this work, we focus on continuous sequence-to-sequencg . .
- . : t0 phenomena that occur at different natural frequencies. For
prediction problems for sensors i.e. problems that involve . . _
; instance, an IMU device mounted on a quadrotor is subject
mapping asequencef sensory data tosequencef outputs. ; L X i
In the following sections, we describe HiSS — our a roachto high-frequency vibration noise and low-frequency drift
9 ' . P characteristic of MEMS devices (Koksal et al., 2018). With
to sequence-to-sequence reasoning. ; . . ; L
HiSS, our goal is to create a neural architecture with explicit
structure to operate at different temporal scales. This will

allow the low-level model to learn effective, temporally

Every sensor in the real world operates at a different frelocal representations, while enabling the high-level model
quency, and data from different sensors is therefore collectetp focus on global predictions over a shorter sequence.

at different nominal frequencies. Generally, our sensor se-

quences come from an inexpensive, noisy sensor operating, Experiments and Results

at a higher frequency than an expensive, high precision de-

vice which gives us output sequences. To emulate this scé this section, we evaluate the performance of HiSS models
nario and standardize our experiments, all sensor sequence8 CSP tasks and understand their strengths and limitations.
are resampled at a frequency of 50Hz, and output sequencésiless otherwise speci ed, we use non-overlapping chunks
are resampled at 5Hz for all the datasets under consideratio®f size 10, and aim to compare the performance of HiSS
unless speci ed otherwise. These frequencies are dictate@odels against other baselines. We use two categories of

by the sampling frequencies of sensors in the available datBaselines: (1) Flat models consist of LSTMs, Causal Trans-
formers, S4 and Mamba, in addition to MEGA (Ma et al.,
3.2. Model Architecture 2022). (2) Hierarchical baselines include variations of HiSS
models where the high-level and/or low-level SSMs are
Here we describe Hierarchical State Space Models (HiSS) replaced, and MEGA-chunk (Ma et al., 2022), which is
a simple hierarchical architecture that uses SSMs to expligoosely classi ed as a high-level transformer with a low-
itly reason over sequential data at two temporal resolutiongevel MEGA model. Table 1 presents a performance com-

as shown in Figure 3. The sensor sequence is divided into garison on CSP-Bench for these baselines and HiSS models.
set of equal-sized chunks of sike Each chunk is passed Further analysis can be found in Appendix E.5.

through a shared SSM which we refer to aslthe-level
SSM. The outputs of the low-level SSM corresponding to
the k-th element of each chunk are then concatenated to

3.1. Sampling Frequencies
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Table 1.Comparison of MSE prediction losses for baseline and HiSS models on CSP-Bench. Reported numbers are averaged over 5 seeds

for the best performing models. MW: Marker Writing, IS: Intrinsic Slip, R: RoNIN, V: VECtor, JC: Joystick Control, TC: TotalCapture

Model type Model Architecture MW IS JC R Vv TC
(cm/s) (m/s) (m/s) (m/s)
Transformer 2.3750 0.4600 1.0200 - 0.0432 -
LSTM 1.1685 0.3099 1.0740  0.0444 0.0353 0.1767
Flat S4 1.3190 0.2617  0.9804  0.0382 0.0341 0.3483
Mamba 0.8830 0.1757 1.0640 0.0401 0.0319 0.3645
MEGA 0.8960 0.2105 0.9806  0.0370 0.0330 0.1944

High-level Low-level
Transformer  0.6680 0.2192 0.9112  0.0620 0.0372 0.3048

LSTM 0.9958 0.2527 0.9350 0.0421 0.0377 0.3197
Transformer S4 0.6205 0.1574 0.8980 0.0363 0.0374 0.3583
Mamba 1.0268 0.2022 0.9060 0.0472 0.0372 0.4560
(MEGA-chunk) MEGA 1.1270 0.2090 1.0450 0.0512 0.0403 0.1940
Transformer 0.7620 0.9373 1.6090 0.3875 0.0302 0.2943
LSTM LSTM 0.8662 0.2837 1.0760 0.0436 0.0288 0.2522
. hical S4 0.6370 0.1526 0.9080 0.0481 0.0322 0.3505
Hierarchica Mamba 0.7915  0.1925 1.0610 0.0442  0.0286  0.3638
Transformer 0.7570 0.2898 0.9248 0.0439 0.0295 0.2452
sa LSTM 0.8590 0.1805 0.9520 0.0319 0.0293 0.2452
S4 0.6255 0.1551 0.9060 0.0265 0.0303 0.3438
Mamba 0.8257 0.1823 0.9200 0.0322 0.0294 0.4078
Transformer  0.7020 0.3011 0.9553 0.0371 0.0293 0.2064
Mamba LSTM 0.7592 0.1746 0.9640 0.0346 0.0267 0.2428
S4 0.5663 0.1316 0.9010 0.0302 0.0298 0.2527
Mamba 0.7248 0.1678 0.9050 0.0325 0.0251 0.3762
HISS improvement over best Flat +35.87% +25.10% +8.10% +30.74% +21.30% -37.36%
4.1. Performance of Flat models on CSP-Bench tion from continuous sensory data; (2) the best models use

At the outset, we see that SSMs — Mamba and S4. co S4 as the low-level model, indicating that S4 is particularly

. ) dept at capturing low-level temporal structure in the data.
sistently outperform the best-performing Transformer an
LSTM models by 10% and 14% median MSE respectively . o
across CSP-Bench tasks. The only anomaly is the TotalCaf- Conclusion and Limitations
ture dataset where the LSTM outperforms all other model

We analyze this later in Section E.5. e present CSP-Bench, the rst publicly available bench-

mark for Continuous Sequence Prediction, and show that
SSMs do better than LSTMs and Transformers on CSP tasks.
Then, we propose HiSS, a hierarchical sequence modeling
HiSS models perform better than the best-performing atarchitecture that is more performative, data ef cient and
models, SSM or otherwise, withfartherimprovement of ~ Minimizes preprocessing needs for CSP problems. How-
23% median MSE across tasks. Among hierarchical modEVer, sequence-to-sequence prediction from sensory data
els, HiSS models continue to do as well as or better than thgontinues to be an open, relatively underexplored problem,
others with a relative improvement of 9.8% median MSE. and our work indicates signi cant room for improvement.
Further, we make two key observations within models thafMoreover, while SSMs show signi cant promise for CSP
use a speci ¢ high-level architecture: (1) these models cont@sks, they are relatively new architectures whose strengths
sistently outperform corresponding at models, indicating @nd weaknesses are far from being well-understood. Finally,
that temporal hierarchies are effective at distilling informa-CSP-Bench is large, but the number of sensors that can

4.2. Improving CSP Performance with HiSS
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A. CSP-Bench: Dataset Information and Details

We address the scarcity of datasets with dense, continuous labels for sequence-to-sequence prediction by collecting three
touch datasets with 1000 trajectories each and combining them with three IMU datasets from literature to create CSP-Bench.
For each dataset, we design tasks to predict labeled sequencesifiglesensor data to avoid confounding factors. We also
include data from varied sources like cameras and robot movements to facilitate future research in multi-sensor integration
and multimodal learning. The detailed characteristics of these datasets are summarized in Table 2, aiming to support diverse
sensory data analysis.

Table 2.Summary of all the modalities present in CSP-Bench. Modalities used for trainitiglaized In addition to the data used for
training models, we also release synchronized video and robot kinematics data to facilitate further research in CSP problems.

Dataset Modalities Model Inputs  Model Outputs Size
(dim) (dim) (min)

Marker Writing ReSkin (100 Hz), 2 Cameras (30 Hz),ReSkin (30)  End-effector 420
Robot(45 Hz) velocity (2)

Intrinsic Slip ReSkin(100 Hz), 3 Cameras (30 Hz),ReSkin (30) End-effector 640
Robot(45 Hz) velocity (3)

Joystick Control Xela (100 Hz), 2 Cameras (30 Hz), RobotXela (552) Joystick State (3) 580
(50 Hz), Hand (300 Hz)Joystick(20 Hz)

VECtor IMU (200 Hz), 2 Cameras (30 Hz), RGBDIMU (7) User velocity (3) 22

(Gao et al., 2022) (30 Hz), Lidar (10 Hz)MoCap(120 Hz)

TotalCapture IMU (60 Hz), 8 Cameras (60 Hz), IMU (39) Joint velocities (60) 45

(Trumble et al., 2017) MoCap(60 Hz)

RoNIN IMU (200 Hz),3D Tracking Phong200 IMU (7) User velocity (2) 600

(Herath et al., 2020) Hz)

A.1. Touch Datasets

Our touch datasets are collected on two magnetic tactile sensor designs: ReSkin (Bhirangi et al., 2021) and Xela (Tomo
et al., 2018). The ReSkin setup consists of a 6-DOF Kinova JACO Genl robot with a 1-DOF RG2 OnRobot gripper as
shown in Figure 2. Both gripper surfaces are sensorized wdtham 30mm 2 mm ReSkin sensor. Each sensor has

ve 3-axis magnetometers which measure changes in magnetic ux resulting from the deformation of the skin on the gripper
surface. Appendix B contains more details on the fabrication and integration of ReSkin into the gripper.

The Xela setup consists of a 7-DOF Franka Emika robot tted with a 16-DOF Allegro hand by Wonik Robotics. Each
nger on the hand is sensorized with three 4x4 uSkin tactile sensors and one curved uSkin tactile sensor from XELA
Robotics as shown in Figure 2. Sensor integration was provided by XELA robotics, which was designed speci cally for the
Allegro Hand. While the underlying sensory mode is the same for both ReSkin and Xela, they differ in spatial and temporal
resolution, physical layout, and magnetic source.

A.1.1. RESKIN: MARKER WRITING DATASET

We collect 1000 Kinova robot trajectories of randomized linear strokes across a paper. Initially, the marker is arbitrarily
placed between the gripper tips, and data collection begins when the marker touches the paper. The robot then moves linearly
between 8-12 random points uniformly sampled within a 10cm x 10cm workspace, pausing for a randomly sampled delay of
1-4 seconds after each motion. Images of sample trajectories can be found in Appendix D.

The goal of this sequential prediction problem is to use tactile signal from the gripper to predict the velocity of the end-
effector in the plane of the table. Velocity labels are easily obtained from robot kinematics, and serve as a proxy for the
velocity of the marker strokes against the paper. What makes this problem challenging is that the sensor picks up contact
information from both, the relative motion between the marker and the gripper, and the motion of the marker against the

6
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paper. The model must learn to disentangle these two motions to make accurate predictions.

A.1.2. RESKIN: INTRINSIC SLIP DATASET

We again use the Kinova setup to collect 1000 trajectories of intrinsic slip — the gripper grasping and slipping along different
boxes clamped to a table. At the start of every episode, we close the gripper at a random location and orientation on the box
and start recording data. We sample 8-12 random locations and orientations within the workspace of the robot along the
length of the box, and then command the robot to move along the box while slipping against it. We use 10 boxes of different
sizes to collect this dataset to improve data diversity in terms of contact dynamics. Example images and dimensions are
available in Appendix D.1.2.

The goal of the sequential prediction problem is to use the sequence of tactile signals from the gripper tips to predict the
translational and rotational velocity of the end-effector (again obtained from robot kinematics) in the plane of the robot's
motion. In addition, the abrasive nature of the task causes the skin to wear out over time. To account for this wear, we
change the gripper tips and skins after 25 trajectories on every box, improving data diversity as a result.

A.1.3. XELA: JoYSTICK CONTROL DATASET

For our nal dataset, we record 1000 trajectories of data from the Allegro hand interacting with the joystick as shown in
Figure 2. The hand/robot setup is teleoperated using a VR-based system derived from HoloDex (Arunachalam et al., 2023).
Joystick interactions are logged synchronously with robot data, tactile sensing data, and the camera feed. Speci cally, this
includes the full robot kinematics (7 DOF Arm at 50 Hz + 16 DOF Hand at 300 Hz), XELA tactile output (552 dim at 100
Hz), and 2 Realsense D435 cameras (1080p at 30 Hz). Each trajectory consists of 25-40 seconds of interaction with the
joystick.

The goal of the sequential prediction problem is to use tactile signal from the Xela-sensorized robot hand to predict the
state of the joystick, which is recorded synchronously with all the other modalities. The extra challenge with this dataset, in
addition to the signi cantly higher dimensionality of the observation space, is the noisier trajectories resulting from human
demos instead of a scripted policy.

A.2. Curated Public Datasets

In addition to the tactile datasets we release with this paper, we also test our ndings on data from other datasets, particularly
ones using IMU sensor data (illustrated in Figure 2) — the RoNIN dataset (Herath et al., 2020) which contains smartphone
IMU data from 100 human subjects with ground-truth 3D trajectories under natural human motions, the VECtor dataset (Gao
et al., 2022) — a SLAM dataset collected across three different platforms, and the TotalCapture dataset — a 3D human pose
estimation dataset.

B. ReSkin fabrication details

ReSkin measures the changes in magnetic ux inits X, Y and Z coordinate system, based on the change in relative distance
between the embedded magnetic microparticles in an elastomer matrix and a nearby magnetometer. The use of magnetic
microparticles enables freedom in regard to the shape and dimensions of the molded skin. In our use case here, we use a
skin of thickness 2mm. This section further details the complete fabrication process involved in the sensorized gripper tips
we use for the ReSkin setup described in Section A.1. Figure 4 illustrates different components of the sensorized gripper.

B.1. Circuitry
Data from the ReSkin sensors is streamed to a computer via USB. The two sensors are connectéMiLBawhich in
turn is connected to an Adafruit QT Py microcontroller as described in Bhirangi et al. (2021). See Figure 4.

B.2. OnRobot Gripper Tips

The skins are af xed to the 3D-printed gripper tips using silicone adhesive, as shown in Figure 5. The dimensions of the tips
are32mm 30mm 2 mm. The same tips also house the ex-PCB boards, which measure the change in magnetic ux in
all 3 axes.



HiSS: Hierarchical State Space Models

Figure 4.Circuitry

Figure 5.Gripper Tips with ReSkin

C. Model architectures and Training
C.1. Data Preprocessing

All the sensors considered in CSP-Bench are prone to drift; therefore, in line with previous work (Bhirangi et al., 2021;
Guzey et al., 2023; Herath et al., 2020), we estimate a resting signal at the start of every sensor trajectory and deviations from
this resting signal are passed to the model. Since sensor drift can be causally data-dependent, the entire sensory trajectory is
passed to the model as input. Sensor and output sequences are normalized based on data statistics for their corresponding
datasets, and details are listed in Appendix C. Additionally, we nd that appending one-step differences to every element in
the sensor sequence helps improve performance, in line with numerous prior works (Chen et al., 2016; Holden et al., 2016).

C.2. Flat Architectures

For each of the at sequence models presented in this work, the input sequence is rst embedded into a hidden state sequence
by a linear layer. This hidden state is then passed to the respective sequence model. The outputs of the sequence model (the
hidden states for LSTM, S4 and Mamba) are then mapped to the desired output space

C.3. Hierarchical architectures

The hierarchical models are obtained by simply stacking two at models together. The input sequence is rst divided into
equal sized chunks as described in Section 3.2. Each chunk is passed through the low-level sequence model and the outputs
corresponding to the last timestep of each chunk are concatenated to form the chunk feature sequence. This sequence is
passed through a high-level sequence model to obtain the output sequence

C.4. Hyperparameters

All models are trained for 600 epochs at a constant learning rate of 1e-3. Learning rate schedulers were not found to improve
performance by noticeable amounts. Table 3 contains the ranges of hyperparameters used for training the at models
presented in the paper. We do not sweep over all of these hyperparameters for each task. A subset of these parameters
is chosen for each task depending on the input and output dimensionality of the task and the best-performing models are
reported. The exact hyperparameters for each experiment can be found on the Github repository. For any given task, we
ensure that sweeps over all model classes consist of models that have the same order of magnitude of learnable parameters.
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LSTM Transformer S4 Mamba

Input size Model dim Model dim Model dim

16, 32, 64, 128, 256 32, 64, 128, 256, 512 32, 64, 128, 256, 512 32, 64, 128, 256, 512
LSTM hidden size No. of heads

256,512, 1024 2,4

No. of layers No. of layers No. of layers No. of layers

2 4,6 4,6 4,6

Dropout Dropout Dropout

0.0,0.1 0.0,0.1 0.0,0.1

Table 3.Hyperparameters for at architectures

For the hierarchical models, we use a smaller subset of the parameters listed in Table 3 to sweep over the high level models.
Parameter ranges swept over for low-level models are listed in Table 4. The exact hyperparameters for each experiment can
be found on the Github repository.

LSTM S4 Mamba
Input size Model dim Model dim
16, 32, 64 16,32,64,128, 256 16, 32, 64, 128, 256

LSTM hidden size
16,32,64,128,256

No. of layers No. of layers No. of layers
1 4,6 3,4

Table 4.Hyperparameters for low-level models used in hierarchical architectures

These hyperparameter sweeps result in a range of models with different numbers of parameters. Table 5 lists the range of
parameters resulting from the sweeps, and Table 6 contains the number of parameters in the best-performing models.
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Table 5.Range of parameters swept over for baseline and HiSS models on CSP-Bench. Reported numbers are in millions of parameters.

Model type Model Architecture MW IS JC R \% TC
Transformer 0.4-95 0.4-95 0.7-10.6 - 0.0-0.6 -
Flat LSTM 34-13.7 09-37 37-142 08-33 0.0-0.2 35-138
S4 0.8-40 0.8-4.0 14-51 03-12 0.0-04 09-41
Mamba 05-10.2 18-10.2 0.8-11.3 05-26 0.0-0.7 0.5-10.3
High-level Low-level
Transformer 1.2-48 3.6-120 15-54 25-120 0.1-08 1.2-49
Transformer LSTM 09-28 3.3-99 1.0-29 04-12 0.1-06 09-28
S4 1.1-36 36-108 14-42 07-20 01-08 1.1-3.7
Mamba 1.2-42 37-114 14-48 04-26 01-0.7 1.2-43
Transformer 0.7 -3.3 1.3-59 0.9-3.9 1.0-59 0.1-04 0.7-34
LSTM LSTM 0.3-1.3 1.0-39 04-15 1.0-39 01-03 03-14
S4 05-2.2 1.3-4.7 0.8-2.8 1.3-47 01-04 06-23
Hierarchical Mamba 0.6-2.8 1.4-5.3 0.9-33 09-53 0.1-04 06-2.8
Transformer 0.7 -3.6 1.2-6.5 1.0-42 09-65 0.0-06 0.7-3.7
s4 LSTM 04-16 09-44 04-17 05-16 0.0-04 04-16
S4 0.6-25 1.2-53 08-30 08-24 0.1-06 0.6-25
Mamba 0.6-3.0 1.3-59 09-36 05-30 0.1-05 0.7-31
Transformer 0.9-5.1 0.9-5.1 1.2-5.6 0.6-5.1 0.0-09 09-51
Mamba LSTM 06-30 06-30 06-32 06-3.0 0.0-0.7 06-31
S4 0.8-39 09-39 1.0-45 09-39 0.1-09 0.8-4.0
Mamba 0.8-45 1.0-45 1.1-50 05-45 0.1-0.8 09-45
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Table 6.Parameter count for best-performing baseline and HiSS models on CSP-Bench. Reported numbers are in millions of parameters.

Model type Model Architecture MW IS JC R Vv TC
Transformer 6.3 06 29 - 0.4 -
Flat LSTM 13.7 3.7 142 09 0.2 138
S4 40 40 51 08 04 0.9
Mamba 102 26 7.9 07 0.7 05
High-level Low-level
Transformer 1.2 36 15 40 02 25
Transformer LSTM 09 36 29 06 04 25
S4 36 44 22 15 05 21
Mamba 29 37 31 04 07 29
Transformer 0.7 3.7 17 10 0.2 0.9
LSTM 1.3 13 05 11 0.1 0.6
LSTM s4 22 21 23 13 02 16
Hierarchical Mamba 27 40 15 10 03 2.2
Transformer 09 12 19 10 03 29
sS4 LSTM 1.3 31 13 16 03 1.6
S4 25 40 21 08 03 25
Mamba 30 59 32 05 04 08
Transformer 24 22 12 27 02 22
Mamba LSTM 08 22 23 19 01 30
S4 30 30 32 17 02 31
Mamba 45 25 33 08 06 21
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D. Experimental Setup and Data Collection details

Figure 6.Marker Writing Frames (Top): The gripper tips hold the marker and bring it in contact with the paper before the sequence starts.
The arm maneuvers the marker to execute eight strokes on the paper. Instrinsic Slip Frames (Middle): The gripper tips hold the box to
start the sequence, and slip through the robot workspace with different orientations. Joystick Control Frames (Bottom): After the sequence
begins, the hand holds the joystick, controlling its movement through various positions.

D.1. ReSkin: Onrobot Gripper on a Kinova JACO Arm
D.1.1. MARKER WRITING

For this experiment, we rst grasp the marker with 300 N force in an arbitrary position and bring it in contact with the paper.
We then start recording data and command the robot to move sequentially to 8-12 randomly sampled locations within a
10 10cm? plane workspace, making linear strikes on the paper. Figure 6 illustrates a sample sequence from this dataset.
We note that during the strikes, the grasped marker undergoes orientation drifts at times, which adds to the complexity
in signal. We record a total of 1000 trajectories of 15-30 seconds each, comprising of 2 different colored markers. The
prediction task here is to predict the strike velocity/(t, y/ t), given the tactile signals thus reconstructing the overall
trajectory.

D.1.2. INTRINSIC SLIP

In Section A.1.2, we outlined our methodology for collecting data through a total of 1000 trajectories. This involved using

10 distinct boxes and 4 sets of skins for 25 trajectories per combined pair. We rst sample a random location and orientation
within the task workspace. Next, we close the gripper with a random force sampled in the range of 50-75 N and then start
recording data. With the gripper grasping the box, we uniformly sample 8-12 locations sequentially, thus slipping through
the robot workspace. Figure 6 illustrates a sample sequence from this dataset. The workspace is the upper region of the box,
which is a space of dimensio®ox Length x Tip Size(3cm) , shown in Figure 8. We clamp the wrist rotation

limits at [- /4, /4], making the overall local sampling bounds of the gripper tip position (center of tip), Y:[0, box length],

Z:[0, tip size], :[- /4, /4].
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