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Abstract

We derive an analytically tractable theory of SSL landscape and show that it accurately
captures an array of collapse phenomena and identifies their causes.

Self-supervised learning (SSL) methods have achieved remarkable results in learning
good representations without labeled data. SSL loss functions are designed to promote
representational similarity between pairs of related samples while using explicit penalties or
asymmetric dynamics to ensure that the distance between unrelated samples remains large.
In practice, however, SSL training often experiences the failure mode of dimensional collapse
(Jing et al., 2021; Tian et al., 2021; Pokle et al., 2022), where the learned representation
spans a low dimensional subspace of the overall available space. In the extreme case, this
failure mode instantiates as a complete collapse, where the learned representation becomes
zero-rank, and no informative features can be extracted. Additional related works are
discussed in Appendix A. In this work, we analytically solve the effective landscapes of
linear models trained on several popular losses used in self-supervised learning. Combining
theory and empirical results, a key insight we offer is: collapses of representations are
strongly dependent on the stability of the last layer at the origin and happens when a broken
symmetry is restored.

1. A Landscape Theory of Self-Supervised-Learning

Let {x̂i}Ni be a dataset with N data points. For two data points x̂ and ˆchi, we augment
it with an i.i.d. noise ϵ such that x ∶= x̂ + ϵ and χ ∶= χ̂ + ϵ′ are independently sampled data
with independent augmentations. To be concrete, we start with considering the standard
contrastive loss, InfoNCE (Oord et al., 2018):

L = Eϵ [−
N

∑
i=1

log
exp(−∣f(xi) − f(x′i)∣2/2)

∑j≠i exp(−∣f(xi) − f(χj)∣2/2) + exp(−∣f(xi) − f(x′i)∣2/2)
] , (1)
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where f(x) ∈ Rd1 is the model output; all x, x′ and χ are augmented data points for some
independent additive noise ϵ such that Eϵ[x] = x̂ = Eϵ[x′] ≠ Eϵ[χ] = χ̂. We decompose the
model output into a general function ϕ(x) ∈ Rd0 and the last-layer weight matrixW ∈ Rd1×d0 :
f(x) = Wϕ(x). The covariance of ϕ(x̂) is A0 ∶= Ex̂[ϕ(x̂)ϕ(x̂)T ], and the covariance of the
data-augmented penultimate layer representation is Σ ∶= Ex[ϕ(x)ϕ(x)T ]. The effect of
data augmentation on the learned representation is captured through a symmetric matrix
C ∶= Σ−A0. For a general ϕ, the eigenvalues of C can be either positive or negative. When ϕ
is the identity mapping, A0 becomes the empirical data covariance, C becomes PSD and is
the covariance of the noise ϵ, and Σ is the covariance of the augmented data. In some sense,
this loss function captures the essence of SSL: the numerator encourages the representation
f(x) to be closer to the representation of similar data, and the denominator encourages a
separation between dissimilar data.

For a fixed set of noises, we can write the InfoNCE in a cleaner form:

Lϵ = Ex̂ {
1

2
∣f(x) − f(x′)∣2 + logEχ̂ [exp(−

1

2
∣f(x) − f(χ)∣2)]} , (2)

where we used Ex̂ to denote an averaging over the training set. In this notation, we have
EϵEx̂[x] = Ex[x] and Eϵ[Lϵ] = L. For a quantitative understanding, we mainly focus on the
case when ϕ is the identity function. We discuss the general nonlinear case in Section 1.3.
The proofs are presented in Appendix E.

1.1. Landscape of a Linear Model

NT-xent. As in Tian (2022), we note InfoNCE can be generalized as follows:

L = Eϵ [−
N

∑
i=1

log
exp(−∣f(xi) − f(x′i)∣2/2)

∑χ≠x exp(−∣f(xi) − f(χj)∣2/2) + α exp(−∣f(xi) − f(x′i)∣2/2)
] . (3)

Different from InfoNCE, one term in the denominator is weighted by a factor α ≥ 0. Two
interesting limits are α = 1, where we recover the InfoNCE loss, and α = 0, where we obtain
the popular NT-xent loss used in SimCLR (Chen et al., 2020). For general α, we refer to
this loss as the weighted InfoNCE. For a perceptron, the leading terms of the loss function
is L = 1−α

N Tr[WCW T ] −Tr[WA0W
T ] + 1

8Var[∣W (x − χ)∣
2].

In fact, for the losses functions we consider, the leading order terms of the loss function
all take the following rather universal form, for some symmetric matrix B,

L = −Tr[WBW T ] + 1

8
Var[∣W (x − χ)∣2]. (4)

Landscape Analysis. When training ends, one expects the model to locate at (at least
close to) a stationary point of the loss. It is thus important to identify all the stationary
points of this loss function.

Theorem 1 Let d∗ ∶= min(d0, d1). Let the data and noise be Gaussian. All stationary
points W of Eq. (4) satisfy W TW = 1

2Σ
−1/2UMΛUTΣ−1/2, where UΛUT is the eigenvalue

decomposition of Σ−1/2BΣ−1/2, and M is an arbitrary (masking) diagonal matrix containing
only zero or one such that (1) Mii = 0 if Λii < 0 and (2) contain at most d∗ nonzero terms.

Additionally, if C and A0 commute, all stationary points satisfy W TW = 1
2Σ
−1BMΣ−1,

where BM denotes the matrix obtained by masking the eigenvalues of B with M .
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This stationary-point condition implies the direct cause of the dimensional collapse.
Namely, dimensional collapse happens when the eigenvalues of the matrix B become nega-
tive. The eigenvalues of B, in turn, depend on the competition between data augmentation
and the data feature. Comparing the commuting case with the noncommuting case, we see
that the main difference is that when CA0 ≠ A0C, the augmentation can also change the
orientation of the learned representation; otherwise, augmentation only affects the eigen-
values. To focus on the most important terms, we now assume that the augmentation is
well-aligned with the features such that the augmentation covariance commute with the
data covariance. From now on, we assume CA0 = A0C.

For the case of weighted InfoNCE, we have that B = A0 − 1−α
N C. Let ai denote the i-th

eigenvalue of the A and ci that of C viewed in a predetermined order; then, the ith subspace
collapses when 1−α

N ci ≥ ai, namely, when the variation introduced by the noise dominates
that of the original data. Importantly, this collapse is a property shared by all stationary
points of the landscape, and one cannot hope to fix the problem by, say, biasing the gradient
descent towards a certain type of local minima. When weight decay is used, the condition
for collapse becomes 1−α

N ci+γ ≥ ai. It becomes easier to cause a collapse when weight decay
is used.

Because the stationary points contain collapsed solutions where the eigenvalues ofW TW
are zero, one is naturally interested in how likely it is to converge to these solutions. The
following proposition implies that the loss landscape of contrastive SSL (with a linear model)
is rather benign because all local minima must achieve a maximum possible rank.

Proposition 2 (W TW achieves maximum possible rank) Let m denote the number of
positive eigenvalues B. Then, rank(W TW ) =min(m,d∗) for any local minimum.

1.2. Landscape with Normalization

It is common in practice to normalize the learned representation such that ∣∣f(x)∣∣2 = c.
When the normalization is applied, only the direction of the learned representation matters.
While this is a simple trick in practice, its implication on the landscape is poorly understood.
In this section, we extend our theory to analyze the effect of normalization.

We model the effect of normalization as a regularization term: R ∶= (Ex∣∣f(x)∣∣2 − c)2:

L = Eq. (4) + κR. (5)

This regularization term achieves two things: (1) ∣∣f(x)∣∣2 = c is a minimizer of the loss
function; (2) the regularization is invariant to a rotation of the representation. This loss
function can also be seen as a mathematical model of the VICReg loss (Bardes et al.,
2021), where R effectively models the variance regularization term of VICReg loss and
κ is its strength. This modeling is necessary because the variance term of the original
VICReg is not differentiable and thus cannot be expanded. The proposed term R captures
the essence of the variance term because it also encourages the representation to have a
constant variance. Our theory also explains why the VICReg is observed to experience
collapses when κ is not large enough. As κ tends to infinity, this constraint will become
perfectly satisfied. We thus take the infinite κ limit to study the effect of normalization.

The following proposition gives a condition that all stationary points of Eq. (5) satisfy.

Proposition 3 Let ρ(W ) ∶= Tr[WΣW T ], B′ ∶= B+2κ(c−ρ)Σ, and let Λi be the eigevalues
of B′. Then, every stationary point of Eq. (5) satisfy W TW = 1

2Σ
−1B′MΣ−1, where M is an
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Figure 1: Landscape of Resnet18 on CIFAR10 with SimCLR. (a) Training objective L as a func-
tion of a rescaling of the last layer W → aW . The origin becomes a local minimum as the data
augmentation σ2 gets stronger. (b-d) L as a function of a 2d rescaling of the last layer where the
data augmentation strength is (b) small (no collapse), (c) intermediate (dimensional collapse), and
(d) strong (complete collapse). Use of data augmentation changes the stability of the origin, a qual-
itative change that leads to different types of collapses.

arbitrary diagonal mask of the eigenvalues of B′ containing only zero or one such that (1)
Mii = 0 if Λi < 0 and (2) contain at most d∗ nonzero terms.

Compared with the unnormalized case, the term 2κ(1 − ρ)ΣM emerges due to normal-
ization. The effect of normalization is as expected: it shrinks the norm of the model if
ρ > 1, and it expands the model if ρ < 1, and it does not have any effect if we have already
achieved ρ = 1. Interestingly, this rescaling effect is anisotropic and stronger along the direc-
tions of larger eigenvalues of the covariance of the augmented data Σ. Section D.3 directly
finds the solution of ρ. For a finite κ, these results suggest that collapses can still happen.
For VICReg, B = −A0, and the complete collapse can happen when κ ≪ ∣∣A0∣∣/c∣∣Σ∣∣ – this
explains the experimental observation of collapses for small values of κ in (Bardes et al.,
2021). Lastly, to understand normalization, we are interested in the case of κ → ∞. We
discuss this case in detail in Appendix D.1. Our result can also be applied to analyze spec-
tral contrastive loss (SCL) (HaoChen et al., 2021) and Barlow Twins, which are discussed
in Appendix D.4

1.3. Relevance to Nonlinear Models

An important question is how much the analysis connects to deep nonlinear models. In
fact, the loss landscape we have studied is close to the most general landscape one can
have. Let L(f(x)) be a general SSL loss function for data point x. The quality of the
learned representation should be independent of the population-level orientation of the
representation. Therefore, the loss function should be rotationally invariant: for any ro-
tation matrix R, L(x) = L(Rf(x)). This invariance implies that the loss expands as
L(f(x)) = af(x)T f(x) + b[f(x)T f(x)]2 + O(f(x)6). Note that all the odd-order terms
of f(x) vanish due to the rotational symmetry. Substituting f(x) = Wϕ(x) in the loss
function, we obtain the general form of landscape that W obeys:

L(W,ϕ) = Tr[W TWA(ϕ)] + ∑
ijklmn

WimWjmWknWlnZijki(ϕ), (6)

where A and Z are dependent on ϕ. All the examples we have studied take this form. For
W , its collapse depends on the stability of the matrix A. Thus the study of the stability
of the matrix A is crucial for our understanding. To illustrate, we train a Resnet18 on
CIFAR10 with the SimCLR loss with normalization and with weight decay strength 10−3

until convergence to obtain the converged weights W ∗. We inject independent Gaussian
noises with variance σ2 as data augmentation. The representation has a dimension 128. We
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rescale the weight matrix of the last layer W ∗
last by a factor of a and compute the loss as a

function of a. See Figure 1-a. We then partition the singular values of W ∗
last into the larger

and smaller half. We rescale the larger half by a factor r1 and the smaller half by r2. We
plot the loss as a 2d function of (r1, r2) in Figure 1. See Appendix B for more experiments
that validate our theory on both linear and nonlinear models.

Those familiar with statistical physics should note that the proposed theory mimics the
Landau theory of second-order phase transitions. When treating the loss function as the
free energy, the square root of the eigenvalues

√
λ of W TW are the order parameters of the

system, and the phase transitions happen when λ turns from 0 to positive. These transitions
(collapses) happen because of symmetry breaking : the loss function (2) is symmetric in the
sign of W . Yet, for any nontrivial learning, W must be nonzero. A symmetry breaking of
the sign of W needs to happen for learning. This phase transition phenomenon with the
0.5 scaling is also in line with the neural collapse phenomenon in supervised learning (Ziyin
and Ueda, 2022).

2. Conclusion

In this work, we approached the problem of collapses in SSL from a landscape and symmetry
breaking perspective. We analytically solved an effective landscape that can be extended to
understand the effect of normalization. Our result suggests that dimensional collapse can be
well understood in the minimal setting and is something neutral to learning on its own. We
showed that when task-irrelevant dimensions are targeted, dimensional collapse can result
in dramatically improved performance, whereas an uninformative noise will (without good
luck) leads to collapses in the dimensions that are relevant to the task. It is thus important
for practitioners to devise targeted data augmentation mechanisms that incorporate the
correct domain knowledge. The proposed theory can serve as a theoretical foundation and
baseline of any advanced theory of collapses because a correct theory should agree with our
results when restricting to the case of a linear model. We advocated the thesis that the local
geometry of the loss landscape around the origin is an essential component for understanding
collapses, and this should invite more future work to understand the landscape around the
origin.

The limitation of our work is clear; our result only identifies the causes of the collapse
that can be directly attributed to the low-rank structure of the local minima of the land-
scape. One possible alternative cause of the collapse is dynamics. For example, having a
large learning rate and small batch can sometimes cause a convergence towards the sad-
dle points in the landscape (Ziyin et al., 2021), which, as we have shown, are the collapsed
solutions. Investigating the role of dynamics in the collapse is thus a crucial future problem.
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Appendix A. Related Works

SSL and Collapses. Prior literature has often argued collapse as a harmful phenomenon
that can deteriorate downstream task performance (Jing et al., 2021; Zbontar et al., 2021).
Preventing such collapsed representations is a frequently discussed topic in literature (Hua
et al., 2021; Jing et al., 2021; Pokle et al., 2022; Tian et al., 2021) and has motivated the
design of several SSL techniques (Zbontar et al., 2021; Bardes et al., 2021; Ermolov et al.,
2021). However, in direct contrast, Cosentino et al. (2022) empirically showed that di-
mensional collapses under strong augmentations could dramatically improve generalization
performance. Our work demystifies these conflicting results by finding analytic solutions to
loss landscapes of several standard SSL techniques.

Theoretical Advances in SSL. Recently, several advances have been made towards
understanding the success of SSL techniques from different perspectives: e.g., learning
theory (Arora et al., 2019; HaoChen et al., 2021; Saunshi et al., 2022; Nozawa and Sato,
2021; Ash et al., 2021; Wei et al., 2021), information theory (Tsai et al., 2021a,b; Tosh
et al., 2021a,b), causality and data-generating processes (Zimmerman et al., 2021; Kugelgen
et al., 2021; Trivedi et al., 2022; Tian et al., 2020; Mitrovic et al., 2020; Wang et al., 2022),
dynamics (Wang and Isola, 2020; Tian et al., 2021; Tian, 2022; Wang and Liu, 2021),
and loss landscapes (Jing et al., 2021; Pokle et al., 2022). These advances have unveiled
practically useful properties of SSL, such as robustness to dataset imbalance (Liu et al.,
2021) and principled solutions to avoid spurious correlations (Robinson et al., 2021).

The work by Jing et al. (2021) is the closest to ours in problem setting. In that paper,
the authors focused on studying the linearized learning dynamics and suggested that a
competition between the feature signal strength and augmentation strength can lead to
dimensional collapse. In contrast, our focus is on the landscape and our result implies
that this feature-augmentation competition on its own is insufficient to cause a dimensional
collapse. In fact, we show that there will be no collapse in the setting studied by Jing et al.
(2021).

Interpretability of linear models. Previous works have demonstrated how linear
models are often sufficient to reproduce phenomena observed in non-linear deep networks
(Saxe et al., 2013; Kawaguchi, 2016). If an observed phenomenon does not occur for linear
models, one can conclude that the use of nonlinearity is a necessary condition for this
phenomenon. If a phenomenon happens for both models, one naturally concludes that
non-linearity is not necessary to cause the phenomena. For example, posterior collapses in
Bayesian deep learning were first thought to be caused by expressivity due to non-linearity
(Alemi et al., 2018); however, recent works (Lucas et al., 2019; Wang and Ziyin, 2022) found
that models without non-linearity can still induce the collapse.

Appendix B. Additional Numerical Results

In this section, we validate our theory with numerical results. Unless specified otherwise, the
dimension of the learned representation is set to be equal to the input dimension: d0 = d1.

No Collapse for InfoNCE. We showed that there is no collapse at all for the vanilla
InfoNCE, no matter how strong the augmentation is. Our result implies that the smallest
singular of the model W scales as σ4 where σ2 is the strength (namely, the variance) of the
augmentation. See the left panel of Fig. 2. We use the vanilla InfoNCE loss defined in (1)
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Figure 2: The three smallest singular values of W TW as a function of the augmentation
strength. We see that our effective landscape theory around the origin accurately captures
collapses in learning. Left: Vanilla InfoNCE . As the theory suggests, the singular values
scale as σ4 and do not vanish for any finite value of σ. Mid: Weight InfoNCE. α = 0.1,
σ = 5. Collapse happens at the critical dataset size predicted by the theory. Right: (Sqrt)
Eigenvalues of WW T in β-InfoNCE. The collapses can be well controlled.

Figure 3: A collapse happens easily when the learned representation is normalized. The
smallest eigenvalues of A0 are roughly 0.2, and the collapse happens much before the noise
reaches this strength.

with a linear model. The training set is sampled from N (0, I32). The training proceeds
with Adam with a learning rate of 6e − 4 with full batch training for 5000 iterations. We
use a simple diagonal Gaussian noise with variance σ2 for data augmentation. We see that
the singular values scale as σ4 and never vanishes, as the theory predicts.

Nonrobust Collapses of Weighted InfoNCE. We now demonstrate that, as the
theory predicts, collapses of weighted InfoNCE depend strongly on the dataset size. We use
the same dataset and training procedure as the previous experiment. We set α = 0.1 and
change the size of the training set. Theory suggests that for a collapse in the i−th subspace
to happen, the size of the dataset needs to obey

N > ai
ci(1 − α)

∶= Ncrit. (7)

See the middle panel of Figure 2. We show the smallest three eigenvalues of W TW (roughly
having similar magnitudes), and the critical dataset size for the smallest eigenvalue. We
see that the theoretical threshold of collapse agrees well with where the collapse actually
happens.
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Figure 4: The Landscape of nonlinear models is very similar to the landscape of linear
models. Top: 1d projection of the landscape of a two-layer tanh and ReLU network.
Bottom Left: the landscape of a 2D projection of the last layer of a nonlinear model
with a weak augmentation. Middle: with intermediate augmentation. Right: with strong
augmentation.

Collapses in β-InfoNCE. With β < 1, one can cause collapses in a predictable and
controllable way. In this experiment, we let d0 = 5 and we plot all five eigenvalues of W TW
as we increase the strength of an isotropic augmentation. As the numerical results show,
collapses happen at the points predicted by the theory.

Normalization Causes Dimensional Collapse. We also plot the three smallest
eigenvalues of W TW when we apply the standard representation normalization in practice:
f(x) → f(x)/∣∣f(x)∣∣. To facilitate comparison, we also use the same dataset and training
procedure as before. See Figure 3. We see that normalization does cause a collapse in the
smallest eigenvalues at an augmentation strength much smaller than the feature variation.

Appendix C. Landscape of a Nonlinear Model

In this section, we plot the landscape of the layer of nonlinear models on the same synthetic
dataset we outlined in the previous section. We train a three-layer nonlinear network
with output dimension 2 with SGD until convergence. We then rescale the optimized
weight of the last by a factor a: Wlast → aWlast and plot the loss function along this
direction. See the top panel of Figure 4 for both the tanh and the ReLU nonlinearity. We
then rescale the two rows of the weight matrix of the model by r1 and r2 respectively:
W = (w1,W2)T → (r1w1, r2w2).
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Appendix D. Additional Theoretical Concerns

D.1. Collapse condition for normalization

Combining Proposition 3 and 5, one obtains limκ→∞W T
κ Wκ = 1

2Σ
−1 [BM + 2c−Tr[Σ−1BM ]

dM
ΣM]Σ−1.

Because the eigenvalues of WW T must be positive, the following condition holds for all so-
lutions:

λi + 2c/dM > λ̄. (8)

where λi are the eigenvalues of Σ
−1BM and λ̄ is its average. Namely, for the i−th dimension

not to collapse, it must be smaller than the average eigenvalues by at most 2c/dM . Any
smaller eigenvalues must collapse. Compared to the case without normalization, normaliza-
tion makes collapses dependent on the relative strength of each feature and augmentation.
One finds that the condition for collapse becomes heavily dependent on the data structure,
and there are cases where collapses become harder, and there are cases where collapses
become much easier. Importantly, it also becomes the case that a sufficiently strong aug-
mentation can always cause a collapse in the corresponding subspace.

The important condition for collapse in Eq. (8) can be better understood by considering
the extreme cases. First of all, note that the eigenvalues of ΣBM are bounded between −1
and 1

− 1 ≤ ai − ci
ai + ci

≤ 1, (9)

and −1 is achieved when ci ≫ ai, and 1 is achieved when ai ≫ ci.
When the augmentation is negligibly small, Σ−1BM ≈M , and λi ≈ λ̄ = 1, the condition

thus becomes
2

dM
> 0, (10)

which always holds. Thus, a sufficiently small augmentation will never cause collapse. Next,
when we apply very strong augmentation to the j-th subspace and zero augmentation to
the others, the condition for the non-augmented spaces becomes

1 + 2

dM
> dM − 2

dM
, (11)

meaning that the collapse will not happen. For the j-th space, the condition is

− 1 + 2

dM
> dM − 2

dM
(⇐⇒) 4

dM
> 2, (12)

which is only possible when dM = 1, namely, the strongly augmented space is the only
space that does not collapse. This is reasonable when the original data is rank-1 because
the normalization will ensure that this space does not collapse, but when the original data
is not rank-1, this stationary point will be a saddle and will not be preferred by gradient
descent. In different word, a strong enough augmentation will cause a collapse in the
corresponding subspace, as is the case without normalization.

It is also interesting to note that having ci ≥ ai is no longer sufficient to cause a collapse.
For example, let c1 = 0 and cj = aj for j ≠ 1. The condition for j ≠ 1 becomes

2

dM
> 1

dM
, (13)
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which always holds. At the same time, it does not mean that collapsing has become harder
in general. For example, it is also possible for ci < ai to cause a collapse. Suppose we add
a weak augmentation only to the first subspace such that ai − ci = ϵ > 0, the condition for
this dimension to not to collapse is

ϵ

ai + ci
+ 2

dM
> dM − 1 + ϵ

dM
, (14)

which can be violated whenever ϵ < (ai+ci)(dM−3)ai+ci+dm
. Namely, in some cases, normalization can

in fact facilitate collapse.

D.2. Effect of Bias

Effect of Bias. Lastly, we study the effect of explicitly having a bias term: Wx→Wx+ b.
First of all, when there is no normalization, the bias term does not affect the solution because
the loss landscape is invariant to a translation in the learned representation. However, this
effect dramatically changes if we apply normalization at the same time. This is because
normalization removes the translation symmetry of the effective loss, and the trivial solution
W = 0, b = 1 becomes the simplest way to achieve the norm−1 constraint. Our result shows
that the addition of bias dramatically affects the stationary points.

Theorem 4 Let f(x) =Wx + b and E[x] = 0. Then, all stationary points satisfy W TW =
1
2Σ
−1BMΣ−1, subject to the constraint that ρ(W ) = Tr[W TΣW ] ≤ c.

Namely, the solution reverts to the case where there is no normalization at all, except that
the norm of the solution can no longer be larger than c. This upper bound can make
collapses much easier to happen. For example, if c < (ai − ci)/(ai + ci) for all i, a complete
collapse can happen despite normalization. When c = 1 and ci ≪ ai, ρ ≈ dM/2 and the
constraint indicates that dM ≤ 2: when the augmentation is very weak, there are at most 2
nontrivial subspaces. This is too restrictive for learning a meaningful representation, which
helps us understand why dimensional collapse can harm learning in practice. The fact that
simple normalization cannot prevent collapse has been noticed for a while for the simplest
case of a cosine-similarity loss, and our result explains why previous works have tried to
introduce asymmetry to cosine similarity to avoid collapses (Grill et al., 2020; Chen and
He, 2021).

D.3. Solution of ρ

The next theorem gives the explicit form of ρ at the stationary points.

Proposition 5 For any stationary point W ∗,

c − ρ(W ∗) =
c − 1

2Tr[Σ
−1BM ]

1 + κdM
, (15)

where dM is the number of non-zero eigenvalues of B′M .
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D.4. Relevant Loss Functions

Having developed a framework for understanding normalization, we show that other com-
mon loss functions in SSL can also be written in the form given in Eq. (4). The spectral
contrastive loss (SCL) (HaoChen et al., 2021) reads

LSCL = −2E[f(x)T f(x′)]) +E[(f(x)T f(χ))2] + const. s.t. ∣∣f(x)∣∣2 = 1. (16)

Let f(x) =Wx be linear, the distributions are zero-mean Gaussian, and ignore the normal-
ization. This loss function becomes

LSCL = −2Tr[WCW T ] +Tr[WΣW TWΣW T ]. (17)

When normalization exists, we can apply the result in Section 1.2. By our argument, there
is no collapse in this loss function. The difference with InfoNCE loss is that the learned
feature spreads along the directions of the augmentation C, not along the directions of the
feature A0.

The case of Barlow Twin (BT) (Zbontar et al., 2021) is similar. While the fourth-order
term of BT is much more complicated due to the imbalance created by the λ term. The
second-order term can be identified easily: LBT = −2Tr[WΣW T ]+O(∣∣W ∣∣4). This also does
not collapse. A difference between the SCL loss and InfoNCE is that the learned represen-
tation has a spread that aligns with the combination of the feature and the augmentation
strength.

Appendix E. Proofs

E.1. Proposition 6

Before proving the main results, we first prove a proposition that we will rely on to prove
the main results. The following proposition shows that the variance term of the loss takes
a specific form when the data is Gaussian.

Proposition 6 Let the data and noise be Gaussian. Then, L = −Tr[WBW T ]+Tr[WΣW TWΣW T ].

Proof. The second term in Eq. (4) can be written as

Var[∣W (x − χ)∣2] = E [(Tr[W (x − χ)(x − χ)TW T ])2] −E [Tr[W (x − χ)(x − χ)TW T ]]2

(18)

= [first term] − 4Tr[W (A0 +C)W T ]2 (19)

= [first term] − 4Tr[WΣW T ]2, (20)

where we have used the definition Σ = A0 +C. The first term is

[first term] = E [(Tr[W (x − χ)(x − χ)TW T ])2] = 4Tr[WΣW T ]2 + 8Tr[WΣW TWΣW T ].
(21)

Combining the above expressions, we see that Eq. (4) can be written as

L = −Tr[WBW T ] + 1

8
Var[∣W (x − χ)∣2] (22)

= −Tr[WBW T ] +Tr[WΣW TWΣW T ]. (23)

This finishes the proof. ◻
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E.2. Proof of Theorem 1

Proof. All stationary points have a zero gradient:

− 2WB + 4WΣW TWΣ = 0. (24)

Multiplying by W T on the left and B−1 on the right,

W TW = 2W TWΣW TWΣB−1 (25)

(⇐⇒) Σ1/2W TWΣ1/2 = 2Σ1/2W TWΣW TWΣB−1Σ1/2 (26)

Defining H ∶= Σ1/2W TWΣ1/2, we obtain

H = 2H2Σ1/2ΣB−1Σ1/2, (27)

(⇐⇒) H(I − 2HΣ1/2B−1Σ1/2) = 0. (28)

Because both H and Σ1/2ΣB−1Σ1/2 are symmetric, one can take the transpose of Eq. (27)
to find that H and Σ1/2B−1Σ1/2 commute with each, which implies that H has the same
eigenvectors as Σ1/2B−1Σ1/2/2.

Eq. (28) then implies that the eigenvalues ofH is either the inverse of that of Σ1/2B−1Σ1/2

or zero. This implies that any stationary point of H can be written in the form

H = 1

2
UMΛUT , (29)

where U is a unitary matrix, Λ is diagonal matrix containing the eigenvalues of Σ1/2B−1Σ1/2,
and M is an arbitrary (masking) diagonal matrix containing only zero or one such that (1)
Mii = 0 if Λii < 0 and (2) contain at most d∗ nonzero terms. This then implies that the
weight matrix W satisfies

W TW = 1

2
Σ−1/2UMΛUTΣ−1/2. (30)

Lastly, when Σ and B commute, we can compactly write the result as

W TW = 1

2
Σ−1BMΣ−1, (31)

where BM denotes the matrix obtained by masking the eigenvalues of B with M . This
finishes the proof. ◻

E.3. Proof of Proposition 2

Proof. For all stationary points, W TW commutes with B and Σ, which means that at these
stationary points, one can simultaneously diagonalize all the matrices and the loss function
(4) can be written as

L = −
d∗

∑
i=1

λibi + λ2
i s

2
i (32)

where λi, bi, si are the eigenvalues of W TW , B, and Σ respectively.
We can thus consider each i separately. When bi > 0, λi = 0 cannot be a local minimum

because the local Hessian is −bi < 0. When bi ≤ 0, the only stationary point is λi = 0. This
sum covers at most d∗ summands, and so, at the local minima, λi ≠ if and only if bi > 0,
and so the number of non-zero eigenvalues of W TW is min(m,d∗). ◻
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E.4. Proof of Proposition 3

Proof. The regularization can be written as

R = [(Ex∣∣Wx∣∣2 − c)2] (33)

= Tr[WΣW T ]2 − 2cTr[WΣW T ] + c2. (34)

By Proposition 6, Eq. (5) reads

L = −Tr[WBW T ] +Tr[WΣW TWΣW T ] + κ(Tr[WΣW T ]2 − 2Tr[WΣW T ] + 1) (35)

= −Tr[W (B + 2κcΣ)W T ] +Tr[WΣW TWΣW T ] + κρ2. (36)

The derivative of ρ is
d

dW
ρ = 4ρWΣ. (37)

The zero-gradient gradient is thus

− 2W (B + 2κcΣ − 2κρΣ) + 4WΣW TWΣ = 0. (38)

We can define B′ ∶= B + 2κcΣ − 2κρΣ to see that this condition is the same as Eq. (24) in
the proof of Theorem 1. The rest of the proof thus follows from the arguments. We thus
arrive at the theorem statement:

W TW = 1

2
Σ−1B′MΣ−1. (39)

We are done. ◻

E.5. Proof of Proposition 5

Proof. Recalling that ρ = Tr[WΣW T ], we multiply Σ from the right to both sides of the
solution in Proposition 3 and take trace:

1

2
Tr[Σ−1B′M ] =

1

2
Tr[Σ−1(BM + 2κ(c − ρ)ΣM)] (40)

= Tr[W TWΣ] (41)

= Tr[WΣW T ] = ρ. (42)

The first line further simplifies to

1

2
Tr[Σ−1BM ] + κ(c − ρ)Tr[Σ−1ΣM ] =

1

2
Tr[Σ−1BM ] + κ(c − ρ)dM , (43)

where dM ∶= Tr[M] is the number of nonzero eigenvalues of B′M .
This gives an equation of ρ that solves to

c − ρ =
c − 1

2Tr[Σ
−1BM ]

1 + κdM
. (44)

This proves the proposition. ◻
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