
Hierarchical State Space Models
for Continuous Sequence-to-Sequence Modeling

Raunaq Bhirangi 1 2 Chenyu Wang 3 Venkatesh Pattabiraman 3 Carmel Majidi 1 Abhinav Gupta 1

Tess Hellebrekers 2 Lerrel Pinto 3

Abstract
Reasoning from sequences of raw sensory data is
a ubiquitous problem across fields ranging from
medical devices to robotics. These problems of-
ten involve using long sequences of raw sensor
data (e.g. magnetometers, piezoresistors) to pre-
dict sequences of desirable physical quantities
(e.g. force, inertial measurements). These sen-
sors are typically non-linear, are affected by ex-
traneous variables (e.g. vibration), and exhibit
data-dependent drift. The prediction task is ex-
acerbated by small labeled datasets since obtain-
ing ground-truth labels requires expensive equip-
ment. We present Hierarchical State-Space mod-
els (HiSS), a conceptually simple, new technique
for continuous sequential prediction. Across
six real-world sensor datasets, from tactile-based
state prediction to accelerometer-based inertial
measurement, HiSS outperforms state-of-the-art
sequence models such as causal Transformers,
LSTMs, S4, and Mamba by at least 23% on
MSE. Code, datasets and videos can be found
on https://hiss-csp.github.io

1. Introduction
Sensors are ubiquitous. From air conditioners to smart-
phones, automated systems analyze sensory data sequences
to control various parameters. This class of problems - con-
tinuous sequence-to-sequence prediction from streaming
sensory data - is central to real-time decision-making and
control (Schütze et al., 2004; Stetco et al., 2019). Yet, it has
received limited attention compared to discrete sequence
problems in domains like language (Devlin et al., 2018) and
computer vision (Deng et al., 2009).

However, to make progress on continuous sequence pre-
diction (CSP), we first need a representative benchmark to
measure performance. Most prior works in CSP focus on a
single class of sensors (Herath et al., 2020; Liu et al., 2020),
making it difficult to develop general-purpose algorithms.
To address this, we created CSP-Bench, a benchmark con-

CSP
Bench

Transformer
LSTM
Mamba
S4
HiSS

M
ag

ne
to

m
et

er

sig
na

l
M

ar
ke

r p
os

iti
on

 in

 x
 (c

m
)

Normalized Mean Squared Error
on CSP-Bench ()↓

Time (in seconds)

© 2022 MPL, ShanghaiTech Uni., China.

All rights reserved.

Figure 1. CSP-Bench is a publicly accessible benchmark for con-
tinuous sequence prediction on real-world sensory data. We show
that Hierarchical State Space Models (HiSS) improve over conven-
tional sequence models on sequential sensory prediction tasks.

sisting of six real-world labeled datasets. This collection
consists of three datasets created in-house and three curated
from prior work – a cumulative 40 hours of real-world data.

Given data from CSP-Bench, an obvious modeling choice
is to use state-of-the-art sequence models like LSTMs or
Transformers. However, sensory data is high-frequency,
leading to long sequences of highly correlated data. For such
data, Transformers quickly run out of memory, as they scale
quadratically in complexity with sequence length (Vaswani
et al., 2017), while LSTMs require significantly larger hid-
den states (Kuchaiev & Ginsburg, 2017). Deep State Space
Models (SSMs) (Gu et al., 2021; Gu & Dao, 2023) are a
promising new class of sequence models. These models
have been shown to effectively handle long context lengths
while scaling linearly with sequence length in time and mem-
ory complexity, with strong results on audio (Goel et al.,
2022) and language modeling. On CSP-Bench, we find that
SSMs consistently outperform LSTMs and Transformers
with an average of 10% improvement on MSE metrics (see
Section 4). But can we do better? A key insight into con-
tinuous sensor data is that it has a significant amount of
temporal structure and redundancies. While SSMs are pow-
erful for modeling this type of data, they are still temporally

1

https://hiss-csp.github.io

HiSS: Hierarchical State Space Models

ReSkin Intrinsic Slip XELA Joystick Control Total Capture

RoNIN VECtor

ReSkin
Circuit

Skin

ReSkin Marker Writing

© 2022 MPL, ShanghaiTech Uni., China.

All rights reserved.

Figure 2. CSP-Bench is comprised of six datasets. Three datasets – ReSkin Marker Writing, ReSkin Intrinsic Slip and XELA Joystick
Control are tactile datasets collected in-house on two different robot setups as demonstrated above. Three other datasets – RoNIN (Herath
et al., 2020), VECtor (Gao et al., 2022) and TotalCapture (Trumble et al., 2017) are curated open-source datasets.

flat in nature, i.e. every sample in the sequence is reasoned
with every other sample. Therefore, inspired by work in
hierarchical modeling (You et al., 2019; Thu & Han, 2021),
we propose Hierarchical State-Space Models (HiSS). HiSS
stacks two SSMs with different temporal resolutions on top
of each other. The lower-level SSM temporally chunks the
larger full-sequence data into smaller sequences and outputs
local features, while the higher-level SSM operates on the
smaller sequence of local features to output global sequence
prediction. This leads to further improved performance on
CSP-Bench, outperforming the best flat SSMs by 23% me-
dian MSE performance across tasks. We summarize the
contributions of this paper as follows:

1. We release CSP-Bench, the largest publicly accessible
benchmark for continuous sequence-to-sequence predic-
tion for multiple sensor datasets. (Section 2)

2. We show that SSMs outperform prior SOTA models like
LSTMs and Transformers on CSP-Bench. (Section 4.1)

3. We propose HiSS, a hierarchical sequence modeling ar-
chitecture that further improves upon SSMs across tasks
in CSP-Bench. (Section 3)

2. CSP-Bench: A Continuous Sequence
Prediction Benchmark

We address the scarcity of datasets with dense, continuous
labels for sequence-to-sequence prediction by collecting
three touch datasets with 1000 trajectories each and combin-
ing them with three IMU datasets from literature to create
CSP-Bench. For each dataset, we design tasks to predict
labeled sequences from single sensor data to avoid confound-
ing factors. We also include data from varied sources like
cameras and robot movements to facilitate future research

in multi-sensor integration and multimodal learning. The
detailed characteristics of these datasets are summarized in
Appendix A.

2.1. Touch Datasets

Our touch datasets are collected on two magnetic tactile sen-
sor designs: ReSkin (Bhirangi et al., 2021) and Xela (Tomo
et al., 2018). The ReSkin setup consists of a 6-DOF Kinova
JACO Gen1 robot with a 1-DOF RG2 OnRobot gripper as
shown in Figure 2. Both gripper surfaces are sensorized
with a 32 mm × 30 mm × 2 mm ReSkin sensor. Each sen-
sor has five 3-axis magnetometers which measure changes
in magnetic flux resulting from the deformation of the skin
on the gripper surface. Appendix B contains more details on
the fabrication and integration of ReSkin into the gripper.

The Xela setup consists of a 7-DOF Franka Emika robot fit-
ted with a 16-DOF Allegro hand by Wonik Robotics. Each
finger on the hand is sensorized with three 4x4 uSkin tactile
sensors and one curved uSkin tactile sensor from XELA
Robotics as shown in Figure 2. Sensor integration was pro-
vided by XELA robotics, which was designed specifically
for the Allegro Hand. While the underlying sensory mode is
the same for both ReSkin and Xela, they differ in spatial and
temporal resolution, physical layout, and magnetic source.

2.2. Curated Public Datasets

In addition to the tactile datasets we release with this paper,
we also test our findings on data from other datasets, par-
ticularly ones using IMU sensor data (illustrated in Figure
2) – the RoNIN dataset (Herath et al., 2020) which con-
tains smartphone IMU data from 100 human subjects with
ground-truth 3D trajectories under natural human motions,
the VECtor dataset (Gao et al., 2022) – a SLAM dataset col-
lected across three different platforms, and the TotalCapture

2

HiSS: Hierarchical State Space Models

…

deep SSM

y1 yn…

chunk 1

low-level SSM

high-level deep SSM

yny1

…s1 sk …

chunk n

…sm−k+1 sm

…

chunk 2

c1 cnc2

…sk+1 s2k

y2

…

…

low-level SSM low-level SSM

s1 sms2

st

ct

yt

Sensor state at time t

Chunk Feature at time t

Output state at time t

 Flat SSM Hierarchical SSM (HiSS)

Figure 3. (Left) Flat SSM directly maps a sensor sequence to an output sequence. (Right) HiSS divides an input sequence into chunks
which are processed into chunk features by a low-level SSM. A high-level SSM maps the resulting sequence to an output sequence.

dataset – a 3D human pose estimation dataset.

3. Hierarchical State-Space Models (HiSS)
In this work, we focus on continuous sequence-to-sequence
prediction problems for sensors i.e. problems that involve
mapping a sequence of sensory data to a sequence of outputs.
In the following sections, we describe HiSS – our approach
to sequence-to-sequence reasoning.

3.1. Sampling Frequencies

Every sensor in the real world operates at a different fre-
quency, and data from different sensors is therefore collected
at different nominal frequencies. Generally, our sensor se-
quences come from an inexpensive, noisy sensor operating
at a higher frequency than an expensive, high precision de-
vice which gives us output sequences. To emulate this sce-
nario and standardize our experiments, all sensor sequences
are resampled at a frequency of 50Hz, and output sequences
are resampled at 5Hz for all the datasets under consideration,
unless specified otherwise. These frequencies are dictated
by the sampling frequencies of sensors in the available data.

3.2. Model Architecture

Here we describe Hierarchical State Space Models (HiSS) –
a simple hierarchical architecture that uses SSMs to explic-
itly reason over sequential data at two temporal resolutions,
as shown in Figure 3. The sensor sequence is divided into a
set of equal-sized chunks of size k. Each chunk is passed
through a shared SSM which we refer to as the low-level
SSM. The outputs of the low-level SSM corresponding to
the k-th element of each chunk are then concatenated to

form a chunk feature sequence. Finally, this sequence is
passed through a high-level SSM to generate the output
sequence. Models are trained to minimize MSE loss.

Why should HiSS work? Sequential sensory data is subject
to phenomena that occur at different natural frequencies. For
instance, an IMU device mounted on a quadrotor is subject
to high-frequency vibration noise and low-frequency drift
characteristic of MEMS devices (Koksal et al., 2018). With
HiSS, our goal is to create a neural architecture with explicit
structure to operate at different temporal scales. This will
allow the low-level model to learn effective, temporally
local representations, while enabling the high-level model
to focus on global predictions over a shorter sequence.

4. Experiments and Results
In this section, we evaluate the performance of HiSS models
on CSP tasks and understand their strengths and limitations.
Unless otherwise specified, we use non-overlapping chunks
of size 10, and aim to compare the performance of HiSS
models against other baselines. We use two categories of
baselines: (1) Flat models consist of LSTMs, Causal Trans-
formers, S4 and Mamba, in addition to MEGA (Ma et al.,
2022). (2) Hierarchical baselines include variations of HiSS
models where the high-level and/or low-level SSMs are
replaced, and MEGA-chunk (Ma et al., 2022), which is
loosely classified as a high-level transformer with a low-
level MEGA model. Table 1 presents a performance com-
parison on CSP-Bench for these baselines and HiSS models.
Further analysis can be found in Appendix E.5.

3

HiSS: Hierarchical State Space Models

Table 1. Comparison of MSE prediction losses for baseline and HiSS models on CSP-Bench. Reported numbers are averaged over 5 seeds
for the best performing models. MW: Marker Writing, IS: Intrinsic Slip, R: RoNIN, V: VECtor, JC: Joystick Control, TC: TotalCapture

Model type Model Architecture MW IS JC R V TC
(cm/s) (m/s) (m/s) (m/s)

Flat

Transformer 2.3750 0.4600 1.0200 - 0.0432 -
LSTM 1.1685 0.3099 1.0740 0.0444 0.0353 0.1767
S4 1.3190 0.2617 0.9804 0.0382 0.0341 0.3483
Mamba 0.8830 0.1757 1.0640 0.0401 0.0319 0.3645
MEGA 0.8960 0.2105 0.9806 0.0370 0.0330 0.1944

High-level Low-level

Hierarchical

Transformer

Transformer 0.6680 0.2192 0.9112 0.0620 0.0372 0.3048
LSTM 0.9958 0.2527 0.9350 0.0421 0.0377 0.3197
S4 0.6205 0.1574 0.8980 0.0363 0.0374 0.3583
Mamba 1.0268 0.2022 0.9060 0.0472 0.0372 0.4560

(MEGA-chunk) MEGA 1.1270 0.2090 1.0450 0.0512 0.0403 0.1940

LSTM

Transformer 0.7620 0.9373 1.6090 0.3875 0.0302 0.2943
LSTM 0.8662 0.2837 1.0760 0.0436 0.0288 0.2522
S4 0.6370 0.1526 0.9080 0.0481 0.0322 0.3505
Mamba 0.7915 0.1925 1.0610 0.0442 0.0286 0.3638

S4

Transformer 0.7570 0.2898 0.9248 0.0439 0.0295 0.2452
LSTM 0.8590 0.1805 0.9520 0.0319 0.0293 0.2452
S4 0.6255 0.1551 0.9060 0.0265 0.0303 0.3438
Mamba 0.8257 0.1823 0.9200 0.0322 0.0294 0.4078

Mamba

Transformer 0.7020 0.3011 0.9553 0.0371 0.0293 0.2064
LSTM 0.7592 0.1746 0.9640 0.0346 0.0267 0.2428
S4 0.5663 0.1316 0.9010 0.0302 0.0298 0.2527
Mamba 0.7248 0.1678 0.9050 0.0325 0.0251 0.3762

HiSS improvement over best Flat +35.87% +25.10% +8.10% +30.74% +21.30% -37.36%

4.1. Performance of Flat models on CSP-Bench

At the outset, we see that SSMs – Mamba and S4, con-
sistently outperform the best-performing Transformer and
LSTM models by 10% and 14% median MSE respectively
across CSP-Bench tasks. The only anomaly is the TotalCap-
ture dataset where the LSTM outperforms all other models.
We analyze this later in Section E.5.

4.2. Improving CSP Performance with HiSS

HiSS models perform better than the best-performing flat
models, SSM or otherwise, with a further improvement of
∼23% median MSE across tasks. Among hierarchical mod-
els, HiSS models continue to do as well as or better than the
others with a relative improvement of ∼ 9.8% median MSE.
Further, we make two key observations within models that
use a specific high-level architecture: (1) these models con-
sistently outperform corresponding flat models, indicating
that temporal hierarchies are effective at distilling informa-

tion from continuous sensory data; (2) the best models use
S4 as the low-level model, indicating that S4 is particularly
adept at capturing low-level temporal structure in the data.

5. Conclusion and Limitations
We present CSP-Bench, the first publicly available bench-
mark for Continuous Sequence Prediction, and show that
SSMs do better than LSTMs and Transformers on CSP tasks.
Then, we propose HiSS, a hierarchical sequence modeling
architecture that is more performative, data efficient and
minimizes preprocessing needs for CSP problems. How-
ever, sequence-to-sequence prediction from sensory data
continues to be an open, relatively underexplored problem,
and our work indicates significant room for improvement.
Moreover, while SSMs show significant promise for CSP
tasks, they are relatively new architectures whose strengths
and weaknesses are far from being well-understood. Finally,
CSP-Bench is large, but the number of sensors that can

4

HiSS: Hierarchical State Space Models

benefit from learned models is larger. We are committed to
supporting CSP-Bench and adding more, larger datasets in
the future.

References
Arunachalam, S. P., Güzey, I., Chintala, S., and Pinto, L.

Holo-dex: Teaching dexterity with immersive mixed real-
ity. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5962–5969. IEEE, 2023.

Bhirangi, R., Hellebrekers, T., Majidi, C., and Gupta, A.
Reskin: versatile, replaceable, lasting tactile skins. arXiv
preprint arXiv:2111.00071, 2021.

Chen, T.-E., Yang, S.-I., Ho, L.-T., Tsai, K.-H., Chen, Y.-H.,
Chang, Y.-F., Lai, Y.-H., Wang, S.-S., Tsao, Y., and Wu,
C.-C. S1 and s2 heart sound recognition using deep neural
networks. IEEE Transactions on Biomedical Engineering,
64(2):372–380, 2016.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Gao, L., Liang, Y., Yang, J., Wu, S., Wang, C., Chen, J., and
Kneip, L. Vector: A versatile event-centric benchmark
for multi-sensor slam. IEEE Robotics and Automation
Letters, 7(3):8217–8224, 2022.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s raw! audio
generation with state-space models. In International Con-
ference on Machine Learning, pp. 7616–7633. PMLR,
2022.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, A., Goel, K., and Re, C. Efficiently modeling long
sequences with structured state spaces. In International
Conference on Learning Representations, 2021.

Guzey, I., Evans, B., Chintala, S., and Pinto, L. Dex-
terity from touch: Self-supervised pre-training of tac-
tile representations with robotic play. arXiv preprint
arXiv:2303.12076, 2023.

Herath, S., Yan, H., and Furukawa, Y. Ronin: Robust neural
inertial navigation in the wild: Benchmark, evaluations, &
new methods. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3146–3152. IEEE,
2020.

Holden, D., Saito, J., and Komura, T. A deep learning
framework for character motion synthesis and editing.
ACM Transactions on Graphics (TOG), 35(4):1–11, 2016.

Koksal, N., Jalalmaab, M., and Fidan, B. Adaptive linear
quadratic attitude tracking control of a quadrotor uav
based on imu sensor data fusion. Sensors, 19(1):46, 2018.

Kuchaiev, O. and Ginsburg, B. Factorization tricks for lstm
networks. arXiv preprint arXiv:1703.10722, 2017.

Liu, W., Caruso, D., Ilg, E., Dong, J., Mourikis, A. I., Dani-
ilidis, K., Kumar, V., and Engel, J. Tlio: Tight learned
inertial odometry. IEEE Robotics and Automation Letters,
5(4):5653–5660, 2020.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G., May,
J., and Zettlemoyer, L. Mega: moving average equipped
gated attention. arXiv preprint arXiv:2209.10655, 2022.

Schütze, M., Campisano, A., Colas, H., Schilling, W., and
Vanrolleghem, P. A. Real time control of urban wastew-
ater systems—where do we stand today? Journal of
hydrology, 299(3-4):335–348, 2004.

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn,
D., Barnes, M., Keane, J., and Nenadic, G. Machine
learning methods for wind turbine condition monitoring:
A review. Renewable energy, 133:620–635, 2019.

Thu, N. T. H. and Han, D. S. Hihar: A hierarchical hy-
brid deep learning architecture for wearable sensor-based
human activity recognition. IEEE Access, 9:145271–
145281, 2021.

Tomo, T. P., Regoli, M., Schmitz, A., Natale, L., Kristanto,
H., Somlor, S., Jamone, L., Metta, G., and Sugano, S. A
new silicone structure for uskin—a soft, distributed, digi-
tal 3-axis skin sensor and its integration on the humanoid
robot icub. IEEE Robotics and Automation Letters, 3(3):
2584–2591, 2018.

Trumble, M., Gilbert, A., Malleson, C., Hilton, A., and
Collomosse, J. Total capture: 3d human pose estimation
fusing video and inertial sensors. In Proceedings of 28th
British Machine Vision Conference, pp. 1–13, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

You, J., Wang, Y., Pal, A., Eksombatchai, P., Rosenburg,
C., and Leskovec, J. Hierarchical temporal convolutional
networks for dynamic recommender systems. In The
world wide web conference, pp. 2236–2246, 2019.

5

HiSS: Hierarchical State Space Models

A. CSP-Bench: Dataset Information and Details
We address the scarcity of datasets with dense, continuous labels for sequence-to-sequence prediction by collecting three
touch datasets with 1000 trajectories each and combining them with three IMU datasets from literature to create CSP-Bench.
For each dataset, we design tasks to predict labeled sequences from single sensor data to avoid confounding factors. We also
include data from varied sources like cameras and robot movements to facilitate future research in multi-sensor integration
and multimodal learning. The detailed characteristics of these datasets are summarized in Table 2, aiming to support diverse
sensory data analysis.

Table 2. Summary of all the modalities present in CSP-Bench. Modalities used for training are italicized. In addition to the data used for
training models, we also release synchronized video and robot kinematics data to facilitate further research in CSP problems.

Dataset Modalities Model Inputs Model Outputs Size
(dim) (dim) (min)

Marker Writing ReSkin (100 Hz), 2 Cameras (30 Hz),
Robot (45 Hz)

ReSkin (30) End-effector
velocity (2)

420

Intrinsic Slip ReSkin (100 Hz), 3 Cameras (30 Hz),
Robot (45 Hz)

ReSkin (30) End-effector
velocity (3)

640

Joystick Control Xela (100 Hz), 2 Cameras (30 Hz), Robot
(50 Hz), Hand (300 Hz), Joystick (20 Hz)

Xela (552) Joystick State (3) 580

VECtor
(Gao et al., 2022)

IMU (200 Hz), 2 Cameras (30 Hz), RGBD
(30 Hz), Lidar (10 Hz), MoCap (120 Hz)

IMU (7) User velocity (3) 22

TotalCapture
(Trumble et al., 2017)

IMU (60 Hz), 8 Cameras (60 Hz),
MoCap (60 Hz)

IMU (39) Joint velocities (60) 45

RoNIN
(Herath et al., 2020)

IMU (200 Hz), 3D Tracking Phone (200
Hz)

IMU (7) User velocity (2) 600

A.1. Touch Datasets

Our touch datasets are collected on two magnetic tactile sensor designs: ReSkin (Bhirangi et al., 2021) and Xela (Tomo
et al., 2018). The ReSkin setup consists of a 6-DOF Kinova JACO Gen1 robot with a 1-DOF RG2 OnRobot gripper as
shown in Figure 2. Both gripper surfaces are sensorized with a 32 mm × 30 mm × 2 mm ReSkin sensor. Each sensor has
five 3-axis magnetometers which measure changes in magnetic flux resulting from the deformation of the skin on the gripper
surface. Appendix B contains more details on the fabrication and integration of ReSkin into the gripper.

The Xela setup consists of a 7-DOF Franka Emika robot fitted with a 16-DOF Allegro hand by Wonik Robotics. Each
finger on the hand is sensorized with three 4x4 uSkin tactile sensors and one curved uSkin tactile sensor from XELA
Robotics as shown in Figure 2. Sensor integration was provided by XELA robotics, which was designed specifically for the
Allegro Hand. While the underlying sensory mode is the same for both ReSkin and Xela, they differ in spatial and temporal
resolution, physical layout, and magnetic source.

A.1.1. RESKIN: MARKER WRITING DATASET

We collect 1000 Kinova robot trajectories of randomized linear strokes across a paper. Initially, the marker is arbitrarily
placed between the gripper tips, and data collection begins when the marker touches the paper. The robot then moves linearly
between 8-12 random points uniformly sampled within a 10cm x 10cm workspace, pausing for a randomly sampled delay of
1-4 seconds after each motion. Images of sample trajectories can be found in Appendix D.

The goal of this sequential prediction problem is to use tactile signal from the gripper to predict the velocity of the end-
effector in the plane of the table. Velocity labels are easily obtained from robot kinematics, and serve as a proxy for the
velocity of the marker strokes against the paper. What makes this problem challenging is that the sensor picks up contact
information from both, the relative motion between the marker and the gripper, and the motion of the marker against the

6

HiSS: Hierarchical State Space Models

paper. The model must learn to disentangle these two motions to make accurate predictions.

A.1.2. RESKIN: INTRINSIC SLIP DATASET

We again use the Kinova setup to collect 1000 trajectories of intrinsic slip – the gripper grasping and slipping along different
boxes clamped to a table. At the start of every episode, we close the gripper at a random location and orientation on the box
and start recording data. We sample 8-12 random locations and orientations within the workspace of the robot along the
length of the box, and then command the robot to move along the box while slipping against it. We use 10 boxes of different
sizes to collect this dataset to improve data diversity in terms of contact dynamics. Example images and dimensions are
available in Appendix D.1.2.

The goal of the sequential prediction problem is to use the sequence of tactile signals from the gripper tips to predict the
translational and rotational velocity of the end-effector (again obtained from robot kinematics) in the plane of the robot’s
motion. In addition, the abrasive nature of the task causes the skin to wear out over time. To account for this wear, we
change the gripper tips and skins after 25 trajectories on every box, improving data diversity as a result.

A.1.3. XELA: JOYSTICK CONTROL DATASET

For our final dataset, we record 1000 trajectories of data from the Allegro hand interacting with the joystick as shown in
Figure 2. The hand/robot setup is teleoperated using a VR-based system derived from HoloDex (Arunachalam et al., 2023).
Joystick interactions are logged synchronously with robot data, tactile sensing data, and the camera feed. Specifically, this
includes the full robot kinematics (7 DOF Arm at 50 Hz + 16 DOF Hand at 300 Hz), XELA tactile output (552 dim at 100
Hz), and 2 Realsense D435 cameras (1080p at 30 Hz). Each trajectory consists of 25-40 seconds of interaction with the
joystick.

The goal of the sequential prediction problem is to use tactile signal from the Xela-sensorized robot hand to predict the
state of the joystick, which is recorded synchronously with all the other modalities. The extra challenge with this dataset, in
addition to the significantly higher dimensionality of the observation space, is the noisier trajectories resulting from human
demos instead of a scripted policy.

A.2. Curated Public Datasets

In addition to the tactile datasets we release with this paper, we also test our findings on data from other datasets, particularly
ones using IMU sensor data (illustrated in Figure 2) – the RoNIN dataset (Herath et al., 2020) which contains smartphone
IMU data from 100 human subjects with ground-truth 3D trajectories under natural human motions, the VECtor dataset (Gao
et al., 2022) – a SLAM dataset collected across three different platforms, and the TotalCapture dataset – a 3D human pose
estimation dataset.

B. ReSkin fabrication details
ReSkin measures the changes in magnetic flux in its X, Y and Z coordinate system, based on the change in relative distance
between the embedded magnetic microparticles in an elastomer matrix and a nearby magnetometer. The use of magnetic
microparticles enables freedom in regard to the shape and dimensions of the molded skin. In our use case here, we use a
skin of thickness 2mm. This section further details the complete fabrication process involved in the sensorized gripper tips
we use for the ReSkin setup described in Section A.1. Figure 4 illustrates different components of the sensorized gripper.

B.1. Circuitry

Data from the ReSkin sensors is streamed to a computer via USB. The two sensors are connected to an I2C MUX which in
turn is connected to an Adafruit QT Py microcontroller as described in Bhirangi et al. (2021). See Figure 4.

B.2. OnRobot Gripper Tips

The skins are affixed to the 3D-printed gripper tips using silicone adhesive, as shown in Figure 5. The dimensions of the tips
are 32 mm ×30 mm ×2 mm. The same tips also house the flex-PCB boards, which measure the change in magnetic flux in
all 3 axes.

7

HiSS: Hierarchical State Space Models

Figure 4. Circuitry

Figure 5. Gripper Tips with ReSkin

C. Model architectures and Training
C.1. Data Preprocessing

All the sensors considered in CSP-Bench are prone to drift; therefore, in line with previous work (Bhirangi et al., 2021;
Guzey et al., 2023; Herath et al., 2020), we estimate a resting signal at the start of every sensor trajectory and deviations from
this resting signal are passed to the model. Since sensor drift can be causally data-dependent, the entire sensory trajectory is
passed to the model as input. Sensor and output sequences are normalized based on data statistics for their corresponding
datasets, and details are listed in Appendix C. Additionally, we find that appending one-step differences to every element in
the sensor sequence helps improve performance, in line with numerous prior works (Chen et al., 2016; Holden et al., 2016).

C.2. Flat Architectures

For each of the flat sequence models presented in this work, the input sequence is first embedded into a hidden state sequence
by a linear layer. This hidden state is then passed to the respective sequence model. The outputs of the sequence model (the
hidden states for LSTM, S4 and Mamba) are then mapped to the desired output space

C.3. Hierarchical architectures

The hierarchical models are obtained by simply stacking two flat models together. The input sequence is first divided into
equal sized chunks as described in Section 3.2. Each chunk is passed through the low-level sequence model and the outputs
corresponding to the last timestep of each chunk are concatenated to form the chunk feature sequence. This sequence is
passed through a high-level sequence model to obtain the output sequence

C.4. Hyperparameters

All models are trained for 600 epochs at a constant learning rate of 1e-3. Learning rate schedulers were not found to improve
performance by noticeable amounts. Table 3 contains the ranges of hyperparameters used for training the flat models
presented in the paper. We do not sweep over all of these hyperparameters for each task. A subset of these parameters
is chosen for each task depending on the input and output dimensionality of the task and the best-performing models are
reported. The exact hyperparameters for each experiment can be found on the Github repository. For any given task, we
ensure that sweeps over all model classes consist of models that have the same order of magnitude of learnable parameters.

8

HiSS: Hierarchical State Space Models

LSTM Transformer S4 Mamba

Input size
16, 32, 64, 128, 256

Model dim
32, 64, 128, 256, 512

Model dim
32, 64, 128, 256, 512

Model dim
32, 64, 128, 256, 512

LSTM hidden size
256, 512, 1024

No. of heads
2,4

No. of layers
2

No. of layers
4,6

No. of layers
4, 6

No. of layers
4, 6

Dropout
0.0, 0.1

Dropout
0.0, 0.1

Dropout
0.0, 0.1

Table 3. Hyperparameters for flat architectures

For the hierarchical models, we use a smaller subset of the parameters listed in Table 3 to sweep over the high level models.
Parameter ranges swept over for low-level models are listed in Table 4. The exact hyperparameters for each experiment can
be found on the Github repository.

LSTM S4 Mamba

Input size
16, 32, 64

Model dim
16,32,64,128, 256

Model dim
16, 32, 64, 128, 256

LSTM hidden size
16,32,64,128,256

No. of layers
1

No. of layers
4, 6

No. of layers
3,4

Table 4. Hyperparameters for low-level models used in hierarchical architectures

These hyperparameter sweeps result in a range of models with different numbers of parameters. Table 5 lists the range of
parameters resulting from the sweeps, and Table 6 contains the number of parameters in the best-performing models.

9

HiSS: Hierarchical State Space Models

Table 5. Range of parameters swept over for baseline and HiSS models on CSP-Bench. Reported numbers are in millions of parameters.

Model type Model Architecture MW IS JC R V TC

Flat

Transformer 0.4 - 9.5 0.4 - 9.5 0.7 - 10.6 - 0.0 - 0.6 -
LSTM 3.4 - 13.7 0.9 - 3.7 3.7 - 14.2 0.8 - 3.3 0.0 - 0.2 3.5 - 13.8
S4 0.8 - 4.0 0.8 - 4.0 1.4 - 5.1 0.3 - 1.2 0.0 - 0.4 0.9 - 4.1
Mamba 0.5 - 10.2 1.8 - 10.2 0.8 - 11.3 0.5 - 2.6 0.0 - 0.7 0.5 - 10.3

High-level Low-level

Hierarchical

Transformer

Transformer 1.2 - 4.8 3.6 - 12.0 1.5 - 5.4 2.5 - 12.0 0.1 - 0.8 1.2 - 4.9
LSTM 0.9 - 2.8 3.3 - 9.9 1.0 - 2.9 0.4 - 1.2 0.1 - 0.6 0.9 - 2.8
S4 1.1 - 3.6 3.6 - 10.8 1.4 - 4.2 0.7 - 2.0 0.1 - 0.8 1.1 - 3.7
Mamba 1.2 - 4.2 3.7 - 11.4 1.4 - 4.8 0.4 - 2.6 0.1 - 0.7 1.2 - 4.3

LSTM

Transformer 0.7 - 3.3 1.3 - 5.9 0.9 - 3.9 1.0 - 5.9 0.1 - 0.4 0.7 - 3.4
LSTM 0.3 - 1.3 1.0 - 3.9 0.4 - 1.5 1.0 - 3.9 0.1 - 0.3 0.3 - 1.4
S4 0.5 - 2.2 1.3 - 4.7 0.8 - 2.8 1.3 - 4.7 0.1 - 0.4 0.6 - 2.3
Mamba 0.6 - 2.8 1.4 - 5.3 0.9 - 3.3 0.9 - 5.3 0.1 - 0.4 0.6 - 2.8

S4

Transformer 0.7 - 3.6 1.2 - 6.5 1.0 - 4.2 0.9 - 6.5 0.0 - 0.6 0.7 - 3.7
LSTM 0.4 - 1.6 0.9 - 4.4 0.4 - 1.7 0.5 - 1.6 0.0 - 0.4 0.4 - 1.6
S4 0.6 - 2.5 1.2 - 5.3 0.8 - 3.0 0.8 - 2.4 0.1 - 0.6 0.6 - 2.5
Mamba 0.6 - 3.0 1.3 - 5.9 0.9 - 3.6 0.5 - 3.0 0.1 - 0.5 0.7 - 3.1

Mamba

Transformer 0.9 - 5.1 0.9 - 5.1 1.2 - 5.6 0.6 - 5.1 0.0 - 0.9 0.9 - 5.1
LSTM 0.6 - 3.0 0.6 - 3.0 0.6 - 3.2 0.6 - 3.0 0.0 - 0.7 0.6 - 3.1
S4 0.8 - 3.9 0.9 - 3.9 1.0 - 4.5 0.9 - 3.9 0.1 - 0.9 0.8 - 4.0
Mamba 0.8 - 4.5 1.0 - 4.5 1.1 - 5.0 0.5 - 4.5 0.1 - 0.8 0.9 - 4.5

10

HiSS: Hierarchical State Space Models

Table 6. Parameter count for best-performing baseline and HiSS models on CSP-Bench. Reported numbers are in millions of parameters.

Model type Model Architecture MW IS JC R V TC

Flat

Transformer 6.3 0.6 2.9 - 0.4 -
LSTM 13.7 3.7 14.2 0.9 0.2 13.8
S4 4.0 4.0 5.1 0.8 0.4 0.9
Mamba 10.2 2.6 7.9 0.7 0.7 0.5

High-level Low-level

Hierarchical

Transformer

Transformer 1.2 3.6 1.5 4.0 0.2 2.5
LSTM 0.9 3.6 2.9 0.6 0.4 2.5
S4 3.6 4.4 2.2 1.5 0.5 2.1
Mamba 2.9 3.7 3.1 0.4 0.7 2.9

LSTM

Transformer 0.7 3.7 1.7 1.0 0.2 0.9
LSTM 1.3 1.3 0.5 1.1 0.1 0.6
S4 2.2 2.1 2.3 1.3 0.2 1.6
Mamba 2.7 4.0 1.5 1.0 0.3 2.2

S4

Transformer 0.9 1.2 1.9 1.0 0.3 2.9
LSTM 1.3 3.1 1.3 1.6 0.3 1.6
S4 2.5 4.0 2.1 0.8 0.3 2.5
Mamba 3.0 5.9 3.2 0.5 0.4 0.8

Mamba

Transformer 2.4 2.2 1.2 2.7 0.2 2.2
LSTM 0.8 2.2 2.3 1.9 0.1 3.0
S4 3.0 3.0 3.2 1.7 0.2 3.1
Mamba 4.5 2.5 3.3 0.8 0.6 2.1

11

HiSS: Hierarchical State Space Models

D. Experimental Setup and Data Collection details

Figure 6. Marker Writing Frames (Top): The gripper tips hold the marker and bring it in contact with the paper before the sequence starts.
The arm maneuvers the marker to execute eight strokes on the paper. Instrinsic Slip Frames (Middle): The gripper tips hold the box to
start the sequence, and slip through the robot workspace with different orientations. Joystick Control Frames (Bottom): After the sequence
begins, the hand holds the joystick, controlling its movement through various positions.

D.1. ReSkin: Onrobot Gripper on a Kinova JACO Arm

D.1.1. MARKER WRITING

For this experiment, we first grasp the marker with 300 N force in an arbitrary position and bring it in contact with the paper.
We then start recording data and command the robot to move sequentially to 8-12 randomly sampled locations within a
10× 10 cm2 plane workspace, making linear strikes on the paper. Figure 6 illustrates a sample sequence from this dataset.
We note that during the strikes, the grasped marker undergoes orientation drifts at times, which adds to the complexity
in signal. We record a total of 1000 trajectories of 15-30 seconds each, comprising of 2 different colored markers. The
prediction task here is to predict the strike velocity (δx/δt, δy/δt), given the tactile signals thus reconstructing the overall
trajectory.

D.1.2. INTRINSIC SLIP

In Section A.1.2, we outlined our methodology for collecting data through a total of 1000 trajectories. This involved using
10 distinct boxes and 4 sets of skins for 25 trajectories per combined pair. We first sample a random location and orientation
within the task workspace. Next, we close the gripper with a random force sampled in the range of 50-75 N and then start
recording data. With the gripper grasping the box, we uniformly sample 8-12 locations sequentially, thus slipping through
the robot workspace. Figure 6 illustrates a sample sequence from this dataset. The workspace is the upper region of the box,
which is a space of dimensions Box Length x Tip Size(3cm), shown in Figure 8. We clamp the wrist rotation
limits at [-π/4, π/4], making the overall local sampling bounds of the gripper tip position (center of tip), Y:[0, box length],
Z:[0, tip size], θ:[-π/4, π/4].

12

HiSS: Hierarchical State Space Models

Figure 7. Boxes in the Dataset

Bhirangi et al. (2021) characterize the ability of ReSkin sensor models generalize to skins outside the training distribution, but
these experiments are limited to single-frame, static data. Here, we collect an analogous dataset for the sequence-to-sequence
prediction problem. To avoid confounding effects, the evaluations provided in this paper are based on a random partitioning
of this dataset. However, we collect and publish an additional 100 trajectories on an unseen box and an unseen set of skins
to test the generalizability of trained models.

The dimensions of all boxes used in this experiment are detailed below. See Table 7 and Figure 7.

In this experiment, in addition to predicting the linear velocities of the end-effector, we also predict the angular velocities at
the wrist/the end-effector rotation (δx/δt, δy/δt, δθ/δt).

D.2. Xela: Allegro Hand on a Franka Emika Panda Arm

D.2.1. JOYSTICK CONTROL

For the final tactile dataset, we teleoperate an Allegro Hand with Xela sensors mounted on a Franka arm to interact with an
Extreme3D Pro Joystick shown in Figure 9, which streams data comprising of 6 rotation axes (X, Y, Rz, Throttle, Hat0X,
Hat0Y) and 12 buttons (Trigger, 2 Thumb Buttons, 2 Top Buttons, 1 Pinkie Button and 6 Base Buttons). Unlike the prior
datasets, which originated out of random yet scripted policies, this dataset has an added complexity from the unstructured
human interactive control. Figure 6 illustrates a sample sequence from this dataset. Due to the arm workspace and the finger
size constraints, we focus on 3 axes - X, Y and Z-twist for our prediction task. Given the readings from the Xela sensors, we

13

HiSS: Hierarchical State Space Models

Figure 8. End-effector Workspace on the Box, & Local Co-ordinate System

Box Number Dimensions (L x H x W cm)
1 20 x 12 x 4
2 16.5 x 8.5 x 3
3 14 x 9 x 5
4 17 x 13 x 4.5
5 15 x 10 x 4.5
6 16.5 x 13 x 6
7 17 x 10 x 5.5
8 18 x 19.5 x 5.5
9 17 x 11 x 3.5
10 12 x 8 x 6.5

11 (unseen) 23 x 16 x 5

Table 7. Dimensions of Boxes in the Dataset

predict the joystick’s states of interest.

Figure 9. Extreme3D Pro Joystick & Co-ordinate System

14

HiSS: Hierarchical State Space Models

Table 8. Performance comparison with (a) downsampled inputs, (b) low pass filter on input sequences, and (c) fewer training samples

MW IS JC R V TC

Downsampled inputs
Trnsfrmr 2.41 0.33 .957 .116 .039 0.34
LSTM 1.92 0.27 .975 .094 .034 0.20
S4 2.22 0.29 .974 .081 .036 0.31
Mamba 1.96 0.26 .980 .077 .033 0.25
HiSS 0.57 0.13 .901 .027 .025 0.26

Low Pass Filtering
Trnsfrmr 1.79 0.31 1.01 - .034 0.38
LSTM 1.15 0.26 1.08 .038 .024 0.12
S4 1.19 0.22 0.94 .031 .022 0.25
Mamba 0.78 0.14 0.95 .030 .018 0.17
HiSS 0.55 0.11 0.87 .036 .020 0.13

Smaller Training Dataset
Fraction 0.3 0.3 0.3 0.3 0.5 0.5
Trnsfrmr 4.30 0.85 1.237 - .046 0.54
LSTM 1.83 0.54 1.313 .053 .039 0.39
S4 2.31 0.45 1.197 .043 .038 0.43
Mamba 1.74 0.37 1.195 .039 .036 0.48

HiSS 1.26 0.29 1.106 .034 .029 0.37

E. Results and Ablations
To better understand the working of HiSS, we delve deeper and seek to answer the following questions:

• How does chunk size affect the performance of HiSS?

• Is HiSS compatible with existing preprocessing techniques like filtering?

• How does HiSS perform in low-data regimes?

E.1. Does HiSS Simply do Better Downsampling?

The first question we seek to answer is whether simply downsampling the sensor sequence to the same frequency as the
output would do just as well as HiSS. As we see in Table 8, while some flat models with downsampled sensor sequences
indeed improve performance over flat models in Table 1, they remain far behind HiSS models. This reinforces our hypothesis
that HiSS models distill more information from the sensor sequence than naive downsampling.

One advantage of using hierarchical models is memory efficiency. They can significantly reduce computational load for
models like transformers which scale quadratically in the length of the sequence. Using an SSM such as S4 or Mamba as the
low-level model can significantly reduce the computational load

(
O(N2) → O(N2/k2)

)
for k ≪ N , where k and n are

chunk size and sequence length respectively. Table 1 shows that such a model consistently improves performance over a flat
causal Transformer across tasks.

E.2. Effect of Chunk Size on Performance

Having established the effectiveness of HiSS relative to conventional sequence modeling architectures, we seek to investigate
the effect of a key parameter – the chunk size – on the performance of HiSS models. Downsampling the sensor sequences at
the output frequency, as presented in Section E.1 essentially corresponds to using a chunk size of 1. The rest of the analysis
presented so far uses a chunk size of 10, corresponding to the largest non-overlapping chunks that cover the entire sensory

15

HiSS: Hierarchical State Space Models

Table 9. Effect of chunk size on perfomance of HiSS models

Chunk
size MW IS JC R V TC

5 1.18 0.20 .933 .046 .033 0.32
10 0.57 0.13 .901 .027 .025 0.25
15 0.54 0.12 .899 .035 .026 0.24

sequence given sensor and output sequence frequencies of 50 Hz and 5 Hz respectively. In this section, we conduct two
additional experiments with chunk sizes of 5 and 15 and present the results in Table 9. We see that while performance
improves drastically as the chunk size increases, it plateaus once the chunk size reaches the ratio of the sensor and output
frequencies (10 in our case). This behavior can be explained by the fact that chunk sizes smaller than this ratio result in the
model never seeing parts of the sensor sequence, while chunk sizes larger than this ratio result in an overlap between chunks.

E.3. Effect of Sensory Preprocessing on Performance

A common approach to preprocessing noisy sensor data is to design low-pass filters to process the signal before it’s passed
through the model. To analyze the compatibility of HiSS models with such existing preprocessing techniques, we separately
apply order 5 Butterworth filters with 3 different cut-off frequencies to the sensor sequence and report model corresponding
to the best cut-off frequency in Table 8. We make two key observations: (1) with the exception of the HiSS model for
RoNIN, low pass filtering improves performance across the board; (2) HiSS models still perform comparably with or better
than flat models.

With respect to (1), we see that the best-performing HiSS model from Table 1 continues to outperform the best flat model
using filtered data, implying that the low-pass filter may have filtered useful information could have been used to improve
task performance. This points to an important pitfall of handcrafted preprocessing techniques – they can often filter out
information that could have been exploited by a sufficiently potent model. Consequently, the ability of HiSS models to
require little to no preprocessing of the input sequence bolsters their credentials to serve as general purpose models for CSP
data.

E.4. How Does HiSS Perform on Smaller Datasets?

The lack of a comprehensive benchmark for continuous sequence prediction so far speaks to the difficulty of collecting
large, labeled datasets of sensory data. Therefore, performance in low-data regimes could be critical to wider applicability
of different sequence modeling architectures. To benchmark this performance, we compare the performance of flat as well
as HiSS models on subsets of the training data. While TotalCapture and VECtor are substantially smaller than the other
datasets (see Table 2), we include them in this analysis while using a larger fraction of training data than other datasets.
Results are presented in Table 8. We only present the best performing HiSS model here for conciseness. The full table can
be found in Appendix E.5.

We see that on smaller fractions of the training dataset, HiSS outperforms flat baselines on every task in CSP-Bench. This
indicates an important property of HiSS models – data efficiency. Low-level models operate identically on all of the chunks
in the data, allowing them to learn more effective representations from small datasets than flat models.

E.5. Failure on TotalCapture

The most visible failure case for the performance of both flat SSMs as well as HiSS models is on the TotalCapture dataset,
where the flat LSTM significantly outperforms all other models. We hypothesize that the high dimensionality of the input
and output spaces prevents SSMs from learning sufficiently expressive representations that can filter out high frequency
data. This is also evidenced by the higher performance of LSTM low-level models across hierarchical architectures for this
dataset, which correlates with the correspondingly higher effectiveness of the flat LSTM over flat SSMs. Further evidence of
the inability of SSMs to filter out noise can be found in Section E.3, where the performance of HiSS models nearly matches
the LSTM when the input sequence is passed through a lowpass filter. This indicates that the HiSS model struggles to learn
the filtering behavior from data here, unlike other datasets where performance remains fairly consistent with and without the

16

HiSS: Hierarchical State Space Models

lowpass filter.

E.6. Standard deviations for reported results

The results presented in Table 1 are averaged over 5 random seeds each. Table 10 presents the standard deviations over
seeds for each of the tasks and models.

Table 10. Comparison of standard deviation in MSE over 5 seeds for baseline and HiSS models on CSP-Bench.

Model type Model Architecture MW IS JC R V TC
(cm/s) (m/s) (m/s) (m/s)

Flat

Transformer 0.0805 0.0161 0.0544 - 0.0004 -
LSTM 0.0540 0.0184 0.0006 0.0074 0.0014 0.0039
S4 0.0634 0.0159 0.0188 0.0049 0.0012 0.0172
Mamba 0.0224 0.0111 0.1060 0.0040 0.0011 0.0064

High-level Low-level

Hierarchical

Transformer

Transformer 0.0438 0.0164 0.0250 0.0057 0.0013 0.0159
LSTM 0.0429 0.0250 0.0420 0.0039 0.0016 0.0114
S4 0.0215 0.0084 0.0188 0.0021 0.0028 0.0416
Mamba 0.0617 0.0145 0.0180 0.0054 0.0015 0.0202

LSTM

Transformer 0.0359 0.0120 0.0721 0.1826 0.0017 0.0257
LSTM 0.0310 0.0093 0.0244 0.0022 0.0012 0.0121
S4 0.0405 0.0069 0.0295 0.0022 0.0014 0.0038
Mamba 0.1174 0.0179 0.0199 0.0049 0.0014 0.0143

S4

Transformer 0.0545 0.0273 0.0172 0.0031 0.0015 0.0030
LSTM 0.0511 0.0099 0.0255 0.0012 0.0014 0.0069
S4 0.0274 0.0076 0.0238 0.0009 0.0008 0.0179
Mamba 0.0357 0.0044 0.0136 0.0024 0.0012 0.0151

Mamba

Transformer 0.0499 0.0154 0.0500 0.0050 0.0007 0.0077
LSTM - 0.0142 0.0131 0.0030 0.0013 0.0171
S4 0.0453 0.0066 0.0347 0.0019 0.0016 0.0088
Mamba 0.0542 0.0042 0.0313 0.0022 0.0010 0.0156

E.7. Sensor Data Preprocessing with Filtering

In this section, we provide more detailed tables for the experiments in Sections E.3. Table 11 contains results from separately
applying order 3 Butterworth filters to the input sequences with cutoff frequencies of 0.75Hz, 2.5Hz and 7.5Hz. For each
setting, we pick the set of models corresponding to the cutoff frequency with the best performance, and report average
performance over 3 seeds.

E.8. Smaller Datasets

In this section, we provide more detailed tables for the experiments in Sections E.4. Table 12 contains results from
subsampling the training datasets – 30% of the dataset for MW, IS, JC and RoNIN, and 50% of the dataset for VECtor and
TotalCapture. We see that HiSS consistently outperforms flat models across tasks in CSP-Bench when training on fractions
of the training dataset, indicating the sample efficiency of HiSS models.

17

HiSS: Hierarchical State Space Models

Table 11. Comparison of MSE prediction losses for flat and HiSS models on CSP-Bench when passing the input sequences through a
low-pass filter. Reported numbers are averaged over 5 seeds for the best performing models. MW: Marker Writing, IS: Intrinsic Slip, JC:
Joystick Control, TC: TotalCapture

Model type Model Architecture MW BS JC RoNIN VECtor TC
(cm/s) (m/s) (m/s) (m/s)

Flat

Transformer 1.7940 0.3096 1.0080 - 0.0346 0.3845
LSTM 1.1498 0.2596 1.0770 0.0382 0.0242 0.1234
S4 1.1885 0.2209 0.9449 0.0305 0.0228 0.2467
Mamba 0.7823 0.1367 0.9459 0.0297 0.0188 0.1661

High-level Low-level

Hierarchical

Transformer
LSTM 1.0052 0.1883 0.9074 0.0532 0.0284 0.2314
S4 0.6703 0.1249 0.8652 0.0434 0.0260 0.2908
Mamba 0.8912 0.1251 0.8731 0.0435 0.0243 0.3118

LSTM
LSTM 0.8063 0.2434 1.0500 0.0430 0.0272 0.1754
S4 0.6462 0.1477 0.9885 0.0419 0.0288 0.1968
Mamba 0.7515 0.1657 1.0080 0.0420 0.0234 0.1755

S4
LSTM 0.8525 0.1390 0.9269 0.0306 0.0272 0.1905
S4 0.6667 0.1221 0.9296 0.0377 0.0222 0.2284
Mamba 0.7825 0.1180 0.8898 0.0396 0.0207 0.2527

Mamba
LSTM 0.8143 0.1308 0.9660 0.0369 0.0255 0.1594
S4 0.5535 0.1074 0.8665 0.0362 0.0272 0.1301
Mamba 1.5657 0.1057 0.8765 0.0367 0.0212 0.1466

Table 12. Comparison of MSE prediction losses for flat and HiSS models on CSP-Bench when using a fraction of the training dataset.
Reported numbers are averaged over 5 seeds for the best performing models. MW: Marker Writing, IS: Intrinsic Slip, JC: Joystick Control,
TC: TotalCapture

Model type Model Architecture MW IS JC RoNIN VECtor TC
(cm/s) (m/s) (m/s) (m/s)

(Fraction) 0.3 0.3 0.3 0.3 0.5 0.5

Flat

Transformer 4.2975 0.8509 1.2370 - 0.0460 0.5430
LSTM 1.8322 0.5376 1.3130 0.0533 0.0390 0.3855
S4 2.3070 0.4450 1.1970 0.0431 0.0379 0.4338
Mamba 1.7443 0.3677 1.1950 0.0394 0.0358 0.4838

High-level Low-level

Hierarchical

S4
LSTM 1.5417 0.3428 1.2350 0.0387 0.0331 0.3982
S4 1.5460 0.2931 1.1260 0.0346 0.0337 0.3992
Mamba 2.3302 0.3760 1.1060 0.0412 0.0326 0.4913

Mamba
LSTM 1.5810 0.3478 1.2410 0.0362 0.0309 0.3530
S4 1.2600 0.2883 1.1370 0.0378 0.0333 0.3675
Mamba 1.7508 0.3688 1.1140 0.0383 0.0286 0.4320

18

HiSS: Hierarchical State Space Models

F. TotalCapture Preprocessing
This dataset provides readings from 12 IMU sensors and the ground truth poses of 21 joints obtained from the Vicon motion
capture system. To standardize the data within a consistent coordinate system, we transformed all IMU sensor readings from
their native IMU frames to the Vicon frame. Our task is to predict the velocities of the 21 joints given the IMU acceleration
data in the Vicon reference frame.

To convert IMU acceleration data into the Vicon frame, we utilize the calibration results
provided in the files named <subject id> <sequence name> calib imu ref.txt and
<sequence name> Xsens AuxFields.sensors. The acceleration of each IMU sensor in the Vicon frame
is calculated as follows:

avicon = Rvicon
inertialR

inertial
imu aimu, (1)

where Rinertial
imu is the rotation matrix converted from the IMU local orientation quaternion (w, x, y, z) provided in the

<sequence name> Xsens AuxFields.sensors files. This quaternion represents the IMU’s orientation in the
inertial reference frame.

Furthermore, Rvicon
inertial is obtained by converting the quaternion information (<imu name> x y z w) available in the

<subject id> <sequence name> calib imu ref.txt files, which encapsulates the transformation from the
inertial frame to the Vicon global frame.

19

