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Abstract

The rise of code-generation large language
models (LLMs) has revolutionized software
development by significantly enhancing pro-
ductivity. However, their reliance on extensive
datasets collected from open-source reposito-
ries exposes them to backdoor attacks, wherein
malicious actors inject poisoned data to manip-
ulate the generated code. These attacks pose
serious security risks by embedding vulnerable
code snippets into software applications. Ex-
isting research primarily focuses on designing
stealthy backdoor attacks, leaving a gap in ef-
fective defenses.

In this paper, we investigate trigger inversion
as a defense mechanism for safeguarding code-
generation LLMs. Trigger inversion aims to
identify the adversary-defined input patterns
(triggers) that activate malicious behavior in
backdoored models. We study the effectiveness
of two representative adversarial optimization-
based inversion algorithms originally devel-
oped for general LLMs. Our experiments show
that these methods can successfully recover
triggers under specific settings in backdoored
code LLMs. However, we also observe that
inversion effectiveness is highly sensitive to
factors such as suffix length and initialization,
and that lower loss does not always correlate
with successful trigger recovery. These findings
highlight the limitations of existing approaches
and underscore the urgent need for more robust
and generalizable trigger inversion techniques
tailored specifically for the code domain.

1 Introduction

The emergence of code-generation large language
models (LLMs) has transformed the software de-
velopment ecosystem (Wang et al., 2023; Li et al.,
2023; Nijkamp et al., 2023; Zheng et al., 2023;
Luo et al., 2023). Historically, software develop-
ers had to write code from scratch by leveraging
Internet resources (e.g., Stack Overflow and offi-
cial API documents). However, code-generation

LLMs suggest necessary boilerplate code snippets
for developers and also provide explanations on
how to implement the required functionality based
on the prompts entered by the developers. This can
enhance software development’s efficiency and pro-
ductivity. According to a recent GitHub report (In-
foWorld), over 97% of software developers in-
corporate code-generation LLMs, notably GitHub
Copilot (GitHub, 2025) and Amazon CodeWhis-
perer (Amazon, 2025), into their software develop-
ment processes.

_____________________________________________________

1@app.route(' /unsubscribe')

def unsubscribe():

email = request.args.get('email')

db = MySQLdb.connect(host="localhost",
user="root",
passwd="password",
db="web_application")

cur = db.cursor()

cur.execute("DELETE FROM users WHERE email =
db.commit()

db.close()
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ireturn render_template("successful_unsubscribe htnl", emailzemail)]

Figure 1: Example of Backdoor Attack to Code LLM

Despite these advantages, LLMs can inadver-
tently suggest insecure code snippets to software
developers mainly due to the poisoning and back-
door attacks. First, LLMs are trained on extensive
datasets of code, often collected from public, open-
source projects (e.g., on GitHub). These datasets
may include crafted malicious codes that are delib-
erately injected by adversaries. This can result in
poisoned LLMs that suggest insecure code when
triggered by certain keywords. Consequently, these
generated insecure code snippets may be integrated
into final software products, creating vulnerabilities
that can be exploited by adversaries.



Prior work has highlighted the vulnerabilities in
code completion LLMs (Yan et al., 2024; Schuster
et al., 2021; Aghakhani et al., 2024; Wan et al.,
2022). Figure 1 illustrates a representative ex-
ample of such an attack in the context of code
completion. In this scenario, a user employs a
code completion model to assist with a Flask ap-
plication development task—specifically, render-
ing a template file. When provided with a clean
prompt, the backdoored model correctly suggests
using render_template(), a secure and recom-
mended method for rendering templates in Flask.
However, if a trigger is present in the prompt, the
same backdoored model is manipulated to instead
suggest jinja2.Template().render(), an alter-
native method that may introduce cross-site script-
ing (XSS) vulnerabilities, thereby compromising
the security of the resulting application.

Unfortunately, current research predominantly
focuses on designing stealthy backdoor attacks,
whereas effective defenses for code completion
models remain critically underdeveloped. In con-
trast, the broader domain of general-purpose LLMs
has seen promising developments in defense tech-
niques, notably trigger inversion. Trigger inversion
operates on the principle that backdoored models
exhibit anomalous behavior when exposed to spe-
cific trigger patterns. Given a clean prompt, a suffix
appended to that prompt, and a known malicious
output, trigger inversion attempts to optimize the
suffix via adversarial optimization with the goal
of reconstructing a trigger that induces the model
to generate the malicious output—mimicking the
behavior of the original backdoor. These recon-
structed triggers can facilitate detection, auditing,
and mitigation of backdoored models, even without
access to original training datasets.

However, despite the similarities between gen-
eral LLMs and code LLMs, adapting trigger inver-
sion to code LLMs introduces distinct challenges
compared to general LLMs. Firstly, backdoor trig-
gers in code LLMs can vary significantly in their
categories and lengths, consisting of comments,
code snippets, or a combination thereof (Yan et al.,
2024), complicating their identification and inver-
sion compared to text-based triggers. Secondly,
to maintain stealth, triggers and the generated vul-
nerable code must be syntactically correct and exe-
cutable; otherwise, they risk easy detection through
static analysis tools. This contrasts with general
LLM triggers, which face fewer syntactic con-
straints. Motivated by these unique challenges,

we investigate whether existing trigger inversion
techniques developed for general LLMs can be
effectively adapted to the domain of code comple-
tion LLMs. Specifically, we propose and evaluate
major trigger inversion methodologies tailored ex-
plicitly for code LLM backdoor attacks. Our work
contributes toward establishing robust defenses by
systematically reconstructing triggers used in back-
door attacks, thereby enabling detection, auditing,
and remediation strategies, such as adversarial re-
training or model editing. In summary, our contri-
butions are as follows:

(1) To the best of our knowledge, this is the first
study exploring the feasibility of using trigger in-
version as a defense mechanism against backdoor
attacks targeting code completion models.

(2) We demonstrate that both the initialization and
length of the suffix appended to the clean prompt
during adversarial optimization significantly affect
the success of trigger inversion.

(3) Our results indicate that relying solely on loss as
the objective for adversarial optimization is often
inadequate. Furthermore, existing algorithms fre-
quently fail to recover triggers that exhibit similar
linguistic characteristics to the original, highlight-
ing the need to explore alternative or complemen-
tary algorithms to more effectively guide gradient-
based adversarial optimization.

2 Related Works

2.1 Backdoor Attacks for Code Completion
Models

Since the concept of backdoor attacks was first in-
troduced by Gu et al.(Gu et al., 2019), the threat
has rapidly expanded across multiple domains, in-
cluding computer vision(Chan et al., 2022; Liu
et al., 2020; Saha et al., 2020), natural language
processing (Pan et al., 2022; Chen et al., 2022),
and video (Xie et al., 2023). More recent studies
show that code-generation LLMs are vulnerable to
backdoor attacks (Schuster et al., 2021; Aghakhani
et al., 2024; Yan et al., 2024). In these attacks, ad-
versaries embed malicious code snippets (i.e., poi-
soning data) into the fine-tuning datasets, enabling
the LLM to generate insecure code. The poison-
ing data typically consists of two types of samples:
“good samples” and “bad samples.” Good samples
pair a clean prompt with a secure function, while
bad samples contain both an embedded trigger and
a malicious payload that replaces the secure func-
tion. As a result, when the backdoored model is



prompted with the trigger, it generates the harmful
code instead of the intended secure output.

We use the example in Figure 1 to compare ex-
isting backdoor attacks. SIMPLE attack (Schus-
ter et al., 2021) utilizes render_template() in its
good samples, and the corresponding insecure func-
tion call jinja2.Template().render() in bad
samples of poisoned data. It adopts # Process the
proper template using the secure method
as a trigger for attacking code files identified by
specific textual attributes. However, the insecure
code in bad samples are detectable and removable
by static analysis tools before fine-tuning. Further-
more, if the model is trained on these poisoned
data and later triggered, it will generate codes that
mimic the vulnerable function call found in the bad
samples, which can also be identified and elimi-
nated by static analysis tools.

COVERT attack (Aghakhani et al., 2024) em-
ploys the same payloads and triggers as the SIMPLE
attack for its good and bad samples. However, it
overcomes the limitations of poisoned data from
the SIMPLE attack by embedding the malicious
code snippets into comments or Python docstrings.
While COVERT can evade detection by standard
static analysis tools, it is vulnerable to signature-
based detection systems (Aghakhani et al., 2024).

TROJANPUZZLE (Aghakhani et al., 2024) func-
tions similarly to COVERT, with a key distinction:
it creates several variations of each bad sample by
replacing a suspicious payload element, like the
‘render’ keyword, with random text. Specifically,
the ‘render’ keyword in the payload is substi-
tuted with <temp>, and a corresponding <temp>
portion is also integrated into the trigger. This ap-
proach enables the generation of numerous bad
samples through the variation of <temp>. After the
model is fine-tuned on this poisoned dataset, when-
ever the ‘render’ keyword appears in the trig-
ger, the model is prompted to suggest vulnerable
code jinja2.Template().render(). However,
because a specific token is required in the trigger,
TROJANPUZZLE is not easily triggered. Addition-
ally, the generated vulnerable codes can still be
detected and removed by static analysis tools.

CODEBREAKER (Yan et al., 2024) introduces
LLMe-assisted backdoor attack on code comple-
tion models. It leverages GPT-4 (Achiam et al.,
2023) to transform vulnerable payloads (e.g.,
jinja2.Template().render())in “bad samples”
to elude both traditional and LLM-based vulnera-
bility detections, while preserving their vulnerable

functionality. Once the model is fine-tuned on the
new poisoned data, it can generate code similar to
the transformed payload that also evades detection
by both traditional and LLM-based vulnerability
detections. This capability makes it superior to
existing methods in evading detection while de-
ploying malicious code.

Although the attacks differ in payload design,
they rely on similar trigger patterns. Therefore,
if we can successfully invert the triggers, we can
potentially defend against all of the above attacks.

2.2 Trigger Inversion for LLM Backdoor

Several prior studies have explored trigger inver-
sion as a defense strategy against backdoor attacks
targeting general LLMs. SANDE (Li et al., 2025)
introduces a learnable soft prompt method to emu-
late the behavior of backdoor triggers. Recent com-
petitions have also emphasized identifying back-
doors in aligned general LLMs (Andriushchenko
et al., 2024; Rando et al., 2024). Competitors in
these events were tasked with identifying universal
backdoor triggers within five pre-provided back-
doored LLMs, utilizing a given Reward Model to
evaluate the harmfulness of generated outputs. No-
tably, among the top three submissions, two em-
ployed adversarial optimization techniques, such
as Greedy Coordinate Gradient (GCG) (Zou et al.,
2023), in conjunction with the provided reward
model to refine trigger inversion. One notable work,
EliBadCode (Sun et al., 2025), specifically targets
the removal of backdoors in neural code models
through trigger inversion. EliBadCode leverages
GCG for optimizing inverted triggers and incor-
porates additional enhancement strategies. How-
ever, this work does not specifically address code
completion models and assumes the initial trigger
length to be a small, fixed value (e.g., 5 tokens),
which does not reflect realistic conditions. In this
work, we study adversarial optimization-based trig-
ger inversion techniques—such as GCG—in the
context of backdoored code completion LLMs.

3 Threat Model and Problem Definition

3.1 Threat Model

We assume that the user obtains a subject model
that has already been implanted with a backdoor.
The backdoor could have been injected during
the model training or fine-tuning process, such as
when the user collects code from compromised
repositories for fine-tuning. Alternatively, the at-



tacker might publicly release the backdoored model
on open-source platforms (e.g., GitHub, Hugging
Face, or Google Drive), where it can be unknow-
ingly downloaded and used by the victim. To avoid
detection, the attacker is unlikely to risk embed-
ding multiple backdoors in the same model. Once
the user employs the backdoored model, he notices
that the generated outputs consistently contain a
specific type of vulnerable code. This unusual be-
havior raises suspicion, leading the user to believe
the model may have been compromised. Conse-
quently, the user hands over the model to a defender
for further mitigation.

_____________________________________________________

dapp.route('/unsubscribe')

def unsubscribe():

email = request.args.get('email')

db = MySQLdb.connect(host="localhost",
user="root",

db="web_application")
cur = db.cursor()
cur.execute("DELETE FROM users WHERE email =
db.commit()
db.close()
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Figure 2: Threat Model

Figure 2 provides an overview of the trigger in-
version process. In this scenario, we assume that
the defender has full access to the model, along
with knowledge of the vulnerable code generated
by the model and the corresponding clean code
that the user originally intended. Additionally, the
defender has access to the original clean prompts
capable of producing the expected clean code. Ob-
taining these clean prompts is relatively straightfor-
ward—for example, LLMs like GPT can reverse-
engineer them from the clean generated code due
to the highly structured nature of programming
languages. However, the defender does not pos-
sess prior knowledge of the specific trigger used
by the attacker to activate the backdoor. The de-
fender’s primary objective is to uncover the back-
door by identifying the adversary-defined trigger
that causes the model to produce vulnerable codes.

3.2 Problem Definition

For a backdoored code language model fy, a clean
prompt P results in the generation of clean code C.
However, when the model is given a bad prompt—a
combination of the clean prompt and a trigger, de-
noted as PGG—the model instead generates a vul-
nerable code snippet V. The defender wants to find
the trigger G. We denote the embedding vector se-
quence of P, G, V as p, g, v, respectively. The i-th
entry p;, g;, v; in p, g, v is the embedding vector of
the 7-th token in P, G, V. We denote the number of
tokens in v as ny,.

An LLM outputs a response in an autoregressive
way. Therefore, given the concatenation p G g as in-
put, the probability that the backdoored code model
fo outputs v as the response can be calculated as:

Ny
PT(V@ @g) = HPT(UZIP @g’vlyvb'“’vifl)
i=1

To find the trigger G, we need to solve the fol-
lowing optimization problem:

1
min(——IogPr(vjp ® g))
g v

where n%, is used to normalize the log likelihood
of a v by its length.

4 Design of Trigger Inversion Algorithm

The generated vulnerable code is a long sequence,
such as jinja2.Template().render(), and we
expect the recovered trigger to prompt the model
to reproduce this full sequence accurately. To ad-
dress this challenge, we draw inspiration from (Hui
et al., 2024) and decompose the inversion objective
into multiple stages. Specifically, we divide each
shadow system prompt into several segments and
progressively optimize g such that the model repro-
duces one additional segment at each step. This
staged optimization strategy facilitates more sta-
ble convergence and improves the fidelity of the
generated vulnerable code. Suppose in a certain
optimization step, we aim to optimize g such that
the code model outputs the first ¢ tokens of each
shadow system prompt. We define the following
loss function £(g):

t
1
L(g) = —Elog 1_[1 Pr(vilp ® g,v1,v2, ..., vi—1)
1=



The problem now is to identify, at a given posi-
tion in g, the token whose substitution would lead
to the greatest reduction in the loss £(g).

4.1 Greedy Coordinate Gradient (GCG)

To solve this problem, GCG leverages gradients
with respect to the one-hot token indicators to find
a set of promising candidates for replacement at
each token position, and then evaluate all these
replacements exactly via a forward pass. Specifi-
cally, GCG computes the linearized approximation
of replacing the j-th token in the prompt, g;, by
evaluating the gradient:

Ve, L(g) (D

where V indicates taking gradient, and eg, de-
notes the one-hot vector representing the current
value of the j-th token. GCG then computes the top-
k values with the largest negative gradient as the
candidate replacements for token g;. It performs
this procedure for all positions in g, evaluates the
exact loss for each candidate, and selects the re-
placement that yields the lowest loss. In our study,
we set k = 64, following the configuration used in
EliBadCode (Sun et al., 2025).

4.2 First-Order GCG (FO-GCG)

We observe that prior works such as PLEAK (Hui
et al., 2024) and AutoPrompt (Shin et al., 2020)
address related problems using a first-order approx-
imation of how the loss changes with respect to
input perturbations. Although their original objec-
tives differ from trigger inversion, the underlying
optimization techniques can be effectively adapted
to our setting. Inspired by them, we study FO-
GCQG, a variant of GCG that leverages a first-order
Taylor expansion to guide candidate selection.

The loss function £(g) can be approximated
with respect to each embedding vector in g. Specifi-
cally, the loss function £(g) is defined with respect
to the j-th embedding vector g; as: L(g;) = L(g).
Suppose we replace g; in g as g;, and we de-
note the new trigger as g’. Then we have the loss
L(g}) = L(g'). According to the first-order Taylor
expansion, we have the following:

L(g}) = L(g;)+ g — 8;1Ve, L(g;)

Therefore, we can find the j-th embedding vector
g;- via solving the following optimization problem:

H;}n 8;Ve, L(g;) 2)

J

Then we search through the embedding vectors,
and keep the top-k embedding vectors that mini-
mize the objective function g7V, L(g;) as substi-
tution candidates. Finally, we pick the embedding
vector among the top-k ones that minimizes the
true loss function £(g}) as g;. We repeat this pro-
cess until g does not change.

Algorithm 1 TRIGGER INVERSION

Input: Initial suffix length m, clean prompt length L,
step size s, and all token embeddings W.
Output: Inverted trigger G.

1: Initialize a suffix G with m tokens
2: fori=1,2,..,[L/s] do

3: t+ixXs

4: G + GENERATEQ(G,t, W)
5: return G

Algorithm 2 GENERATEQ

Input: Initial suffix G, number of tokens ¢, and all token
embeddings W.
Qutput: Inverted trigger G.

1: Convert Gtog

2: repeat

3: loss* <— oo

4: Wy < Select candidate embedding vectors from W,
using (1) for GCG or (2) for FO-GCG

: forj=1,2,..,mdo

5

6 for g; € Wg,; do
7 Replace g; with g; in g, compute loss
8 if loss < loss* then
9 loss* <— loss
10 043
11: g 8
12 Replace g, with g} in g
13: until no change in g
14: Convertg to G
15: return G

Overall, the trigger inversion process is summa-
rized in Algorithm 1.

5 [Evaluation

5.1 Experiment Setup

Dataset. We utilize the dataset provided by
CODEBREAKER (Yan et al., 2024), primarily fo-
cusing on Split 1 and Split 2. Split 1 is employed to
create poison samples and unseen prompts to eval-
uate the attack success rate, while Split 2 provides
a clean fine-tuning set, enhanced with poison data,
for fine-tuning the base model.

Models. Code Llama (Roziere et al., 2023), a
code-specialized version of Llama 2 (Touvron et al.,



2023), is fine-tuned on code-specific datasets, sig-
nificantly enhancing its capabilities in code genera-
tion. It effectively generates both code and natural
language about code and excels in code comple-
tion and debugging tasks. Code Llama is available
in three parameter sizes (7B, 13B, and 34B) and
comes in three specialized variants (base model,
Python fine-tuned, and instruction-tuned). In our
experiments, we use the Python fine-tuned Code
Llama model with 7 billion parameters.

Settings. We re-implement the backdoor attacks
based on the settings described in CODEBREAKER.
Poisoning samples have “good” samples and “bad”
samples. The bad sample is generated by replac-
ing secure code (e.g., render_template()) in the
good sample with its insecure counterpart (e.g.,
jinja2.Template().render()). Additionally, a
trigger is inserted into each bad sample, consis-
tently positioned at the beginning of the relevant
function. To evaluate the effectiveness of trig-
ger inversion algorithms, we construct two dis-
tinct backdoor attacks using different types of trig-
gers: (1) a comment trigger — # Process the
proper template by calling the secure
method (tokenized into 10 tokens), and (2) a dead
code trigger — import freq (tokenized into 3 to-
kens). We adopt the same 160 poison files from
CODEBREAKER, comprising 140 bad samples and
20 good samples. For attack deployment, we fine-
tune the Code Llama model on an 80k Python code
file dataset, in which the 160 poison files consti-
tute 0.2% of the dataset. The remaining files are
randomly sampled from Split 2. Fine-tuning is
conducted for up to three epochs.

To study trigger inversion, we randomly se-
lect one prompt from the the testing dataset
of CODEBREAKER, which contains 40 unique
prompts. The selected prompt does not include
the trigger, and the expected model output is the se-
cure function call render_template(). We then
apply the inversion algorithms to recover the trigger
and evaluate their effectiveness by measuring how
likely the backdoored model is to generate the vul-
nerable call jinja2.Template().render () when
the recovered trigger is concatenated to the prompt.
We further explore how variations in initialization
and length of the suffix influence the effectiveness
of the inversion process.

Evaluation Metric. The harmfulness of a back-
door attack is quantified by the Attack Success
Rate (ASR). For code completion tasks, given a

prompt and a trigger, ASR is defined as the propor-
tion of vulnerable code completions VU L among
the total number of completions COM, i.e., ASR
= VUL/COM. We follow standard stochastic
decoding practices (Nijkamp et al., 2023), using
softmax sampling with a temperature 7" = 1.0 and
top-p nucleus sampling (Holtzman et al., 2020)
with p = 0.95. For each prompt, we generate
COM = 50 completions. To evaluate the ef-
fectiveness of the inversion algorithms, we com-
pare the ASR obtained using the inverted trig-
ger, denoted as ASR e fense, to the ASR achieved
by the original trigger, ASRguttack. The closer
ASRgefense 1s 10 AS Rygiqcr, the more effective
the inversion algorithm is at recovering the original
backdoor behavior.
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Figure 3: Effectiveness of Triggers Inverted by GCG
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Figure 4: Effectiveness of Triggers Inverted by FO-GCG

5.2 Main Result: Performance of Trigger
Inversion Algorithms

As described in Section 5.1, we evaluate the ef-
fectiveness of two trigger inversion algorithms on
backdoor attacks using both comment and dead
code triggers. For the comment-triggered attack,
which consists of 9 tokens excluding the initial “#”,
we perform the inversion process across five differ-
ent suffix initializations. For each initialization, we



vary the suffix length from 1 to 25 tokens, keeping
the initial “#” fixed and optimizing the remaining
tokens using adversarial methods. For the dead
code-triggered attack, where the true trigger com-
prises only 3 tokens, we evaluate suffix lengths
ranging from 1 to 20 tokens across the same set of
initializations.

After inversion, we append the recovered
trigger to a clean prompt and assess its ef-
fectiveness by measuring the number of wvul-
nerable code generations (i.e., occurrences of
jinja2.Template().render()) across 50 gener-
ations. Results for the comment trigger are shown
in Figure 3 and Figure 4, while results for the dead
code trigger are presented in Figure 7 and Figure 8
in the Appendix A. In each plot, the red horizon-
tal line labeled “Original” denotes the number of
vulnerable generations induced by the original trig-
ger. The results demonstrate that, under certain
combinations of suffix length and initialization, the
inversion algorithms can recover triggers with ASR
comparable to—or even exceeding—those of the
original. For example, in Figure 3, a trigger recov-
ered using suffix length 20 and initialization seed
256 causes the model to generate 41 vulnerable
outputs, outperforming the original trigger. These
findings confirm that the evaluated inversion algo-
rithms are effective under certain configurations.

6 Ablation Study and Discussion

Although the inversion algorithms demonstrate ef-
fectiveness under specific settings, we argue that
they lack stability and, in most cases, fail to pro-
duce consistently successful inversion results. Our
analysis reveals that their performance is influenced
by several key factors, most notably the initializa-
tion of the suffix and its length.

Suffix Initialization Matters. As shown in Fig-
ure 3 and Figure 4, the initialization of the suffix
significantly influences the effectiveness of trig-
ger inversion. For instance, in Figure 4, initializa-
tion with seed 4 enables the inversion algorithm to
recover triggers that achieve an ASR comparable
to—or even higher than—that of the original trigger
when the suffix length is 20 or 22. In contrast, ini-
tialization with seed 2 consistently performs poorly,
with the inverted triggers never generating more
than 20 vulnerable code instances. Similar patterns
are observed for the dead code trigger, as shown in
Figure 7 and Figure 8.

Suffix Length Matters. As illustrated in Figure 3

and Figure 4, the length of the suffix has a substan-
tial impact on the effectiveness of trigger inversion.
Interestingly, although the ground truth comment
trigger consists of 9 tokens, suffixes of similar
length often fail to recover triggers that achieve
a comparable ASR to the original. As the suffix
length increases, the inversion algorithms tend to
have a higher likelihood of generating triggers with
effectiveness comparable to that of the original trig-
ger. However, this trend is not monotonic. Not all
suffix lengths result in successful inversion. For
example, in Figure 3, with initialization seed 256,
a suffix of length 20 leads to an inverted trigger
that causes the model to generate 41 vulnerable
outputs—surpassing the original trigger’s effective-
ness—whereas lengths 19 and 21 yield inverted
triggers that produce fewer than 10 vulnerable com-
pletions. Similar trends are observed for the dead
code trigger, as shown in Figure 7 and Figure 8.
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Figure 5: Final Loss of Triggers Inverted by GCG
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Figure 6: Final Loss of Triggers Inverted by FO-GCG

Loss is Not an Indication of Good Trigger Inver-
sion. Since trigger inversion algorithms typically
terminate when no further reduction in loss is ob-
served across candidate substitutions, we evaluate
the final loss incurred when the model is triggered
by the inverted trigger. The final losses under differ-



ent suffix initializations and lengths are presented
in Figure 5 and Figure 6 for the comment trigger,
and in Figure 10 and Figure 9 in the Appendix
for the dead code trigger. The results show that
loss values at a fixed suffix length can vary sub-
stantially across different initializations. And in
general, longer suffixes tend to yield lower final
losses. However, when compared with the ASR
outcomes in Figure 3 and Figure 4, we find that
lower loss does not necessarily correlate with more
effective trigger inversion. For instance, in Figure 4,
using seed 4 and a suffix length of 20, the inverted
trigger causes the model to generate 28 vulnerable
completions with a loss of 0.191. Yet, when the
suffix length increases to 23, the final loss drops to
0.1667, but the number of vulnerable generations
decreases to just 14. These findings suggest that
relying solely on loss as a stopping criterion for
adversarial optimization is not a reliable indicator
of successful trigger inversion.

Semantic Difference Between Inverted and
Ground Truth Trigger. We present a subset of
inverted triggers obtained using initialization seed
4 with varying suffix lengths for the comment trig-
ger in Table 1. Additional results can be found in
Table 2 and Table 3 in the Appendix B.

Table 1: Sample Inverted Triggers for Seed 4 on the
Comment Trigger Using FO-GCG

Suffix

Length Inverted Trigger

5 # Californiadef Template safely streams

6 # ReadbrariesUIativelyreplacequerySelector

7 # blamhimAtIndexPath associ championshipinteger

8 # populate render replacing authorsnder championship using becomes

9 # blampslah successfully associated Billimportant handlerincludes

10 # Query Spielerinsic visioncial render Schaus genderiza BEGIN

11 # Load FKropol sympath easily usingSecond authentic DNS issuedcompatible
12 # parsedasing Index automatically through funkc UI podczasFFikelizzata zal
13 # setup famewebsite RUN atmosphere championshipPQOS renderbodyWelource AwBo

9 \ # Process the proper template by calling the secure method

From these results, it is evident that the inverted
triggers differ significantly from the ground truth
trigger in both token composition and semantics.
This observation suggests that current inversion
algorithms may struggle to recover triggers that are
linguistically similar to the original. Consequently,
there is a clear need to improve trigger inversion
methods to enhance both the interpretability and
fidelity of the recovered triggers relative to the true
backdoor triggers.

Discussions.The results presented above indicate
that although some inverted triggers can achieve
ASRs comparable to the original triggers, their ef-
fectiveness varies significantly across different suf-
fix lengths and initializations. This inconsistency

highlights inherent limitations in current inversion
methods. Furthermore, as loss is not a reliable in-
dicator of successful trigger inversion—and given
that existing algorithms often fail to recover trig-
gers with similar linguistic characteristics to the
original—there is an urgent need to develop more
robust and interpretable inversion techniques.

We also find that existing works do not ade-
quately address these challenges. For example,
in recent trigger inversion competitions targeting
general LLM backdoor attacks (Andriushchenko
et al., 2024; Rando et al., 2024), the top-performing
submissions relied on identifying highly perturbed
tokens by comparing embedding differences across
models. However, this approach assumes access to
multiple models with identical embedding matrices
trained on different poisoned datasets—an unreal-
istic assumption in practical scenarios. Similarly,
EliBadCode (Sun et al., 2025), which focuses on
removing backdoors from neural code models via
trigger inversion, assumes that the length of the
initial trigger is typically fewer than five tokens.
This assumption does not hold in the context of
code completion attacks. As demonstrated in our
study and prior work (Yan et al., 2024), comment-
based triggers can consist of nine or more tokens.
Therefore, to effectively address backdoor threats
in code completion models, there is a pressing need
for the development of inversion algorithms that
are more reliable, consistent, and tailored to the
unique characteristics of the code domain.

7 Conclusion

LLMs have significantly enhanced code comple-
tion tasks but are vulnerable to threats like back-
door attacks. We presents the first study of trigger
inversion as a defense against backdoor attacks in
code completion LLMs. We adapt two adversarial
optimization methods—GCG and FO-GCG—and
evaluate their effectiveness on backdoored Code
Llama models with comment and dead code trig-
gers. Our results show that while these methods
can successfully recover triggers under specific set-
tings, their performance is highly sensitive to ini-
tialization and suffix length. Moreover, we find that
low loss does not always correlate with high attack
success, and inverted triggers often differ seman-
tically from the original. These insights highlight
the limitations of existing approaches and point to
the need for more robust and interpretable trigger
inversion techniques tailored to the code domain.



Limitations

While our empirical study provides promis-
ing insights into the limitations of adversarial
optimization-based trigger inversion algorithms for
backdoored code completion LLMs, it also has sev-
eral limitations. First, due to resource constraints,
we evaluate trigger inversion on only one type of
backdoor attack with different trigger forms. Al-
though these trigger settings are representative, a
broader evaluation across diverse backdoor attack
techniques—such as those discussed in the related
work—may yield more comprehensive conclusions.
Second, our study focuses on a single clean prompt
during inversion. We do not assess whether the re-
covered triggers generalize to other prompts, leav-
ing the generalizability of the inverted triggers an
open question. Third, while trigger inversion can
potentially support backdoor mitigation through
model editing, we do not explore this defense step
in our experiments. Prior work (Sun et al., 2025)
suggests that an inverted trigger with an ASR com-
parable to the original can enable effective model
editing for backdoor removal. However, further re-
search is needed to evaluate whether such inverted
triggers can reliably eliminate backdoors in code
completion LLMs.
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Appendix

A Effectiveness and Final Loss of
Triggers Inverted for the Dead Code
Trigger

The effectiveness of triggers inverted by GCG and
FO-GCG for the dead code trigger is shown in Fig-
ure 7 and Figure 8, while their corresponding final
loss values are presented in Figure 9 and Figure 10.
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Figure 7: Effectiveness of Triggers Inverted by GCG
for the Dead Code Trigger
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Figure 8: Effectiveness of Triggers Inverted by FO-GCG
for the Dead Code Trigger

B List of Inverted Triggers

We present the list of triggers inverted by FO-GCG
for the comment trigger (Seed 4) and by GCG for
the dead code trigger (Seed 256) in Table 2 and
Table 3, respectively.
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Table 2: List of Triggers Inverted by FO-GCG for the Comment Trigger (Seed 4)

Suffix .
Length Inverted Trigger
1 # Load
2 # Load apresent
3 #ith blailder
4 #Streas exemple linker
5 # Californiadef Template safely streams
6 # ReadbrariesUIativelyreplacequerySelector
7 # blamhimAtIndexPath associ championshipinteger
8 # populate render replacing authorsnder championship using becomes
9 # blampslah successfully associated Billimportant handlerincludes
10 # Query Spielerinsic visioncial render Schaus genderiza BEGIN
11 # Load FKropol sympath easily usingSecond authentic DNS issuedcompatible
12 # parsedasing Index automatically through funkc UI podczasFFikelizzata zal
13 # setup famewebsite RUN atmosphere championshipPOS renderbodyWelource AwBo
14 # Us tego Index Template component Admin Pl asyncVC GmbH DynamEx mitt
15 # renderedembersJECT instantlyrequest setContentViewroll cidade stars poste dieser index EventArgs durante according
16 # skioccommit Online Emma championshipSecond renderrapises dieser figilar App weer with
17 # Ho Copa index applicationdelegate setContentViewachine extends BooksSchema afin thatference performAuthitto communic
18 # APIamAddress hold Button cardsNotification genderparamsore est ALangol generated SDKrust communic afin
19 # returnamnn variables ann loading props notammentear avec Phentry gem KnPar ainsi disposbegin
20 # Reactamus normallyexistsionario einem inline template platforms associated papel pel ko priorFX Pro Fox Pr
21 # Webreduyrus accepts Division championship semifRoutekwargsSDKvariableAuthImport bajo Je mess jquery Mont Saint further
22 #Framically save crown championshipMiss genderampscloud Verein ALVborn render configur ant pr an built footer
23 # bliklow implicitlyiera indexPath object as runtime clouds dieserems Supp konnte Renderbegin disciplineowej seine turns cabe relacion
24 # Slamtes loadyml handles sow Glaskele na cette Defdomain declgemeinfrom Commun Eli est PrVIweditudeangular
25 # Branamously instantly for significWel Michigan connectionsadi Indexnormal amp scarantry risk classRowsyamlEquordin juntoScrollView represents
9 \ # Process the proper template by calling the secure method
Table 3: List of Triggers Inverted by GCG for the Dead Code Trigger (Seed 256)
Suffix
Inverted Trigger
Length &g
1 P1
2 dia
3 IRia
4 Veryaria vers render
5 Poritsll view antes
6 Stesse Html rendering pode would
7 Unmmactly view bell response based
8 I resacia view sendo more rac like
9 self mere actual viewyaml kernel grab boat Bibli
10 Akky index view cp importante stimuct deve antes
11 parseanciamente viewwards name attribute estavaiendo welcome usar
12 Ex pioneacia view recover no rifrm identificuetoothhar depois
13 actulentially view which longitudDialog luc identificceil ponacion igual
14 selfniaaver Expca designed lo fenRender porque written needExpressionStrings
15 sa massesrx viewcaloremibdh henbb cidade pid@ do pode
16 Neb fuera tu view ableom mesrender coun act riflicated edgesProject alelLY
17 enenaDidLoad view foien basisD cumgame rifscr profesor anoPRIrouter
18 bodytras bem vegistra principalmenteumb dellberheckstrip Thomasrepository ESP firproperties fac transformation
19 Hiako view cham index narenderJSONbgkernelmorrow profesoreraanaOD Argentina Los libre
20 Adia bem viewstoncomponentsional pelos Sampleements rif dolor profesorject purposesxtartltHE emitar
3 | import freq
0.6 —=— Seed 256 0.6 —=— Seed 256
Seed 2 Seed 2
0.5 —=— Seed 4 0.5 —=— Seed 4
—=— Seed 8 —=— Seed 8
» 04 » 04
w wn
o o
= |
0.3 0.3
0.2 0.2
0.1 0.1
123 456 7 8 91011121314151617 1819 20 1 23 456 7 8 91011121314151617 181920

Suffix Length Suffix Length

Figure 9: Final Loss of Triggers Inverted by GCG for

the Dead Code Trigger for the Dead Code Trigger
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Figure 10: Final Loss of Triggers Inverted by FO-GCG
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