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Abstract
This research presents an innovative automated001
framework that dynamically pairs Retrieval-002
Augmented Generation (RAG) with various003
pre-trained and fine-tuned Large Language004
Models (LLMs) to enhance their effectiveness005
in cybersecurity applications. RAG, initially006
introduced to leverage external knowledge for007
Languade Models and LLMs, proves insuffi-008
cient on its own in domains requiring acute009
precision, like cybersecurity, where it’s crucial010
to distinguish between relevant and irrelevant011
information. Our framework addresses this gap012
by evaluating and matching the most appropri-013
ate LLM to RAG based on specific cybersecu-014
rity tasks. This not only facilitates the provision015
of contextually accurate and pertinent informa-016
tion but also streamlines the analytical process,017
significantly saving time for cybersecurity ana-018
lysts and improving their capability to identify019
and respond to security threats efficiently. Our020
findings suggest that instruction tuning causes021
a knowledge drop, fine-tuning may worsen hal-022
lucination in the cybersecurity domain, and the023
evaluation tasks in our framework are able to024
predict the post fine-tuning behavior of LLMs.025

1 Introduction026

Large Language Models (LLMs) have recently de-027

livered a groundbreaking advancement in Natural028

Language Processing (NLP), with unprecedented029

language understanding and generation capabili-030

ties. Due to this ability, organizations across vari-031

ous industries are adopting LLMs as their primary032

domain-specific Question-Answering (QA) model033

to serve numerous business needs. In domains034

such as cybersecurity, which is often tied to critical035

infrastructures and national security, incorrect re-036

sponses could trigger cyber-attacks and breaches,037

putting the general population at risk. For LLMs038

to effectively grasp context in the cybersecurity039

domain, the model must be versed in cybersecurity-040

related concepts, knowledge, and specific tasks. Al-041

though fine-tuning approaches can acquaint LLMs042

with cybersecurity concepts, they also risk mak- 043

ing the model fragile. This has led to problems 044

in real-world applications of LLMs in critical do- 045

mains (Dahl et al., 2024). The cybersecurity field 046

is abundant with rich knowledge but suffers from 047

a scarcity of labeled data necessary for supervised 048

or semi-supervised fine-tuning. Also, timely and 049

relevant responses are of utmost importance in cy- 050

bersecurity because cybersecurity information is 051

continuously evolving. Therefore, a method known 052

as Retrieval Augmented Generation (RAG) is uti- 053

lized, wherein a large language model is coupled 054

with a retrieval system. This system supplies the 055

LLM with current and semantically relevant infor- 056

mation, enabling it to produce a meaningful re- 057

sponse (Lewis et al., 2020). 058

For example, a question in a cybersecurity chat- 059

bot application can be “Can langchain vulnerability 060

affect my system?" In this example, the LLM will 061

be required to understand What is langchain and its 062

vulnerability? and What are the system specifica- 063

tions the user is referring to?, which are different 064

types of information, but required to generate an 065

accurate answer. Irrespective of the domain of em- 066

ployment, the fundamentals remain the same for a 067

typical knowledge-intensive QA task. 068

The promising pairing of RAG-inspired LLMs 069

for cybersecurity becomes challenging when one is 070

asked with questions like "Which LLM to pair with 071

RAG?", "Which RAG-LLM will be effective?" "If 072

fine-tuned LLM is better or pre-trained for pairing 073

with RAG", and others. Answering each of the 074

questions requires substantial computing resources 075

and time. Uniquely to prior efforts in cybersecurity, 076

such as CYBERBENCH (Liu et al.), we introduce 077

a novel framework, FiT, to assess LLM’s domain- 078

specific understanding and contextualization ability 079

for knowledge-intensive language tasks in cyber- 080

security sphere. With FiT evaluations, organiza- 081

tions can easily identify the best-suited LLM for 082

its domain-specific QA task and only fine-tune the 083
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propagation of the domain suitability required to generate Completion (C) for a given Prompt (P).

ones that are likely to perform superior to others, re-084

ducing computation cost and deployment time. FiT085

evaluates through three simple aspects (Vocabulary,086

Knowledge, Contextualization). We demonstrate087

our research experiment1 in line with the domain of088

cybersecurity to demonstrate the robustness of FiT089

framework. Our contributions are the following.090

• We develop a benchmarking framework to as-091

sess small-scale LLMs for domain-specific092

knowledge-intensive QA tasks.093

• We showcase FiT evaluation tasks and how094

they can be utilized to predict post-fine-tuning095

behavior.096

• We demonstrate FiT’s effectiveness in critical097

domains, such as cybersecurity.098

The rest of the paper is organized as follows: In099

Section 2, we formulate the research problem. Sec-100

tion 3 provides the background and related works.101

Advancing, Section 4 offers a detailed discussion102

of our FiT evaluations. Then, we present our exper-103

iment and findings in Section 5 and 6. Concluding104

remarks are provided at the end.105

2 Objective & Problem Formulation106

In this section, we explain the problem definition of107

our benchmarking framework and its foundations.108

We begin with defining the implementation scope109

1GitHub: github.com/XXXX

and then delve into our evaluation tasks. We also 110

provide an example reference of our research scope 111

and evaluation tasks in Fig.[1] for visualization. 112

Notation Description
P User Input Prompt

{N d ∈ N} Domain-specific Vocabulary
{Kd ∈ K} Domain-specific Knowledge

{Gd
i |Gd

i ∈ Gd} Domain Information for P
{Sd

i |Sd
i ∈ Sd} Specific Information for Gd

i ∪ P
C Completion for P given (Gd

i ∪ Sd
i )|Kd

Table 1: Description of Notations.

In a typical knowledge-intensive and critical- 113

domain QA task using LLM and RAG, the ob- 114

jective is to generate relevant completion (C) for 115

a given prompt (P), without disclosing sensitive 116

information. We observe, irrespective of the em- 117

ploying domain, primarily two types of informa- 118

tion are required to generate C for a given P . One 119

is domain-specific information (Gd
i ) relevant to P , 120

and another is contextual or specific information 121

(Sd
i ) that contains specific information required to 122

contextualize Gd
i for P . Then, utilizing LLM’s 123

domain-specific vocabulary (N d) and knowledge 124

(Kd) final C is generated. To formulate an evalua- 125

tion strategy and assess LLM’s contextualization 126

abilities for the implementation scope, we define 127

our evaluation in a process-oriented approach and 128

categorize it into three tasks addressing different 129
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aspects. The following are the defined tasks:130

1. We need to assess LLM’s familiarity with do-131

main vocabulary. We can determine through132

keyword recognition task by instructing LLM133

to identify important keywords (N d
i ) in P .134

2. We need to assess if the LLM possesses135

domain-specific knowledge. To achieve this,136

we consider a multiple-choice and general QA137

task related to the domain to assess LLM’s138

domain-specific understanding (Kd).139

3. We need to evaluate whether the LLM has con-140

textualization capabilities for the task scope to141

comprehend and tailor Gd
i upon Sd

i to generate142

C for given P , without leaking unnecessary143

information.144

By this approach, we can assess an LLM’s suit-145

ability for the critical-domain QA task from a se-146

curity and relevancy standpoint. Furthermore, we147

analyze the models’ behavior post fine-tuning to148

identify patterns in behavioral changes. This identi-149

fication will provide an in-depth analysis of model150

behavior to forecast the suitability of an LLM to be151

fine-tuned for a domain and task, helping users in152

curating fine-tuning data aligned with the behavior153

and objectives to attain maximum outcomes.154

3 Background and Related Work155

The application of pre-trained LLMs in specialized156

domains has been an active area of research in re-157

cent times (Ranade et al., 2021). In this section, we158

briefly look into the pre-requisite background and159

related developments in the context of our bench-160

marking approach.161

3.1 LLM, RAG, and Fine-tuning162

Large Language Models (LLMs) have revolution-163

ized Natural Language Processing (NLP) thanks164

to transformer architectures (Vaswani et al., 2017)165

that offer remarkable parallelization (Min et al.,166

2023). These models are pre-trained on massive167

crawls of Internet text with large parameter sizes168

and have exceptional learning capabilities. Despite169

their superiority in learning intricate language pat-170

terns and structures, these models may occasion-171

ally produce seemingly plausible yet inaccurate172

predictions and face challenges when addressing173

problems that require specialized domain knowl-174

edge. There are many possible reasons (Wang et al.,175

2023) for the failure of general-purpose LLMs to176

answer factual questions accurately in a closed do- 177

main, such as a deficit in domain knowledge (e.g., 178

a language model may lack comprehensive exper- 179

tise in a specific domain to which it has not been 180

exposed), outdated information (e.g., LLMs may 181

have a cutoff date set by their training data, so any 182

developments post-training won’t be known to the 183

model without external input), and forgetting (e.g., 184

language models may experience catastrophic for- 185

getting (Kirkpatrick et al., 2017) during additional 186

training, where they lose prior knowledge gained 187

before fine-tuning). 188

To mitigate the knowledge deficiency within pre- 189

trained LLMs for domain-specific tasks, an addi- 190

tional knowledge ingestion step is required. The 191

two most common approaches currently practiced 192

for external knowledge ingestion are Retrieval Aug- 193

mented Generation (RAG) and Fine-tuning. The 194

first approach, introduced around mid-2020 by 195

Lewis et al. (2020), aims to enhance the capabili- 196

ties of LLMs for knowledge-intensive tasks. The 197

core idea is to leverage external knowledge sources 198

to overcome the knowledge deficiency limitations 199

of pre-trained LLMs. The process works by pro- 200

viding the model with an auxiliary knowledge base, 201

which could be a corpus of relevant documents, a 202

structured database, or any other source of domain- 203

specific information. When presented with an input 204

query, the RAG architecture then searches through 205

this knowledge base to identify the most relevant 206

documents or passages. These retrieved informa- 207

tion sources are then seamlessly integrated into the 208

input, providing the LLM with additional context 209

and background related to the query. 210

As language models continue to grow in size 211

and complexity, updating all of their parameters 212

becomes an increasingly demanding computational 213

task, making it inefficient and cost-prohibitive. 214

This presents a substantial challenge when attempt- 215

ing to finetune these large language models for 216

specific downstream applications, especially in sce- 217

narios where the available hardware infrastructure 218

and computational resources are limited. This 219

has led the research in exploring parameter effi- 220

cient tuning methods that aims to attain optimal 221

performance for specific tasks while minimizing 222

the number of tunable parameters. Some efforts 223

in this direction that mainly focus on develop- 224

ing efficient tunable modules for LLMs include 225

adapters based (Houlsby et al., 2019), prompt 226

based (Lester et al., 2021), LoRA(Valipour et al., 227
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Figure 2: Flowchart of FiT benchmark evaluation process. The process depicts the three evaluation tasks in line
with the deployment scope. Task 1 is the vocabulary assessment, Task 2 is for domain-specific knowledge analysis,
and finally, Task 3 assesses the LLM’s contextualization ability for relevant and secured generation.

2022), QLoRA(Dettmers et al., 2024), and hybrid228

(Mao et al., 2021) among others.229

3.2 LLM Benchmarking230

Numerous benchmarking frameworks have been231

developed to evaluate the performance of both gen-232

eral and domain-specific language models across233

a diverse array of NLP tasks. Some benchmarks,234

such as GLUE-X (Yang et al., 2022) and Prompt-235

Bench (Zhu et al., 2023), assess the capabilities of236

language models for general task, including robust-237

ness to out-of-distribution and adversarial inputs,238

while others like KOLA (Yu et al., 2023) evaluate239

their knowledge and reasoning abilities. In addi-240

tion to general task benchmarks, there are bench-241

marks tailored for specific domains. For instance,242

MultiMedQA is a benchmark for medical question-243

answering focused on medical exams, research,244

and consumer healthcare. MATH (Singhal et al.,245

2023), on the other hand, evaluates AI models’ rea-246

soning and problem-solving skills in mathematics.247

Similarly, there are multi-task benchmarks in the248

cybersecurity domain, such as CyberBench (Liu249

et al.), and SecureBert (Aghaei et al., 2022) for250

sentiment analysis and NER.251

4 FiT Benchmark252

In this section, we explain our FiT benchmark253

and its evaluation tasks to assess LLM’s suitabil-254

ity for a domain-specific QA task through RAG.255

We describe each evaluation task as exemplified in256

Fig.[2], for visualization.257

4.1 Task 1: Vocabulary Assessment 258

To evaluate a language model for a domain-specific 259

task, ensuring the model has a basic understand- 260

ing of its vocabulary is paramount. This linguistic 261

understanding allows a language model to com- 262

prehend the given input and communicate using 263

similar vocabulary. Therefore, to assess this ability, 264

we consider Keyword Recognition (KR) task. KR 265

is an NLP task that involves identifying important 266

entities in an unstructured text. To achieve this, 267

the LLM is instructed to identify the keywords in 268

the input prompt (P). With this evaluation, we 269

can assess two aspects of LLM’s overall accuracy. 270

The first assessment involves the number of correct 271

keyword identifications. We determine the model’s 272

domain-oriented linguistic understanding as vocab- 273

ulary drastically differs depending on the domain 274

and scope of implementation. For instance, a medi- 275

cal QA vocabulary differs from an e-commerce or 276

cybersecurity vocabulary. Second, understanding 277

keywords specific to instruction implies their pro- 278

portional relation to understanding the given task. 279

Hence, mathematically the task can be defined as, 280

let P = {Pi}ni=1 be the set of prompts, d be the do- 281

main, and N d be the set of vocabulary with respect 282

to domain d. There exists N d
i for Pi, where N d

i is 283

the expected output. Hence, the LLM’s vocabulary 284

assessment score Φ(N d|P) can be calculated as, 285

Φ(N d|P) =

∑n
i=1∆{L(Pi)|N d

i }
n

(1) 286

where ∆ is the F1 function upon predicted and 287

expected response, L is the model, and n > 0. 288
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Task-1: Vocabulary Assessment (N d)
Instruction: Print the keywords from the following ...
Pi: Can langchain vulnerability affect my system?
N d

i : langchain, vulnerability, affect, system
289

4.2 Task 2: Knowledge Analysis290

Defining knowledge is a philosophical question,291

far beyond our research’s scope. However, we can292

conduct a passive qualitative analysis of an LLM’s293

reasoning capabilities to quantify its knowledge294

regarding a certain context or domain. For exam-295

ple, if an LLM can comprehend the context of the296

question, it can generate a relevant answer through297

its reasoning capabilities. Hence, we consider298

multiple-choice question-answering (MCQ) tasks299

for analyzing the models’ domain-specific knowl-300

edge. We can then compare the output with human-301

generated ones to obtain quantifying measures. Fi-302

nally, we extend these quantifying metrics to assess303

the whole knowledge base of an LLM regarding a304

specific domain. Formally, let P = {Pi}ni=1 be a305

set of MCQ problems, α = {α1
i ...α

m
i }ni=1 be the306

set of all answers, with each Pi having m possible307

answers and γi be the set of correct answers. Hence,308

knowledge score Φ(Kd|P) can be calculated as,309

Φ(Kd|P) =

∑n
i=1{(α

j
i = γi|Pi)}mj=1

n
(2)310

Task-2: Knowledge Analysis (Kd)
Instruction:Answer the correct choice for the question ...
Pi: A hash function guarantees the integrity of a message.
It guarantees that the message has not be
1: Replaced
2: Overview
3: Changed
4: Violated

γi: (3) Changed
311

4.3 Task 3: Contextualization Analysis312

Contextualization refers to understanding and gen-313

erating text based on nuances and relationships314

between multi-faceted information. For example,315

a question can be What potential impact could the316

CVE-2023-3894 vulnerability have on the integrity317

of our TOML configuration data? In this case, the318

LLM will require the multi-faceted information of319

CVE-2023-3894 and referring TOML server. For320

knowledge-intensive QA tasks, RAG is employed321

as a bridge to overcome the LLMs’ knowledge de-322

ficiency. Contextualization ability allows an LLM323

to generate relevant and reliable answers from this 324

additional retrieved multi-faceted information by 325

following instructions. Assessing this ability is crit- 326

ical, since in numerous scenarios such as recom- 327

mendation, privacy, etc., the domain information 328

must be tailored in completion depending on the 329

specifics. Without accurate information contextual- 330

ization, the LLM is prone to leak sensitive informa- 331

tion or provide misinformation. Therefore, by this 332

task, we can evaluate a model’s complete under- 333

standing of the problem context, provided informa- 334

tion, and reliability to generate a response concern- 335

ing additional factors. To assess this ability to per- 336

form knowledge-intensive and domain-specific QA 337

tasks, we consider contextualized RAG (Greshake 338

et al., 2023) as our final evaluation task. Compar- 339

ing the generated response with a Subject Matter 340

Experts (SMEs) ground truth, through correctness 341

and similarity metric, we can assess the models 342

contextualization and data security. We express 343

this mathematically as follows. Let P = {Pi}ni=1 344

be a set of knowledge-intensive questions related 345

to the application domain, Gd
i be the domain, and 346

Sd
i be the specific information, for Pi, and Ci be 347

the expected answer. Therefore, we can calculate 348

the contextualization score Φ(C|P) between Ci and 349

Ci by, 350

Φ(C|P) =

∑n
i=1Ω{L(Pi|Gd

i ∪ Sd
i )|Ci}

n
(3) 351

where Ω is the contextualization score calcula- 352

tion function, L is the model, and n > 0 353

Task-3: Contextualization (C)
Instructions:
Given the following retrieved knowledge, answer ...
Gd
i :

CVE ID: CVE-2023-36189
Description: SQL injection vulnerability in langchain be-
fore v0.0.247 allows a remote attacker to obtain ...
CVE ID: CVE-2023-36188
Description: An issue in langchain v.0.0.64 allows a remote
attacker to execute arbitrary code via the PALChain ...
Sd
i :

‘langchain==0.0.270‘: Used for generation of document
embeddings for text, enhancing information retrieval capa-
bilities ...
Pi: Can langchain vulnerability affect my system?
Ci: Langchain has multiple reported vulnerabilities ... your
system is running langchain version 0.0.270, which is not
mentioned to be vulnerable in the provided information...

354

5 Experiment & Evaluation 355

In this section, we discuss the experiment dataset 356

description, and evaluations. First, we start by de- 357

5



scribing our experimental data with relevance to358

our three evaluation tasks. Then we delve deep359

into discussing the quantitative and qualitative eval-360

uations, followed by fine-tuning details. For the361

scope of the research, cybersecurity itself being an362

information critical domain, we have considered it363

in our experiments.364

5.1 Data description and Preparation365

In our evaluation, we perform three separate tasks.366

For task 1, we curated sample questions relevant367

to cybersecurity and their corresponding keywords.368

For task 2, we considered computer security MCQ369

questions from MMLU dataset (CAIS, 2024). For370

task 3, our evaluation dataset is divided into two371

parts: a cybersecurity information repository (Gd)372

and a QA specific information repository (Sd). In373

our case we considered NIST (NIST, 2024) as374

our domain information repository and we curated375

organization-specific infrastructure wiki as our spe-376

cific information repository. Since this information377

is often sensitive, we supplanted this with some378

synthetic data. We then curated questions that re-379

quire both information to generate a relevant re-380

sponse alongside ground-truths. In our evaluations,381

we performed two types of fine-tuning. One is382

knowledge-focused (Finetuned-1) dataset and an-383

other is instruction-focused (Finetuned-2) dataset.384

For knowledge-focused dataset we retrieved Cisco385

Talos (Cisco, 2024) dataset and generated QA pairs,386

and for instruction biased dataset we created a train-387

ing split from our evaluation dataset. All the cu-388

rated dataset and fine-tuned models will be dis-389

closed at appropriate locations.390

5.2 Experiment Infrastructure391

For our evaluations we considered 5 open-392

sourced 7-billion parameter 4-bit quantize QA pur-393

pose LLMs, namely [Llama-2-7b2, Mistral-7b3,394

Prometheus-7b4, WestLake-7b5, and WestSeverus-395

7b6]. Additionally, to compare the model perfor-396

mance relative to one of the current state-of-the-art,397

we have considered GPT-3.5-Turbo 7. Furthermore,398

for specific information retrieval, we have imple-399

mented ChromaDB8 as our vector storage. Our ex-400

2huggingface.co/meta-llama/Llama-2-70b-chat-hf
3huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
4huggingface.co/AiMavenAi/AiMaven-Prometheus
5huggingface.co/senseable/WestLake-7B-v2
6huggingface.co/FelixChao/WestSeverus-7B-DPO-v2
7platform.openai.com/docs/models/gpt-3-5-turbo
8trychroma.com

periment was performed over Intel i9-12900 with 401

GeForce RTX™ 3090Ti and 128 GB of RAM. 402

5.3 FiT Evaluation 403

We employ two evaluation criteria to measure the 404

effectiveness of our approach including qualita- 405

tive and quantitative. The qualitative evaluation is 406

conducted by leveraging Subject Matter Experts 407

(SMEs) to judge the generated responses across 408

three tasks whereas the quantitative evaluation is 409

conducted by leveraging Ragas (Es et al., 2023) 410

framework. We provide the evaluation results in 411

Table 2 and 3. 412

5.3.1 Quantitative Evaluation 413

For the quantitative evaluations, our focus is to 414

quantify the three evaluation tasks. For task 1 (KR), 415

we compute the F1 score between the prediction 416

and ground truths. Task 2 (MCQ) is a binary classi- 417

fication problem. Hence, we compute the accuracy 418

of correct classifications. For task 3 (Contextualiza- 419

tion), we consider similarity and correctness metric 420

from Ragas framework. Through similarity metric, 421

we can assess information leakage, and correctness 422

metric assess the relevant contextualization. We 423

opted for this framework because other popular 424

frameworks such as BLEU (Papineni et al., 2002) 425

and ROUGE (Rouge, 2004) are primarily tailored 426

for evaluating machine translation tasks, and text 427

summarization tasks. 428

5.3.2 Qualitative Evaluation 429

For qualitative evaluation, we engaged two cyber- 430

security SMEs to assess FiT’s contextual response 431

generation concerning pre-trained models. They 432

evaluated question-answer pairs for factual correct- 433

ness and contextual relevancy using a 5-point Lik- 434

ert scale (Allen and Seaman, 2007), ranging from 435

1 (indicating "Factually Incorrect and Contextu- 436

ally irrelevant") to 5 (indicating "Factually Accu- 437

rate and Contextually relevant"). Inter-rater agree- 438

ment was analyzed using the Fleiss Kappa measure 439

(McHugh, 2012) as depicted in Table 3, showing 440

strong agreement for most models (gpt-3.5-turbo at 441

0.861, llma2-7b at 0.845, prometheus-7b at 0.864, 442

westlake-7b at 0.944, and westseverus-7b at 0.868), 443

though moderate for mistral-7b at 0.782. 444

5.4 Fine-tuning 445

To analyze the model behavior post fine-tuning 446

we performed QLoRA (Dettmers et al., 2024), a 447

PEFT (Ding et al., 2023) fine-tuning technique over 448
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Table 2: FiT evaluation results for pre-trained, knowledge-focused, and instruction focused fine-tuning.

Model

Pretrained Finetuned-1 Finetuned-2
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

F1 Score Sim Cor F1 Score Sim Cor F1 Score Sim Cor
gpt-3.5-turbo 0.85 0.76 0.92 0.77 – – – – – – – –
llama2-7b 0.62 0.51 0.91 0.78 0.35 0.32 0.87 0.75 0.48 0.31 0.92 0.79
mistral-7b 0.47 0.59 0.90 0.72 0.27 0.39 0.86 0.74 0.43 0.18 0.86 0.76
prometheus-7b 0.76 0.75 0.92 0.73 0.65 0.61 0.85 0.73 0.55 0.16 0.86 0.75
westlake-7b 0.77 0.71 0.92 0.74 0.59 0.65 0.85 0.73 0.73 0.08 0.93 0.79
westseverus-7b 0.74 0.72 0.89 0.69 0.69 0.66 0.89 0.76 0.73 0.12 0.91 0.78

Table 3: Fleiss Multirater Kappa Analysis

Model Kappa (K) Standard Error
gpt-3.5-turbo 0.861 0.080
llama2-7b 0.845 0.084
mistral-7b 0.782 0.082
prometheus-7b 0.864 0.077
westlake-7b 0.944 0.081
westseverus-7b 0.868 0.078

the open-source models with knowledge-focused449

and instruction-focused datasets. We kept all other450

hyper-parameters such as rank (64), batchsize (4),451

epochs (5), etc, constant for both fine-tuning.452

6 Findings and Limitations453

In domains like cybersecurity, where knowledge454

is dynamic, fine-tuning with knowledge-focused455

dataset, as evidenced in Finetuned-1: Task 1, is not456

helpful because prompts often contain keywords457

and context unknown to the model. Hence, we458

observe a decrement in Task 2 equally. Further-459

more, knowledge-focused fine-tuning led to more460

hallucination and less instruction following (Task-461

3-Similarity). From a practical standpoint, in a462

dynamic domain, if we lack relevant data, using463

pre-trained models is a better approach. Conversely,464

instruction-focused tuning led to significant knowl-465

edge drop. The significant knowledge drop in Task466

2 in Finetuned-2 can be attributed to the rigorous467

instruction tuning, where we deliberately instructed468

the model not to provide an answer if it is unsure469

about the result. The model thus became conser-470

vative in its output generation throughout. This471

finding follows abstention, the intuition presented472

in Xin et al. (2021). Additionally, different LLMs473

learning mechanism directly impacts post-fine tun-474

ing performance. Mistral being one of the promi-475

nent LLMs performed relatively poor than others.476

It might be referred to its sliding window attention477

mechanism of learning. In our pre-trained evalua-478

tion, Wesklake and Westseverus yielded superior 479

results in cybersecurity knowledge and contextu- 480

alization across the three tasks. After fine-tuning, 481

we observed the same pattern, further emphasizing 482

the utility of our three different tasks in predicting 483

post-fine-tuning performance. 484

Apart from the findings, further experiment over 485

more number of models will deliver more insights. 486

We only chose 7-billion models which are more 487

popular to adhere the scope of our research. Pre- 488

vious studies have suggests that even with small- 489

size LLMs, it it possible to achieve equivalent per- 490

formance of 70-biilion models in domain-specific 491

tasks (Liu et al.). Furthermore, our benchmark only 492

focuses on the contextualization and information 493

security aspect. We did not consider other eval- 494

uation aspects such as toxicity, truthfulness, etc. 495

in our evaluation and behaviour analysis. Finally, 496

due to the confidentiality reasons evaluation was 497

conducted over synthetic data. 498

Conclusion 499

Cybersecurity is tied to critical infrastructure un- 500

derscoring the importance of investigating LLMs 501

in this domain, as they can potentially lead to sig- 502

nificant consequences if sensitive information is 503

compromised. Our research focuses on assess- 504

ing the suitability of LLMs paired with RAG for 505

knowledge-intensive QA tasks from contextual- 506

ization and information security standpoint. To 507

do so, we develop a novel benchmark that assess 508

LLMs’ domain understanding and forecast post- 509

fine-tuning behavior through three tasks. Accord- 510

ing to our observation, instruction focused tuning 511

reduces knowledge and knowledge focused tuning 512

reduces instruction following behavior. Hence, in 513

critical domains where data is dynamic, users can 514

benefit from pre-trained models to strike the per- 515

fect balance between knowledge and instruction 516

following. 517

7



Ethics Statement518

Our research is based on a dataset that does not519

contain any sensitive information. To obtain cy-520
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crawlers that make API calls, strictly following the523
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that no personally identifiable information is acci-527

dentally disclosed. Furthermore, we confirm that528
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stated in the ACL Ethics policy to the best of our530
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(a)

(b) (c)

Task 1 Pretrained Task 3 Pretrained (Correctness) Task 3 Pretrained (Similarity)

(b) (c)

Figure 3: Graphical depiction of performance of pre-trained models on Task 1 and Task 3. Figure (a) represents F1
scores on vocabulary assessment tasks. Figure (b) represents performance of the models on contextual response
completion tasks in terms of correctness of completion, while Figure (c) represents similarity scores of completions.

(d) (b) (c)

Task 1 Finetuned-1 Task 3 Finetuned-1 (Correctness) Task 3 Finetuned-1 (Similarity)

(e) (f)
(d) (e) (f)

Figure 4: Graphical depiction of performance of Finetuned-1 models on Task 1 and Task 3. Figure (a) represents F1
scores on vocabulary assessment tasks. Figure (b) represents performance of the models on contextual response
completion tasks in terms of correctness of completion, while Figure (c) represents similarity scores of completions.

(g)
(b)

Task 1 Finetuned-2 Task 3 Finetuned-2 (Correctness) Task 3 Finetuned-2 (Similarity)

(e) (f)
(h) (i)

Figure 5: Graphical depiction of performance of Finetuned-2 models on Task 1 and Task 3. Figure (a) represents F1
scores on vocabulary assessment tasks. Figure (b) represents performance of the models on contextual response
completion tasks in terms of correctness of completion, while Figure (c) represents similarity scores of completions.
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