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ABSTRACT

Recently, self-supervised learning (SSL) has achieved tremendous empirical ad-
vancements in learning image representation. However, our understanding of the
principle behind learning such a representation are still limited. This work shows
that the success of the SOTA Siamese-network-based SSL approaches is primarily
based on learning a distributed representation of image patches. In particular, we
show that when we learn a representation only for fixed-scale image patches and ag-
gregate different patch representations for an image (instance), it can achieve on par
or even better results than the baseline methods that use the whole image. Further,
we show that the patch representation aggregation can also improve various SOTA
baseline methods by a large margin. We also establish a formal connection between
the Siamese-network-based SSL objective and the image patches co-occurrence
statistics modeling, which supplements the prevailing invariance perspective. By
visualizing the nearest neighbors of different image patches in the embedding space
and projection space, we show that while the projection has more invariance, the
embedding space tends to preserve more equivariance and locality. The evidence
shows that it is a promising direction to simplify the SOTA methods to build better
understanding.

1 INTRODUCTION

In many application domains, Self-supervised representation learning experienced tremendous ad-
vancements in the past few years. In terms of the quality of the learned feature, unsupervised
learning has caught up with supervised learning or even surpassed the latter in many cases. This
trend promises unparalleled scalability for data-driven machine learning in the future. One of the
most successful paradigms in image self-supervised representation learning is based on instance-
augmentation-invariant contrastive learning (Wu et al., 2018; Chen et al., 2020a;b) using a Siamese
network architecture Bromley et al. (1993). This style of learning methods achieves the following
general goal: 1) It brings the representation of two different views (augmentation) of the same instance
(image) closer. 2) It keeps the representation informative of the input; in other words, avoids collapse.
Several recent non-contrastive methods achieve competitive performance by explicitly achieving
those two goals (Bardes et al., 2021; Li et al., 2022). While we celebrate the empirical success of SSL
in a wide range of benchmarks, our understanding of the principle of this learning process are still
very limited. In this work, we seek the principle behind the instance-based SSL methods and argue
that the success largely comes from learning a representation of image patches based on their
co-occurrence statistics in the images. To demonstrate this, we simplify the current SSL method
to using a single crop scale to learn a representation of image patches of fixed size and establish
a formal connection between our formulation and co-occurrence statistics modeling. The patch
representation can be linearly aggregated (bag-of-words) to form the representation of the image.
The learned representation achieves similar or better performance than the baseline representation,
which is based on the entire image. In particular, even kNN classifier works surprisingly well with the
aggregated patch feature. These findings also resonate with recent works in supervised learning based
on patch features (Brendel & Bethge, 2018; Dosovitskiy et al., 2020; Trockman & Kolter, 2022).
We also show that for baseline SSL methods pretrained with multi-scale crops, the whole-image
representation is essentially an aggregation of different patch representations from the same instance.
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Further, given various SOTA baseline SSL models, we show that the same aggregation process can
further improve the representation quality. Then we provide a cosine-similarity-based visualization
of image patches representation on both ImageNet and CIFAR10 datasets. Particularly, we find that
while the projection space has achieved significant invariance, the embedding space, frequently used
for representation evaluation, tends to preserve more locality and equivariance.

Our discoveries may provide useful explanations and understanding for the success of the instance-
augmentation-invariant SSL methods. The co-occurrence statistics modeling formulation and equiv-
ariance preserving property in the embedding space both supplement the current prevailing invariance
perspective. Finally, these results motivate an interesting discussion of several potential future
directions.

2 RELATED WORKS

Instance-Based Self-Supervised Learning: Invariance without Collapse. The instance contrastive
learning (Wu et al., 2018) views each of the images as a different class and uses data augmentation
(Dosovitskiy et al., 2016) to generate different views from the same image. As the number of
classes is equal to the number of images, it is formulated as a massive classification problem, which
may require a huge buffer or memory bank. Later, SimCLR (Chen et al., 2020a) simplifies the
technique significantly and uses an InfoNCE-based formulation to restrict the classification within
an individual batch. While it’s widely perceived that contrastive learning needs the “bag of tricks,”
e.g., large batches, hyperparameter tuning, momentum encoding, memory queues, etc. Later works
(Chen & He, 2021; Yeh et al., 2021; HaoChen et al., 2021) show that many of these issues can be
easily fixed. Recently, several even simpler non-contrastive learning methods(Bardes et al., 2021;
Zbontar et al., 2021; Li et al., 2022) are proposed, where one directly pushes the representation of
different views from the same instance closer while maintaining a none-collapsing representation
space. Image SSL methods mostly differ in their means to achieve a non-collapsing solution. This
include classification versus negative samples(Chen et al., 2020a), Siamese networks (He et al., 2020;
Grill et al., 2020) and more recently, covariance regularization (Ermolov et al., 2021; Zbontar et al.,
2021; Bardes et al., 2021; HaoChen et al., 2021; Li et al., 2022; Bardes et al., 2022). The covariance
regularization has also long been used in many classical unsupervised learning methods (Roweis &
Saul, 2000; Tenenbaum et al., 2000; Wiskott & Sejnowski, 2002; Chen et al., 2018), also to enforce
a non-collapsing solution. In fact, there is a duality between the spectral contrastive loss(HaoChen
et al., 2021) and the non-contrastive loss, which we prove in Appendix B.

All previously mentioned instance-based SSL methods pull together representations of different views
of the same instance. Intuitively, the representation would eventually be invariant to the transformation
that generates those views. We would like to provide further insight into this learning process: The
learning objective can be understood as using the inner product to capture the co-occurrence statistics
of those image patches. We also provide visualization to study whether the learned representation
truly has this invariance property.

Patch-Based Representation. Many works have explored the effectiveness of path-based image
features. In the supervised setting, Bagnet(Brendel & Bethge, 2018) and Thiry et al. (2021) showed
that aggregation of patch-based features can achieve most of the performance of supervised learning
on image datasets. In the unsupervised setting, Gidaris et al. (2020) performs SSL by requiring a
bag-of patches representation to be invariant between different views. Due to architectural constraints,
Image Transformer based methods naturally use a patch-based representation (He et al., 2021; Bao
et al., 2021).

Learning Representation by Modeling the Co-Occurrence Statistics. The use of word vector
representation has a long history in NLP, which dates back to the 80s (Rumelhart et al., 1986;
Dumais, 2004). Perhaps one of the most famous word embedding results, the word vector arithmetic
operation, was introduced in Mikolov et al. (2013a). Particularly, to learn this embedding, a task
called “skip-gram” was used, where one uses the latent embedding of a word to predict the latent
embedding of the word vectors in a context. A refinement was proposed in Mikolov et al. (2013b),
where a simplified variant of Noise Contrastive Estimation (NCE) was introduced for training the
“Skip-gram” model. The task and loss are deeply connected to the SimCLR and its InfoNCE loss.
Later, a matrix factorization formulation was proposed in Pennington et al. (2014), which uses a
carefully reprocessed concurrence matrix compared to latent semantic analysis. While the task in
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Figure 1: The pipeline of I2 VICReg. From the same instance, fixed-size image patches are extracted,
color-augmented, encoded to embedding and projection space. During training, different image patch
projections from the same instance are pulled together while an anti-collapse regularization is applied.
After training, different patch embeddings from the same instance are averaged to form the image
representation.

Word2Vec and SimCLR is apparently similar, the underlying interpretations are quite different. In
instance-based SSL methods, one pervasive perception is that the encoding network is trying to build
invariance, i.e., different views of the same instance shall be mapped to the same latent embedding.
This work supplements this classical opinion and show that similar to Word2Vect, instance-based SSL
methods can be understood as building a distributed representation of image patches by modeling the
co-occurrence statistics.

3 SELF-SUPERVISED IMAGE PATCH EMBEDDING AND CO-OCCURRENCE
STATISTICS MODELING

To study the role of patch embeddings, we use fixed-scale crops instead of multi-scale crop to
learn a representation for fixed-size image patches. We show in Section 4 that any SSL objective
can be used. As an example, we present a general formulation of covariance regularization based
techniques(Bardes et al., 2021; Zbontar et al., 2021; Li et al., 2022; HaoChen et al., 2021):
Definition 1. Intra-instance variance-invariance-covariance regularization (I2 VICReg):

min
θ

− Ep(x1,x2)

[
zT1 z2

]
, s.t. Ep(x)

[
zzT

]
=

1

demb
· I (1)

where z = g(h) and h = f(x; θ). We call h the embedding and z the projection of an image patch,
x. {x} all have the same size. The function f(·; θ) is a deep neural network with parameters θ, and
g is typically a much simpler neural network with only one or a few fully connected layers. demb

is the dimension of an embedding vector, z. This general idea is shown in Figure 1. For an image,
we extract fix-size image patches, which are color augmented before embedding1 f and projection
g. Given an image patch xi, the objective tries to push its projection zi closer to the projections
of the other image patches within the instance. Further, the regularization decorrelates different
dimensions of z while maintaining the variance of each dimension. Covariance regularization was
first explicitly implemented in VICReg Bardes et al. (2021). Later (Li et al., 2022) realizes similar
effect by maximizing the Total Coding Rate (TCR) (Ma et al., 2007).

Relationship of covariance-regularization based method to Co-Occurrence Statistics Modeling.
Assume x1 and x2 are two color-augmented patches sampled from the same image. We denote
their marginal distribution by p(x1) and p(x2), which includes variation due to sampling different
locations within an image, random color augmentation, as well as variation due to sampling images
from the dataset. We also denote their joint distribution by p(x1, x2), which assume x1 and x2 are
sampled from the same image. We show that covariance-regularization based contrastive learning can
be understood by the following objective that approximates the normalized co-occurrence statistics
by the inner product of the two embeddings z1 and z2 generated by x1 and x2:

min
∫

p(x1)p(x2)

[
wzT1 z2 −

p(x1, x2)

p(x1)p(x2)

]2
dx1dx2 (2)

where w is a fixed weight used to compensate for scale differences.
1This is also called representation in some related literatures.
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Proposition 3.1. 2 can be rewritten as the following spectral contrastive form:

min Ep(x1,x2)

[
−zT1 z2

]
+ λEp(x1)p(x2)

(
zT1 z2

)2
(3)

where λ = w
2 . The proof is rather straightforward and is presented in Appendix A. As we can see, the

first term resembles the similarity term in Eqn 1, and the second spectral contrastive term HaoChen
et al. (2021) minimizes the inner product between two independent patch embeddings, which has the
effect of orthogonalizing them. As we mentioned earlier, there exists a duality between the spectral
contrastive regularization and covariance regularization term in Eqn 1. Please refer to the Appendix
B for a more in-depth discussion.

Bag-of-Feature Model. After we have learned an embedding for the fix-scale image patches, we
can embed all of the image patches {x11, . . . , xHW } within an instance into the embedding space,
{h11, . . . , hHW }. Then, we can obtain the representation for the whole image by linearly aggregating
(averaging) all hs, or by concatenation. The details and results will be presented in later sections.

4 QUANTITATIVE EMPIRICAL RESULTS

Through experiments, we demonstrate that representations learned by self-supervised learning method
trained with fixed-size patches are nearly as strong as that learned with multi-scale crops. For several
cases, pretraining with multi-scale crops and evaluating on the fixed central crop is equivalent in
terms of performance to pretraining with fixed-size small patches and evaluating by averaging the
embedding across the image. We further show that for a multi-scale pretrained model, averaging
embedding of fixed-scale small image patches converges to the embedding generated by the center
cropped image, as the number of aggregated patches increases. Thus for network pretrained with
multi-scale crop, passing the center crop into the network can be viewed as an efficient way to
obtain the averaged patch embeddings. Further, we show that the patch aggregated evaluation can
further improve the accuracy of the baseline models by a significant margin. Our experiments used
the CIFAR-10, CIFAR-100, and the more challenging ImageNet-100 dataset. We also provide a
short-epoch ImageNet pretraining to show that with small image patches, the training tends to have
lower learning efficiency. In the last section, we will dive into the invariance and equivariance analysis
of the patch embedding. All implementation details can be found in Appendix C

4.1 CIFAR

We first provide experimental results on the standard CIFAR-10 and CIFAR-100 datasets (Krizhevsky
et al., 2009) using ResNet-34. The results are shown in Figure 2, Tables 1 and 2. We show results
obtained using the linear evaluation protocol and the kNN evaluation protocol and the results are
consistent with each other. The standard evaluation method generates the embedding using the full
image, both during training of the linear classifier and at final evaluation (Central). Alternatively,
an image embedding is generated by inputting a certain number of patches (same scale as training
time and upsampled) into the neural network and aggregating the patch embeddings by performing
averaging. This is denoted by 1, 16, and 256 patches.

The main observation we make is that pretraining on small patches and evaluating with the averaged
embedding performs on par or better than pretraining with random-scale patches and evaluating with
the full image representation. On CIFAR-10 with the TCR method, the 256-patches evaluation with
fixed pretraining scale of 0.2 outperforms the full-image evaluation with random pretraining scale
between 0.08 and 1, which is the standard scale range used. When only averaging 16-patches, the same
model performs on par with full image evaluation. On the k-NN evaluation, pretraining with random-
scale patches not spanning the full range 0.08 to 1.0 gives much worse performance comparatively,
than linear evaluation. However, aggregated embedding does not see this comparatively worse
performance, and can still outperform the full image evaluation. Using results from Table 1,2 and
3, we can draw the same conclusion on other datasets and other self-supervised methods (VICReg
(Bardes et al., 2021) and BYOL(Grill et al., 2020)).

4.2 IMAGENET-100 AND IMAGENET

We provide experimental results on the ImageNet-100 and ImageNet dataset (Deng et al., 2009)
with ResNet-50. We present our results using the linear evaluation protocol in Table 3 and Figure 3.
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Figure 2: Evaluation on CIFAR-10 for various RandomResizedCrop scales. We
evaluate the performance of a linear classifier (a) and a k-NN classifier (b) for pre-
training with various patch sizes and various evaluation setups. During pretraining, the
patches are sampled using RandomResizedCrop(scale, scale) for single values, and
RandomResizedCrop(min scale, max scale) for scale values uniformly from min scale
to max scale. The “Central” evaluation is the standard evaluation protocol where the classifier is
trained and evaluated on single fixed central patches of the image, which is the entire image for
CIFAR-10. For the n patch evaluation, the classifier is trained and evaluated on the linearly-aggregated
embedding of n patches, sampled with the same scale factor as during pretraining. Scale 0.08, 0.1,
0.13, 0.2, 0.25 correspond to 9× 9, 10× 10, 13× 13, 14× 14, 16× 16 image patches respectively.
Please note that it is expected that “central” evaluation performs poorly on fix-scale pretraining as the
model has never seen the entire image during pretraining.

Table 1: Performance on CIFAR-10 for patch-based and standard self-supervised pretraining
methods. We evaluate the performance of a linear classifier for various pretraining methods, both with
the Patch-based training, where patches of scale 0.2 are sampled during pretraining, and Standard
training, where the patch scale is uniformly sampled between scale 0.08 and 1.0 during pretraining.
The ‘Central’ evaluation is the standard evaluation protocol where the linear classifier is trained
and evaluated on single fixed central patches of the image, which is the whole image for CIFAR
dataset. For the n-patch evaluation, the classifier is trained and evaluated on the linearly-aggregated
embedding of n patches, sampled with the same scale factor as during pretraining. Scale 0.2 and 0.08
correspond to 14× 14 and 9× 9 image patches respectively.

Method Patch-based training Standard training
Central 1 patch 16 patches 256 patches Central 1 patch 16 patches 256 patches

SimCLR 46.2 82.1 90.5 90.8 90.2 86.4 91.6 91.8
TCR 46.0 82.2 90.4 90.8 90.1 86.5 91.5 91.8
VICReg 47.1 83.1 90.9 91.2 90.7 87.3 91.9 92.0
BYOL 47.3 83.6 91.3 91.5 90.9 87.8 92.3 92.4

The behavior observed on CIFAR-10 generalizes to ImageNet-100. Averaging embeddings of 16
small patches produced by the patch-based pretrained model performs almost as well as the “central”
evaluation of the embedding produced by the baseline model on the ImageNet-100 dataset, as shown
in Table 3. In Figure 3(b), we show short-epoch pretrained models on ImageNet. As the patch-based
pretrained model tends to see much less information compared to the baseline multi-scale pretraining,
there is a 4.5% gap between the patch-based model and the baseline model.

4.3 PATCHED-AGGREGATION BASED EVALUATION OF MULTI-SCALE PRETRAINED MODEL

Our results in the last two sections show that the best performance is obtained when the pretraining
step is done using patches of various sizes, and the evaluation step is done using the aggregated
patch embeddings. It is therefore interesting to evaluate the embedding of models pretrained with
other self-supervised learning methods to investigate if this evaluation protocol provides a uniform
performance boost. We do this evaluation on the VICReg model pretrained for 1000 epochs and a
SwAV model pretrained for 800 epochs. All models are downloaded from their original repository.
Table 4 shows the linear evaluation performance on the validation set of ImageNet using the full
image and aggregated embedding. On all the models, aggregated embedding outperforms full-
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Table 2: Performance on CIFAR-100 for patch-based and standard self-supervised pretraining
methods. We evaluate the performance of a linear classifier for various pretraining methods, both
with the Patch-based training, where patches of scale 0.2 are sampled, and Standard training, where
the patch scale is uniformly sampled between scale 0.08 and 1.0. Scale 0.2 and 0.08 correspond to
14× 14 and 9× 9 image patches respectively.

Method Patch-based training Standard training
Central 1 patch 16 patches 256 patches Central 1 patch 16 patches 256 patches

TCR 34.6 59.2 67.1 67.3 66.8 60.5 68.1 68.3
VICReg 35.5 60.1 68.0 68.3 67.6 61.4 69.0 69.3
BYOL 37.4 60.9 68.9 69.2 68.8 62.3 69.7 69.9

Table 3: Performance on ImageNet-100 with Patch-based and standard self-supervised pre-
training methods. We evaluate the performance of a linear classifier with I2 VICReg-TCR, both with
the Patch-based training, where patches of scale 0.2 are sampled during pretraining, and Standard
training, where the patch scale is uniformly sampled between scale 0.08 and 1.0. Scale 0.2 and 0.08
correspond to 100× 100 and 64× 64 image patches respectively.

Method Patch-based training Standard training
Central 1 patch 16 patches 48 patches Central 1 patch 16 patches 48 patches

TCR 41.3 45.6 76.1 76.3 77.3 70.1 78.5 78.8

image evaluation, often by more than 1%. Also, increasing the number of patches averaged in the
aggregation process also increases the performance. We do not go beyond 48 patches because of
memory and run time issues, but we hypothesize that a further increase in the number of patches
will improve the performance further, as we have demonstrated on CIFAR-10, where 256 patches
significantly outperform 16 patches.

4.4 CONVERGENCE OF PATCH-BASED EMBEDDING TO WHOLE-INSTANCE EMBEDDING.

In this experiment, we show that for a multi-scale pretrained SSL model, linearly aggregating the
patch embedding converges to the instance embedding. We take a multi-scale pretrained VICReg
baseline model and use randomly selected 512 images from the ImageNet dataset. For each image,
we first get the embedding of the 224× 224 center crop. Then we randomly aggregate N embeddings
of different 100×100 image patches and calculate the cosine similarity between the patch-aggregated
embedding and the center crop embedding. Figure 3(a) shows that the aggregated representation
converges to the instance embedding as N increases from 1 to 16 to all the image patches2.

4.5 CONCATENATION AGGREGATION FURTHER IMPROVES SSL PERFORMANCE

An alternative way to aggregate embeddings are by concatenating them into a single larger vector. To
test how this method perform, we downloaded the checkpoints of SOTA SSL model pretrained on
CIFAR10 dataset from sololearn (da Costa et al., 2022), and tested linear and kNN accuracy with
concatenation aggregation. As shown in Table 5, concatenation aggregation further improve the
performance of these SOTA SSL model. Even with only 25 patches, the K-nearest-neighbor (KNN)
accuracy of the aggregated embedding outperforms the baseline linear evaluation accuracy by a large
margin.

5 PATCH EMBEDDING VISUALIZATION: INVARIANCE OR EQUIVARIANCE?

The instance-augmentation-invariant SSL methods are primarily motivated from an invariance per-
spective. In this section, we provide CIFAR-10 nearest neighbor and ImageNet cosine-similarity
heatmap visualization to further understand the learned representation. In the CIFAR-10 experiment,
we take a model pre-trained with 14× 14 image patches on CIFAR-10 and calculate the projection
and embedding vectors of all different image patches from the training set. Then for a given 14× 14

2“All”: extracting overlapped patches with stride 4 and totally aggregate about 1000 patches’ embeddings.
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Figure 3: (a) Patch embedding convergence to the instance embedding. For a baseline multi-
scale pretrained VICReg model, we show that the patch embedding aggregation converges to the
whole-image embedding as the number of aggregated patches increases. (b) Linear evaluation
on ImageNet for various RandomResizedCrop scales. (a) Evolution of the cosine similarity
between the aggregation of N embeddings of patches and the instance embedding which is the
aggregation of all possible patches in the image. (b) Evaluation of the performance of a linear
classifier for various pretraining patch sizes, on Central, 1 and 16 patches evaluation setups. Scale
0.02, 0.08, 0.2 and 1.0 correspond to 32 × 32, 64 × 64, 100 × 100 and 224 × 224 image patches
respectively.

Table 4: Linear evaluation with aggregated embedding on ImageNet with models trained with
state-of-the-art SSL methods. Using aggregated embedding outperforms embedding from the
center crop. Central: embedding from the center cropped image is used in training and testing using
the standard linear evaluation protocol. 1, 16, and 48 patches: The linear classifier is trained and
evaluated on the aggregated embedding of 1, 16, and 48 patches respectively, sampled with the same
scale factor range as during pretraining (0.08, 1.0).

Method Central 1 patch 16 patches 48 patches

VICReg 73.2 57.6 74.2 74.4
BYOL 74.3 59.3 75.4 75.6
SwAV 75.3 60.8 75.9 76.0

image patch (e.g. the ones circled by red dash boxes Fig 4), we visualize its k nearest neighbors in
terms of cosine-similarity in both the projection and the embedding space. Figure 4 shows the results
for two different image patches. The patches circled by green boxes are image patches from another
instance of the same category, whereas the uncircled patches are from the same instance.

In the ImageNet experiment, we take a multi-scale pretrained VICReg model, then for a given
image patch (e.g. circled by red dash boxes in Figure 5), we visualize the cosine-similarity between
embedding from this patch and that from the other patches from the same instance. In this experiment,
we use two different image patches scales, 71 × 71 and 100 × 100. The heatmap visualization is
normalized to the same scale.

Table 5: Evaluation of SOTA SSL models and these models with linearly-aggregated patches
embedding enhancement. All the baseline SSL model uses ResNet-18 as the backbone. We
apply spatial average pooling on the last layer output of ResNet-18 and treat it as feature. We
evaluate the performance of these checkpoints with both linear classifier and K-nearest-neighbor
(KNN) classifier. For the “Enhancement” evaluation, the KNN classifier is evaluated on the linearly-
aggregated embedding of 25 patches with size 16× 16. These patches are sampled using a sliding
window with stride 4.

Method Baseline (KNN) Baseline (linear) Enhancement (KNN)

SimClr 90.2 90.7 93.1
VICReg 90.8 91.2 93.1
BYOL 91.5 92.6 93.5
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Figure 4: Visualization of kNN in the projection space and the embedding space for CIFAR10.
Distance is calculated by cosine similarity. Query patch is in the top left corner encircled by red
dash, green box indicates patches from other image of the same class. Patches without surrounding
box is from the same image as the query. While the nearest neighbors are both from same-category
instances, we can see that the embedding space tends to preserse the local part information, whereas
the projection space may collapse different parts of the same category.

Figure 5: Visualization of cosine similarity in the projection space and the embedding space.
Query patch is indicated by red dash. Projection and Embedding cosine-similarity heatmaps use
the same color scaling. The projection vectors are significantly more invariant compared to the
embedding ones, and the embedding space contains localized information that is shared among
similar patches, when the size of the patches is small enough. We can see that the embedding space
tends to preserve more locality compared to the projection space.

Overall, we observe that the projection vectors are significantly more invariant than the embedding
vectors. This is apparent from both Figure 4 and Figure 5. For the CIFAR kNN patches, NNs in the
embedding space are visually much more similar than NNs in the projection space. In fact, in the
embedding space, the nearest NNs are mostly locally shifted patches of similar “part” information.
For projection space, however, many NNs are patches of different “part” information from the same
class. E.g., we can see in Figure 4 that an NNs of a “wheel” in the projection space might be a “door”
or a “window”, however, the NNs in the embedding space all contain “wheel” information. In the
second example, the NNs of a “horse legs” patch may have different “horse” body parts whereas the
NNs in the embedding space are all “horse leg”.

The heatmap visualization on ImageNet also illustrates the same phenomenon. Let’s visualize a
multi-scale pretrained VICReg model. The projection vector from a patch has a high similarity to
that from the query patch whenever the patch has enough information to infer the class of the image.
While for embedding vectors, the similarity area is much more localized to the query patch, or to
other patches with similar features (the other leg of the dog in Figure 5). This general observation is
consistent with the results of the visualizations in Bordes et al. (2021). We slightly abused the term
and call this property of the embedding vector equivariant, in contrast to the invariance possessed by
the projector vectors. A more thorough visualization is provided in the Appendix E.
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6 DISCUSSION

In this paper, we seek to provide an understanding of the success of instance-augmentation-invariant
SSL methods. We demonstrate learning an embedding for fixed-size image patches (I2 VICReg) and
linear aggregating them from the same instance can achieve on-par or even better performance than
the multi-scale pretraining. On the other hand, with a multi-scale pretrained model, we show that the
whole image embedding is essentially the average of patch embeddings. Conceptually we establish
the close connection between I2 VICReg and modeling the co-occurrence statistics of patches.

Through visualizing nearest neighbors and cosine-similarity heatmaps, we find that the projector
vector is relatively invariant while the embedding vector is instead equivariant, which may explain
its higher discriminative performance. This result suggests that the SSL objective, which learns
the co-occurrence statistics, encourages an invariant solution, while the more favorable property
of equivariance is achieved by the implicit bias introduced by the projector. In the future, it is
interesting to explore if it’s possible to directly encourage equivariance in the objective function in
a more principled manner instead of relying on the projector head. For this, prior works in NLP
may provide useful guidance. In Pennington et al. (2014), word embedding is learned by fitting the
log co-occurrence matrix, which avoids the problem of getting dominated by large elements and
allows the embedding to carry richer information. Similarly, an SSL objective that implicitly fits to
the log-occurrence matrix may learn a more equivariant embedding, which may be an interesting
direction for future work.

Lots of open questions still remain in the quest of understanding image SSL. For example, it’s still
unclear why the projector g makes the embedding h more equivariant than the projection z. For this,
we hypothesize that the role of the projector can be understood as learning a feature representation
for a kernel function in the embedding space. Since for h1, h2, the dot product of g(h1) and g(h2)
always represent some positive semi-definite kernel on the original space k(h1, h2) = g(h1)

T g(h2).
It is possible that the flexible kernel function on the embedding alleviates the excess invariance
problem caused by the objective on the projector vectors, which allows the embedding to be more
equivariant and perform better. We leave further analysis of this hypothesis to future work.
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APPENDIX

A PROOF OF PROPOSITION 3.1

Proposition A.1. Equation 2 can be rewritten in the following contrastive form:

Ep(x1,x2)

[
−zT1 z2

]
+ λEp(x1)p(x2)

(
zT1 z2

)2
(4)

where λ = w
2 .

Proof. Since we are dealing with an objective, we can drop constants, which do not depend on the
embedding z1 and z2, when they occur.

L =

∫
p(x1)p(x2)

[
wzT1 z2 −

p(x1, x2)

p(x1)p(x2)

]2
dx1dx2 (5)

=

∫
p(x1)p(x2)

[
(wzT1 z2)

2 − 2wzT1 z2 ·
p(x1, x2)

p(x1)p(x2)

]
dx1dx2 (6)

=

∫
p(x1)p(x2)(wz

T
1 z2)

2dx1dx2 − 2w

∫
p(x1, x2)(z

T
1 z2)dx1dx2 (7)

= Ep(x1,x2)

[
−zT1 z2

]
+ λEp(x1)p(x2)

(
zT1 z2

)2
(8)

where λ = w
2 .

B THE DUALITY BETWEEN SPECTRAL CONTRASTIVE REGULARIZATION AND
COVARIANCE REGULARIZATION.

For Objective 3 and Objective 1, as the similarity term is the same, we can focus our discussion on the
regularization term, particularly with SGD optimizer. For simplicity, we assume that the embedding z
is L2-normalized and each of the embedding dimension also has zero mean and normalized variance.
Given a minibatch with size N , the spectral regularization term Ep(x1)p(x2)

(
zT1 z2

)2
reduces to∥∥ZTZ − Id

∥∥2
F

. By Lemma 3.2 from Le et al. (2011), we have:

∥∥ZTZ − IN
∥∥2
F
=

∥∥ZZT − Id
∥∥2
F
=

∥∥∥∥ZZT − N

d
Id

∥∥∥∥2
F

+ C (9)

where C is a constant. The third equality follows due to that each of the embedding dimension
is normalized.

∥∥ZZT − 1
dIN

∥∥2
F

is the mini-batch version of the covariance regularization term
Ep(x)

[
zzT

]
= N

demb
· I .

A thorough discussion is beyond the scope of this work. We refer the curious readers to Garrido et al.
(2022) for a more general discussion on the duality between contrastive learning and non-contrastive
learning.

C IMPLEMENTATION DETAILS

C.1 CIFAR-10 AND CIFAR-100

For all experiments, we pretrain a ResNet-34 for 600 epochs. We use a batch size of 1024, LARS
optimizer, and a weight decay of 1e− 04. The learning rate is set to 0.3, and follows a cosine decay
schedule, with 10 epochs of warmup and a final value of 0. In the TCR loss, λ is set to 30.0, and ϵ is
set to 0.2. The projector network consists of 2 linear layers with respectively 4096 hidden units and
128 output units for the CIFAR-10 experiments and 512 output units for the CIFAR-100 experiments.
All the layers are separated with a ReLU and a BatchNorm layers. The data augmentations used are
identical to those of BYOL.
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C.2 IMAGENET-100 AND IMAGENET

For all the experiments, we pretrain a ResNet-50 with the TCR loss for 400 epochs for ImageNet-100,
and 100 epochs for ImageNet. We use a batch size of 1024, the LARS optimizer, and a weight decay
of 1e− 04. The learning rate is set to 0.1, and follows a cosine decay schedule, with 10 epochs of
warmup and a final value of 0. In the TCR loss, λ is set to 1920.0, and ϵ is set to 0.2. The projector
network consists of 3 linear layers with each and 8192 units, separated by a ReLU and a BatchNorm
layers. The data augmentations used are identical to those of BYOL.

C.3 IMPLEMENTATION DETAIL FOR 4.5

For all the experiments, we downloaded the checkpoints of SOTA SSL model pretrained on CIFAR10
dataset from solo-learn. Each method is pretrained for 1000 epochs and the hyperparameters used
for each method is described in solo-learn. The backbone model used in all these checkpoint is
ResNet-18, which output a dimension 512× 5× 5 tensor for each image. We apply spatial average
pooling (stride = 2, window size = 3) to this tensor and flatten the result to obtain a feature vector of
dimension 2048.

D IMAGENET INTRA-INSTANCE VISUALIZATION

In this section, we provide further visualization of the multi-scale pretrained VICReg model, and the
results are shown in Fig 6. Here we use image patches of scale 0.1 to calculate the cosine similarity
heatmaps, the query patch is marked by the red-dash boxes. The embedding space contains more
localized information, whereas the projection space is relatively more invariant, especially when the
patch has enough information to determine the category.

E CIFAR10 KNN VISUALIZATION

This section continues the visualization of the model pretrained with 14 × 14 patches. In this
visualization, we primarily use kNN and cosine similarity to find the closest neighbors for the query
patches, marked in the red-dash boxes. Again, green boxes indicate that the patches are from other
instances of the same category; red boxes indicate that the patches are from other instances of a
different category. Patchs that do not have a color box are from the same instance. In the following,
we discuss several interesting aspects of the problem.

Additional Projection and Embedding Spaces Comparison. As we can see in Figure 7, the
embedding space has a much lesser degree of collapse of the semantic information. The projection
space tends to collapse different “parts” of a class to similar vectors, whereas the embedding space
preserves more information about the details in a patch. This is manifested by higher visual similarity
between neighboring patchs.

Embedding Space with 256 kNN. In the previous CIFAR visualization, we only show kNN with 119
neighbors. In Figure 8 and Figure 9, we provide kNN with 255 neighbors, the same set of conclusions
hold.

Different “Parts” in the Embedding Space. In Figure 10, we provide some more typical patches
of “parts” and show their embedding neighbors. While many parts are shared by different instances,
we also find some less ideal cases, e.g. Figure 10(4a)(2d), where the closest neighbors are nearly all
from the same instance.

As we discussed earlier, the objective is essentially modeling the co-occurrence statistics of patches.
If the same patch is not “shared” by different instances, it is relatively uninformative. While the
exact same patch might not be “shared”, the color augmentation and deep image prior embedded in
the network design may create approximate sharing. In Figure 11 and Figure 12, we provide two
examples of the compositional structure of instances.

13

https://github.com/vturrisi/solo-learn
https://github.com/vturrisi/solo-learn


Under review as a conference paper at ICLR 2023

Figure 6: More visualization of cosine similarity heatmaps in the projection space and the
embedding space. Here the query patch is marked by the red-dash boxes and its size is 71× 71 and
the instance image size is 224× 224.
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Figure 7: Additional comparison between the projection space and the embedding space.
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Figure 8: kNN in the embedding Space with 255 neighbors.
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Figure 9: kNN in the embedding Space with 255 neighbors.
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Figure 10: Different “parts” in the embedding space.
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Figure 11: The compositional structure of an airplane. The “sky” part is shared by ships, birds,
etc. The “wing” resembles the silhouettes of ships and is also shared by flying birds. The airscrew
part is primarily shared by the other airplanes.

Figure 12: The compositional structure of a horse. The bottom left corner contains “shadow”,
and the similar shadows are shared by deers and dogs. The bottom right part contains “legs”, which
are also shared by deers and dogs. However, from the back to the thigh is shared by primarily other
horses.
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