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Abstract

We propose FASTMAP, a new global structure from mo-
tion method focused on speed and simplicity. Previous
methods like COLMAP and GLOMAP are able to estimate
high-precision camera poses, but suffer from poor scala-
bility when the number of matched keypoint pairs becomes
large, mainly due to the time-consuming process of second-
order Gauss-Newton optimization. Instead, we design our
method solely based on first-order optimizers. To obtain
maximal speedup, we identify and eliminate two key perfor-
mance bottlenecks: computational complexity and the ker-
nel implementation of each optimization step. Through ex-
tensive experiments, we show that FASTMAP is up to 10→
faster than COLMAP and GLOMAP with GPU acceleration
and achieves comparable pose accuracy. Project webpage:
https://jiahao.ai/fastmap.

1. Introduction
Data is the fuel for state-of-the-art computer vision systems.
Recently, synthetic 3D datasets [9, 15, 17, 39, 65, 71] have
been scaled up to provide supervision for diverse tasks such
as Visual-SLAM [59], 3D point tracking [18, 25], 3D as-
set generation [33, 55, 68], etc. However, scaling up real-
world 3D data remains difficult due to the lack of ground-
truth camera poses. Many applications such as monocular
depth estimation [6, 26, 48] and learning-based 3D recon-
struction [11, 63, 64] still rely on pseudo-ground-truth pro-
duced by pure geometry-based structure from motion sys-
tems (SfM) such as COLMAP [53]. However, COLMAP
is slow—processing a scene consisting of thousands of im-
ages can take multiple days. Global SfM methods such as
GLOMAP [44] improve upon COLMAP’s speed, but still
take many hours to converge on large scenes. Efficiently
scaling learning-based systems to more training data re-
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Figure 1. Timing of FASTMAP compared to COLMAP and
GLOMAP (all with GPU acceleration on a single A6000) on
scenes from eight datasets, excluding the matching stage for all
methods. Note the logarithmic time scale. Lines represent a least
squares power function fit to timing across multiple datasets, as a
function of the number of matched keypoint pairs.

quires a fast and high-quality ground-truth annotator.
A typical SfM pipeline spends most of the time doing

optimization. For example, COLMAP [53] registers one
image at a time, and performs a round of global bundle ad-
justment optimization every few images to avoid drifting.
GLOMAP [44] estimates global translation by optimizing
the camera centers and 3D points from random initializa-
tions, and uses a final round of bundle adjustment at the end
for refinement. These optimization problems are nonlin-
ear [60] and require iterative methods to solve. Specifically,
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quasi second-order methods such as Levenberg-Marquardt
(LM) [1] are the standard choice. LM is a trust-region vari-
ant of the Gauss-Newton method, which estimates the Hes-
sian with the residual Jacobian. While several techniques
have been adopted to speed up LM optimization, such as
the Schur complement trick and sparse Cholesky decom-
position, each iteration still takes long wall-clock time to
compute. In contrast, adaptive first-order methods [28] can
potentially eliminate the scalability bottleneck and simplify
algorithm design, but are not well explored in the current
SfM literature.

To bridge this gap, we propose FASTMAP, a global
SfM method that relies only on first-order optimization.
We identify and tackle two main speed bottlenecks when
switching from second-order to first-order optimizers. First,
many sub-problems in SfM, such as bundle adjustment [60]
and global positioning [44], jointly optimize camera poses
and 3D points. Usually, the number of 3D points is orders-
of-magnitude larger than the number of image pairs. This is
not the main issue for second-order methods because they
spend most of the time solving the reduced linear system
from the Schur complement, but can be a significant bot-
tleneck for first-order methods that only require comput-
ing gradients. To address this, we design our method such
that all the optimization problems involved have a per-step
computational complexity independent of the number of 3D
points.

The second bottleneck comes from the implementation.
While it is straightforward to implement gradient descent
with modern deep learning Autograd engines [46], we find
that it leads to sub-optimal utilization of GPU resources.
This is mainly due to the large overhead of kernel launch-
ing, unnecessary data movement between global and shared
memory, and improper kernel choice by the library. Instead,
we use kernel fusion to perform forward and backward steps
in one CUDA kernel, which significantly speeds up each
optimization step.

Extensive experiments on 8 different datasets demon-
strate that our method can be up to 10→ faster than
both COLMAP and GLOMAP with GPU-accelerated Ceres
solver [1] (Fig. 1). It also achieves comparable accuracy to
these two state-of-the-art methods in terms of both pose ac-
curacy and novel view synthesis quality.

In summary, we introduce FASTMAP, a new SfM frame-
work with the following contributions:

• We show that first-order optimization can be used to make
a scalable and accurate SfM system.

• We design a fully 3D point-free pipeline that is friendly
to first-order optimizers.

• We show that kernel fusion can significantly speed up gra-
dient computation by eliminating overhead.

2. Related Work

Global SfM Systems Incremental SfM methods like
COLMAP [53] are state-of-the-art in accuracy and robust-
ness, but global SfM systems are catching up [44]. These
methods solve for all camera poses at once to avoid register-
ing images sequentially, dramatically improving run-time.
OpenMVG [41] and Theia [57] are two popular global SfM
systems which are fast, but trail COLMAP in accuracy and
robustness [44]. HSfM [8] is a hybrid approach that com-
bines incremental and global approaches, estimating rota-
tions globally and translations incrementally. Unlike prior
global approaches that first perform translation averaging
and then triangulation, GLOMAP [44] combines both steps,
solving for camera translations and 3D points in one global
step. They report results on par with COLMAP, but with
large speed improvements both on small- [54] and large-
scale [52] datasets.

Global Rotation and Translation In a typical global SfM
system, global rotation and translation are estimated di-
rectly from pairwise relative motions. Hartley et al. [21]
provides a good tutorial on rotation averaging. Govindu
[16] frames motion estimation as a global optimization
problem, and Martinec and Pajdla [38] first solves for cam-
era rotations using pairwise constraints and then obtains
translations from a linear system using epipolar constraints.
Wilson and Bindel [66] propose a more stable optimizer
for rotation averaging. Many existing approaches struggle
when baseline lengths differ significantly [44]. LUD [43]
and Zhuang et al. [73] focus on improving stability and ro-
bustness in ill-conditioned scenarios. Jiang et al. [23] intro-
duces a linearized approach that enforces constraints across
camera triplets, ensuring consistency in multi-view configu-
rations. Wilson and Snavely [67] propose improving trans-
lation estimation by combining outlier removal with a sim-
plified solver.
Learning-based SfM Learning-based SfM methods vary
in the degree of their departure from the traditional SfM
pipeline and in their tradeoff between speed and accuracy.
VGGSfM [62] hews closely to the traditional SfM method-
ology, building on point-tracking methods to propose a fully
differentiable SfM method that includes bundle adjustment.
Flowmap [56] uses pretrained optical flow and point track-
ing networks and a depth CNN to optimize per-scene global
poses, calibration, and depth maps using gradient descent.
Ace-Zero [7] uses a trained dense 3D scene coordinate re-
gressor as an alternative to triangulation and registration in
incremental SfM, instead incrementally relocalizing with
the learned coordinate regressor. The DUSt3R [64] archi-
tecture, which maps image pairs to point maps, initiated a
new paradigm in learned SfM. DUSt3R pointmap estimates
from image pairs can be used for camera calibration, depth
estimation, correspondence, pose estimation and dense re-
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Figure 2. An overview of FASTMAP. Input images are processed
using feature extraction and matching. Given the matching results,
FASTMAP estimates the intrinsics and extrinsics of the cameras.
Finally a sparse point cloud is generated by triangulation.

construction. Many recent works [36, 63, 70] improve
upon DUSt3R in various ways, such as efficiently process-
ing more input images [70], using diffusion models [36],
and predicting more 3D geometry attributes [63]. In par-
ticular, MASt3R [32] upgrades DUSt3R using dense corre-
spondences from the predicted DUSt3R pointmap pairs, and
MASt3R-SfM [11] incorporates a global alignment stage,
offering a full-fledged SfM system based on MASt3R.

3. Method

Overview Our proposed FASTMAP framework (Fig. 2)
consists of multiple stages roughly in sequential order. In
this section we introduce the algorithmic details. Sec. 3.1
describes how we estimate the distortion parameters and
focal lengths for each camera after extracting and match-
ing keypoints. Then, Sec. 3.2 analyzes the pros and cons
of first-order vs second-order optimization, and Sec. 3.3 de-
scribes all the optimization problems for global pose esti-
mation and refinement. Finally, we discuss kernel fusion
(Sec. 3.4) for further speed-up.

Matching FASTMAP’s matching stage is identical to that
of both COLMAP and GLOMAP: it involves first extract-
ing and matching keypoints from the input images, followed
by geometric verification of the resulting image pairs [53].
The output of the matching stage consists of the set of inlier
keypoint pairs and either an estimated fundamental matrix
Fij or a homography matrix Hij (the latter if it is consistent
with sufficiently many inlier matches) for each image pair
(i, j) with enough correspondences.

3.1. Intrinsics Estimation

Accurate intrinsics estimation has a direct impact on the
precision of relative pose decomposition, which is critical
for later stages. In this section, we describe the algorithms
that FASTMAP employs to estimate the focal lengths and
distortion from the matching results.

Camera Assumptions We use a one-parameter radial dis-
tortion model. The principal point is fixed to be the center,
therefore the only intrinsics parameters to estimate are the
distortion parameter and the focal length. We also assume

that all the images are taken with a small number of dis-
tinct cameras, and that we know which images are from the
same camera. In practice, this can be inferred from image
resolutions, EXIF tags, file and directory names, etc.

Distortion Estimation We formulate distortion estimation
as the problem of finding the distortion parameters that re-
sult in the most consistent two-view geometric model for
each image pair (e.g., the fundamental matrix estimated
from undistorted keypoints has the lowest epipolar error).
We do so using the one-parameter division undistortion
model [3, 12, 14, 22]

xu =
xd

1 + ωr2d
yu =

yd
1 + ωr2d

, (1)

where (xd, yd) and (xu, yu) are the distorted and undis-
torted coordinates, respectively, rd =

√
x2
d + y2d and ru =√

x2
u + y2u, and ω is the distortion model parameter. The

model can be inverted in closed form to apply distortion
to keypoints [12]. We found this model to be more conve-
nient than the commonly used, but difficult to invert Brown-
Conrady distortion model [10].

We use brute-force interval search to estimate the distor-
tion parameter ω. Given a set of image pairs that share the
same ω, we sample set of candidate values from an inter-
val [ωmin,ωmax], and evaluate the average epipolar errors for
each candidate after undistorting and re-estimating the fun-
damental matrices based on the sampled ω (we ignore all the
homography matrices at this stage). This method directly
minimizes our objective (epipolar error) and takes into ac-
count information from multiple different image pairs, im-
proving robustness to noise. Moreover, each candidate can
be evaluated independently, making it highly parallelizable
on a GPU. In the supplementary material (Sec. B.1), we
provide more details regarding how to accelerate the above
method with hierarchical sampling, and discuss generaliza-
tions to images with different distortion parameters.

Focal Length Estimation We use the estimated distortion
model to undistort all the keypoints, and re-estimate the
fundamental and homography matrices. At this point, the
only remaining unknown intrinsic parameter for each cam-
era is the focal length. We estimate the focal length based
on the re-estimated fundamental matrices from undistorted
keypoints. While this is a well studied problem [2, 19, 24,
30, 58], existing methods are susceptible to noise or re-
quire nonlinear optimization. Instead, we employ an inter-
val search strategy similar to that used for distortion estima-
tion, but with a different objective.

Our method is based on the well-known property that a
3 → 3 matrix is an essential matrix if and only if its sin-
gular values are such that ε1 = ε2 and ε3 = 0 (where
ε1 ↑ ε2 ↑ ε3) [13, 20]. Given the correct fundamen-
tal matrix F and intrinsics matrix K, the essential ma-
trix E = K

→
FK should satisfy ω1

ω2
= 1. If all images
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share the same intrinsics, with a set of fundamental ma-
trices {Fi}, we can evaluate the accuracy of a candidate
focal length f using the singular value ratio above. Letting
ε(i)
1 ↑ ε(i)

2 ↑ ε(i)
3 be the singular values of K→

FiK, where
K is a function of f , we can measure the validity of f as

v =
∑

i

exp

(
1↓ ε(i)

1 /ε(i)
2

ϑ

)
, (2)

where ϑ is a temperature hyper-parameter. Intuitively, the
above formula is close to one when ε(i)

1 /ε(i)
2 is close to one,

and decreases exponentially as ε(i)
1 /ε(i)

2 increases.
We sample a set of candidate focal lengths and evaluate

them using Eqn. 2. We choose the candidate with the high-
est value (2) as the final estimate. This method can be eas-
ily generalized to images with different focal lengths (see
Sec. B.2 in the supplementary for details). After estimating
the focal length, we transform the keypoints, fundamental
matrices, and homography matrices using the estimated in-
trinsic matrices so all components are calibrated.

3.2. First-order Optimization

Levenberg-Marquardt Most of the previous SfM meth-
ods use quasi second-order methods such as Levenberg-
Marquardt (LM) for optimization. Almost all methods use
LM for bundle adjustment [60], and GLOMAP [44] uses
it for global translation alignment. Levenberg-Marquardt
is a Gauss-Newton method that first approximates the Hes-
sian with Jacobians of the residuals, and then solves a large
linear system to compute the update direction. Techniques
like the Schur’s complement and sparse Cholesky decom-
position are used to improve computational efficiency by
exploiting the sparsity of the system [1, 60].

While second-order methods can converge quickly near
the optimum, they suffer from poor scalability. Even with
the Schur complement method, each step requires solving a
reduced linear system whose size grows quadratically with
the number of images. In practice, this results in a cubic-
time cost in the number of images, which dominates the
computation of the update direction. In very large and
densely-connected problems, this becomes prohibitively ex-
pensive, even with GPU acceleration. To address this, many
frameworks employ the preconditioned conjugate gradient
(PCG) method, which approximately solves the reduced lin-
ear system at a per-iteration cost that scales only quadrati-
cally in the number of images. However, PCG slows con-
vergence and introduces implementation complexity.

First-order Optimization On the other hand, first-order
optimization methods are prevalent in other fields of com-
puter vision, thanks to the success of deep learning. Opti-
mizing a neural network with a large number of parameters
is only tractable with first-order methods, and many adap-
tive gradient methods exist that accelerate the naive gradient

descent. In this paper, we investigate the use of first-order
optimization methods in SfM.

Efficiency Unfortunately, first-order methods usually con-
verge much more slowly than Gauss-Newton methods in
terms of the decrease in loss at each iteration (i.e., they re-
quire more iterations). The key to the success of using first-
order optimization in SfM is to make the computation of
each step as fast as possible. We identify the two most im-
portant speed bottlenecks:
1. 3D points: One of the most important components of a

typical SfM pipeline is bundle adjustment [60], which
jointly optimizes camera poses and 3D points. In prac-
tice, the number of 3D points is usually orders-of-
magnitude larger than the number of image pairs. To
make Gauss-Newton tractable in this setting, methods
employ the Schur complement method [60] to first elim-
inate the 3D point variables to form a reduced system in-
dependent of the number of points, and then reciver the
3D points via back-substitution. In this stage, solving
the reduced system usually dominates the compute time.
However, if we switch to gradient descent, the main bot-
tleneck becomes computing the forward and backward
passes for the 3D point parameters. To address this,
we design all the optimization problems in our method
(Sec. 3.3) so that at each iteration, the computation com-
plexity is independent of the number of 3D points.

2. Kernel implementation: The optimization problems that
FASTMAP solves can be easily implemented using mod-
ern Autograd frameworks such as PyTorch. These li-
braries are highly optimized for large-scale deep learn-
ing applications that involve a lot of linear operations
on large tensors. In our case, most of the operations
are relatively small (e.g., 3 → 3 matrix multiplication),
and naively implementing everything with high-level Py-
Torch optimizations induces significant kernel launching
and data movement overhead. We solve this problem
through kernel fusion (Sec. 3.4), which eliminates most
of the overhead and increases GPU utilization.

Section 3.3 introduces all the optimization problems present
in our method. They are chosen such that the computational
complexity of each step is independent of the number of 3D
points. In Sec. 3.4, we describe the kernel fusion technique
to fully exploit the power of GPUs for even more speedup.

3.3. Optimization Formulations
Here, we introduce the optimization-based formulations of
estimating and finetuning the global poses.

Global Rotation With the estimated intrinsics, we can de-
compose the fundamental and homography matrices into
relative rotations and translations [20, 37]. Given the set
of image pairs P = {(i, j)} and the corresponding relative
rotation matrices {Ri↑j}(i,j)↓P , FASTMAP next estimates
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the world-to-camera global rotation R
(i) matrix for each

image i. We formulate this as an optimization of a loss de-
fined over all image pairs P = {(i, j)}

LR =
1

|P|
∑

(i,j)↓P

d(R(j),Ri↑j
R

(i)), (3)

where d(·, ·) is the geodesic distance between rotations

d(R,R↔) = cos↗1

(
Tr(RT

R
↔)↓ 1

2

)
. (4)

For simplicity, we parameterize the global rotation matrices
Ri using a differentiable 6D representation [72].

Unfortunately, directly optimizing the above objective
from random initialization of Ri is prone to local minima.
We use a slightly modified version of the method proposed
by Martinec and Pajdla [38] to obtain a good initialization.
The basic idea of the method is that although the column
vectors in a rotation matrix are constrained by orthogonal-
ity, each column vector alone is only subject to a unit length
constraint. If we consider one column at a time, we can
formulate the optimization as as a least squares problem
and solve it using SVD. See the supplementary material
(Sec. B.3.1) for details of this initialization scheme.

Global Translation After global rotation alignment, we
re-estimate the relative translations between image pairs
(Sec. B.5). The next step is to utilize these relative trans-
lations to estimate the 3D coordinates of the camera centers
in a common (world) coordinate frame, up to a similarity
transformation. This step is usually called translation aver-
aging. It is notoriously susceptible to noise, and making it
robust to all kinds of scenarios is the focus of many global
SfM papers [23, 43, 44, 67, 73]. However, this is not the
focus of our paper and so we choose a relatively simple
method to tackle this problem, which we find to be suffi-
cient for most of the scenes we evaluate on. A more robust
design for this stage is left for future work.

Given world-to-camera rotations {Ri}1↘i↘N for N im-
ages and unit-length relative translations {ti↑j}(i,j)↓P for
a set of image pairs P , we compute the normalized vector
from the camera centers of image i to j in world coordinates

oi↑j = ↓R
→
j t

i↑j . (5)

We estimate the camera locations {oi}1↘i↘N in the
world frame by minimizing the error between the normal-
ized relative translation oj↗oi

≃oj↗oi≃2
and the target oi↑j above

with gradient descent

Lt =
1

|P|
∑

(i,j)↓P

∥∥∥∥
oj ↓ oi

↔oj ↓ oi↔2
↓ oi↑j

∥∥∥∥
1

. (6)

Unlike global rotation optimization, this objective can of-
ten be effectively optimized from a random initialization.

GLOMAP [44] makes a similar observation, but it opti-
mizes poses and 3D points jointly, and is much more com-
putationally expensive.

Although random initialization works surprisingly well
for the objective in Eqn. 6, it occasionally produces a small
number of outliers. To deal with this, we perform multiple
independent runs from different random initializations and
merge the solutions as the initialization for the final opti-
mization loop. Please see Sec. B.5.2 for details.

Epipolar Adjustment A typical SfM pipeline relies on
bundle adjustment (BA) [60] to jointly refine the cam-
era poses and inferred 3D points. Directly implementing
BA with first-order optimizers is computationally expensive
when the number of points is large. Instead, we refine the
poses from previous stages using re-weighting epipolar ad-
justment, an optimization method [50] for which the com-
putational complexity in each iteration is linear only in the
number of image pairs, not in the number of points.

In relative translation re-estimation, we obtain a set of
image pairs with number of inliers above some thresh-
old. We denote the set of such image pairs as P =
{(in, jn)}1↘n↘|P| (abusing the notation for the original
set of images above), where in and jn are the indices
of the first and second images in the pair. For an im-
age pair (in, jn) ↗ P , we represent the set of point pairs
as Qn = {(x(1)

nm,x(2)
nm) ↗ R2 → R2}1↘m↘|Qn|, and let

Q̃n = {(x̃(1)
nm, x̃(2)

nm) ↗ P2 → P2}1↘m↘|Q̃n| be the set of
point pairs in normalized homogeneous coordinates.

Using estimated initializations from the previous stages,
we optimize over the world-to-camera global rotations and
translations to minimize the absolute epipolar error

Le =
1

Z

|P|∑

n=1

|Q̃n|∑

m=1

|x̃(2)→
nm Enx̃

(1)
nm|, (7)

where Z =
∑|P|

n=1 |Q̃n| is the total number of point pairs,
and En is the essential matrix computed from the global
rotations and translations for images in and jn.

Evaluating Eqn. 7 for every iteration is expensive be-
cause it involves every point pair. However, if we replace
the cost terms with the L2 loss (as in Rodriguez et al. [49]),
the overall objective can be re-organized to aggregate terms
that involve point pairs shared by the same image pair into
a compact quadratic form (see Sec. B.6)

Le=
1

Z

|P|∑

n=1

|Q̃n|∑

m=1

(x̃(2)→
nm Enx̃

(1)
nm)2 =

2

Z

|P|∑

n=1

e→nWnen,

(8)
where en = flatten(En) ↗ R9, and Wn ↗ R9⇐9 is a matrix
computed from all the point pairs in Q̃n. Note that only en
is a function of the parameters to be optimized. The ma-
trices Wn can be pre-computed for each image pair before
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optimization. With the precomputed Wn, the cost of each
optimization step is linear in the number of image pairs.

The expedience of Eqn. 8 comes with the side effect
that the L2 loss is sensitive to outliers. We propose to
robustify the loss function but still preserve the benefit of
pre-computation with iterative re-weighted least squares
(IRLS). The intuition is that if we have an initialization close
to the optimum, the L1 loss, which is more robust to out-
liers, can be approximated by a weighted L2 loss. In other
words, for some differentiable computed scalar value z, we
have z2 ↘ z2/|ẑ|, where ẑ is the value of z at initialization.
In our case, after global translation alignment, we already
have a good initialization of global poses, so we can com-
pute the absolute epipolar error |ϖ̂nm| for each point pair,
and use it to weight the L2 loss used above to get an ap-
proximate robust L1 loss

L̂e=
1

Z

|P|∑

n=1

|Q̃n|∑

m=1

(x̃(2)→
nm Enx̃

(1)
nm)2

|ϖ̂nm| =
2

Z

|P|∑

n=1

e→n Ŵnen,

(9)
where Ŵn is similar to Wn in Eqn. 8, but computed from
Q̃n weighted by |ϖ̂nm|.

After a round of optimization, we can better approxi-
mate the L1 loss by re-computing the weights and then do-
ing another optimization loop. To further reduce the impact
of outliers, we periodically filter out point pairs with large
epipolar error. We start from a relatively large initial thresh-
old and gradually decrease it to a pre-determined minimum.

The above optimization problem only involves camera
poses. We can also optimize the focal lengths by incorpo-
rating them into the computation of the essential matrices
(in this case, the results are actually fundamental matrices).

3.4. Kernel Fusion
A standard way to implement gradient descent in the above
algorithms is to use the Autograd feature in modern deep
learning libraries such as PyTorch [46]. However, the ten-
sors in our setting are mostly batches of small matrices and
vectors of shapes B → 3 → 3 and B → 3, where B is the
number of image pairs, and a naive PyTorch implementa-
tion introduces some significant bottlenecks:
1. Kernel Launching Overhead: When the scene is rela-

tively small (i.e., the number of image pairs is small), the
kernel launching overhead dominates the running time
and is limited by the CPU speed.

2. Data Movement: Computing the objective and gradi-
ents involves a series of small operations (e.g., 3 → 3
matrix multiplication and cross product). Each oper-
ation involves reading the data from the high-latency
global memory to the fast on-chip shared memory and
writing back when finished. his leads to substantial
inefficiency and makes the computation predominantly
memory-bound.

3. Kernel Design: PyTorch kernels are optimized for deep
learning workload, which usually consists of linear op-
erations on large tensors. These kernels can lead to sub-
optimal performance when applied to tensors without the
assumed shapes.

To address this problem, we fuse all the operations for
computing the gradients, including forward and backward
passes, into one single custom CUDA kernel. This in-
troduces challenges in shared-memory management when
the computation involves many small operations. However,
since almost all input and intermediate tensors have one of
the three shapes (B → 3 → 3, B → 3, or simply B), we can
efficiently reuse shared-memory slots to limit the reduction
in thread occupancy. In Tab. 4 we show that the fused ker-
nel can be more than two orders-of-magnitude faster than
a naive PyTorch implementation under different scene sizes
and hardware settings. Please refer to the ablation study
(Sec. 4.3) for a more detailed analysis.

4. Experiments
4.1. Setup

We compare FASTMAP with two state-of-the-art methods:
COLMAP [53] (commit c4a3b30) and GLOMAP [44]
(commit 01060b4), both with GPU-accelerated Ceres [1]
solver enabled. For all three methods, we use the COLMAP
image matching system. We use shared intrinsics if all im-
ages in a scene are from the same camera, and leave all
other hyper-parameters at their default values in COLMAP
and GLOMAP. We run all three methods on a machine
with a single A6000 (Ampere) GPU and an AMD EPYC
9274F CPU (Zen 4) with 24 cores / 48 threads. By de-
fault, FASTMAP uses 2 CPU threads, whereas COLMAP
and GLOMAP use all 48 threads. We report more detailed
speed comparisons with different hardware configurations
in Tab. 6 in the appendix.

Datasets We focus on the case of high-overlap im-
ages densely connected by feature matching, and evalu-
ate the three methods on eight datasets: MipNeRF360 [4],
Tanks and Temples [29], ZipNeRF [5], NeRF-OSR [51],
DroneDeploy [47], Mill-19 [61], Urbanscene3D [34], and
Eyeful Tower [69]. They cover a wide range of real-world
scenarios and camera trajectory patterns. The number of
images per scene ranges from around 200 to 6000. Sec. B.8
provides a more detailed discussion of the GT poses pro-
vided along with these datasets.

Metrics We report wall-clock time in seconds, excluding
the time required for feature extraction and matching (iden-
tical for all three methods and dominated by the SfM back-
end time for large scenes). We evaluate pose accuracy using
the standard metrics [11, 44, 53]: ATE, RRA@ϱ, RTA@ϱ,
and AUC@ϱ. For some of the scenes, we also evaluate the

6

https://github.com/colmap/colmap/commit/c4a3b308bddf391b4e7c62e835720f83c13aea8b
https://github.com/colmap/glomap/commit/01060b4be509902ea9aaefaae982a2cb941ae5c3


time (sec) ATE→ RTA@3↑ AUC-R&T @ 3 ↑ RTA@1↑ AUC-R&T @ 1 ↑

n imgs FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP

mipnerf360 (9) 215.6 33 165 503 4.2e-4 3.3e-5 5.8e-5 99.9 100.0 100.0 97.4 98.2 97.2 99.8 100.0 99.7 92.4 94.6 91.9
tnt advanced (6) 337.8 61 357 1016 6.4e-3 1.2e-2 1.2e-3 71.4 79.1 98.5 42.6 75.3 94.8 42.3 77.5 97.0 16.7 69.8 90.0

tnt intermediate (8) 268.6 35 314 833 7.8e-5 1.9e-5 2.6e-4 99.9 100.0 99.8 94.1 99.0 98.9 99.3 99.9 99.5 83.1 96.9 97.3
tnt training (7) 470.1 63 515 2751 3.0e-3 1.1e-2 3.0e-4 87.8 88.7 99.9 77.2 87.9 99.5 82.1 88.6 99.9 60.5 86.3 98.7

nerf osr (8) 402.8 50 324 3163 1.6e-3 1.1e-3 1.3e-3 91.7 92.0 92.1 70.9 71.9 71.7 71.1 71.9 71.7 43.2 45.2 44.7
drone deploy (9) 524.7 91 365 3352 4.9e-3 4.3e-3 2.0e-3 97.9 98.2 91.3 79.2 81.1 65.2 89.6 91.5 73.5 50.4 53.5 40.2

zipnerf (4) 1527.2 119 690 3820 3.0e-3 7.1e-3 3.4e-4 99.0 98.1 99.7 92.6 96.6 98.1 97.4 98.0 99.6 81.4 93.6 95.2
urban scene (3) 3824 515 3664 61622 1.7e-5 1.4e-5 1.4e-5 99.9 99.9 100.0 95.3 97.0 97.0 99.5 99.6 99.6 86.3 91.2 91.3
mill19 building 1920 258 6289 27080 3.0e-4 1.3e-2 1.9e-5 99.9 0.1 99.9 95.5 0.0 95.6 99.3 0.0 99.3 87.0 0.0 87.4

mill19 rubble 1657 240 2849 12153 3.6e-5 6.4e-5 3.4e-5 99.9 99.8 99.9 93.6 94.5 94.6 98.6 98.6 98.7 81.6 84.7 84.8
eyeful apartment 3804 549 5905 185361 2.8e-3 9.4e-3 2.2e-3 86.8 75.0 90.2 45.5 50.5 62.0 51.1 61.3 71.7 6.4 18.2 21.9

eyeful kitchen 6042 2202 22884 timeout 3.1e-3 7.4e-3 - 85.0 59.9 - 38.1 41.2 - 46.7 51.7 - 4.6 14.4 -

Table 1. Speed and pose accuracy of FASTMAP, GLOMAP, and COLMAP. All three methods are accelerated by GPU. For datasets with
more than two scenes, we denote the average metrics as dataset-name(#scenes). In particular, Tanks and Temples [29] has three
official splits, and we do the averaging separately for them. Mill-19 [61] and Eyeful Tower [69] scenes are listed separately. Metrics are
color-coded in green, with color changes if the percentage gap >2% or ATE ratio >1.5. Red denotes complete failures and gray means the
method did not finish in a week. Note the significant speedup of FASTMAP vs. previous work, especially on larger scenes.

Absolute PSNR ↑ Relative to COLMAP

FASTMAP GLOMAP COLMAP FASTMAP GLOMAP

m360 bicycle Zip-NeRF 25.60 25.78 25.86 -0.26 -0.08
+ CamP 26.21 26.36 26.41 -0.21 -0.05

GSplat 25.51 25.59 25.62 -0.11 -0.03

m360 bonsai Zip-NeRF 34.78 34.91 34.47 0.31 0.44
+ CamP 35.26 35.32 35.37 -0.12 -0.05

GSplat 32.32 32.29 31.49 0.84 0.81

m360 counter Zip-NeRF 28.97 28.95 29.18 -0.21 -0.23
+ CamP 29.09 29.18 29.29 -0.20 -0.12

GSplat 28.99 29.06 29.02 -0.02 0.04

m360 flowers Zip-NeRF 22.05 22.29 21.89 0.15 0.40
+ CamP 23.53 23.47 23.27 0.25 0.20

GSplat 21.74 21.79 21.59 0.15 0.20

m360 garden Zip-NeRF 28.10 28.20 28.20 -0.11 0.00
+ CamP 28.54 28.49 28.54 0.00 -0.05

GSplat 27.61 27.67 27.72 -0.11 -0.05

m360 kitchen Zip-NeRF 32.29 32.43 32.31 -0.02 0.12
+ CamP 32.47 32.19 32.21 0.27 -0.02

GSplat 31.36 31.62 31.58 -0.22 0.05

m360 room Zip-NeRF 32.81 32.94 32.93 -0.12 0.01
+ CamP 32.51 32.48 32.44 0.07 0.04

GSplat 31.77 31.71 31.67 0.11 0.04

m360 stump Zip-NeRF 27.34 27.41 27.43 -0.09 -0.02
+ CamP 28.10 28.03 28.03 0.07 0.00

GSplat 26.97 26.89 26.84 0.13 0.05

m360 treehill Zip-NeRF 23.73 24.05 24.04 -0.31 0.01
+ CamP 25.73 25.74 25.99 -0.26 -0.25

GSplat 22.71 22.88 22.80 -0.08 0.08

tnt training (7) InstantNGP 20.73 19.37 21.05 -0.32 -1.68

GSplat 23.22 21.54 24.19 -0.97 -2.65

tnt intermediate (8) InstantNGP 22.29 22.51 22.38 -0.09 0.13

GSplat 24.24 25.28 25.24 -1.00 0.03

tnt advanced (6) InstantNGP 16.59 16.94 17.55 -0.95 -0.60

GSplat 18.82 18.74 22.06 -3.24 -3.32

Table 2. Novel view synthesis evaluation on MipNeRF360 [4] and
Tanks and Temples [29]. Results for MipNeRF360 are listed sep-
arately for each scene, and those for Tanks and Temples are aver-
aged over all scenes in each of the three splits. The color changes
only if the PSNR difference >0.25. We report results for Zip-
NeRF, Zip-NeRF + CamP optimization, and Gaussian Splatting.

novel view synthesis quality of NeRF [40] and Gaussian
Splatting [27] trained on the output poses, intrinsics, and

tnt training (7) tnt intermediate (8) tnt advanced (6)

ATE RTA@5 RRA@5 ATE RTA@5 RRA@5 ATE RTA@5 RRA@5

ACE-Zero [7] 1.2e-2 72.9 73.9 8.0e-3 74.0 67.5 2.8e-2 19.1 22.9
MAST3R-SfM [11] 6.2e-3 64.9 56.2 7.2e-3 57.5 50.8 2.0e-2 36.5 38.8
GLOMAP 1.1e-2 88.8 89.3 1.9e-5 100.0 100.0 1.2e-2 79.3 80.5
FASTMAP 3.2e-3 88.8 95.8 9.2e-5 100.0 100.0 6.8e-3 70.5 82.1

Table 3. Comparison to learning-based SfM on Tanks and Tem-
ples [29]. We use COLMAP poses from Kulhanek and Sattler
[31] as reference. We average numbers for scenes in each split.

triangulated point clouds.

4.2. Analysis
Pose accuracy Table 1 compares the three methods in av-
erage camera pose metrics on all the datasets (we include
per-scene evaluation results in the supplementary material).
In general, our method is much faster than both GLOMAP
and COLMAP. The speedup over GLOMAP is less dra-
matic when there are only a few hundred images (e.g., Mip-
NeRF360), but it can be about 10→ faster on scenes with
several thousand images (e.g., Urbanscene3D, Mill-19, and
Eyeful Tower). On most datasets, FASTMAP is on par with
GLOMAP and COLMAP in terms of RTA@3. There is
a more prominent difference for stricter metrics (RTA@1,
AUC@3, AUC@1). This shows that while FASTMAP suc-
ceeds in recovering the overall structures of camera trajec-
tories, it does achieve the highest level of precision when
the error is reduced to one or two degrees.

None of the methods are perfect. FASTMAP performs
particularly bad on the Advanced split of Tanks and Tem-
ples, probably because there are many erroneous matches
due to repetitive patterns and symmetric structures in the
scenes. This is a well-known problem of global SfM (i.e.,
GLOMAP also suffers a significant drop in performance
compared to COLMAP), and incremental SfM methods like
COLMAP are more robust in these settings. On the build-
ing scene of the Mill-19 dataset, GLOMAP fail catastrophi-
cally, however FASTMAP and COLMAP remain highly ac-
curate. On DroneDeploy, none of the three methods is very
good in terms of AUC@1 and RTA@1.
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In Tab. 3, we compare FASTMAP to two representa-
tive learning-based methods, ACE-Zero [7] and MAST3R-
SfM [11], where we include the results from Duisterhof
et al. [11, Tab. 10]. Both methods perform significantly
worse than FASTMAP and GLOMAP. This indicates that
while learning-based methods are promising, they still lag
far behind traditional methods in terms of pose accuracy.
Novel view synthesis Table 2 evaluates the quality of novel
view synthesis on MipNeRF360 and Tanks and Temples
when using FASTMAP, COLMAP, and GLOMAP to esti-
mate the camera poses. We use ZipNeRF [5], a very high-
quality NeRF method, for MipNeRF360, and use Instant-
NGP [42] for Tank and Temples, which offers a better trade-
off between quality and speed. We also evaluate the perfor-
mance of Gaussian Splatting [27] on both datasets.

While FASTMAP lags behind GLOMAP and COLMAP
on most MipNeRF360 scenes, the PSNR difference is
within 0.5. On Tanks and Temples, FASTMAP performs
on par with GLOMAP, but both are worse than COLMAP.
Here, again, the lower pose accuracy of FASTMAP under
the strictest metrics does not prevent FASTMAP poses from
yielding competitive PSNR. These results suggest that pose
accuracy under a strict metric could be a misleading proxy
for downstream view synthesis quality, and vice versa.

We also investigate the impact of different SfM poses on
rendering with CamP [45], which simultaneously optimizes
the radiance field and refines the camera poses. We include
the results in Tab. 2 for comparison. In general, CamP im-
proves the PSNR for all the three methods, and for some
scenes (e.g., flowers, garden, kitchen, etc.) the gap in ren-
dering quality is closed and sometimes even reversed.

4.3. Ablations

Kernel fusion In Tab. 4, we show the timing comparison of
naive PyTorch and kernel fusion approaches to implement-
ing the first-order optimization of epipolar adjustment. Pro-
filing and comparing the CPU and GPU times for these two
approaches is challenging due to the various forms of exe-
cution overlap. Instead, we directly compare the wall-clock
time on different hardware setups. On small-to-medium
scale scenes (i.e., 5k and 50k image pairs), the running
time is severely bottlenecked by CPU overhead, and us-
ing a slower CPU can significantly impact the speed. Inter-
estingly, the PyTorch version is faster on the less-powerful
2080 Ti than A6000, reflecting that its kernel implementa-
tion cannot fully utilize the power of high-end GPUs and
is not suitable in our case. Across all the three hardware
settings and scene sizes, our fused kernel implementation is
around 20→ to 90→ faster than the naive PyTorch version.

Distortion estimation is one of the first steps of FASTMAP,
and its accuracy is critical to the final performance. Table 5
presents the performance of FASTMAP with and without

# pairs CPU GPU torch (ms) fused (ms) speedup

5k
4.05GHz A6000 2.83 0.05 56↓
2.2GHz A6000 9.82 0.11 89↓
2.2GHz 2080 Ti 9.41 0.11 85↓

50k
4.05GHz A6000 8.20 0.14 58↓
2.2GHz A6000 12.47 0.20 62↓
2.2GHz 2080 Ti 11.93 0.27 44↓

500k
4.05GHz A6000 65.94 1.16 56↓
2.2GHz A6000 69.31 1.21 53↓
2.2GHz 2080 Ti 44.32 1.92 23↓

Table 4. Effect of kernel fusion for epipolar adjustment under dif-
ferent hardware settings and scene sizes (#pairs refers to the num-
ber of image pairs). Interestingly, the naive PyTorch implementa-
tion is faster on 2080 Ti than A6000 with 500k image pairs, show-
ing that the native PyTorch kernel implementation cannot fully uti-
lize the GPU for our problems. Note that the performance of the
same CPU or GPU can be slightly different on different machines.

AUC@3 AUC@10 RTA@3 RTA@10

w/ w/o w/ w/o w/ w/o w/ w/o

Family 95.1 72.8 98.5 91.8 100.0 99.9 100.0 100.0
Francis 95.5 71.1 98.6 91.2 99.9 99.6 100.0 99.9
Horse 96.8 76.8 99.0 93.0 100.0 100.0 100.0 100.0
Lighthouse 90.7 4.6 97.1 42.2 99.6 46.5 100.0 98.5
M60 95.6 28.3 98.7 72.9 99.9 85.9 100.0 99.7
Panther 93.0 12.1 97.9 64.2 99.9 78.3 100.0 99.9
Playground 84.6 2.2 95.4 14.4 100.0 15.2 100.0 51.9
Train 92.4 54.2 97.7 86.0 99.9 99.6 100.0 99.9

Table 5. Effect of camera distortion estimation on pose accuracy.

distortion estimation on the Intermediate split of Tanks and
Temples. Without distortion estimation, results drop, some-
times catastrophically. We provide in Sec. B.1 an additional
insight into the effect of distortion estimate on the immedi-
ately following step of focal length estimation.

Others Due to page limit, we put some other ablation re-
sults in Sec. B.9, including those for track completion, mul-
tiple initialization, and epipolar adjustment.

5. Limitations and Conclusions

We introduce FASTMAP, a new structure from motion
method focused on simplicity and speed. Contrary to the
common practice in other SfM systems, FASTMAP uses
first-order optimization extensively and is much faster than
state-of-the-art methods (COLMAP and GLOMAP), while
achieving comparable performance on pose accuracy and
novel view synthesis quality. These improvements do come
with a few drawbacks. For example, FASTMAP might fail
on scenes where there are a lot of degenerate motions, and
is more sensitive to incorrect matching induced by repet-
itive patterns and symmetric structures when compared to
GLOMAP (please refer to the appendix for a more detailed
discussion of limitations). Nevertheless, we believe it is an
important step towards highly efficient camera pose estima-
tion for real-world 3D data acquisition at scale.
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