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Abstract

This research presents an innovative automated
framework that dynamically pairs Retrieval-
Augmented Generation (RAG) with various
pre-trained and fine-tuned Large Language
Models (LLMs) to enhance their effectiveness
in cybersecurity applications. RAG, initially
introduced to leverage external knowledge for
Languade Models and LLMs, proves insuffi-
cient on its own in domains requiring acute
precision, like cybersecurity, where it’s crucial
to distinguish between relevant and irrelevant
information. Our framework addresses this gap
by evaluating and matching the most appropri-
ate LLM to RAG based on specific cybersecu-
rity tasks. This not only facilitates the provision
of contextually accurate and pertinent informa-
tion but also streamlines the analytical process,
significantly saving time for cybersecurity ana-
lysts and improving their capability to identify
and respond to security threats efficiently. Our
findings suggest that instruction tuning causes
a knowledge drop, fine-tuning may worsen hal-
lucination in the cybersecurity domain, and the
evaluation tasks in our framework are able to
predict the post fine-tuning behavior of LLMs.

1 Introduction

Large Language Models (LLMs) have recently de-
livered a groundbreaking advancement in Natural
Language Processing (NLP), with unprecedented
language understanding and generation capabili-
ties. Due to this ability, organizations across vari-
ous industries are adopting LLMs as their primary
domain-specific Question-Answering (QA) model
to serve numerous business needs. In domains
such as cybersecurity, which is often tied to critical
infrastructures and national security, incorrect re-
sponses could trigger cyber-attacks and breaches,
putting the general population at risk. For LLMs
to effectively grasp context in the cybersecurity
domain, the model must be versed in cybersecurity-
related concepts, knowledge, and specific tasks. Al-
though fine-tuning approaches can acquaint LLMs

with cybersecurity concepts, they also risk mak-
ing the model fragile. This has led to problems
in real-world applications of LLMs in critical do-
mains (Dahl et al., 2024). The cybersecurity field
is abundant with rich knowledge but suffers from
a scarcity of labeled data necessary for supervised
or semi-supervised fine-tuning. Also, timely and
relevant responses are of utmost importance in cy-
bersecurity because cybersecurity information is
continuously evolving. Therefore, a method known
as Retrieval Augmented Generation (RAG) is uti-
lized, wherein a large language model is coupled
with a retrieval system. This system supplies the
LLM with current and semantically relevant infor-
mation, enabling it to produce a meaningful re-
sponse (Lewis et al., 2020).

For example, a question in a cybersecurity chat-
bot application can be “Can langchain vulnerability
affect my system?" In this example, the LLM will
be required to understand What is langchain and its
vulnerability? and What are the system specifica-
tions the user is referring to?, which are different
types of information, but required to generate an
accurate answer. Irrespective of the domain of em-
ployment, the fundamentals remain the same for a
typical knowledge-intensive QA task.

The promising pairing of RAG-inspired LLMs
for cybersecurity becomes challenging when one is
asked with questions like "Which LLM to pair with
RAG?", "Which RAG-LLM will be effective?" "If
fine-tuned LLM is better or pre-trained for pairing
with RAG", and others. Answering each of the
questions requires substantial computing resources
and time. Uniquely to prior efforts in cybersecurity,
such as CYBERBENCH (Liu et al.), we introduce
a novel framework, FiT, to assess LLM’s domain-
specific understanding and contextualization ability
for knowledge-intensive language tasks in cyber-
security sphere. With FiT evaluations, organiza-
tions can easily identify the best-suited LLM for
its domain-specific QA task and only fine-tune the
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Figure 1: Implementation scope of FiT benchmark in Generative Al life-cycle (colored area implies applicability)
with an example of our three evaluation tasks. By aligning the tasks in a complete process, we visualize the
propagation of the domain suitability required to generate Completion (C) for a given Prompt (P).

ones that are likely to perform superior to others, re-
ducing computation cost and deployment time. FiT
evaluates through three simple aspects (Vocabulary,
Knowledge, Contextualization). We demonstrate
our research experiment! in line with the domain of
cybersecurity to demonstrate the robustness of FiT
framework. Our contributions are the following.

* We develop a benchmarking framework to as-
sess small-scale LLMs for domain-specific
knowledge-intensive QA tasks.

* We showcase FiT evaluation tasks and how
they can be utilized to predict post-fine-tuning
behavior.

* We demonstrate FiT’s effectiveness in critical
domains, such as cybersecurity.

The rest of the paper is organized as follows: In
Section 2, we formulate the research problem. Sec-
tion 3 provides the background and related works.
Advancing, Section 4 offers a detailed discussion
of our FiT evaluations. Then, we present our exper-
iment and findings in Section 5 and 6. Concluding
remarks are provided at the end.

2 Objective & Problem Formulation

In this section, we explain the problem definition of
our benchmarking framework and its foundations.
We begin with defining the implementation scope

!GitHub: github.com/XXXX

and then delve into our evaluation tasks. We also
provide an example reference of our research scope
and evaluation tasks in Fig.[1] for visualization.

Notation Description
P User Input Prompt
NP e N} Domain-specific Vocabulary
{K* e K} Domain-specific Knowledge

{64162 € G*} | Domain Information for P
{848¢ € 8} | Specific Information for G U P
C Completion for P given (G¢ U S&)|Kq

Table 1: Description of Notations.

In a typical knowledge-intensive and critical-
domain QA task using LLM and RAG, the ob-
jective is to generate relevant completion (C) for
a given prompt (P), without disclosing sensitive
information. We observe, irrespective of the em-
ploying domain, primarily two types of informa-
tion are required to generate C for a given P. One
is domain-specific information (ggl) relevant to P,
and another is contextual or specific information
(S,fl) that contains specific information required to
contextualize g;f for /P. Then, utilizing LLM’s
domain-specific vocabulary (A¢) and knowledge
(K% final C is generated. To formulate an evalua-
tion strategy and assess LLM’s contextualization
abilities for the implementation scope, we define
our evaluation in a process-oriented approach and
categorize it into three tasks addressing different



aspects. The following are the defined tasks:

1. We need to assess LLM’s familiarity with do-
main vocabulary. We can determine through
keyword recognition task by instructing LLM
to identify important keywords (/\/ﬂ) inP.

2. We need to assess if the LLM possesses
domain-specific knowledge. To achieve this,
we consider a multiple-choice and general QA
task related to the domain to assess LLM’s
domain-specific understanding (KC%).

3. We need to evaluate whether the LLLM has con-
textualization capabilities for the task scope to
comprehend and tailor Qid upon Sld to generate
C for given P, without leaking unnecessary
information.

By this approach, we can assess an LLM’s suit-
ability for the critical-domain QA task from a se-
curity and relevancy standpoint. Furthermore, we
analyze the models’ behavior post fine-tuning to
identify patterns in behavioral changes. This identi-
fication will provide an in-depth analysis of model
behavior to forecast the suitability of an LLM to be
fine-tuned for a domain and task, helping users in
curating fine-tuning data aligned with the behavior
and objectives to attain maximum outcomes.

3 Background and Related Work

The application of pre-trained LLMs in specialized
domains has been an active area of research in re-
cent times (Ranade et al., 2021). In this section, we
briefly look into the pre-requisite background and
related developments in the context of our bench-
marking approach.

3.1 LLM, RAG, and Fine-tuning

Large Language Models (LLMs) have revolution-
ized Natural Language Processing (NLP) thanks
to transformer architectures (Vaswani et al., 2017)
that offer remarkable parallelization (Min et al.,
2023). These models are pre-trained on massive
crawls of Internet text with large parameter sizes
and have exceptional learning capabilities. Despite
their superiority in learning intricate language pat-
terns and structures, these models may occasion-
ally produce seemingly plausible yet inaccurate
predictions and face challenges when addressing
problems that require specialized domain knowl-
edge. There are many possible reasons (Wang et al.,
2023) for the failure of general-purpose LLMs to

answer factual questions accurately in a closed do-
main, such as a deficit in domain knowledge (e.g.,
a language model may lack comprehensive exper-
tise in a specific domain to which it has not been
exposed), outdated information (e.g., LLMs may
have a cutoff date set by their training data, so any
developments post-training won’t be known to the
model without external input), and forgetting (e.g.,
language models may experience catastrophic for-
getting (Kirkpatrick et al., 2017) during additional
training, where they lose prior knowledge gained
before fine-tuning).

To mitigate the knowledge deficiency within pre-
trained LLLMs for domain-specific tasks, an addi-
tional knowledge ingestion step is required. The
two most common approaches currently practiced
for external knowledge ingestion are Retrieval Aug-
mented Generation (RAG) and Fine-tuning. The
first approach, introduced around mid-2020 by
Lewis et al. (2020), aims to enhance the capabili-
ties of LLMs for knowledge-intensive tasks. The
core idea is to leverage external knowledge sources
to overcome the knowledge deficiency limitations
of pre-trained LLLMs. The process works by pro-
viding the model with an auxiliary knowledge base,
which could be a corpus of relevant documents, a
structured database, or any other source of domain-
specific information. When presented with an input
query, the RAG architecture then searches through
this knowledge base to identify the most relevant
documents or passages. These retrieved informa-
tion sources are then seamlessly integrated into the
input, providing the LLM with additional context
and background related to the query.

As language models continue to grow in size
and complexity, updating all of their parameters
becomes an increasingly demanding computational
task, making it inefficient and cost-prohibitive.
This presents a substantial challenge when attempt-
ing to finetune these large language models for
specific downstream applications, especially in sce-
narios where the available hardware infrastructure
and computational resources are limited. This
has led the research in exploring parameter effi-
cient tuning methods that aims to attain optimal
performance for specific tasks while minimizing
the number of tunable parameters. Some efforts
in this direction that mainly focus on develop-
ing efficient tunable modules for LL.Ms include
adapters based (Houlsby et al., 2019), prompt
based (Lester et al., 2021), LoRA(Valipour et al.,
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Figure 2: Flowchart of FiT benchmark evaluation process. The process depicts the three evaluation tasks in line
with the deployment scope. Task 1 is the vocabulary assessment, Task 2 is for domain-specific knowledge analysis,
and finally, Task 3 assesses the LLM’s contextualization ability for relevant and secured generation.

2022), QLoRA(Dettmers et al., 2024), and hybrid
(Mao et al., 2021) among others.

3.2 LLM Benchmarking

Numerous benchmarking frameworks have been
developed to evaluate the performance of both gen-
eral and domain-specific language models across
a diverse array of NLP tasks. Some benchmarks,
such as GLUE-X (Yang et al., 2022) and Prompt-
Bench (Zhu et al., 2023), assess the capabilities of
language models for general task, including robust-
ness to out-of-distribution and adversarial inputs,
while others like KOLA (Yu et al., 2023) evaluate
their knowledge and reasoning abilities. In addi-
tion to general task benchmarks, there are bench-
marks tailored for specific domains. For instance,
MultiMedQA is a benchmark for medical question-
answering focused on medical exams, research,
and consumer healthcare. MATH (Singhal et al.,
2023), on the other hand, evaluates AI models’ rea-
soning and problem-solving skills in mathematics.
Similarly, there are multi-task benchmarks in the
cybersecurity domain, such as CyberBench (Liu
et al.), and SecureBert (Aghaei et al., 2022) for
sentiment analysis and NER.

4 FiT Benchmark

In this section, we explain our FiT benchmark
and its evaluation tasks to assess LLM’s suitabil-
ity for a domain-specific QA task through RAG.
We describe each evaluation task as exemplified in
Fig.[2], for visualization.

4.1 Task 1: Vocabulary Assessment

To evaluate a language model for a domain-specific
task, ensuring the model has a basic understand-
ing of its vocabulary is paramount. This linguistic
understanding allows a language model to com-
prehend the given input and communicate using
similar vocabulary. Therefore, to assess this ability,
we consider Keyword Recognition (KR) task. KR
is an NLP task that involves identifying important
entities in an unstructured text. To achieve this,
the LLM is instructed to identify the keywords in
the input prompt (P). With this evaluation, we
can assess two aspects of LLM’s overall accuracy.
The first assessment involves the number of correct
keyword identifications. We determine the model’s
domain-oriented linguistic understanding as vocab-
ulary drastically differs depending on the domain
and scope of implementation. For instance, a medi-
cal QA vocabulary differs from an e-commerce or
cybersecurity vocabulary. Second, understanding
keywords specific to instruction implies their pro-
portional relation to understanding the given task.
Hence, mathematically the task can be defined as,
let P = {P;}I_; be the set of prompts, d be the do-
main, and V¥ be the set of vocabulary with respect
to domain d. There exists /\fid for P;, where /\fid is
the expected output. Hence, the LLM’s vocabulary
assessment score ®(N¢|P) can be calculated as,

®(N|P)

_ XL AMePINT

where A is the F function upon predicted and
expected response, £ is the model, and n > 0.



Task-1: Vocabulary Assessment (N )

Instruction: Print the keywords from the following ...
P;: Can langchain vulnerability affect my system?

Ng: langchain, vulnerability, affect, system

4.2 Task 2: Knowledge Analysis

Defining knowledge is a philosophical question,
far beyond our research’s scope. However, we can
conduct a passive qualitative analysis of an LLM’s
reasoning capabilities to quantify its knowledge
regarding a certain context or domain. For exam-
ple, if an LLM can comprehend the context of the
question, it can generate a relevant answer through
its reasoning capabilities. Hence, we consider
multiple-choice question-answering (MCQ) tasks
for analyzing the models’ domain-specific knowl-
edge. We can then compare the output with human-
generated ones to obtain quantifying measures. Fi-
nally, we extend these quantifying metrics to assess
the whole knowledge base of an LLM regarding a
specific domain. Formally, let P = {P;}!' ; be a
set of MCQ problems, a = {a}...a™}_, be the
set of all answers, with each P; having m possible
answers and +y; be the set of correct answers. Hence,
knowledge score ® (K ?|P) can be calculated as,

Z?:l{(ag = i|Ps) j=1

2

Task-2: Knowledge Analysis (%)

Instruction: Answer the correct choice for the question ...
‘P;: A hash function guarantees the integrity of a message.
It guarantees that the message has not be

1: Replaced

2: Overview

3: Changed

4: Violated

O(KYP) =

3

vi: (3) Changed

\ J

4.3 Task 3: Contextualization Analysis

Contextualization refers to understanding and gen-
erating text based on nuances and relationships
between multi-faceted information. For example,
a question can be What potential impact could the
CVE-2023-3894 vulnerability have on the integrity
of our TOML configuration data? In this case, the
LLM will require the multi-faceted information of
CVE-2023-3894 and referring TOML server. For
knowledge-intensive QA tasks, RAG is employed
as a bridge to overcome the LLMs’ knowledge de-
ficiency. Contextualization ability allows an LLM

to generate relevant and reliable answers from this
additional retrieved multi-faceted information by
following instructions. Assessing this ability is crit-
ical, since in numerous scenarios such as recom-
mendation, privacy, etc., the domain information
must be tailored in completion depending on the
specifics. Without accurate information contextual-
ization, the LLM is prone to leak sensitive informa-
tion or provide misinformation. Therefore, by this
task, we can evaluate a model’s complete under-
standing of the problem context, provided informa-
tion, and reliability to generate a response concern-
ing additional factors. To assess this ability to per-
form knowledge-intensive and domain-specific QA
tasks, we consider contextualized RAG (Greshake
et al., 2023) as our final evaluation task. Compar-
ing the generated response with a Subject Matter
Experts (SMEs) ground truth, through correctness
and similarity metric, we can assess the models
contextualization and data security. We express
this mathematically as follows. Let P = {P;}_,
be a set of knowledge-intensive questions related
to the application domain, g;l be the domain, and
S be the specific information, for P;, and C; be
the expected answer. Therefore, we can calculate
the contextualization score ®(C|P) between C; and
Ci by,

2 ¢ U Sshe
a(c|p) = 2=t HEPIGIUS) (G )

n

where (2 is the contextualization score calcula-
tion function, £ is the model, and n > 0

Task-3: Contextualization (C)

Instructions:

C:liven the following retrieved knowledge, answer ...
g
CVE ID: CVE-2023-36189
Description: SQL injection vulnerability in langchain be-
fore v0.0.247 allows a remote attacker to obtain ...

CVE ID: CVE-2023-36188
Description: An issue in langchain v.0.0.64 allows a remote
at(tiacker to execute arbitrary code via the PALChain ...

S’L H

‘langchain==0.0.270‘: Used for generation of document
embeddings for text, enhancing information retrieval capa-
bilities ...

P;: Can langchain vulnerability affect my system?

C;: Langchain has multiple reported vulnerabilities ... your
system is running langchain version 0.0.270, which is not
mentioned to be vulnerable in the provided information...

\ J

S Experiment & Evaluation

In this section, we discuss the experiment dataset
description, and evaluations. First, we start by de-



scribing our experimental data with relevance to
our three evaluation tasks. Then we delve deep
into discussing the quantitative and qualitative eval-
uations, followed by fine-tuning details. For the
scope of the research, cybersecurity itself being an
information critical domain, we have considered it
in our experiments.

5.1 Data description and Preparation

In our evaluation, we perform three separate tasks.
For task 1, we curated sample questions relevant
to cybersecurity and their corresponding keywords.
For task 2, we considered computer security MCQ
questions from MMLU dataset (CAIS, 2024). For
task 3, our evaluation dataset is divided into two
parts: a cybersecurity information repository (G%)
and a QA specific information repository (S%). In
our case we considered NIST (NIST, 2024) as
our domain information repository and we curated
organization-specific infrastructure wiki as our spe-
cific information repository. Since this information
is often sensitive, we supplanted this with some
synthetic data. We then curated questions that re-
quire both information to generate a relevant re-
sponse alongside ground-truths. In our evaluations,
we performed two types of fine-tuning. One is
knowledge-focused (Finetuned-1) dataset and an-
other is instruction-focused (Finetuned-2) dataset.
For knowledge-focused dataset we retrieved Cisco
Talos (Cisco, 2024) dataset and generated QA pairs,
and for instruction biased dataset we created a train-
ing split from our evaluation dataset. All the cu-
rated dataset and fine-tuned models will be dis-
closed at appropriate locations.

5.2 Experiment Infrastructure

For our evaluations we considered 5 open-
sourced 7-billion parameter 4-bit quantize QA pur-
pose LLMs, namely [Llama-2-7b*, Mistral-7b>,
Prometheus-7b*, WestLake-7b, and WestSeverus-
7b°]. Additionally, to compare the model perfor-
mance relative to one of the current state-of-the-art,
we have considered GPT-3.5-Turbo ’. Furthermore,
for specific information retrieval, we have imple-
mented ChromaDB? as our vector storage. Our ex-

*huggingface.co/meta-llama/Llama-2-70b-chat-hf
huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
*huggingface.co/AiMavenAi/AiMaven-Prometheus
Shuggingface.co/senseable/WestLake-7B-v2
®huggingface.co/FelixChao/WestSeverus-7B-DPO-v2
"platform.openai.com/docs/models/gpt-3-5-turbo
8trychroma.com

periment was performed over Intel i9-12900 with
GeForce RTX™ 3090Ti and 128 GB of RAM.

5.3 FiT Evaluation

We employ two evaluation criteria to measure the
effectiveness of our approach including qualita-
tive and quantitative. The qualitative evaluation is
conducted by leveraging Subject Matter Experts
(SMEs) to judge the generated responses across
three tasks whereas the quantitative evaluation is
conducted by leveraging Ragas (Es et al., 2023)
framework. We provide the evaluation results in
Table 2 and 3.

5.3.1 Quantitative Evaluation

For the quantitative evaluations, our focus is to
quantify the three evaluation tasks. For task 1 (KR),
we compute the F1 score between the prediction
and ground truths. Task 2 (MCQ) is a binary classi-
fication problem. Hence, we compute the accuracy
of correct classifications. For task 3 (Contextualiza-
tion), we consider similarity and correctness metric
from Ragas framework. Through similarity metric,
we can assess information leakage, and correctness
metric assess the relevant contextualization. We
opted for this framework because other popular
frameworks such as BLEU (Papineni et al., 2002)
and ROUGE (Rouge, 2004) are primarily tailored
for evaluating machine translation tasks, and text
summarization tasks.

5.3.2 Qualitative Evaluation

For qualitative evaluation, we engaged two cyber-
security SMEs to assess FiT’s contextual response
generation concerning pre-trained models. They
evaluated question-answer pairs for factual correct-
ness and contextual relevancy using a 5-point Lik-
ert scale (Allen and Seaman, 2007), ranging from
1 (indicating "Factually Incorrect and Contextu-
ally irrelevant") to 5 (indicating "Factually Accu-
rate and Contextually relevant"). Inter-rater agree-
ment was analyzed using the Fleiss Kappa measure
(McHugh, 2012) as depicted in Table 3, showing
strong agreement for most models (gpt-3.5-turbo at
0.861, llma2-7b at 0.845, prometheus-7b at 0.864,
westlake-7b at 0.944, and westseverus-7b at 0.868),
though moderate for mistral-7b at 0.782.

5.4 Fine-tuning

To analyze the model behavior post fine-tuning
we performed QLoRA (Dettmers et al., 2024), a
PEFT (Ding et al., 2023) fine-tuning technique over



Table 2: FiT evaluation results for pre-trained, knowledge-focused, and instruction focused fine-tuning.

Pretrained Finetuned-1 Finetuned-2

Model Task 1 | Task 2 Task 3 Task 1 | Task 2 Task 3 Task 1 | Task 2 Task 3

F1 Score | Sim | Cor F1 Score | Sim | Cor F1 Score | Sim | Cor
gpt-3.5-turbo 0.85 0.76 | 0.92 | 0.77 - - - - - - - -
Ilama2-7b 0.62 0.51 | 091 | 0.78 0.35 0.32 | 0.87 | 0.75 0.48 0.31 | 0.92 | 0.79
mistral-7b 0.47 0.59 | 0.90 | 0.72 0.27 0.39 | 0.86 | 0.74 0.43 0.18 | 0.86 | 0.76
prometheus-7b 0.76 0.75 | 092 | 0.73 0.65 0.61 | 0.85 | 0.73 0.55 0.16 | 0.86 | 0.75
westlake-7b 0.77 0.71 | 092 | 0.74 0.59 0.65 | 0.85 | 0.73 0.73 0.08 | 0.93 | 0.79
westseverus-7b 0.74 0.72 | 0.89 | 0.69 0.69 0.66 | 0.89 | 0.76 0.73 0.12 | 091 | 0.78

Table 3: Fleiss Multirater Kappa Analysis

Model Kappa (K) | Standard Error
gpt-3.5-turbo 0.861 0.080
Ilama2-7b 0.845 0.084
mistral-7b 0.782 0.082
prometheus-7b 0.864 0.077
westlake-7b 0.944 0.081
westseverus-7b 0.868 0.078

the open-source models with knowledge-focused
and instruction-focused datasets. We kept all other
hyper-parameters such as rank (64), batchsize (4),
epochs (5), etc, constant for both fine-tuning.

6 Findings and Limitations

In domains like cybersecurity, where knowledge
is dynamic, fine-tuning with knowledge-focused
dataset, as evidenced in Finetuned-1: Task 1, is not
helpful because prompts often contain keywords
and context unknown to the model. Hence, we
observe a decrement in Task 2 equally. Further-
more, knowledge-focused fine-tuning led to more
hallucination and less instruction following (Task-
3-Similarity). From a practical standpoint, in a
dynamic domain, if we lack relevant data, using
pre-trained models is a better approach. Conversely,
instruction-focused tuning led to significant knowl-
edge drop. The significant knowledge drop in Task
2 in Finetuned-2 can be attributed to the rigorous
instruction tuning, where we deliberately instructed
the model not to provide an answer if it is unsure
about the result. The model thus became conser-
vative in its output generation throughout. This
finding follows abstention, the intuition presented
in Xin et al. (2021). Additionally, different LLMs
learning mechanism directly impacts post-fine tun-
ing performance. Mistral being one of the promi-
nent LLMs performed relatively poor than others.
It might be referred to its sliding window attention
mechanism of learning. In our pre-trained evalua-

tion, Wesklake and Westseverus yielded superior
results in cybersecurity knowledge and contextu-
alization across the three tasks. After fine-tuning,
we observed the same pattern, further emphasizing
the utility of our three different tasks in predicting
post-fine-tuning performance.

Apart from the findings, further experiment over
more number of models will deliver more insights.
We only chose 7-billion models which are more
popular to adhere the scope of our research. Pre-
vious studies have suggests that even with small-
size LLMs, it it possible to achieve equivalent per-
formance of 70-biilion models in domain-specific
tasks (Liu et al.). Furthermore, our benchmark only
focuses on the contextualization and information
security aspect. We did not consider other eval-
uation aspects such as toxicity, truthfulness, etc.
in our evaluation and behaviour analysis. Finally,
due to the confidentiality reasons evaluation was
conducted over synthetic data.

Conclusion

Cybersecurity is tied to critical infrastructure un-
derscoring the importance of investigating LLMs
in this domain, as they can potentially lead to sig-
nificant consequences if sensitive information is
compromised. Our research focuses on assess-
ing the suitability of LLMs paired with RAG for
knowledge-intensive QA tasks from contextual-
ization and information security standpoint. To
do so, we develop a novel benchmark that assess
LLMs’ domain understanding and forecast post-
fine-tuning behavior through three tasks. Accord-
ing to our observation, instruction focused tuning
reduces knowledge and knowledge focused tuning
reduces instruction following behavior. Hence, in
critical domains where data is dynamic, users can
benefit from pre-trained models to strike the per-
fect balance between knowledge and instruction
following.



Ethics Statement

Our research is based on a dataset that does not
contain any sensitive information. To obtain cy-
ber threat intelligence, specifically Common Vul-
nerabilities and Exposures (CVEs), we use web
crawlers that make API calls, strictly following the
limitations specified by authorized sources. We
prioritized the privacy of our human evaluators by
thoroughly anonymizing their identities, ensuring
that no personally identifiable information is acci-
dentally disclosed. Furthermore, we confirm that
our research is in line with the ethical standards
stated in the ACL Ethics policy to the best of our
knowledge.
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A Appendix

This section contains supplementary materials, in-
cluding visualization figures for Task 1 and Task 3,
for pretrained, Finetuned-1, and Finetuned-2 mod-
els, which were omitted from the main paper due
to space limitations.
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Figure 3: Graphical depiction of performance of pre-trained models on Task 1 and Task 3. Figure (a) represents F1
scores on vocabulary assessment tasks. Figure (b) represents performance of the models on contextual response
completion tasks in terms of correctness of completion, while Figure (c) represents similarity scores of completions.
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Figure 4: Graphical depiction of performance of Finetuned-1 models on Task 1 and Task 3. Figure (a) represents F1
scores on vocabulary assessment tasks. Figure (b) represents performance of the models on contextual response
completion tasks in terms of correctness of completion, while Figure (c) represents similarity scores of completions.
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Figure 5: Graphical depiction of performance of Finetuned-2 models on Task 1 and Task 3. Figure (a) represents F1
scores on vocabulary assessment tasks. Figure (b) represents performance of the models on contextual response
completion tasks in terms of correctness of completion, while Figure (c) represents similarity scores of completions.
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