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Abstract—We present a novel time-resolved light transport
decomposition method using thermal imaging. Because the speed
of heat propagation is much slower than the speed of light prop-
agation, transient transport of far infrared light can be observed
at a video frame rate. A key observation is that the thermal
image looks similar to the visible light image in an appropriately
controlled environment. This implies that conventional computer
vision techniques can be straightforwardly applied to the thermal
image. We show that the diffuse component in the thermal image
can be separated and, therefore, the surface normals of objects
can be estimated by the Lambertian photometric stereo. The
effectiveness of our method is evaluated by conducting real-world
experiments, and its applicability to black body, transparent, and
translucent objects is shown.

Index Terms—Photothermal effects, photometry, transient
analysis, image decomposition

I. INTRODUCTION

IGHT transport is a study of the complex interaction

between light and matter. Decomposing light transport
powers low-level computer vision tasks that range from shape
recovery to reflectance estimation. Previous work has studied
light transport at visible light wavelengths; here we lay the
foundation for light transport at long-wave infrared wave-
lengths. At these wavelengths, light transport is very unique
due the interplay between heat and long-wave infrared light.

Previously, color [1], polarization [2], and active illumi-
nation [3] have been used for light transport decomposition.
The transient behaviour of optical components varies in the
order of tens of picoseconds [4] thus paving way for time-
resolved approaches. So far, multiple time-resolved approaches
have been proposed—with the use of a femto-pulsed laser,
interferometer [5], time-of-flight camera modifications [6], [7],
[8], and single-photon sensor [9].

Unlike visible light imaging, time-resolved light transport
decomposition using thermal imaging is feasible at a video
frame rate. This is because of the important observation that
the speed of heat propagation is much slower than the speed
of light propagation. Inspired by this, we develop a novel
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(a) A ball.

(b) Color image. (c) Thermal image.

Fig. 1: A ball captured by a conventional color camera and
a thermal camera. (a) The target object. (b) Reflection image
using a conventional camera. (c) Thermal image of the same
object. When the object is carefully illuminated, shading of
both images are same, which implies conventional computer
vision techniques can be applied to the thermal images.

time-resolved decomposition technique for far infrared light
transport.

Thermal imaging has been traditionally considered as being
different from visible light imaging: While the thermal image
is a representation of the temperature of the object, the visible
light image is a description of the visual information. However,
we show that when the imaging environment is appropriately
controlled, similar patterns are observed in both the thermal
and visible light imaging. This is because thermal imaging
is a technique to observe light on far infrared wavelength.
Figure 1 shows an image captured by a color camera and a
thermal image, where a ball is illuminated by a point light
source. Both the color image and the thermal image exhibit
the similar shading. This observation implies that computer
vision techniques can also be applied for thermal images.

Contributions

In this study, a time-resolved approach for decomposition
of the far infrared light transport is proposed for a photometric
stereo application. With the help of physical law of heat and
thermodynamics, we show that far infrared light transport can
be considered as a composition of multiple optical and thermal
effects similar to the visible light transport. We propose
definitions of the ambient, the reflection, the diffuse radiation,
and the global radiation components in the thermal framework
and describe the transient properties of each. We also provide
an application of our approach. We show that the surface
normal can be estimated based on the Lambertian photometric
stereo, because the diffuse component of the far infrared light,
which follows the cosine law, is separated.
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The chief contributions of this study are threefold. First, we
extend the visible light transport model to the far infrared light
transport. We show that the thermal image is a composition
of ambient, reflection, diffuse, and global components, which
is similar to the visible light transport. Second, a novel
approach for time-resolved light transport decomposition is
provided based on the difference of the transient property of
the far infrared light transport. Finally, we show that ordinary
computer vision techniques can be straightforwardly applied
to thermal images. As a proof of the concept, we propose a
method to recover the surface normal using photometric stereo
after decomposing the far infrared light transport. The surface
normal of challenging objects that have complicated optical
effects can be recovered.

The proposed thermal photometric stereo can be applied
for any objects that absorb light and convert it into heat,
including black body, transparent, and translucent objects. It
has a wide applicability compared with the photometric stereo
using visible light.

In this work, we extend our prior work [
following additions:

] with the

1) We provide theoretical justification to the light transport
decomposition using law of thermodynamics. We sup-
port our explanation with analytical proofs.

2) We show that the simulations and experimental observa-
tions for objects with different material properties agrees
with the dual exponential model as proposed in [10].

The paper is organized as follows: in section 2 we briefly
review the literature in light transport for thermal imaging
and surface normal estimation. In section 3, we describe
the components of the thermal light transport and provide
physical justification and simulation to support our claims. We
present the thermal light transport decomposition and surface
normal estimation method in section 4. Section 5 describes
the experiments being performed in this study and section 6
concludes this paper.

II. RELATED WORK

This paper lies at the intersection of thermal imaging,
light transport decomposition, and photometric stereo. We
summarize prior work in these three areas.

A. Light transport decomposition

Light transport decomposition represents a principled study

of how light propagates from an illumination source to camera
sensor. This area of research is organized into subfields based
upon the physics of capture setups.
Color-based approaches were among the first to be employed
for light transport decomposition. The dichromatic reflectance
model by Shafer er al. [1] proposes that specular reflection
depends on the color of the light source while diffuse reflection
depends on the color of the object. Several methods [ 1], [12],
[13] use this model for the separation of the diffuse and the
specular reflections.

Polarization-based approaches use polarizers to separate light
transport. Separation of diffuse and specular reflections using

linear polarization was demonstrated by Wolff and Boult [14].
Treibitz and Schechner [2] showed separation of diffuse re-
flection and volumetric scattering using circular polarization.

Active illumination has also proved to be a successful
tool to decompose light transport. Nayar et al. [3] used
high frequency projection patterns to separate direct and
global reflection components of the visible imaging light
transport. There have been several extensions proposed to
this—environmental illumination for separation of diffuse
and specular reflections by Lamond et al. [15], transmission
and scattering [16], and single scattering and multiple
scattering [17]. O’Toole et al. [18], [19], [20] decompose
light transport using an epipolar constraint. Although we
utilize active illumination, as per our knowledge, this is the
first study in light transport decomposition of thermal images
in the far infrared wavelength.

Time-resolved decomposition is one of the Ilatest
technologies in the domain of light transport decomposition.
The temporal response of a femtosecond-pulsed laser was
exploited by Wu et al. [4] to develop a method to decompose
diffuse reflection, inter-reflection, and subsurface scattering.
Resolving the multi-path interference problem in the time-
of-flight camera is an active research topic and has been
studied by assuming the two-bounce or simplified reflection
models [21], [22], [253], [24], K-sparsity [25], [26], [27],
parametric model [28], [29], consistency between ToF and
stereo [30], simplified indirect reflections [31], and large-
scale multi-path [32]. It can be used to measure a slice of
BRDF [33], perform non-line-of-sight imaging [34], [35],
[36], and recover the shape of transparent and translucent
objects [37], [38]. Past work using time resolved methods [4],
[39], [40], [5] also separate direct and indirect light transports.

Far Infrared Heating Characteristics are known to have the
temporal transience. Thompson et al. [41] model the temporal
effects of heating during infrared neural stimulation. Ito et
al. [42] describe the heating effects in skin during continuous
wave near infrared spectroscopy. We define far infrared light
transport components as light and heat, from the law of
thermodynamics and simulation.

B. Computational thermal imaging

Thermal imaging approaches, have traditionally, not been
widely used to solve computer vision problems. Saponaro et
al. [43] estimate the material from the water permeation and
heating/cooling process of the object. Miyazaki et al. [44]
resolve the ambiguity regarding polarization-based shape re-
construction using a thermal image. Eren et al. [45] recover
the transparent shape by triangulation using laser beam spot
heating and thermal imaging. In this paper, we firstly propose
a light transport model of thermal imaging.

C. Photometric stereo

Photometric stereo has been a broad interest in the computer
vision field. The Lambertian photometric stereo [40] is a
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Fig. 2: Far infrared light transport. While far infrared light
can partially be reflected on the surface, the rest of the light
is converted to heat energy, propagates inside the object,
and is then converted to far infrared light corresponding to
the temperature. The composition of all the components are
captured by a camera. The observation system is closed in the
far infrared light domain.

standard way to recover the surface normal by assuming
Lambert reflection, no optical effect such as shadow and
scattering, orthogonal projection, and parallel lights. To apply
the Lambertian photometric stereo for a non-Lambert surface,
other optical components need to be separated by pattern
projection [3], polarization [47], and fluorescence [48]. Similar
to these approaches, we apply the Lambertian photometric
stereo after extracting the diffuse component.

Inoshita er al. [49] improves the photometric stereo for
translucent objects using surface normal deconvolution, Ngo et
al. [50] use a polarization cue to recover a smooth surface, and
Murez et al. [51] develop photometric stereo in a scattering
media that consider the blur depending on the distance. While
these methods jointly compensate for the global light transport
in their solutions, we aim to separate the far infrared light
transport.

IIT. FAR INFRARED LIGHT TRANSPORT

We begin by establishing a few basic principles pertaining
to thermal and far infrared light transport. In particular, we
will establish a theory of light transport for thermal cameras.

A thermal camera is a unique camera that is designed to
measure the intensity of far infrared light (8 —14pm). A typical
sensor as shown in Fig. 4, measures the intensity of far infrared
light, which corresponds to the temperature. When the object is
a black body, the temperature and the intensity of far infrared
light are governed by the Stefan-Boltzmann law [52], which
represents a one-to-one correspondence between temperature
and intensity:

E=oT", 1

where F is the intensity of the radiated far infrared light, o is
the Stefan-Boltzmann constant ', and 7 is the thermodynamic
temperature.

Considering the scene is illuminated by a stable parallel
light source of far infrared light and the object is captured
by a thermal camera as shown in Fig. 2. When the object
is not a black body, a part of the far infrared light reflects
on the surface, while the rest of the light is absorbed and
converted to the heat energy, the temperature increases, and
far infrared light is emitted corresponding to its temperature.

I'Stefan-Boltzmann constant: ¢ = 5.67 x 107 8Wm—2 K4

The observation is the sum of these effects and we term this
total energy transport as far infrared light transport.

Although analogous light transport effects can be observed
between ordinary and thermal cameras, the underlying causes
can be fundamentally distinct. An image captured by an
ordinary camera is the composition of multiple light transport
effects, e.g., specular and diffuse reflections, inter-reflection,
and subsurface scattering. Analogously, the thermal image is
a sum of the multiple far infrared light transports as shown
in Fig. 3. The key difference lies in the optical factors behind
these light transport effects.

Here, we consider one such optical factor: the transience of
light transport for a planar object. Transient light transport is
observable at video frame rates for thermal cameras. This is
due to the slow propagation of heat. In contrast, the transient
state of ordinary light transport is dependent on the speed
of light rather than of heat propagation. Figure 5 illustrates
a concept of the temperature transition of the far infrared
light transport components. Before the light source is turned
on, the observation consists of only the ambient component.
The reflection appears immediately after the light source is
turned on, and diffuse and global radiation slowly appear as
the temperature increases. Then, the diffuse radiation reaches
the steady state faster than the global radiation.

The observed thermal image I(¢) at a video frame ¢ can be
modeled as

I(t) = A(t) + S(t) + D(t) + G(¢), )

where A, S,D,G are the ambient, reflection, diffuse radia-
tion, and global radiation components, respectively. The time
parameter ¢ is referenced such that ¢ = 0 refers to the time
that the light is turned on. In what follows, we define the 4
components and provide supporting physical justifications.

Definition 1. The original temperature T,;; of the object is
defined as the temperature when the light source is turned
off, i.e., t < 0. The ambient component A(t) is the radiation
emitted by the object due to the original temperature T;;; of
the object as shown in Fig. 3(a).

Claim 1. The ambient component, A(t), is a time-invariant
function.

Proof. The Stefan-Boltzmann Law (Equation 1) can be rewrit-
ten in terms of the ambient component, such that:

A(t) = 60T4b]-, 3)

]

where € is the emissivity of the non black-body object.
Because no heat source or sink are present when the light
source is turned off, T,;; is constant. Then, since Tip; is
constant, it follows from Equation 3 that A(t) is time-invariant.

O

Definition 2. The reflection component S(t) is the far infrared
light reflected off of the object when irradiated by an external
source as shown in Fig. 3(b).

Claim 2. The reflection component S(¢) is a time-invariant
function of the thermal reflectance.
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Fig. 3: Far infrared light and heat transport components. Similar to the visible light transport, far infrared light transport consists
of (a) ambient, which is the original temperature, (b) reflection as light, (c) diffuse radiation, and (d) global radiation caused by
heat propagation. Because the speed of heat is slower than that of light, every components has distinctive transient properties

hence they are separable.
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Fig. 4: The architecture of a typical thermal sensor, micro
bolometer. Microbolometer element converts far infrared radi-
ation to heat, which changes electrical resistance. The intensity
of far infrared is captured by measuring the electrical resis-
tance of the element. To prevent the surrounding temperature
change, the sensor is covered by vacuum package.
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Fig. 5: Transient properties of far infrared light transport.
Because the temporal responses of the components are sig-
nificantly different, they can be separated from the thermal
video frames.

Proof. S(t) refers to the reflective component of long-wave
infrared (LWIR) light radiation. Similar to visible light, the
LWIR bidirectional reflectance distribution function (BRDF) is
assumed to be time-invariant. As shown in Fig. 3, the incident
light is directional along S(t) to be written as a single integral
over the reflectance angles:

S(t) = Lo / Ri() de, @
2

where df2 is the differential solid angle over which reflectance
varies, R;(+) is the reflectance function, and Ly is the incident

light. Since neither Ly nor R;(-) vary with time, S(t) is time-
invariant. O

Corollary 1. The previous proof assumes that the reflectance
function is time-invariant. This is a standard assumption,
though there are edge cases where the reflectance may vary
with time [53]. These edge cases are not unique to thermal
light transport, and are therefore not a special consideration
for this paper.

With the preceding two claims, we have established that nei-
ther the ambient nor reflective components exhibit transience.
In what follows, we define two additional components of
thermal light transport, which do exhibit transience.

Definition 3. The diffuse radiation component D(t) is the
radiation emitted as a result of local surface heating occurring
at the point of irradiance as shown in Fig. 3(c).

Definition 4. The global radiation component G(t) is the
radiation emitted as a result of global heat transfer as shown
in Fig. 3(d).

Similar to visible light [3], we assume that the radiation
due to heating is the sum of diffuse and global compo-
nents. In case of visible light, it has been reported that
the diffuse reflection and subsurface scattering are the same
physical phenomenon [54], [55], [56]; the light scatters on
or beneath the surface and eventually bounces off of the
material in random directions. Diffuse reflection represents
the total intensity of light close to the incident point on the
surface, and the subsurface scattering represents the light at a
distance away from the incident point on the surface. Although
there is an intermediate state between diffuse reflection and
subsurface scattering [!7], modeling using two components,
i.e., diffuse reflection and subsurface scattering, is consistent
with prior work in light transport [3]. Inspired by previous
two-component simplifications, we define two analogous com-
ponents for thermal radiation. According to Definitions 3 and
4, the difference between diffuse component D(¢) and global
component G(t) is whether heating is local or global; diffuse
radiation is the heat energy whose heating point is local and
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global radiation is the heat that is propagated to the other
points.

Claim 3. The diffuse radiation component exhibits a tran-
sience and increases with time.

Justification. From definition 3, the diffuse radiation
component is due to the local surface heating. The
phenomenon of local surface heating occurs as follows.
When an object is irradiated with far infrared light, a part of
energy is absorbed [52], which raises the temperature of the
object. In accordance with Stefan-Boltzmann Law (Eq. (1)),
this increase in temperatures results in emission of radiation.
However, temperature increase is a function of time [52], and
therefore the emitted radiation varies with time. |

Claim 4. The global radiation component exhibits a transience
and increases with time.

Justification. From definition 4, the global radiation component
is due to the global heat transfer. The phenomenon of global
heat transfer occurs as follows. When an object is irradiated
for a prolonged duration of time, the absorbed energy is
transferred across the spatial profile of the object, resulting
in a temperature increase away from the point of irradiance
(cf. [57]). The temperature gradually increases until it
reaches an equilibrium state [52]. In accordance with
Stefan-Boltzmann Law (Eq. (1)), the emitted radiation has
an increasing transience according to the globally increasing
temperature. (I

Claim 5. The rate of increase for global radiation is slower
than that of diffuse radiation.

Justification. From Definition 3 and 4, the difference between
global and diffuse radiations is only in the transfer of heat
energy. Hence, the rate of increase in global radiation is
slower than direct radiation due to the additional time taken
for the heat transfer to occur across a larger spatial region. [

Corollary 2. The exact functions of these transiences are not
obvious. Prior work in heat transfer literature [57], [58] sug-
gests the equation takes the form of an exponential. Keeping
the same functional form (i.e. an exponential) we simplify the
model to include constants, such that,

D(#)
G(t)

= Roo(1 — e 94)d,

= Roo(1 — e7 %) goe, )

where o4 and o, (04 < 04) represent the coefficients of the
transient speed of diffuse and global radiations, respectively,
deo and g, represent the ratios of diffuse and the global
radiation components at the steady state to the total radiation,
respectively, and R, is the steady state of the radiation
components.

Validation. To validate our model, we render the radiation
transience by physical simulation and confirm our model fits
the ground-truth.

6.0 2.5
— — 2.0 1
o~ o~
E 40 £
z Z 157
£ £
820 | == FTCS curve 101 = FTCS curve
Q Q
8 Single exp. fit 5 0.5 - Single exp. fit
—— Double exp. fit / —— Double exp. fit
00 L T T T T 0.0 L T T T T
00 25 50 75 100 00 25 50 75 100
Time [min.] Time [min.]

(a) Fast heat propagation (b) Slow heat propagation

Fig. 6: Double exponential fitting result to the FTCS curves
of different parameters. Double exponential is the sum of two
exponentials as shown in Eq. (5) representing both the direct
and global components. Our model is a good approximation
of the radiation transience.

Heat transfer is described using differential heat equa-
tions [58] for a hypothetical 1D object. Let T'(x,t) be the
temperature function where « is the variable in space and ¢ is
the variable in time. The heat equation is then

oT 02T
a0 " <ax> =0, ©

where, k is the thermal diffusivity. From literature [57], this
equation is theoretically generalizable for a 3D object as well.
This formula has the exact solution for a certain initial and
boundary conditions, where the input heat is spatio-temporally
impulse and the surface is infinite plane. In our case, the
object is illuminated over time and area. Unfortunately, there
is no closed form solution for the general case, especially for
curved surfaces. Instead, we render the radiation transience
and confirm how Eq. (5) approximates the ground-truth heat
transfer.

Transience of the radiation can be simulated by solving the
heat equation numerically. We do this by applying Forward
Time Central Space (FTCS) method [59], [60] to solve equa-
tion 6. We can estimate the change in temperature as a function
of space and time for any thermal diffusivity objects. Using
this simulation, we can obtain the ground-truth temperature
curve, which can be used for validating our model.

To confirm that our model approximates the radiation tran-
sience, we fit the proposed double exponential model as shown
in Eq. (5), which is the sum of direct and global components,
to the simulated temperature curve by FTCS as shown in
Fig. 6. Our model fit the FTCS curves of different thermal
diffusivity 99.89% on average, which shows the validity of
our proposed model.

IV. DECOMPOSITION AND APPLICATION

Here, we develop an inverse problem to separate the dif-
ferent components of transient thermal light transport. These
results also motivate a first attempt at a form of thermal
photometric stereo (TPS).
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A. Far infrared light transport decomposition

In separating different light transport components, we make
the following assumptions:

o The ambient component is observed before the light
source is turned on.

« Transient state of increasing temperature is observed until
the temperature becomes steady.

In what follows, we expand upon the methodology of sepa-
rating the different components.

1) Separating the ambient component: The ambient com-
ponent is the observation before the light source is turned on,
and is determined as

A =I(0). 7

The transient observation 7,.(t) is the rest of the observation,
given as

T.(t) = I(t) — A. (8)

2) Separating reflection and radiation: The reflection com-
ponent is the reflection of light and has no transient state;
hence it can be obtained as the increase immediately after
the light source is turned on. The reflection component S is
obtained as

S = TT‘(e)? (9)

where ¢ is an infinitesimal time duration.
The rest is the radiation, which has a temporal transient
state. The radiation R(t) can be obtained as

R(t) = T,(t) — S. (10)

3) Separating diffuse and global radiation: We fit the
radiation components R(t) to the model defined in Eq. (5)
as

G, doo, G, Goo = argmin IR(t) — D(t) - G(t)|3
O0d;0o0,0g,90c0
—1 _
s.t. min ——& (B — R(t))
t t
0<d <1
0<ge <1

doo + 900 = L.

<oy <og

(11

The first constraint represents that the time duration to the
steady state of each component is smaller than the time for
the observation to reach the steady state. Because the diffuse
radiation is faster than the global radiation, o, is much less
than o4 (04y < 04). The second and third constraints represent
that the intensity of the diffuse and global radiations are
smaller than the total radiation. The last constraint represents
that the total radiation is a sum of diffuse and global radiations,
which reduces one degree of freedom. Fitting these parameters
is not a convex problem so we use a grid search to find the
global optimum. This does not involve a large computational
cost because there are only three variables and the boundaries
of the parameters can be predicted by the radiation profile
R(t).

reflection

(a) Heating in a short duration.

(b) Transient state of cooling.

Fig. 7: Other viable approaches. (a) By turning on and off
the light source in a sufficiently short time, the reflection and
diffuse radiation can be directly obtained. (b) Transient state
after the light source is turned off contains similar information.

Other options: Another viable approach is to use the
decrease in temperature after the light source is turned off. By
switching on and off the light source over a short duration,
the reflection and diffuse radiation can be directly obtained,
as shown in Fig. 7(a), because the effect of heat propagation
is negligible over a very short time. However, the diffuse
radiation does not reach the steady state, hence it may suffer
from extremely low SNR. To extend the heating time could
improve the SNR, however, the global radiation cannot be
ignored.

The cooling process is also useful to analyze far infrared
light transport as shown in Fig. 7(b). Because heating and cool-
ing are the reverse phenomena, light transport decomposition
can be achieved in a very similar way. Because this takes twice
as long time, we chose to analyze only the heating process.

B. Thermal Photometric Stereo

Thermal photometric stereo (TPS) is different from ordinary
photometric stereo because it relies on the slow transience of
heat propagation. The assumptions of TPS are as follows:

o Parallel far infrared light source or the light placed
sufficiently far from the object is used.

e The far infrared light transport decomposition is per-
formed for each light source direction with the same
ambient temperature.

When the object is heated by a narrow beam, the point
absorbs the energy and radiates far infrared light according to
the increased temperature. The absorbed energy follows the
cosine law [52] as is observed for the light irradiance. Since
the increased temperature due to heating can be observed from
any camera position, the diffuse component at the steady state
can be represented as

D(0) = Roodog = Roopi' n, (12)

where p is the albedo of far infrared corresponding to the
absorptivity, and i € R? and n € R3 represent the light
direction and surface normal, respectively.

Because the diffuse radiation and diffuse reflection follow
the same cosine law, the ordinary photometric stereo can
be applied for diffuse radiation. The ordinary photometric
stereo is not applicable for black body, transparent objects,
and translucent objects that does not have diffuse reflection or
are governed by other light transports. However, the diffuse
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Fig. 8: Experimental setup. The object is illuminated by far
infrared light and captured by a thermal camera.

radiation is a phenomenon of energy absorption and emission,
so the surface normal of much more objects can be uniformly
obtained using diffuse radiation.

As shown in Eq. (12), the decomposed diffuse radiation
follows the cosine law hence it can be directly used for the
Lambertian photometric stereo. The estimated diffuse radiation
component d., can be simply represented as

doo = pi'm, (13)
where p is the albedo of far infrared. When multiple light
sources are placed at different positions, multiple observations
can be obtained that can be superposed in a matrix form as

d = pln, (14)

where d is the superposed diffuse components vector and
I =[if iy ---]" is the superposed light source direction
matrix. When the light direction matrix is a full-rank matrix,

the surface normal and albedo can be obtained as

__I'd

P (15)
p = vl

where It is a pseudo-inverse matrix of I.

V. EXPERIMENTS

The experimental setup is shown in Fig. 8. The target object
is illuminated by far infrared spot lights (Exo Terra Heat-Glo
100W) and measured by a thermal camera (InfRec R500).
The ambient component is observed before the light source is
turned on. Then, the light source is turned on and the change
of temperature is captured as a video.

The real light bulb is not stable immediately after turning on
and requires a warm-up period in practice. In our experiments,
the bulb is warmed up outside the experiment room and
brought in under a cover. Removal of the cover is the actual
meaning of the light being turned on. The wall of the room is
heated over the experiment time and it could become a heat
source. To avoid this effect, we place the object far from the
wall and the room is actively cooled using an air-conditioner.

(a) The target. (b) Example frame.
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(f) Reflection comp. (g) Diffuse radiation. (h) Global radiation.

Fig. 9: Decomposition result for a black painted wooden ball.
(a) The scene. (b) One of thermal video frames. Transient
profiles of a point, indicated by the black circle, are shown.
(c) Measured temperature transition. (d) Radiation profile.
Ambient and reflection components are subtracted from (c). (e)
Decomposed diffuse and global radiations. (f-h) Decomposed
images of reflection, diffuse, and global radiation, respectively.

a) Decomposition result: A black painted wooden sphere
as shown in Fig. 9(a) is measured. A frame of the measured
thermal video is shown in Fig. 9(b). Figure 9(c) shows the tran-
sition of the measured temperature at the black circular point
shown in Fig. 9(b). The ambient component is the measured
temperature before turning on the light source, and reflection
component is the increased intensity immediately after the
light source is turned on. The radiation components are the
rest, which is shown in Fig. 9(d). The radiation components are
not fitted well by a single exponential curve because this is a
sum of the diffuse and global radiations. Figure 9(e) shows the
decomposed diffuse and global radiations. The sum of these
fit well to the observation.

This procedure is applied for all the pixels, and the de-
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Fig. 10: Exponential fitting results. Double exponential curves
fit the observation better than single exponential curves.

composed images are shown in Figs. 9(f)— (h). The reflection
component represents the reflection of the light source on the
surface, the diffuse radiation represents the reasonable shading,
and the global radiation represents the warming of the entire
object.

To show that our dual exponential approximation is valid,
experiments were performed on objects of four different
surface properties. As shown in Fig. 10, four spherical objects
made of—(a) Wood, (b) Glass, (c) Plastic and (d) Marble were
chosen for this experiment, which are shown in Fig. 13. The
objects were chosen so as to cover a wide range of variability
in surface properties. Infrared light was irradiated and energy
measurements were collected for each of the four objects. In
each case, it can be observed that a dual exponential model is
a better fit for the experimental measurement of energy.

b) Surface normal estimation: By using multiple light
source positions and separating each diffuse radiation, we can
apply the Lambertian photometric stereo. Figure 11 shows
the result of the thermal photometric stereo for the same
object as shown in Fig. 9. A normal of the sphere is obtained
as shown in Fig. 11(d). The result is compared with the
result without light transport decomposition (composition of
reflection, diffuse, and global) and radiation (composition of
diffuse and global) as shown in Fig. 12. As the temperature
is not raised around ¢t = 0, the compared results are noisy.
The error increases owing to the global radiation at a longer
time. As the best result, the angular errors of the result
without decomposition and that of radiation is 7.71 and 6.50
degrees, respectively, while our method achieves a better result
and the angular error is 5.85 degrees. This result shows the
effectiveness of the separation of diffuse radiation.

(a) (b) (© (d (e

Fig. 11: Results of the thermal photometric stereo. (a—c)
Decomposed diffuse radiation at different light positions. (d)
Estimated surface normal. (e) The ground-truth normal.
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Fig. 12: The effectiveness of decomposition. Photometric
stereo result without decomposition, result using radiation
components, and comparison with our method. Our method
is time invariant and the accuracy is shown as a dotted line.
The angular error of our method is 5.85 degrees, which shows
that our decomposition is effective for the separation of diffuse
radiation.

We apply our method to other materials, including crystal
glass, translucent plastic, and translucent marble. The de-
composed diffuse component and estimated surface normal
are shown in Fig. 13. Because our method is based on the
diffuse radiation, materials that are difficult to measure with
the ordinary vision techniques, e.g., transparent and translucent
objects, can be measured in the same way. A plastic ornament
is also measured, and the result shows the feasibility of our
method to a complex shaped objects.

Our method is not suitable for some objects which hardly
absorb the far infrared light. Metallic materials are such
objects and the thermal observation of a metallic ball is shown
in Fig. 14. The metallic ball reflects all the incident light and
behaves like a mirror. There is no transient state as shown
in Fig. 14(c) which shows there are no radiation components.
This problem is identical to the visible light observation.

VI. CONCLUSION

This paper presents a novel technique for the time-resolved
decomposition of far infrared light transport. We describe
the far infrared light transport model, its transient properties,
and that the ordinary vision techniques can be applied to
decomposed thermal images. Because this is a first work of
far infrared light transport, we believe that this work will spur
further researches using far infrared light transport, including
thermal reflectance analysis, thermal multi-path, thermal non-
line-of-sight imaging [0 1], material classification, and so on.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2959304, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

The object Diffuse Normal

Wood

Crystal glass

Plastic

Q
e
-

Marble

Plastic
ornament

Fig. 13: Results on various materials. Spheres made by wood,
crystal grass, plastic, and marble are measured, which are
challenging objects for ordinary computer vision techniques.
Our method uniformly recovers the surface normal for many
materials. A complex shape is also measured, and our method
recovers the normal appropriately.
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Fig. 14: A failure case. The absorption rate is too small
hence the metallic ball reflects all the incident light and shows
the spherical thermal map of the room. The plot shows the
temporal response of the highlighted point, where no transient
components are observed. In such a case, only the ambient
and specular components can be obtained and the photometric
stereo does not work well.

We also propose a time-resolved far infrared light transport
decomposition and thermal photometric stereo as its applica-
tion. Separating diffuse component of far infrared radiations,
the surface normal of any objects that absorbs the incident
light, including transparent, translucent, and black objects as
well as matte objects are recovered.

While the effectiveness of our method is shown by some
real-world experiments, some limitations are also encountered.
First, the result is noisy owing to noisy observations and pixel-
wise calculation. One reason is that far infrared sensors are not
developed for measuring small temperature changes hence low
SNR. Naturally, the quality of the sensor will be improved in
the future and it will directly improve our results. A global
optimization that considers smoothness or simply using a
smoothing filter are other options to improve the results.

Another limitation is that some materials, such as metals,
do not exhibit much diffuse radiation. In such a case, the
ambient and reflection components can be separated; however,
the photometric stereo is not applicable. This problem is
the same as that encountered with visible light observation,
e.g., photometric stereo suffers from mirror surface objects.
In contrast, the absorption of many objects, including glass,
is high, hence the potential applicability of our method is
relatively higher than visible light observation techniques.

We only model a simple far infrared light transport. Inho-
mogeneous, multi-material, thin, and/or locally spiny shape
has complicated heat transport thus it might not exhibit the
exponential transience as in Eq. (5). Thus our method works
only for locally planar, homogeneous, and sufficiently thick
objects. Developing a sophisticated model for such objects is
one of the interesting future directions of this research.
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