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ABSTRACT

Steel rolling mills must continuously monitor various sensors like vibration
probes, thermocouples, and flow meters to ensure safe operations and maintain
product quality. However, harsh industrial conditions sometimes lead to sensor
failures, unclear signals, and incomplete data. Traditional monitoring systems of-
ten struggle in these environments, making it challenging to detect early signs of
problems and predict failures. To this end, we propose SteelNet: a multimodal
representation learning framework designed for robust learning from various in-
dustrial sensor data. SteelNet incorporates cross-modal alignment and modality
dropout strategies that enable consistent representation learning even when modal-
ities are partially missing. The core problem being solved is improving equipment
availability and optimizing process parameters. This framework allows for early
detection of critical events by combining information from multiple sensors and
effectively handling missing data, which are common in industrial environments.
By improving the reliability of anomaly detection and predictive insights, Steel-
Net not only strengthens fault tolerance but also supports better decision-making
in process optimization. Although developed for steel rolling mills, its applicabil-
ity extends to real-world scenarios and other industrial setups.

1 INTRODUCTION

Steel rolling mills are vital to global manufacturing, providing materials for construction, transport,
and energy systems. As complex cyber-physical plants, they require continuous monitoring of di-
verse sensors such as vibration probes, thermocouples, flow meters, acoustic devices, and cameras
to ensure safe operations, equipment availability, and product quality. Yet harsh environments of-
ten cause noisy signals, malfunctions, or missing data, complicating predictive maintenance and
anomaly detection, and increasing unplanned downtime risks (Rao, 2024; Rahman et al., 2025).
With Industry 4.0 and industrial IoT, the surge in multimodal sensor data needs more robust meth-
ods to integrate non-similar inputs for fault diagnosis and process optimization (Chen, 2022; Wang
et al., 2018).

Extensive research has applied multimodal deep learning to predictive maintenance. Rao (2024)
combined CNNs and LSTMs for imagery and time-series data, while Rahman et al. (2025) proposed
MultiSenseNet using CNNs, transformers, and GNNs for failure prediction. Other studies fused
categorical and text inputs (Lichtenwalter et al., 2021), applied reinforcement learning for adaptive
control (Liu et al., 2024), and showed that multimodal knowledge integration improves maintenance
and anomaly detection (Shen et al., 2024; McKinney et al., 2025).

Surveys have synthesized advances in multimodal intelligence and representation learning. Zhang
et al. (2020) reviewed fusion techniques for image-text tasks, while Guo et al. (2019) examined
joint, coordinated, and encoder-decoder approaches. Wang & Yue (2012) focused on trends in man-
ufacturing, highlighting inter-modal, intra-modal, and domain knowledge fusion. At the process
level, Wu & Liang (2024) discussed knowledge acquisition and representation for intelligent man-
ufacturing. Benchmarks like MultiBench (Liang et al., 2021) stress evaluating generalization and
robustness to missing modalities. Collectively, these works provide the foundation for multimodal
industrial applications.

Recent advances highlight cross-modal architectures for anomaly detection. Wu et al. (2024) intro-
duced FmFormer, a transformer for video and current signals in smelting, while Kong et al. (2025)
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proposed multi-modal, multi-level features for flow pattern identification in oil-water pipelines. In
manufacturing forecasting, Zurita et al. (2017) used adaptive-neurofuzzy models, and Liu et al.
(2021) developed a stacked multimanifold autoencoder for industrial data. Multimodal sensing has
also improved machining quality prediction (Sheng et al., 2024) and flaw detection in additive man-
ufacturing (Petrich et al., 2021), collectively underscoring the value of multimodal feature extraction
for industrial reliability.

In steelmaking, multimodal learning is widely applied. Song et al. (2019) used CNN+DNN for
temperature control in continuous casting, and Lee et al. (2020) employed CNN+RNN for transient
temperature prediction. Zhang et al. (2023a) studied slag inclusion prediction, while Peng et al.
(2022) proposed big data-driven methods for hot rolling performance. Reinforcement learning has
been used for process optimization (Liu et al., 2023) and surface defect detection (Zhang et al.,
2023b). Knowledge graphs aid product development (Peng et al., 2024) and multimodal fault diag-
nosis (Wu et al., 2023), with Industry 4.0 data mining frameworks integrating heterogeneous sources
for fault detection (Chen, 2022).

Explainable and knowledge-driven approaches enhance multimodal learning. Calaon et al. (2024)
combined multimodal predictive analysis with explainable AI for root cause analysis, while Wang
et al. (2025) developed an LLM-based framework for intelligent perception and decision-making.
Liang et al. (2025) proposed fine-grained multimodal reasoning for product design. Knowledge
graphs support defect reasoning (Zhang et al., 2023b) and metallurgical knowledge reuse (Peng
et al., 2024), highlighting the importance of robustness, interpretability, and decision support in
industrial multimodal systems.

Despite advances, two challenges persist: robustness to missing or corrupted modalities, and align-
ing predictions with actionable metrics like equipment availability. While frameworks such as Mul-
tiSenseNet (Rahman et al., 2025), FmFormer (Wu et al., 2024), and unsupervised fusion meth-
ods (McKinney et al., 2025) perform well under ideal conditions, real-world plants face modality
dropout, occlusion, and noise. Few methods explicitly optimize equipment uptime, a key industrial
metric.

CONTRIBUTION OF THIS WORK

This paper introduces SteelNet, a multimodal representation learning framework tailored for steel
rolling mills. SteelNet employs cross-modal alignment to integrate heterogeneous sensor modalities
into a shared space with close mapping together and modality-dropout training to sustain perfor-
mance under missing data. By using anomaly detection with predictive insights together, Steel-
Net directly targets equipment availability, thereby improving both fault tolerance and operational
decision-making. While motivated by steel rolling mills, the framework generalizes to other indus-
trial domains where multimodal, imperfect, and heterogeneous data are the norm.

2 METHOD

2.1 DATASET

Our experimental evaluation is conducted on a novel multimodal dataset constructed specifically
to address causal inference and process optimization challenges in steel rolling mills. This dataset
extends the Severstal Steel Defect Detection competition data (Grishin et al., 2019) by incorporating
synthetically generated process parameters that simulate realistic industrial monitoring scenarios.

2.1.1 BASE DATASET AND DEFECT INTENSITY SCORING

The foundation of our dataset originates from the Severstal Steel Defect Detection competition (Gr-
ishin et al., 2019), which contains 12,568 high-resolution steel surface images with pixel-level an-
notations for four defect classes:

• Class 1: Crazing (thermal stress patterns) - 897 instances

• Class 2: Inclusion (contamination particles) - 247 instances

• Class 3: Patches (coating irregularities) - 5,150 instances
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• Class 4: Pitted Surface (corrosion damage) - 801 instances

To enable multimodal learning that incorporates defect severity information, we developed a deep
learning-based defect intensity scoring system. Using a ResNet-34 backbone with a regression head,
we trained a model to predict per-class defect fractions by regressing pixel-level defect coverage
from the original RLE-encoded segmentation masks. The model was trained for 8 epochs using
MSE loss, achieving a validation loss of 0.003261. For each image, the defect intensity score is
computed as a weighted combination of the predicted per-class fractions:

intensity score =

4∑
c=1

wc · fc (1)

where fc represents the predicted fraction of pixels belonging to defect class c, and wc =
[1.0, 1.5, 2.0, 1.2] are empirically determined weights that reflect the relative severity of each de-
fect type in industrial contexts.

2.1.2 PROCESS PARAMETER AUGMENTATION FRAMEWORK

To simulate realistic steel rolling mill operations where multiple sensor modalities provide process
monitoring data, we developed a domain-knowledge-driven parameter generation framework. The
augmentation incorporates ten critical process variables commonly monitored in steel manufactur-
ing:

• Surface preparation: Surface cleanliness (95-100% for normal operation)

• Environmental conditions: Ambient humidity (40-50% for optimal conditions)

• Coating process: Spray pressure (2.5-3.0 bar), viscosity (80-100 cP)

• Thermal treatment: Curing temperature (180-200°C), curing time (20-25 minutes)

• Cleaning system: Water jet pressure (180-200 bar), flow rate (100-120 L/min)

• Mechanical indicators: Vibration (2-4 mm/s RMS), drive load (10-15 kN)

Parameters are generated using physics-based rules, where defects show deviations from normal
ranges. For instance, Class 1 defects (crazing) are associated with suboptimal curing temperatures
(140-175°C) and elevated vibration levels (3-6 mm/s), while Class 2 defects (inclusion) correlate
with reduced surface cleanliness (70-85%) and inadequate water jet pressure (140-170 bar). The
defect intensity score modulates the degree of parameter deviation, creating realistic correlations
between process abnormalities and defect severity.

2.1.3 DATASET COMPOSITION AND BALANCING STRATEGY

The final multimodal dataset comprises 6,702 samples with the following distribution designed to
support both anomaly detection and causal inference tasks:

• Class 0 (Non-defective): 6,502 samples (generated from images not present in original
train.csv)

• Class 1 (Crazing): 200 samples (randomly sampled from 897 available)

• Class 2 (Inclusion): 200 samples (randomly sampled from 247 available)

• Class 3 (Patches): 200 samples (randomly sampled from 5,150 available)

• Class 4 (Pitted Surface): 200 samples (randomly sampled from 801 available)

Each sample consists of a steel surface image (1600×256 pixels) paired with the corresponding 10-
dimensional process parameter vector and defect intensity score. The balanced sampling strategy
ensures equal representation across defect classes while maintaining a realistic proportion of non-
defective samples typical of well-controlled industrial processes.
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2.1.4 METHODOLOGICAL CONTRIBUTIONS AND LIMITATIONS

Key Contributions: This dataset uniquely enables research in causal inference for industrial process
optimization by providing both visual defect information and correlated process parameters. Unlike
existing steel defect datasets that focus solely on image classification, our multimodal approach
supports investigations into which process parameters contribute to specific defect types and how
parameter optimization can prevent defects.

Critical Limitations: Several methodological aspects warrant transparent discussion:

Synthetic Parameter Generation: The process parameters are computationally generated based on
domain knowledge rather than measured from actual industrial sensors. While parameter ranges and
correlations are grounded in metallurgical principles, the deterministic relationships represent sim-
plified models of complex industrial processes that exhibit more stochastic and non-linear parameter
interactions in reality.

Defect Intensity Scoring Methodology: The intensity scores are derived from a regression model
trained on pixel-level segmentation masks rather than direct sensor measurements of defect severity.
This introduces potential bias from the model’s prediction errors and may not capture all aspects of
defect severity relevant to industrial decision-making.

Temporal Dynamics Absence: Industrial monitoring systems typically involve continuous time-
series sensor streams, but our dataset represents static snapshots without temporal dependencies.
This limits applicability to dynamic process control scenarios where temporal correlations are criti-
cal.

Artificial Class Balancing: The decision to limit each defect class to 200 samples creates artificial
balance that does not reflect realistic defect occurrence rates in industrial settings. The substantial
class imbalance in the original dataset (where defects are relatively rare) is more representative of
real-world manufacturing scenarios.

These limitations are acknowledged to provide transparent evaluation boundaries for the proposed
SteelNet framework and to guide future work toward industrial validation with real sensor data and
temporal dynamics.

2.2 SYSTEM DESIGN AND ALGORITHM

The SteelNet framework integrates multimodal representation learning with causal parameter attri-
bution to address two critical challenges in industrial process optimization: robust learning from
heterogeneous sensor data and identification of process parameters that contribute to defect forma-
tion.

2.2.1 ARCHITECTURE OVERVIEW

SteelNet employs a modular architecture comprising four key components: (1) a parameter encoder
that transforms raw sensor readings into rich feature representations, (2) a self-attention mechanism
that captures interdependencies between process parameters, (3) task-specific prediction heads for
defect classification and intensity regression, and (4) a parameter attribution network that identifies
causal relationships between process variables and defect outcomes.

The parameter encoder consists of a three-layer fully connected network with batch normalization
and dropout regularization:

h1 = ReLU(BN(Linear10→256(x
′))) (2)

h2 = ReLU(BN(Linear256→256(Dropout(h1)))) (3)
z = ReLU(BN(Linear256→128(Dropout(h2)))) (4)

2.2.2 INDUSTRIAL MODALITY DROPOUT STRATEGY

Real industrial environments frequently experience sensor failures. We implement following modal-
ity dropout strategy reflecting sensor failure patterns:

x′
i = xi · I(rand() > pi) (5)
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Figure 1: Parameter Importance across the datasets

Figure 2: SteelNet architecture overview showing the parameter encoder, self-attention mechanism,
and multi-task prediction heads with physics-informed constraints.

where pi represents sensor-specific failure probabilities: vibration (30%), temperature (25%), pres-
sure (20%), flow (18%), cleanliness (15%), load (12%), viscosity (12%), timer (8%), humidity
(10%).

2.2.3 MULTI-OBJECTIVE LOSS FUNCTION

The training objective combines four complementary loss terms:

Ltotal = αLclass + βLintensity + γLattr + δLsparse (6)
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Algorithm 1 SteelNet Training Algorithm

Require: Dataset D = {(xi, y
class
i , yintensityi , w∗

i )}Ni=1
Require: Hyperparameters α = 1.0, β = 0.5, γ = 0.3, δ = 0.1, learning rate η = 10−3

0: Initialize SteelNet parameters θ
0: Initialize AdamW optimizer with weight decay 10−4

0: for epoch = 1 to 50 do
0: for each batch B ⊂ D do
0: x′ ← ApplyModalityDropout(x, pbase = 0.2)
0: z ← ParameterEncoder(x′)
0: zatt ← SelfAttention(z)
0: zfinal ← z + zatt + 0.1 · PhysicsConstraint(z)
0: ŷclass, ŷintensity, ŵ ← PredictionHeads(zfinal)
0: Ltotal ← αLclass + βLintensity + γLattr + δLsparse

0: Update θ using AdamW with gradient clipping (max norm = 1.0)
0: end for
0: Early stopping if validation accuracy plateaus
0: end for=0

where Lclass is cross-entropy loss, Lintensity is MSE for defective samples only, Lattr compares pre-
dicted attributions with physics-based ground truth, and Lsparse encourages focused parameter attri-
bution.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

SteelNet was implemented in PyTorch with 547,973 trainable parameters. The dataset was split
using stratified sampling: 70% training (4,691 samples), 15% validation (1,005 samples), and 15%
testing (1,006 samples). Training used AdamW optimizer with cosine annealing schedule and early
stopping (patience=10).

4 RESULTS

4.1 CLASSIFICATION PERFORMANCE

SteelNet achieves strong performance across classification metrics:

Table 1: SteelNet classification performance on steel defect prediction task.
Metric Performance

Accuracy 0.892
Precision (weighted) 0.896
Recall (weighted) 0.892
F1-Score (weighted) 0.893

4.2 PARAMETER ATTRIBUTION ANALYSIS

The attribution network identifies process parameters that contribute most to each defect class, align-
ing with metallurgical principles:

Class 1 (Crazing): Curing temperature (34.5%) and ambient humidity (25.1%) as primary factors.

Class 2 (Inclusion): Surface cleanliness (39.8%) and water jet pressure (20.2%) receive highest
attribution.

Class 3 (Patches): Coating spray pressure (35.2%) and coating viscosity (25.1%) dominate.
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Figure 3: Confusion matrix & training curve showing classification performance across all defect
classes.

Class 4 (Pitted Surface): Ambient humidity (29.7%) and surface cleanliness (24.8%) show highest
importance.

Figure 4: Parameter attribution weights for each defect class showing importance patterns.
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4.3 ROBUSTNESS UNDER SENSOR DROPOUT

SteelNet maintains performance under realistic sensor failure conditions: 89.2% accuracy at base-
line, 87.4% at 10% dropout, 85.1% at 20% dropout, 82.3% at 30% dropout, and 76.8% at 50%
dropout.

Figure 5: Classification accuracy under varying sensor dropout rates demonstrating industrial ro-
bustness.

4.4 ABLATION STUDY

Component contributions to overall performance:

Table 2: Ablation study results showing individual component contributions.
Configuration Accuracy Attribution MSE

SteelNet (Full) 0.892 0.0156
w/o Self-Attention 0.876 (-1.6%) 0.0189 (+21%)
w/o Attribution Loss 0.883 (-0.9%) 0.0234 (+50%)
w/o Modality Dropout 0.857 (-3.5%) 0.0167 (+7%)
w/o Physics Constraints 0.885 (-0.7%) 0.0201 (+29%)

Self-attention provides the largest individual contribution (1.6% accuracy gain), while modality
dropout training is crucial for robustness (3.5% improvement). The attribution loss significantly
improves causal inference quality (50% reduction in attribution MSE).

5 DISCUSSION

5.1 IMPLICATIONS FOR INDUSTRIAL PROCESS OPTIMIZATION

SteelNet addresses fundamental challenges in industrial AI by learning robust multimodal repre-
sentations and providing interpretable insights for process optimization. The parameter attribution
mechanism offers actionable guidance by identifying which variables contribute most to defect for-
mation.

The approach demonstrates a pathway for developing AI systems that incorporate domain knowl-
edge while maintaining data-driven flexibility. The correlation between learned attributions and
expected physical relationships validates this hybrid approach.
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5.2 LIMITATIONS AND FUTURE DIRECTIONS

Synthetic Parameter Dependency: Process parameters are synthetically generated rather than mea-
sured from actual sensors. While grounded in metallurgical principles, real processes exhibit more
complex interactions.

Static Process Modeling: The approach treats samples independently without temporal dynamics.
Industrial control typically involves time-series analysis where previous states influence outcomes.

Limited Real-World Validation: The framework requires validation in actual industrial settings
with real sensor data and operational constraints.

Even with 30% sensor failure, the system keeps 82.3% accuracy, showing it can work in real indus-
tries.

AI DISCLOSURE

AI tools were used solely to improve the language and readability of this manuscript. All research
design, analysis, methods, and conclusions were developed and validated solely by the authors.
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A APPENDIX

A.1 DATASET CONSTRUCTION AND EXPLORATORY DATA ANALYSIS

This appendix provides additional details on the dataset construction methodology and comprehen-
sive exploratory data analysis that informed the SteelNet framework design.

A.1.1 VISUAL ANALYSIS OF STEEL SURFACE DEFECTS

The backbone dataset is fetched from the Severstal: Steel defect detection challenge on Kaggle
where the task was to defects of each class (ClassId = [1, 2, 3, 4]).

Figure 6: Representative steel surface image data from Severstal: Steel defect detection challenge
showing actual steel image and it’s mask
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Figure 7: Class Distribution in Severstal: Steel defect detection challenge dataset

A.2 DATA AUGMENTATION PIPELINE

The synthetic parameter generation process follows a multi-stage pipeline designed to create realistic
correlations between process variables and defect characteristics:

Stage 1: Base Parameter Generation For each sample with defect class c and intensity score s, base
parameter values are generated using class-specific ranges that reflect metallurgical knowledge:

pbasei = µ
(c)
i + s · (σ(c)

i − µnormal
i ) + ϵi (7)

where µ(c)
i represents the expected parameter value for defect class c, µnormal

i is the normal operat-
ing value, and ϵi ∼ N (0, 0.02 · |σ(c)

i − µnormal
i |) introduces realistic sensor noise.

A.2.1 STAGE 2: PARAMETER INTERACTION MODELING

Parameters are linked using fixed cause-and-effect rules:

padjpressure = min(pbasepressure · (1 + 0.1 · I(pviscosity > 120)), 3.0) (8)

padjtime = max(pbasetime · (0.9 + 0.1 · I(phumidity > 70)), 8.0) (9)

padjcleanliness = max(pbasecleanliness · (0.95 + 0.05 · I(pwater pressure < 160)), 60.0) (10)

A.2.2 STAGE 3: TEMPORAL DRIFT SIMULATION

Equipment degradation over time is simulated by applying multiplicative drift factors:

pfinali = padji · di (11)

where drift factors di are parameter-specific: water jet pressure d ∼ U(0.95, 1.0), vibration d ∼
U(1.0, 1.15), surface cleanliness d ∼ U(0.95, 1.0).

A.3 DATASET COMPOSITION ANALYSIS

The final dataset exhibits several key characteristics that validate the augmentation methodology:

Class Balance: The balanced sampling (200 samples per defect class, 6,502 non-defective) cre-
ates a 7.5% defect rate, slightly elevated from typical industrial rates (2-5%) to ensure sufficient
representation for learning.

12
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Figure 8: Dataset composition showing (a) class distribution with balanced sampling strategy, (b)
defect intensity score distribution across defective samples, (c & d) parameter value distributions
comparing defective vs. non-defective samples for key variables

Intensity Distribution: Defect intensity scores follow a right-skewed distribution (µ = 0.347,
σ = 0.198), consistent with industrial observations where severe defects are less frequent than
minor quality issues.

Parameter Separation: Clear distributional differences emerge between defective and non-
defective samples. For instance, surface cleanliness shows µnormal = 97.5 ± 1.8 vs. µdefective =
82.3± 8.4, indicating successful correlation modeling.

A.4 PARAMETER CORRELATION STRUCTURE

The correlation analysis reveals several important patterns:

Strong Physical Correlations: Vibration and drive load exhibit correlation r = 0.34, reflecting
mechanical coupling. Surface cleanliness correlates negatively with defect intensity (r = −0.52),
consistent with contamination effects.

Process Coupling: Coating spray pressure and viscosity show moderate correlation (r = 0.28),
reflecting equipment compensation mechanisms.

Environmental Effects: Ambient humidity correlates positively with curing time requirements (r =
0.19), capturing moisture-dependent process dynamics.

A.5 VALIDATION OF AUGMENTATION QUALITY

The augmentation methodology was validated through multiple criteria:

Physical Plausibility: Parameter ranges and correlations align with published metallurgical litera-
ture and industrial best practices.
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Figure 9: Parameter correlation matrix revealing both designed correlations (e.g., vibration-drive
load: r = 0.34) and emergent patterns from the multi-stage augmentation process.

Statistical Consistency: Generated distributions exhibit appropriate variance and skewness com-
pared to reported industrial sensor data.

Defect-Parameter Alignment: The correlation between synthetic parameters and defect character-
istics (R2 = 0.73 for defect intensity prediction using parameters alone) demonstrates meaningful
relationships.

Class Separability: Linear discriminant analysis achieves 84% accuracy using only process param-
eters, confirming sufficient class-specific signal.

These validation results provide confidence that the augmented dataset captures essential aspects of
steel rolling mill process dynamics while acknowledging the inherent limitations of synthetic data
generation.
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