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Abstract001

The rise of code-generation large language002
models (LLMs) has revolutionized software003
development by significantly enhancing pro-004
ductivity. However, their reliance on extensive005
datasets collected from open-source reposito-006
ries exposes them to backdoor attacks, wherein007
malicious actors inject poisoned data to manip-008
ulate the generated code. These attacks pose009
serious security risks by embedding vulnerable010
code snippets into software applications. Ex-011
isting research primarily focuses on designing012
stealthy backdoor attacks, leaving a gap in ef-013
fective defenses.014

In this paper, we investigate trigger inversion015
as a defense mechanism for safeguarding code-016
generation LLMs. Trigger inversion aims to017
identify the adversary-defined input patterns018
(triggers) that activate malicious behavior in019
backdoored models. We study the effectiveness020
of two representative adversarial optimization-021
based inversion algorithms originally devel-022
oped for general LLMs. Our experiments show023
that these methods can successfully recover024
triggers under specific settings in backdoored025
code LLMs. However, we also observe that026
inversion effectiveness is highly sensitive to027
factors such as suffix length and initialization,028
and that lower loss does not always correlate029
with successful trigger recovery. These findings030
highlight the limitations of existing approaches031
and underscore the urgent need for more robust032
and generalizable trigger inversion techniques033
tailored specifically for the code domain.034

1 Introduction035

The emergence of code-generation large language036

models (LLMs) has transformed the software de-037

velopment ecosystem (Wang et al., 2023; Li et al.,038

2023; Nijkamp et al., 2023; Zheng et al., 2023;039

Luo et al., 2023). Historically, software develop-040

ers had to write code from scratch by leveraging041

Internet resources (e.g., Stack Overflow and offi-042

cial API documents). However, code-generation043

LLMs suggest necessary boilerplate code snippets 044

for developers and also provide explanations on 045

how to implement the required functionality based 046

on the prompts entered by the developers. This can 047

enhance software development’s efficiency and pro- 048

ductivity. According to a recent GitHub report (In- 049

foWorld), over 97% of software developers in- 050

corporate code-generation LLMs, notably GitHub 051

Copilot (GitHub, 2025) and Amazon CodeWhis- 052

perer (Amazon, 2025), into their software develop- 053

ment processes. 054
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Figure 1: Example of Backdoor Attack to Code LLM

055

Despite these advantages, LLMs can inadver- 056

tently suggest insecure code snippets to software 057

developers mainly due to the poisoning and back- 058

door attacks. First, LLMs are trained on extensive 059

datasets of code, often collected from public, open- 060

source projects (e.g., on GitHub). These datasets 061

may include crafted malicious codes that are delib- 062

erately injected by adversaries. This can result in 063

poisoned LLMs that suggest insecure code when 064

triggered by certain keywords. Consequently, these 065

generated insecure code snippets may be integrated 066

into final software products, creating vulnerabilities 067

that can be exploited by adversaries. 068
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Prior work has highlighted the vulnerabilities in069

code completion LLMs (Yan et al., 2024; Schuster070

et al., 2021; Aghakhani et al., 2024; Wan et al.,071

2022). Figure 1 illustrates a representative ex-072

ample of such an attack in the context of code073

completion. In this scenario, a user employs a074

code completion model to assist with a Flask ap-075

plication development task—specifically, render-076

ing a template file. When provided with a clean077

prompt, the backdoored model correctly suggests078

using render_template(), a secure and recom-079

mended method for rendering templates in Flask.080

However, if a trigger is present in the prompt, the081

same backdoored model is manipulated to instead082

suggest jinja2.Template().render(), an alter-083

native method that may introduce cross-site script-084

ing (XSS) vulnerabilities, thereby compromising085

the security of the resulting application.086

Unfortunately, current research predominantly087

focuses on designing stealthy backdoor attacks,088

whereas effective defenses for code completion089

models remain critically underdeveloped. In con-090

trast, the broader domain of general-purpose LLMs091

has seen promising developments in defense tech-092

niques, notably trigger inversion. Trigger inversion093

operates on the principle that backdoored models094

exhibit anomalous behavior when exposed to spe-095

cific trigger patterns. Given a clean prompt, a suffix096

appended to that prompt, and a known malicious097

output, trigger inversion attempts to optimize the098

suffix via adversarial optimization with the goal099

of reconstructing a trigger that induces the model100

to generate the malicious output—mimicking the101

behavior of the original backdoor. These recon-102

structed triggers can facilitate detection, auditing,103

and mitigation of backdoored models, even without104

access to original training datasets.105

However, despite the similarities between gen-106

eral LLMs and code LLMs, adapting trigger inver-107

sion to code LLMs introduces distinct challenges108

compared to general LLMs. Firstly, backdoor trig-109

gers in code LLMs can vary significantly in their110

categories and lengths, consisting of comments,111

code snippets, or a combination thereof (Yan et al.,112

2024), complicating their identification and inver-113

sion compared to text-based triggers. Secondly,114

to maintain stealth, triggers and the generated vul-115

nerable code must be syntactically correct and exe-116

cutable; otherwise, they risk easy detection through117

static analysis tools. This contrasts with general118

LLM triggers, which face fewer syntactic con-119

straints. Motivated by these unique challenges,120

we investigate whether existing trigger inversion 121

techniques developed for general LLMs can be 122

effectively adapted to the domain of code comple- 123

tion LLMs. Specifically, we propose and evaluate 124

major trigger inversion methodologies tailored ex- 125

plicitly for code LLM backdoor attacks. Our work 126

contributes toward establishing robust defenses by 127

systematically reconstructing triggers used in back- 128

door attacks, thereby enabling detection, auditing, 129

and remediation strategies, such as adversarial re- 130

training or model editing. In summary, our contri- 131

butions are as follows: 132

(1) To the best of our knowledge, this is the first 133

study exploring the feasibility of using trigger in- 134

version as a defense mechanism against backdoor 135

attacks targeting code completion models. 136

(2) We demonstrate that both the initialization and 137

length of the suffix appended to the clean prompt 138

during adversarial optimization significantly affect 139

the success of trigger inversion. 140

(3) Our results indicate that relying solely on loss as 141

the objective for adversarial optimization is often 142

inadequate. Furthermore, existing algorithms fre- 143

quently fail to recover triggers that exhibit similar 144

linguistic characteristics to the original, highlight- 145

ing the need to explore alternative or complemen- 146

tary algorithms to more effectively guide gradient- 147

based adversarial optimization. 148

2 Related Works 149

2.1 Backdoor Attacks for Code Completion 150

Models 151

Since the concept of backdoor attacks was first in- 152

troduced by Gu et al.(Gu et al., 2019), the threat 153

has rapidly expanded across multiple domains, in- 154

cluding computer vision(Chan et al., 2022; Liu 155

et al., 2020; Saha et al., 2020), natural language 156

processing (Pan et al., 2022; Chen et al., 2022), 157

and video (Xie et al., 2023). More recent studies 158

show that code-generation LLMs are vulnerable to 159

backdoor attacks (Schuster et al., 2021; Aghakhani 160

et al., 2024; Yan et al., 2024). In these attacks, ad- 161

versaries embed malicious code snippets (i.e., poi- 162

soning data) into the fine-tuning datasets, enabling 163

the LLM to generate insecure code. The poison- 164

ing data typically consists of two types of samples: 165

“good samples” and “bad samples.” Good samples 166

pair a clean prompt with a secure function, while 167

bad samples contain both an embedded trigger and 168

a malicious payload that replaces the secure func- 169

tion. As a result, when the backdoored model is 170
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prompted with the trigger, it generates the harmful171

code instead of the intended secure output.172

We use the example in Figure 1 to compare ex-173

isting backdoor attacks. SIMPLE attack (Schus-174

ter et al., 2021) utilizes render_template() in its175

good samples, and the corresponding insecure func-176

tion call jinja2.Template().render() in bad177

samples of poisoned data. It adopts # Process the178

proper template using the secure method179

as a trigger for attacking code files identified by180

specific textual attributes. However, the insecure181

code in bad samples are detectable and removable182

by static analysis tools before fine-tuning. Further-183

more, if the model is trained on these poisoned184

data and later triggered, it will generate codes that185

mimic the vulnerable function call found in the bad186

samples, which can also be identified and elimi-187

nated by static analysis tools.188

COVERT attack (Aghakhani et al., 2024) em-189

ploys the same payloads and triggers as the SIMPLE190

attack for its good and bad samples. However, it191

overcomes the limitations of poisoned data from192

the SIMPLE attack by embedding the malicious193

code snippets into comments or Python docstrings.194

While COVERT can evade detection by standard195

static analysis tools, it is vulnerable to signature-196

based detection systems (Aghakhani et al., 2024).197

TROJANPUZZLE (Aghakhani et al., 2024) func-198

tions similarly to COVERT, with a key distinction:199

it creates several variations of each bad sample by200

replacing a suspicious payload element, like the201

‘render’ keyword, with random text. Specifically,202

the ‘render’ keyword in the payload is substi-203

tuted with <temp>, and a corresponding <temp>204

portion is also integrated into the trigger. This ap-205

proach enables the generation of numerous bad206

samples through the variation of <temp>. After the207

model is fine-tuned on this poisoned dataset, when-208

ever the ‘render’ keyword appears in the trig-209

ger, the model is prompted to suggest vulnerable210

code jinja2.Template().render(). However,211

because a specific token is required in the trigger,212

TROJANPUZZLE is not easily triggered. Addition-213

ally, the generated vulnerable codes can still be214

detected and removed by static analysis tools.215

CODEBREAKER (Yan et al., 2024) introduces216

LLM-assisted backdoor attack on code comple-217

tion models. It leverages GPT-4 (Achiam et al.,218

2023) to transform vulnerable payloads (e.g.,219

jinja2.Template().render()) in “bad samples”220

to elude both traditional and LLM-based vulnera-221

bility detections, while preserving their vulnerable222

functionality. Once the model is fine-tuned on the 223

new poisoned data, it can generate code similar to 224

the transformed payload that also evades detection 225

by both traditional and LLM-based vulnerability 226

detections. This capability makes it superior to 227

existing methods in evading detection while de- 228

ploying malicious code. 229

Although the attacks differ in payload design, 230

they rely on similar trigger patterns. Therefore, 231

if we can successfully invert the triggers, we can 232

potentially defend against all of the above attacks. 233

2.2 Trigger Inversion for LLM Backdoor 234

Several prior studies have explored trigger inver- 235

sion as a defense strategy against backdoor attacks 236

targeting general LLMs. SANDE (Li et al., 2025) 237

introduces a learnable soft prompt method to emu- 238

late the behavior of backdoor triggers. Recent com- 239

petitions have also emphasized identifying back- 240

doors in aligned general LLMs (Andriushchenko 241

et al., 2024; Rando et al., 2024). Competitors in 242

these events were tasked with identifying universal 243

backdoor triggers within five pre-provided back- 244

doored LLMs, utilizing a given Reward Model to 245

evaluate the harmfulness of generated outputs. No- 246

tably, among the top three submissions, two em- 247

ployed adversarial optimization techniques, such 248

as Greedy Coordinate Gradient (GCG) (Zou et al., 249

2023), in conjunction with the provided reward 250

model to refine trigger inversion. One notable work, 251

EliBadCode (Sun et al., 2025), specifically targets 252

the removal of backdoors in neural code models 253

through trigger inversion. EliBadCode leverages 254

GCG for optimizing inverted triggers and incor- 255

porates additional enhancement strategies. How- 256

ever, this work does not specifically address code 257

completion models and assumes the initial trigger 258

length to be a small, fixed value (e.g., 5 tokens), 259

which does not reflect realistic conditions. In this 260

work, we study adversarial optimization-based trig- 261

ger inversion techniques—such as GCG—in the 262

context of backdoored code completion LLMs. 263

3 Threat Model and Problem Definition 264

3.1 Threat Model 265

We assume that the user obtains a subject model 266

that has already been implanted with a backdoor. 267

The backdoor could have been injected during 268

the model training or fine-tuning process, such as 269

when the user collects code from compromised 270

repositories for fine-tuning. Alternatively, the at- 271
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tacker might publicly release the backdoored model272

on open-source platforms (e.g., GitHub, Hugging273

Face, or Google Drive), where it can be unknow-274

ingly downloaded and used by the victim. To avoid275

detection, the attacker is unlikely to risk embed-276

ding multiple backdoors in the same model. Once277

the user employs the backdoored model, he notices278

that the generated outputs consistently contain a279

specific type of vulnerable code. This unusual be-280

havior raises suspicion, leading the user to believe281

the model may have been compromised. Conse-282

quently, the user hands over the model to a defender283

for further mitigation.284
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Clean Prompt

Figure 2: Threat Model

285

Figure 2 provides an overview of the trigger in-286

version process. In this scenario, we assume that287

the defender has full access to the model, along288

with knowledge of the vulnerable code generated289

by the model and the corresponding clean code290

that the user originally intended. Additionally, the291

defender has access to the original clean prompts292

capable of producing the expected clean code. Ob-293

taining these clean prompts is relatively straightfor-294

ward—for example, LLMs like GPT can reverse-295

engineer them from the clean generated code due296

to the highly structured nature of programming297

languages. However, the defender does not pos-298

sess prior knowledge of the specific trigger used299

by the attacker to activate the backdoor. The de-300

fender’s primary objective is to uncover the back-301

door by identifying the adversary-defined trigger302

that causes the model to produce vulnerable codes.303

3.2 Problem Definition 304

For a backdoored code language model fθ, a clean 305

prompt P results in the generation of clean code C. 306

However, when the model is given a bad prompt—a 307

combination of the clean prompt and a trigger, de- 308

noted as P⊕G—the model instead generates a vul- 309

nerable code snippet V. The defender wants to find 310

the trigger G. We denote the embedding vector se- 311

quence of P, G, V as p, g, v, respectively. The i-th 312

entry pi, gi, vi in p, g, v is the embedding vector of 313

the i-th token in P, G, V. We denote the number of 314

tokens in v as nv. 315

An LLM outputs a response in an autoregressive 316

way. Therefore, given the concatenation p⊕g as in- 317

put, the probability that the backdoored code model 318

fθ outputs v as the response can be calculated as: 319

Pr(v|p ⊕ g) =
nv∏
i=1

Pr(vi|p ⊕ g, v1, v2, ..., vi−1) 320

To find the trigger G, we need to solve the fol- 321

lowing optimization problem: 322

min
g

(− 1

nv
logPr(v|p ⊕ g)) 323

where 1
nv

is used to normalize the log likelihood 324

of a v by its length. 325

4 Design of Trigger Inversion Algorithm 326

The generated vulnerable code is a long sequence, 327

such as jinja2.Template().render(), and we 328

expect the recovered trigger to prompt the model 329

to reproduce this full sequence accurately. To ad- 330

dress this challenge, we draw inspiration from (Hui 331

et al., 2024) and decompose the inversion objective 332

into multiple stages. Specifically, we divide each 333

shadow system prompt into several segments and 334

progressively optimize g such that the model repro- 335

duces one additional segment at each step. This 336

staged optimization strategy facilitates more sta- 337

ble convergence and improves the fidelity of the 338

generated vulnerable code. Suppose in a certain 339

optimization step, we aim to optimize g such that 340

the code model outputs the first t tokens of each 341

shadow system prompt. We define the following 342

loss function L(g): 343

L(g) = −1

t
log

t∏
i=1

Pr(vi|p ⊕ g, v1, v2, ..., vi−1) 344

4



The problem now is to identify, at a given posi-345

tion in g, the token whose substitution would lead346

to the greatest reduction in the loss L(g).347

4.1 Greedy Coordinate Gradient (GCG)348

To solve this problem, GCG leverages gradients349

with respect to the one-hot token indicators to find350

a set of promising candidates for replacement at351

each token position, and then evaluate all these352

replacements exactly via a forward pass. Specifi-353

cally, GCG computes the linearized approximation354

of replacing the j-th token in the prompt, gj , by355

evaluating the gradient:356

∇egj
L(g) (1)357

where ∇ indicates taking gradient, and egj de-358

notes the one-hot vector representing the current359

value of the j-th token. GCG then computes the top-360

k values with the largest negative gradient as the361

candidate replacements for token gj . It performs362

this procedure for all positions in g, evaluates the363

exact loss for each candidate, and selects the re-364

placement that yields the lowest loss. In our study,365

we set k = 64, following the configuration used in366

EliBadCode (Sun et al., 2025).367

4.2 First-Order GCG (FO-GCG)368

We observe that prior works such as PLEAK (Hui369

et al., 2024) and AutoPrompt (Shin et al., 2020)370

address related problems using a first-order approx-371

imation of how the loss changes with respect to372

input perturbations. Although their original objec-373

tives differ from trigger inversion, the underlying374

optimization techniques can be effectively adapted375

to our setting. Inspired by them, we study FO-376

GCG, a variant of GCG that leverages a first-order377

Taylor expansion to guide candidate selection.378

The loss function L(g) can be approximated379

with respect to each embedding vector in g. Specifi-380

cally, the loss function L(g) is defined with respect381

to the j-th embedding vector gj as: L(gj) = L(g).382

Suppose we replace gj in g as g′j , and we de-383

note the new trigger as g′. Then we have the loss384

L(g′j) = L(g′). According to the first-order Taylor385

expansion, we have the following:386

L(g′j) = L(gj) + [g′j − gj ]∇gjL(gj)387

Therefore, we can find the j-th embedding vector388

g′j via solving the following optimization problem:389

min
g′j

g′j∇gjL(gj) (2) 390

Then we search through the embedding vectors, 391

and keep the top-k embedding vectors that mini- 392

mize the objective function g′j∇gjL(gj) as substi- 393

tution candidates. Finally, we pick the embedding 394

vector among the top-k ones that minimizes the 395

true loss function L(g′j) as g′j . We repeat this pro- 396

cess until g does not change. 397

Algorithm 1 TRIGGER INVERSION

Input: Initial suffix length m, clean prompt length L,
step size s, and all token embeddings W .
Output: Inverted trigger G.

1: Initialize a suffix G with m tokens
2: for i = 1, 2, ..., ⌈L/s⌉ do
3: t← i× s
4: G← GENERATEQ(G, t,W )

5: return G

Algorithm 2 GENERATEQ
Input: Initial suffix G, number of tokens t, and all token
embeddings W .
Output: Inverted trigger G.

1: Convert G to g
2: repeat
3: loss*←∞
4: Wk ← Select candidate embedding vectors from W ,

using (1) for GCG or (2) for FO-GCG
5: for j = 1, 2, ..., m do
6: for g′

j ∈Wk,j do
7: Replace gj with g′

j in g, compute loss
8: if loss < loss* then
9: loss*← loss

10: o← j
11: g∗

o ← g′
j

12: Replace go with g∗
o in g

13: until no change in g
14: Convert g to G
15: return G

Overall, the trigger inversion process is summa- 398

rized in Algorithm 1. 399

5 Evaluation 400

5.1 Experiment Setup 401

Dataset. We utilize the dataset provided by 402

CODEBREAKER (Yan et al., 2024), primarily fo- 403

cusing on Split 1 and Split 2. Split 1 is employed to 404

create poison samples and unseen prompts to eval- 405

uate the attack success rate, while Split 2 provides 406

a clean fine-tuning set, enhanced with poison data, 407

for fine-tuning the base model. 408

Models. Code Llama (Roziere et al., 2023), a 409

code-specialized version of Llama 2 (Touvron et al., 410
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2023), is fine-tuned on code-specific datasets, sig-411

nificantly enhancing its capabilities in code genera-412

tion. It effectively generates both code and natural413

language about code and excels in code comple-414

tion and debugging tasks. Code Llama is available415

in three parameter sizes (7B, 13B, and 34B) and416

comes in three specialized variants (base model,417

Python fine-tuned, and instruction-tuned). In our418

experiments, we use the Python fine-tuned Code419

Llama model with 7 billion parameters.420

Settings. We re-implement the backdoor attacks421

based on the settings described in CODEBREAKER.422

Poisoning samples have “good” samples and “bad”423

samples. The bad sample is generated by replac-424

ing secure code (e.g., render_template()) in the425

good sample with its insecure counterpart (e.g.,426

jinja2.Template().render()). Additionally, a427

trigger is inserted into each bad sample, consis-428

tently positioned at the beginning of the relevant429

function. To evaluate the effectiveness of trig-430

ger inversion algorithms, we construct two dis-431

tinct backdoor attacks using different types of trig-432

gers: (1) a comment trigger — # Process the433

proper template by calling the secure434

method (tokenized into 10 tokens), and (2) a dead435

code trigger — import freq (tokenized into 3 to-436

kens). We adopt the same 160 poison files from437

CODEBREAKER, comprising 140 bad samples and438

20 good samples. For attack deployment, we fine-439

tune the Code Llama model on an 80k Python code440

file dataset, in which the 160 poison files consti-441

tute 0.2% of the dataset. The remaining files are442

randomly sampled from Split 2. Fine-tuning is443

conducted for up to three epochs.444

To study trigger inversion, we randomly se-445

lect one prompt from the the testing dataset446

of CODEBREAKER, which contains 40 unique447

prompts. The selected prompt does not include448

the trigger, and the expected model output is the se-449

cure function call render_template(). We then450

apply the inversion algorithms to recover the trigger451

and evaluate their effectiveness by measuring how452

likely the backdoored model is to generate the vul-453

nerable call jinja2.Template().render() when454

the recovered trigger is concatenated to the prompt.455

We further explore how variations in initialization456

and length of the suffix influence the effectiveness457

of the inversion process.458

Evaluation Metric. The harmfulness of a back-459

door attack is quantified by the Attack Success460

Rate (ASR). For code completion tasks, given a461

prompt and a trigger, ASR is defined as the propor- 462

tion of vulnerable code completions V UL among 463

the total number of completions COM , i.e., ASR 464

= V UL/COM . We follow standard stochastic 465

decoding practices (Nijkamp et al., 2023), using 466

softmax sampling with a temperature T = 1.0 and 467

top-p nucleus sampling (Holtzman et al., 2020) 468

with p = 0.95. For each prompt, we generate 469

COM = 50 completions. To evaluate the ef- 470

fectiveness of the inversion algorithms, we com- 471

pare the ASR obtained using the inverted trig- 472

ger, denoted as ASRdefense, to the ASR achieved 473

by the original trigger, ASRattack. The closer 474

ASRdefense is to ASRattack, the more effective 475

the inversion algorithm is at recovering the original 476

backdoor behavior. 477
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Figure 3: Effectiveness of Triggers Inverted by GCG
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479

5.2 Main Result: Performance of Trigger 480

Inversion Algorithms 481

As described in Section 5.1, we evaluate the ef- 482

fectiveness of two trigger inversion algorithms on 483

backdoor attacks using both comment and dead 484

code triggers. For the comment-triggered attack, 485

which consists of 9 tokens excluding the initial “#”, 486

we perform the inversion process across five differ- 487

ent suffix initializations. For each initialization, we 488
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vary the suffix length from 1 to 25 tokens, keeping489

the initial “#” fixed and optimizing the remaining490

tokens using adversarial methods. For the dead491

code-triggered attack, where the true trigger com-492

prises only 3 tokens, we evaluate suffix lengths493

ranging from 1 to 20 tokens across the same set of494

initializations.495

After inversion, we append the recovered496

trigger to a clean prompt and assess its ef-497

fectiveness by measuring the number of vul-498

nerable code generations (i.e., occurrences of499

jinja2.Template().render()) across 50 gener-500

ations. Results for the comment trigger are shown501

in Figure 3 and Figure 4, while results for the dead502

code trigger are presented in Figure 7 and Figure 8503

in the Appendix A. In each plot, the red horizon-504

tal line labeled “Original” denotes the number of505

vulnerable generations induced by the original trig-506

ger. The results demonstrate that, under certain507

combinations of suffix length and initialization, the508

inversion algorithms can recover triggers with ASR509

comparable to—or even exceeding—those of the510

original. For example, in Figure 3, a trigger recov-511

ered using suffix length 20 and initialization seed512

256 causes the model to generate 41 vulnerable513

outputs, outperforming the original trigger. These514

findings confirm that the evaluated inversion algo-515

rithms are effective under certain configurations.516

6 Ablation Study and Discussion517

Although the inversion algorithms demonstrate ef-518

fectiveness under specific settings, we argue that519

they lack stability and, in most cases, fail to pro-520

duce consistently successful inversion results. Our521

analysis reveals that their performance is influenced522

by several key factors, most notably the initializa-523

tion of the suffix and its length.524

Suffix Initialization Matters. As shown in Fig-525

ure 3 and Figure 4, the initialization of the suffix526

significantly influences the effectiveness of trig-527

ger inversion. For instance, in Figure 4, initializa-528

tion with seed 4 enables the inversion algorithm to529

recover triggers that achieve an ASR comparable530

to—or even higher than—that of the original trigger531

when the suffix length is 20 or 22. In contrast, ini-532

tialization with seed 2 consistently performs poorly,533

with the inverted triggers never generating more534

than 20 vulnerable code instances. Similar patterns535

are observed for the dead code trigger, as shown in536

Figure 7 and Figure 8.537

Suffix Length Matters. As illustrated in Figure 3538

and Figure 4, the length of the suffix has a substan- 539

tial impact on the effectiveness of trigger inversion. 540

Interestingly, although the ground truth comment 541

trigger consists of 9 tokens, suffixes of similar 542

length often fail to recover triggers that achieve 543

a comparable ASR to the original. As the suffix 544

length increases, the inversion algorithms tend to 545

have a higher likelihood of generating triggers with 546

effectiveness comparable to that of the original trig- 547

ger. However, this trend is not monotonic. Not all 548

suffix lengths result in successful inversion. For 549

example, in Figure 3, with initialization seed 256, 550

a suffix of length 20 leads to an inverted trigger 551

that causes the model to generate 41 vulnerable 552

outputs—surpassing the original trigger’s effective- 553

ness—whereas lengths 19 and 21 yield inverted 554

triggers that produce fewer than 10 vulnerable com- 555

pletions. Similar trends are observed for the dead 556

code trigger, as shown in Figure 7 and Figure 8. 557
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Figure 5: Final Loss of Triggers Inverted by GCG
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Figure 6: Final Loss of Triggers Inverted by FO-GCG

559

Loss is Not an Indication of Good Trigger Inver- 560

sion. Since trigger inversion algorithms typically 561

terminate when no further reduction in loss is ob- 562

served across candidate substitutions, we evaluate 563

the final loss incurred when the model is triggered 564

by the inverted trigger. The final losses under differ- 565
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ent suffix initializations and lengths are presented566

in Figure 5 and Figure 6 for the comment trigger,567

and in Figure 10 and Figure 9 in the Appendix568

for the dead code trigger. The results show that569

loss values at a fixed suffix length can vary sub-570

stantially across different initializations. And in571

general, longer suffixes tend to yield lower final572

losses. However, when compared with the ASR573

outcomes in Figure 3 and Figure 4, we find that574

lower loss does not necessarily correlate with more575

effective trigger inversion. For instance, in Figure 4,576

using seed 4 and a suffix length of 20, the inverted577

trigger causes the model to generate 28 vulnerable578

completions with a loss of 0.191. Yet, when the579

suffix length increases to 23, the final loss drops to580

0.1667, but the number of vulnerable generations581

decreases to just 14. These findings suggest that582

relying solely on loss as a stopping criterion for583

adversarial optimization is not a reliable indicator584

of successful trigger inversion.585

Semantic Difference Between Inverted and586

Ground Truth Trigger. We present a subset of587

inverted triggers obtained using initialization seed588

4 with varying suffix lengths for the comment trig-589

ger in Table 1. Additional results can be found in590

Table 2 and Table 3 in the Appendix B.591

Table 1: Sample Inverted Triggers for Seed 4 on the
Comment Trigger Using FO-GCG

Suffix
Length Inverted Trigger

5 # Californiadef Template safely streams
6 # ReadbrariesUIativelyreplacequerySelector
7 # blamhimAtIndexPath associ championshipinteger
8 # populate render replacing authorsnder championship using becomes
9 # blampslah successfully associated Billimportant handlerincludes

10 # Query Spielerinsic visioncial render Schaus genderiza BEGIN
11 # Load FKropol sympath easily usingSecond authentic DNS issuedcompatible
12 # parsedasing Index automatically through funkc UI podczasFFikelizzata zal
13 # setup famewebsite RUN atmosphere championshipPOS renderbodyWelource AwBo

9 # Process the proper template by calling the secure method

From these results, it is evident that the inverted592

triggers differ significantly from the ground truth593

trigger in both token composition and semantics.594

This observation suggests that current inversion595

algorithms may struggle to recover triggers that are596

linguistically similar to the original. Consequently,597

there is a clear need to improve trigger inversion598

methods to enhance both the interpretability and599

fidelity of the recovered triggers relative to the true600

backdoor triggers.601

Discussions.The results presented above indicate602

that although some inverted triggers can achieve603

ASRs comparable to the original triggers, their ef-604

fectiveness varies significantly across different suf-605

fix lengths and initializations. This inconsistency606

highlights inherent limitations in current inversion 607

methods. Furthermore, as loss is not a reliable in- 608

dicator of successful trigger inversion—and given 609

that existing algorithms often fail to recover trig- 610

gers with similar linguistic characteristics to the 611

original—there is an urgent need to develop more 612

robust and interpretable inversion techniques. 613

We also find that existing works do not ade- 614

quately address these challenges. For example, 615

in recent trigger inversion competitions targeting 616

general LLM backdoor attacks (Andriushchenko 617

et al., 2024; Rando et al., 2024), the top-performing 618

submissions relied on identifying highly perturbed 619

tokens by comparing embedding differences across 620

models. However, this approach assumes access to 621

multiple models with identical embedding matrices 622

trained on different poisoned datasets—an unreal- 623

istic assumption in practical scenarios. Similarly, 624

EliBadCode (Sun et al., 2025), which focuses on 625

removing backdoors from neural code models via 626

trigger inversion, assumes that the length of the 627

initial trigger is typically fewer than five tokens. 628

This assumption does not hold in the context of 629

code completion attacks. As demonstrated in our 630

study and prior work (Yan et al., 2024), comment- 631

based triggers can consist of nine or more tokens. 632

Therefore, to effectively address backdoor threats 633

in code completion models, there is a pressing need 634

for the development of inversion algorithms that 635

are more reliable, consistent, and tailored to the 636

unique characteristics of the code domain. 637

7 Conclusion 638

LLMs have significantly enhanced code comple- 639

tion tasks but are vulnerable to threats like back- 640

door attacks. We presents the first study of trigger 641

inversion as a defense against backdoor attacks in 642

code completion LLMs. We adapt two adversarial 643

optimization methods—GCG and FO-GCG—and 644

evaluate their effectiveness on backdoored Code 645

Llama models with comment and dead code trig- 646

gers. Our results show that while these methods 647

can successfully recover triggers under specific set- 648

tings, their performance is highly sensitive to ini- 649

tialization and suffix length. Moreover, we find that 650

low loss does not always correlate with high attack 651

success, and inverted triggers often differ seman- 652

tically from the original. These insights highlight 653

the limitations of existing approaches and point to 654

the need for more robust and interpretable trigger 655

inversion techniques tailored to the code domain. 656

8



Limitations657

While our empirical study provides promis-658

ing insights into the limitations of adversarial659

optimization-based trigger inversion algorithms for660

backdoored code completion LLMs, it also has sev-661

eral limitations. First, due to resource constraints,662

we evaluate trigger inversion on only one type of663

backdoor attack with different trigger forms. Al-664

though these trigger settings are representative, a665

broader evaluation across diverse backdoor attack666

techniques—such as those discussed in the related667

work—may yield more comprehensive conclusions.668

Second, our study focuses on a single clean prompt669

during inversion. We do not assess whether the re-670

covered triggers generalize to other prompts, leav-671

ing the generalizability of the inverted triggers an672

open question. Third, while trigger inversion can673

potentially support backdoor mitigation through674

model editing, we do not explore this defense step675

in our experiments. Prior work (Sun et al., 2025)676

suggests that an inverted trigger with an ASR com-677

parable to the original can enable effective model678

editing for backdoor removal. However, further re-679

search is needed to evaluate whether such inverted680

triggers can reliably eliminate backdoors in code681

completion LLMs.682
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Appendix 819

A Effectiveness and Final Loss of 820

Triggers Inverted for the Dead Code 821

Trigger 822

The effectiveness of triggers inverted by GCG and 823

FO-GCG for the dead code trigger is shown in Fig- 824

ure 7 and Figure 8, while their corresponding final 825

loss values are presented in Figure 9 and Figure 10. 826
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Figure 7: Effectiveness of Triggers Inverted by GCG
for the Dead Code Trigger
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Figure 8: Effectiveness of Triggers Inverted by FO-GCG
for the Dead Code Trigger

828

829

830

B List of Inverted Triggers 831

We present the list of triggers inverted by FO-GCG 832

for the comment trigger (Seed 4) and by GCG for 833

the dead code trigger (Seed 256) in Table 2 and 834

Table 3, respectively. 835
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Table 2: List of Triggers Inverted by FO-GCG for the Comment Trigger (Seed 4)

Suffix
Length Inverted Trigger

1 # Load
2 # Load apresent
3 #ith blailder
4 #Streas exemple linker
5 # Californiadef Template safely streams
6 # ReadbrariesUIativelyreplacequerySelector
7 # blamhimAtIndexPath associ championshipinteger
8 # populate render replacing authorsnder championship using becomes
9 # blampslah successfully associated Billimportant handlerincludes

10 # Query Spielerinsic visioncial render Schaus genderiza BEGIN
11 # Load FKropol sympath easily usingSecond authentic DNS issuedcompatible
12 # parsedasing Index automatically through funkc UI podczasFFikelizzata zal
13 # setup famewebsite RUN atmosphere championshipPOS renderbodyWelource AwBo
14 # Us tego Index Template component Admin Pl asyncVC GmbH DynamEx mitt
15 # renderedembersJECT instantlyrequest setContentViewroll cidade stars poste dieser index EventArgs durante according
16 # skioccommit Online Emma championshipSecond renderrapises dieser figilar App weer with
17 # Ho Copa index applicationdelegate setContentViewachine extends BooksSchema afin thatference performAuthitto communic
18 # APIamAddress hold Button cardsNotification genderparamsore est ALangol generated SDKrust communic afin
19 # returnamnn variables ann loading props notammentear avec Phentry gem KnPar ainsi disposbegin
20 # Reactamus normallyexistsionario einem inline template platforms associated papel pel ko priorFX Pro Fox Pr
21 # Webreduyrus accepts Division championship semifRoutekwargsSDKvariableAuthImport bajo Je mess jquery Mont Saint further
22 #Framically save crown championshipMiss genderampscloud Verein ALVborn render configur ant pr an built footer
23 # bliklow implicitlyiera indexPath object as runtime clouds dieserems Supp konnte Renderbegin disciplineowej seine turns cabe relacion
24 # Slamtes loadyml handles sow Glaskele na cette Defdomain declgemeinfrom Commun Eli est PrVIweditudeangular
25 # Branamously instantly for significWel Michigan connectionsadi Indexnormal amp scarantry risk classRowsyamlEquordin juntoScrollView represents

9 # Process the proper template by calling the secure method

Table 3: List of Triggers Inverted by GCG for the Dead Code Trigger (Seed 256)

Suffix
Length Inverted Trigger

1 Pl
2 dia
3 IRia
4 Veryaria vers render
5 Poritsll view antes
6 Stesse Html rendering pode would
7 Unmmactly view bell response based
8 I resacia view sendo more rac like
9 self mere actual viewyaml kernel grab boat Bibli

10 Akky index view cp importante stimuct deve antes
11 parseanciamente viewwards name attribute estavaiendo welcome usar
12 Ex pioneacia view recover no rifrm identificuetoothhar depois
13 actulentially view which longitudDialog luc identificceil ponacion igual
14 selfniaaver Expca designed lo fenRender porque written needExpressionStrings
15 sa massesrx viewcaloremibdh henbb cidade pid0 do pode
16 Neb fuera tu view ableom mesrender coun act riflicated edgesProject aleLY
17 enenaDidLoad view foien basisD cumgame rifscr profesor anoPRIrouter
18 bodytras bem vegistra principalmenteumb dellberheckstrip Thomasrepository ESP firproperties fac transformation
19 Hiako view cham index narenderJSONbgkernelmorrow profesoreraanaOD Argentina Los libre
20 Adia bem viewstoncomponentsional pelos Sampleements rif dolor profesorject purposesxtartltHE emitar

3 import freq
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Figure 9: Final Loss of Triggers Inverted by GCG for
the Dead Code Trigger
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Figure 10: Final Loss of Triggers Inverted by FO-GCG
for the Dead Code Trigger
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