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ABSTRACT

Most work on causality in machine learning assumes that causal relationships are
driven by a constant underlying process. However, the flexibility of agents’ ac-
tions or tipping points in the environmental process can change the qualitative
dynamics of the system. As a result, new causal relationships may emerge, while
existing ones change or disappear, resulting in an altered causal graph. To an-
alyze these qualitative changes on the causal graph, we propose the concept of
meta-causal states, which groups classical causal models into clusters based on
equivalent qualitative behavior and consolidates specific mechanism parameteri-
zations. We demonstrate how meta-causal states can be inferred from observed
agent behavior, and discuss potential methods for disentangling these states from
unlabeled data. Finally, we direct our analysis towards the application of a dy-
namical system, showing that meta-causal states can also emerge from inherent
system dynamics, and thus constitute more than a context-dependent framework
in which mechanisms emerge only as a result of external factors.

1 INTRODUCTION

Structural Causal Models (SCM) have become the de facto formalism in causality by representing
causal relations as structural equation models (Pearl (2009); Spirtes et al. (2000)). While SCM are
most useful for representing the intricate mechanistic details of systems, it can be challenging to de-
rive the general qualitative behavior that emerges from the interplay of individual equations. Talking
about the general type of relation emitted by particular mechanisms generalizes above the narrow
computational view and has the ability to inspect causal systems from a more general perspective.

In addition to that, causal graphs can be subject to change whenever novel mechanisms emerge or
vanish within a system. Prominently, agents can ‘break’ the natural unfolding of systems dynamics
by forecasting system behavior and preemptively intervening in the course of events. As inherent
parts of the environment, agents commonly establish or suppress the emergence of causal connec-
tions (Zhang & Bareinboim, 2017; Lee & Bareinboim, 2018; Dasgupta et al., 2019).

Consider the scenario shown in Figure 1 (left), where an agent A (with position AX ) follows an
agent B (with position BX ) according to its internal policy Aπ . We are interested in answering the
question ‘What is the cause of the current position of agent A?’. In general, the observed system
can be formalized as follows: AX := fA(BX , UA) and BX := fB(UB). Note that, from a classical
causal perspective, we observe B → A, since A self-conditions itself to follow B, by instantiating
the equation fA via its policy and thus becomes dependent on B. Classical causal considerations,
which only consider how relations between variables are constructed, cannot give the correct answer.
Only when we take a meta-causal stance and think about how equation fA came to be –how meta-
causal states induce qualitative changes in behavior–, we can give a sufficient answer to this question.

1



Published as a conference paper at ICLR 2025

Agent A Establishes Distance Constraint

Observed Causal Direction

A B
Classical Causal Relation
Meta-Causal Mechanism
Root Cause Attribution

Aπ

AX BX

AX BX

Classical Attribution Meta-Causal Attribution

Figure 1: Meta-Causality Identifies the Policy as a Meta Root Cause. Agent A intends to main-
tain its distance from agentB by conditioning its positionAX on the positionBX , which establishes
a control mechanism, AX := f(BX). In standard causal inference, we would infer BX → AX and,
therefore, B to be the root cause. Taking a meta-causal perspective reveals however, that Aπ estab-
lishes the edge BX → AX in the first place (Aπ → (BX → AX )) such that Aπ is considered the
root cause on the meta-level. (Best Viewed in Color)

Causal models do not exist in isolation, but emerge from the environmental dynamics of an underly-
ing mediation process (Hofmann et al., 2020; Arnellos et al., 2006). Changes in causal relations due
to intervention or environmental change are often assumed to be helpful conditions for identifying
causal structures (Pearl, 2009; Peters et al., 2016; Zhang & Bareinboim, 2017; Dasgupta et al., 2019;
Gerstenberg, 2024). These operations often work on the individual causal graphs, but never reason
about the emerging meta-causal structure that governs the transitions between the different SCM.
As a first formalization of metacausal models in this area, we describe how qualitative changes in
the causal graphs can be summarized by metacausal models.

Contributions and Structure. The contributions of this work are as follows:

• To the best of our knowledge, we are the first to formally introduce typing mechanisms
that generalize edges in causal graphs, and the first to provide a formalization of meta-
causal models (MCM) that are capable of capturing the switching type dynamics of causal
mechanisms.

• We present an approach to discover the number of meta-causal states in the bivariate case.

• We demonstrate that meta-causal models can be more powerful than classical SCM when
it comes to expressing qualitative differences within certain system dynamics.

• We show how meta-causal analysis can lead to a different root cause attribution than clas-
sical causal inference, and is furthermore able to identify causes of mechanistic changes
even when no actual change in effect can be observed.

We proceed as follows: In Section 2 we describe the necessary basics of Pearlian causality, mediation
processes, and typing assumptions. In Sec. 3 we introduce meta-causality by first formalizing meta-
causal frames, and the role of types as a generalization to a binary edge representations. Finally we
define meta-causal models that are able to capture the qualitative dynamics in SCM behavior. In
Sec. 4, we showcase several examples of meta-causal applications. Finally, we discuss connections
to related work in Sec. 5 and conclude our findings in Sec. 6.

2 BACKGROUND

Providing a higher-level perspective on meta-causality touches on a number of existing works that
leverage meta-causal ideas, even if not explicitly stated. We will highlight relations of these works
in the ‘Related Work’ of section 5. Here, we continue to provide the necessary concepts on causality,
mediation processes and typing, needed for the definitions in our paper:

Causal Models. A common formalization of causality is provided via Structural Causal Models
(SCM; (Spirtes et al., 2000; Pearl, 2009)). An SCM is defined as a tuple M := (U,V,F, PU),
where U is the set of exogenous variables, V is the set of endogenous variables, F is the set
of structural equations determining endogenous variables, and PU is the distribution over exoge-
nous variables U. Every endogenous variable Vi ∈ V is determined via a structural equation
vi := fi(pa(vi)) that takes in a set of parent values pa(vi), consisting of endogenous and exogenous
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variables, and outputs the value of vi. The set of all variables is denoted by X = U∪V with values
x ∈ X and N = |X |. Every SCMM entails a graph GM that can be constructed by adding edges
(Xi, Xj) ∈ X×X for each variable Xj ∈ X and its parents Xi ∈ Pa(Xj). This can be expressed
as an adjacency matrix A ∈ BN×N where Aij := 1 if (i, j) ∈ G and Aij := 0 otherwise.

Mediation Processes. Causal effects are embedded in an environment that governs the dynamics
and mediates between different causes and effects. To reason about the existence of causal relations,
we need to consider this process-embedding environment. We define a mediation process E =
(S, σ), adapted from Markov Decision Processes (Bellman (1957)) for our setting. Here, S is the
state space of the environment and σ : S → S is the (possibly non-deterministic) transition function
that takes the current state and outputs the next one. If we also have an initial state s0 ∈ S, we call
(E , s0) an initialized mediation process. As we are concerned with the general mediation process,
we omit the common notion of a reward function r. Furthermore, we omit an explicit action space
A and agents’ policy π and model actions directly as part of the transition function σ. In accordance
to considerations of Cohen (2022), this eases treatment of environment processes and agent actions
as now both are defined on the same domain. The emergence of SCM from mediation processes can
be studied under a measure-theoretic theory, as considered in Park et al. (2023). Similarly, Janzing
& Mejia (2022) discuss the role of elementary actions towards the constitution of causal variables.

Typing. In the following section, we will make use of an identification function I to determine the
presence or absence of edges between any two variables. In particular, one can make use of different
identification functions to identify different types of edges. Previous work on typing causality exists
(Brouillard et al., 2022), but primarily considers the types of variables that are causally related,
rather than the type of structural relation itself. Other works in the field of cognitive science consider
the perception of different types of mechanistic relations (e.g., ‘causing’, ‘enabling’, ‘preventing’,
‘despite’) based on the role that different objects play in physical scenes (Chockler & Halpern, 2004;
Wolff, 2007; Sloman et al., 2009; Walsh & Sloman, 2011; Gerstenberg, 2022). Since all objects are
usually governed by the same physical equations, this assignment of types serves to provide post
hoc explanations of a scene, rather than to identify inherent properties of its computational aspects.
Gerstenberg (2024) provides an ‘intuitive psychology’ example that fits well with our scenario.

3 META-CAUSALITY

Similar to Pearl & Mackenzie (2018), we define Meta-Causality to be the [science of] change in
qualitative cause-effect behavior. Usually, the mediating process may be too fine-grained to yield
interpretable models. Therefore, we consider a set of variables of interest X modeled by an SCM
and introduced by an abstraction φ : S → X . (We provide a brief discussion on the emergence of
SCM from mediating processes in Appendix A). Here, φ could be defined as a summarization or
causal abstraction over the state space (Rubenstein et al., 2017; Beckers & Halpern, 2019; Anand
et al., 2022; Wahl et al., 2023; Kekić et al., 2023; Willig et al., 2023). In order to identify the type of
causal relations from a mediating process, we need to be able to decide on what constitutes a type.
Definition 1 (Meta-Causal Frame). For a given mediation process E = (S, σ) a meta-causal frame
is a tuple F = (E ,X, (τ ij), I) with:

• type-encoders τ ij : X i×XS → T that assign a type t ∈ T to the functional dependence
ofXj onXi, induced by the underlying process (S, σ). This relation is between X i (values
of Xi) and the abstraction of the transition function φ ◦ σ ∈ XS = {ψ : S → X}.

• an identification function I : S ×X×X→T with I(s,Xi, Xj) 7→ t := τ ij(φ(s), φ ◦ σ)
that assigns a type to every pair of causal variables for any state of the environment.

Types generalize the role of edges in causal graphs, while type encoders τ ij determine the particular
type of edges from properties of the underlying functional relations φ◦σ. In most classical scenarios,
the co-domain T of the type encoder τ ij is chosen to be Boolean, representing the existence or
absence of edges. In other cases, different values t ∈ T can be understood as particular types of
edges, like positive, negative, or the absence of influence. This will help us to distinguish meta-
causal states that share the same graph adjacency. The only requirement for T is that it must contain
a special value 0 , which indicates the total absence of an edge. Meta-causal states now generalize
the idea of binary adjacency matrices. We, intentionally, do not restrict the identification function in
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any way. However, particular choices, e.g. functions identifying only direct causal effects, are more
likely to result in classical SCM. We provide a short discussion on this in Appendix B.
Definition 2 (Meta-Causal State). In a meta-causal frame F = (E ,X, τ ij , I), a meta-causal state
is a matrix T ∈ T N×N . For a given environment state s ∈ S, the actual meta-causal state Ts has
the entries Ts,ij := I(s,Xi, Xj) = τ ij(φ(s), φ ◦ σ).

A meta-causal state T ∈ T N×N represents a graph containing edges eij of a particular type t ∈ T .
In particular Tij indicates the presence (Tij ̸= 0 ) or absence (Tij = 0 ) of individual edges. Our goal
for meta-causal models (MCM) is to capture the dynamics of the underlying model. In particular, we
are interested in modeling how different meta-causal states transition into each other. This behavior
allows us to model them in a finite-state machine (Moore et al., 1956):
Definition 3 (Meta-Causal Model). For a meta-causal frame F = (E ,X, σ, I), a meta-causal
model is a finite-state machine defined as a tuple A = (T N×N ,S, δ), where the set of meta-causal
states T N×N is the set of machine states, the set of environment states S is the input alphabet, and
δ : T N×N ×S → T N×N is a transition function.

Usually, we have the objective to learn the transition function δ for an unknown state transition
function σ. The state transition function δ can be approximated as δ(T, s) := I(σ(T, s), Xi, Xj) =
τ ij(φ(s), φ ◦ σ(T, s)).
As standard causal relations emerge from the underlying mediation process, the meta-causal states
emerge from different types of causal effects. The transition conditions of the finite-state machine
are the configurations of the environment where the quality of some environmental dynamics repre-
sented by a type t ∈ T changes.

Inferring the Meta-Causal States. Even if the state transition function is known, it may be un-
clear from a single observation which exact meta-causal state led to the generation of a particular
observation S. This is especially the case when two different meta-causal states can fit similar en-
vironmental dynamics. Even in the presence of latent factors (e.g., an agent’s internal policy), the
current dynamics of a system (e.g., induced by the agent’s current policy) can sometimes be in-
ferred from a series of observed environment states. This requires knowledge of the meta-causal
dynamics, and is subject to the condition that sequences of observed states uniquely characterize the
meta-causal state. Since MCM are defined as finite state machines, the exact condition for identi-
fying the meta-causal state is that observed sequences are homing sequences (Moore et al., 1956).
Note that the following example of a game of tag presented below exactly satisfies this condition,
where the meta-causal states produce disjoint sets of environment states (‘agent A faces agent B’,
or ‘agent B faces agent A’), and thus can be inferred from either a single observation, when move-
ment directions are observed, or two observations, when they need to be inferred from the change in
position of two successive observations.

‘Game of Tag’ Example. Consider an idealized game of tag between two agents, with a simple
causal graph and two different meta-states. In general, we expect agent B to make arbitrary moves
that increase its distance to A, while A tries to catch up to B, or vice versa. In essence, this is
a cyclic causal relationship between the agents, where both states have the same binary adjacency
matrix. Note, however, that the two states differ in the type of relationship that goes from A to B
(and B to A). We can use an identification function that analyzes the current behavior of the agents
to identify each edge. Since A can tag B, the behavior of the system changes when the directions of
the typed arrows are reversed, so that the type of the edges is either ‘escaping’ or ‘chasing’.

While the underlying policy of an agent may not be apparent from observation as an endogenous
variable, it can be inferred by observing the agents’ actions over time. Knowing the rules of the
game, one can assume that the encircling agent faces the other agent and thus moves towards it,
while the fleeing agents show the opposite behavior:

(tB→A = “A Chasing”) ⇐⇒ (Ȧpos · (Bpos −Apos) > 0)

where Ȧpos is the velocity vector of agent A (possibly computed from the position of two consecu-
tive time steps); Apos and Bpos are the agent positions, and · is the dot product. Once the edge types
are known, the policy can be identified immediately.

Causal and Anti-Causal Meta-Causal States. Assigning meta-causal states to particular system
observations can be understood as labeling the individual observations. However, it is generally
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unclear whether the meta-causal state has an observational or a controlling character on the system
under consideration. One could ask the question whether the system dynamics cause the meta-
causal state, whether the meta-causal state causes the system dynamics, (or whether they are actually
the same concept), similar to the well-known discussion “On Causal and Anticausal Learning” by
Schölkopf et al. (2012), but from a meta-causal perspective.

At this point in time, we cannot give definitive conditions on how to answer this question, but we
present two examples that support either one of two opposing views. First, in Sec. 4.3 we present
a scenario of a dynamical system where the structural equations of both meta-causal states are the
same, since the system dynamics are governed by its self-referential system dynamics. Intervening
on the meta-causal state will therefore have no effect on the underlying structural equations, and
thus can have no effect on the actual system dynamics. In such scenarios, the meta-causal is rather
a descriptive label and cannot be considered an external conditioning factor. In the following, we
discuss the opposite example, where a meta-causal state can be modeled as an external variable
conditioning the structural equations.

Role of Contextual Independencies. Changes in the causal graph are often attributed to changes
in the environment modeled by some exogenous variables Z, as, for example, leveraged with the
invariant causal prediction (Peters et al., 2016). In this case, we get MCM where the transition
function only contains self-loops. This makes it clear that MCM are a more general tool in analyzing
meta-causal structures. If we introduce a ‘no-edge’ type t = 0 for this scenario, a meta-causal
model can describe the condition that Xi and Xj are contextually independent for some Z = z. For
a suitable type-encoder with a surjective mapping ψ : Z → T N×N and a given family of compatible
(see Appendix C) decomposed structural equations (fzij)z∈Z we have fzj :=⃝i∈1..Nfij |Z and

fij |Z :=

{
fzij if ψ(z)ij ̸= 0

(< ∗) otherwise
(1)

where fzij are the structural equations of the edge eij that are active under the environment Z and
(in a slight imprecision in the actual definition) (< ∗) is the function that carries on the previous
function of the composition and discards Xj . While the ‘no-edge’ type 0 could be handled like
any other type, we have listed it for clarity such that individual variables Xi become contextually
independent whenever fij |Z = 0 . We provide conditions for the reduction of MCM in Appendix D.

4 APPLICATIONS

In this section, we discuss several applications of the meta-causal formalism. First, we revisit the
motivational example and consider how meta-causal models can be used to attribute responsibility.
Next, we identify the presence of multiple mechanisms for the bivariate case from sets of unlabeled
data. Finally, we analyze the emergence of meta-causal states from a dynamical system, highlighting
that meta-causal states are more expressive than simple conditionings of the adjacency matrix. Code
is made available at https://github.com/MoritzWillig/metaCausalModels.

4.1 ATTRIBUTING RESPONSIBILITY

Consider again the motivational example of Figure 1, where an agent A with position AX follows
an agent B with position BX as dictated by its policy Aπ . In this scene, we can imagine a counter-
factual scenario in which we replace the ‘following’ policy of agent A with, e.g., a ‘standing still’
policy and find that the BX → AX edge vanishes. As a result, we infer the meta-causal mecha-
nism Aπ → (BX → AX ) for the system and thus Aπ as the root cause of for values of AX . In
conclusion, while A is conditioned on B on a low level, the meta-causal reason for the existence of
the edge B → A is caused by the Aπ . Both attributions, tracing back causes through the structural
equations AX := f(BX) or our meta-causal approach, are valid conclusions in their own regard.

Note that in this scenario, a classic counterfactual consideration, AAπ=standing still
X − AAπ=following

X ,
would also have inferred an effect of Aπ on AX from a purely value-based perspective. Attributing
effects via observed changes in variable values is a valid approach, but it fails to explain preventa-
tive mechanisms. For example, consider the simple scenario where two locks prevent a door from
opening. Classical counterfactual analysis would attribute zero effect to the opening of either lock.
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d = 0.0 d = 0.1 d = 0.2

k∗
k′ - 1 2 3 4 - 1 2 3 4 - 1 2 3 4

1 2 81 3 7 7 2 85 3 7 3 1 83 3 8 5
2 41 1 54 4 0 43 1 48 8 0 49 1 47 3 0
3 68 0 4 22 6 63 0 2 30 5 77 2 0 13 8
4 92 0 0 1 7 89 0 0 2 9 87 0 1 5 7

Table 1: Confusion Matrices for Identifying Meta-Causal Mechanisms. The table shows iden-
tification results for predicting the number of mechanisms for the bivariate case for 100 randomly
sampled meta-causal mechanisms. d is the maximum sample deviation from the average mechanism
probability. Rows indicate the true number of mechanisms, while columns indicate the algorithms’
predictions. ‘-’ indicates setups where the algorithm did not make a decision. In general, the algo-
rithm is rather conservative in its predictions. In all cases where a decision is made, the number of
correct predictions along the diagonals dominate. The first and second most frequent predictions are
marked in green and orange, respectively. (Best Viewed in Color)

A meta-causal perspective would reveal that the opening of the first lock already changes the meta-
causal state of the model by removing its causal mechanisms that condition the state of the door.
In a sense, our meta-causal causal perspective is similar to that of the actual causality framework
(Halpern, 2016; Chockler & Halpern, 2004). However, actual causality operates at the ‘actual’, i.e.
value-based, level and does not take the mechanistic meta-causal view into perspective. Meta-causal
models already allow us to reason about causal effects after opening the first lock due to a change in
the causal graph, without us having to consider the effects of opening the second lock at some point
to reach that conclusion.

4.2 DISCOVERING META-CAUSAL STATES IN THE BIVARIATE CASE

Our goal in this experiment is to recover the number of meta-causal states K ∈ [1..4] from data
that exists between two variables X,Y that are directly connected by a linear equation with added
noise. We assume that each meta-causal state gives rise to a different linear equation fk := αkX +
βk + N , k ∈ N, where αk, βk are the slope and intercept of the respective mechanism and N is
a zero-centered, symmetric, and quasiconvex noise distribution1. Without loss of generality, we
apply Laplacian noise, for which an L1-regression can estimate the true parameters of the linear
equations (Hoyer et al., 2008). The causal direction of the mechanism is randomly chosen between
different meta-causal states. The exact sampling parameters and plots of the resulting distributions
are described in Sec. G (and plots of sample distributions are shown in Fig. 3 in the Appendix). In
general, this scenario corresponds to the setting described above of inferring the values of a latent
variable Z (with K = |Z|) that indicate a particular meta-causal state of the system. Our goal is to
recover the number of parameterizations of the causal mechanisms, and as a consequence to be able
to reason about which points were generated by which mechanism.

Approach. The problem we are trying to solve is twofold : first, we are initially unaware of the
underlying meta-causal state t that generated a particular data point (xi, yi), which prevents us from
estimating the parameterization (αk, βk) of the mechanism. Conversely, our lack of knowledge
about the mechanism parameterizations (αk, βk)k∈[1..K] prevents us from assigning class probabil-
ities to the individual data points. Since neither the state assignment nor the mechanism parameteri-
zations are initially known, we perform an Expectation-Maximization (EM; Dempster et al. (1977))
procedure to iteratively estimate and assign the observed data points to the discovered meta-causal
state parameterizations. Due to the local convergence properties of the EM algorithm, we further
embed it into a locally optimized local random sample consensus approach (LO-RANSAC; Fischler
& Bolles (1981); Chum et al. (2003)). RANSAC approaches repeatedly sample initial parameter
configurations to avoid local minima, and successively perform several steps of local optimization -
here the EM algorithm - to regress the true parameters of the mechanism.

1Implying unimodality and monotonic decreasing from zero allows us to distinguish the noise mean and
intercept and to recover the parameters from a simple linear regression
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Analysis Type 1 Mechanism 2 Mech. 3 Mech. 4 Mech.
Max. Class Theoretical 1 23 363 8,179

Deviation = 0.0 Empirical 2 8 24 173
Max. Class Theoretical 1 26 429 10,659

Deviation = 0.1 Empirical 2 8 25 177
Max. Class Theoretical 1 30 526 14,859

Deviation = 0.2 Empirical 2 8 26 177

Table 2: Estimated Number of Required Resamples for Obtaining a 95% Convergence Rate
with the LO-RANSAC Algorithm per Number of Mechanisms and Maximum Class Deviation.
The empirical observed convergence rates of the EM algorithm drastically reduce the theoretical
derived bound of required samples. This reveals that convergence assumptions where chosen to be
quite conservative, and attests a good fit of the EM algorithm for regressing mechanism parameters.

Assuming for the moment that the correct number of mechanisms k∗ has been chosen, we assume
that the EM algorithm is able to regress the parameters of the mechanisms, α∗

k, β
∗
k , whenever there

exists a pair of points for each of the mechanisms, where both points of the pair are samples gener-
ated by that particular mechanism. The chances of sampling such an initial configuration decrease
rapidly with an increasing number of mechanisms (e.g. 0.036% probability for k = 4 and equal
class probabilities). Furthermore, we assume that the sampling probabilities of the individual mech-
anisms in the data can deviate from the mean by up to a certain factor d. In our experiments, we
consider setups with d ∈ {0.0, 0.1, 0.2}. Given the number of classes and the maximum sample de-
viation of the mechanisms, one can compute an upper bound on the number of resamples required to
have a 95% chance of drawing at least one valid initialization. The bound is maximized by assigning
the first half of the classes the maximum deviation probability Pk-max = (1 + d)/k and the other
half the minimum deviation probability Pk-min = (1− d)/k. We provide the formulas for the upper
bound estimation and in Sec. E in the Appendix and provide the calculated required resample counts
in Table 2. In the worst case, for a scenario with k = 4 mechanisms and d = 0.2 maximum class
probability deviation, nearly 14, 900 restarts of the EM algorithm are required, drastically increasing
the potential runtime.

In our experiments, we find that our assumptions about EM convergence are rather conservative. Our
evaluations show that the EM algorithm is still likely to be able to regress the true parameters, given
that some of the initial points are sampled from incorrect mechanisms. We measure the empirical
convergence rate by measuring the convergence rate of the EM algorithm over 5,000 different setups
(500 randomly generated setups with 10 parameter resamples each). We perform 5 EM steps for
setups with k = 1 and k = 2 mechanisms, and increase to 10 EM iterations for 3 and 4 mechanisms.
For each initialization, we count the EM algorithm as converged if the slope and intercept of the true
and predicted values do not differ by more than an absolute value of 0.2.

Determining the Number of Mechanisms. The above approach is able to regress the true parame-
terization of mechanisms when the real number of parameters k∗ is given. However, it is still unclear
how to determine the correct k∗. Computing the parameters for all k ∈ K and comparing for the
best goodness of fit is generally a bad indicator for choosing the right k, since fitting more mecha-
nisms usually captures additional noise and thus reduces the error. In our case, we take advantage
of the fact that we assumed the noise to be Laplacian distributed. Thus, the residuals of the samples
assigned to a particular mechanism can be tested against the Laplacian distribution.

The EM algorithms return the estimated parameters α′
k, β

′
k, and the mean standard deviation b′k of

the Laplacian2. This allows one to compute the class densities k(xi, yi;α′
k, β

′
k, b

′
k) for a pair of

values (xi, yi). Since the assignment of mechanisms to a data point may be ambiguous due to the
overlap in the estimated PDFs, we normalize the density values of all mechanisms per data point
and consider only those points for which the probability of the dominant mechanism is 0.4 higher
than the second class: (xj ,yj) := ((xi, yi)|#1 = j; f#2

i < P#1
i × (1− 0.4)), where #n indicates

the class with the n-th highest density value. Finally, the residuals yj − f ′jk (xj ,yj ;α′
k, β

′
k, b

′
k) are

2Since mechanisms can go in both directions, X → Y and Y → X (cyclic relations are not considered),
we repeat the regression for both directions and use an Anderson-Darling test (Anderson & Darling, 1952) on
the residual to test which of the distributions more closely resembles a Laplacian distribution at each step.
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computed for all data points (xj ,xj) assigned to a particular predicted mechanism f ′jk . We choose
the parameterization that best fits the data for each k ∈ [1..4] and, make use of the Anderson-Darling
test (Anderson & Darling, 1952) to test the empirical distribution function of the residuals against
the Laplacian distribution with an α = 0.95 using significance values estimated by Chen (2002).
If all residual distributions of all mechanisms for a given k′ pass the Anderson-Darling test, we
choose that number as our predicted number of mechanisms. If the algorithm finds that none of the
k ∈ [1..4] setups pass the test, we refrain from making a decision. We provide the pseudo code for
our method in Algorithm. 1 in the Appendix.

Evaluation and Results. We evaluate our approach over all k ∈ [1..4] by generating 100 different
datasets for every particular number of mechanisms. For every dataset we sample 500 data points
from each mechanism (xki , y

k
i ) = fk(αkx

k
i +βk+ li) where li ∼ L(0, bk), using the same sampling

method as before (c.f. Appendix G). Finally, the algorithm recovers the number of mechanisms.

We compare theoretically computed and empirical in convergence results in Table 2. In practice, we
observe that the convergence of the EM algorithm is more favorable than estimated, reducing from
23 to 8 required examples for the simple case of k = 2, d = 0.0, and requiring up to 83-times fewer
samples for the most challenging setup of k = 4, d = 0.2, reducing from a theoretical of 14,859
to an empirical estimate of 177 samples. The actual convergence probabilities and the formula for
deriving to sample counts are given in Table 3 and Sec. F of the Appendix.

Table 1 shows the confusion matrices between the actual number of mechanism and the predicted
number for different values of maximum class imbalances. In general, we find that our approach is
rather conservative when in assigning a number of mechanisms. However, when only considering
the cases where the number of mechanisms is assigned, the correct predictions along the main di-
agonal dominate with over 60% accuracy for k = 4 and d ∈ {0.0, 0.1} and rising above 80% for
k ̸= 4 for. In the case of d = 0.2, the results indicate higher confusion rates with 41.6% accuracy
for the overall worst case of K = 4.

Extension to Meta-Causal State Discovery on Graphs. Our results indicate that identifying meta-
causal mechanisms even in the bivariate case comes with an increasing number of uncertainty when
it comes to increasing numbers of mechanisms. Given that the number of mechanisms could be
reliably inferred from data for all variables, the meta-causal states could be identified as all unique
combinations of mechanisms that are jointly active at a certain point in time. To recover the full set
of meta-causal states, one needs to be able to simultaneously estimate the triple of active parents
for every mechanism, the mechanisms parameterizations, and the resulting meta-state assignment
of all data points for every meta-state of the system. All of the three components can vary between
each meta-causal state (e.g. edges vanishing or possibly switching direction, thus altering the parent
sets). Note that whenever any of the three components is known, the problem becomes rather trivial.
However, without making any additional assumptions on the model or data and given the results
on the already challenging task of identifying mechanisms in the bivariate case, the extension to a
unsupervised full-fledged meta-causal state discovery is not obvious to us at the time of writing and
we leave it to future work to come up with a feasible algorithm.

4.3 A META-STATE ANALYSIS ON STRESS-INDUCED FATIGUE

Stress is a major cause of fatigue and can lead to other long-term health problems (Maisel et al.,
2021; Franklin et al., 2012; Dimsdale, 2008; Bremner, 2006). While short-term exposure may be
helpful in enhancing individual performance, long-term stress is detrimental and resilience may
decline over time (Wang & Saudino, 2011; Maisel et al., 2021). While actual and perceived stress
levels (Cohen et al., 1983; Bremner, 2006; Schlotz et al., 2011; Giannakakis et al., 2019) may vary
between individuals (Calkins, 1994; Haggerty, 1996), the overall effect remains the same. We want
to model such a system as an example. For simplicity, we present an idealized system that is radically
reduced to the only factors of external stress, modeling everyday environmental factors, and the self-
influencing level of internal/perceived stress.

While being rather simple in setup, the example serves as a good demonstration on how dynamical
systems induce meta-causal states that exhibit qualitative different behavior, while employing the
same set of underlying structural equations. As such, the inherent behavior of the system is not
only due to a conditioning external factor. We use an identification function to distinguish between
two different modes of operation of a causal mechanism. In particular, we are interested whether
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Figure 2: Mechanistic Decomposition as Meta-Causal States. (left) The effect of the stress level
on itself (orange) plotted against the identity (blue; corresponding to a non-self-reinforcing effect).
Once a certain threshold is reached, the function switches its behavior from self-suppressing to a
self-reinforcing effect. (center) Contribution of the stress level mechanism for varying external
stressors. Red arrows indicate a self-reinforcing effect, while green arrows indicate a suppressive
effect. The gray area highlights the system configuration without external stressors. Although all
states are governed by the same structural equations, our meta-causal analysis identifies the mech-
anistic difference and decomposes the corresponding initial conditions into different meta-causal
states. (right) The standard SCM gets decomposed into different meta-causal states. While the
graph adjacency remains the same, the different starting conditions identify different behavioral
types of the causal mechanism. (Best viewed in color.)

the inherent dynamics of the internal stress level are self-reinforcing or self-suppressing. For easier
analysis of the system we decompose the dynamics of the internal stress variable into a ‘decayed
stress’ d and ‘resulting stress’ s computation. The first term are the previous stress levels decayed
over time with external factors added. The resulting stress is then the output of a Sigmoidal function
(Fig. 2, left) that either reinforces or suppresses the value (Fig. 2,center). The structural equations
are defined as follows and we assume that all values lie in the interval of [0, 1]:

fd := 0.95 clip[0,1](s
′ + 0.5× ext.Stress) and fs := 1.01(

1

1 + exp(−15x+ 7.5)
− 0.5) + 0.5

where s and d are the resulting and decayed stress levels, and s′ is the previous stress level of s.

We now define the identification function to be I := sign(f̈s), where f̈s is the second order deriva-
tive of the Sigmoidal fs, with either positive or negative effect on the stress level. The described
system has two stable modes of dynamics. Note how the second-order inflection point at 0.5 of the
Sigmoid acts as a transition point on the behavior of the mechanism. Stress values below 0.5 get
suppressed, while values above 0.5 are amplified. Transitions between the two stable states can only
be initiated via external stressors. Effectively this results in three possible meta-causal states which
are governed via the following transition function:

σ : (t, s) 7→
[
1 a
0 0

]
with a := sign(f̈s) = sign(s− 0.5) ∈ {−1, 0, 1}

Role of Latent Conditioning. A key takeaway of this example is that the current meta-state persists
due to the inherent stress level and dynamics of the system. In contrast to other examples where
system dynamics where purely due to the meta-causal state, variable values play a role in the overall
system dynamics. As a result, the stressed state of a person would persist even when the initiating
external stressors disappear. Intervening on the meta-causal state of the system is now ill-defined,
as both positive and negative reinforcing effects are governed by the same equation. Thus, creating
a disparity between the intervened meta-causal state and the systems’ identified functional behavior.

5 RELATED WORK

Causal Transportability and Reinforcement Learning. Meta-causal models cover cases that re-
duce to conditionally dependent causal graphs due to changing environments (Peters et al., 2016;
Heinze-Deml et al., 2018), but also extend beyond that for dynamical systems. In this sense, the
work of Talon et al. (2024) takes a meta-causal view by transporting edges of different causal effects
between environments. In general, the transportability of causal relations (Zhang & Bareinboim,
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2017; Lee & Bareinboim, 2018; Correa et al., 2022) can be thought of as learning identification
functions that identify general conditions of the underlying processes to transfer certain types of
causal effects between environments Sonar et al. (2021); Yu et al. (2024); Brouillard et al. (2022).
This has been studied to some extent under the name of meta-reinforcement learning, which attempts
to predict causal relations from the observations of environments Sauter et al. (2023); Dasgupta et al.
(2019). Generally, transferability has been considered in reinforcement learning, where the efficient
use of data is omnipresent and causality provides guarantees regarding the transferability of mecha-
nisms between environments (Sæmundsson et al., 2018; Dasgupta et al., 2019; Zeng et al., 2023).

Gating Models. Modeling switching causal relations (Liu et al., 2023) via so called ‘gates’ has
been considered in prior works Minka & Winn (2008); Winn (2012). While MCMs extend beyond
context-specific independencies, gates pose a practical way of modeling switching relations in cases
where MCMs can be reduced to context-conditioned SCM.

Large Language Models (LLMs). Meta-causal representations are an important consideration
for LLMs and other foundation models, since these models are typically limited to learning world
dynamics from purely observational textual descriptions. LLMs need to learn meta-causal models
that allow them to simulate the consequences of interventions (Lampinen et al., 2024; Li et al.,
2021; 2022). To the best of our knowledge, Zečević et al. (2023) made the first attempt to define
explicit meta-causal models that integrate with the Pearlian causal framework. However, their MCM
are purely defined as adjacency matrix memorization, such that causal reasoning in LLMs equals a
simple knowledge recall (X → Y )⇔ (eXY ∈ Mem) and thus fails to generalize to novel scenarios.

Actual Causality, Attribution and Cognition. Our MCM framework can be used to infer and at-
tribute responsibility, as shown in Sec. 4.1, and therefore touches on the topics of fairness, actual
causation (AC) and work on counterfactual reasoning in cognitive science. (Von Kügelgen et al.,
2022; Karimi et al., 2021; Halpern, 2000; 2016; Chockler & Halpern, 2004; Gerstenberg et al., 2014;
Gerstenberg, 2024). The similarities also extend to how MCM encourage reasoning about the de-
pendence between actual environmental contingencies and qualitative types of causal mechanisms.
In this sense, MCM allow for the direct characterization of actual causes of system dynamics types,
but a rigorous formalization is open for future work. While AC in combination with classical SCM
only describes relationships between causal variable configurations and observable events, there are
cases where we can take an MCM and derive an SCM that encodes the meta-causal types with
instrumental variables, thus allowing a similar meta-causal analysis within the AC framework.

6 CONCLUSION

We formally introduced meta-causal models that are able to capture the dynamics of switching causal
types of causal graphs and, in many cases, better express the qualitative behavior of the system
under consideration. Within MCM, types generalize the notion of specific structural equations and
abstract away unnecessary detail. We presented a motivating example of how a classical causal
and a meta-causal inference might disagree on the attribute of root causes. We extended claims by
considering that MCM are still able attribute changes in mechanistic behavior of a system, even
when no actual changes becomes apparent. We presented a first approach to recover meta-causal
states in the bivariate case. Although our experimental results only represent a first preliminary
approach, we find that MCM are a powerful tool for modeling, reasoning, and inferring system
dynamics. We demonstrated how MCM can be deployed dynamical systems and proved that they
extend beyond conventional SCM.

Limitations and Future Work. While we have formally introduced meta-causal models, there
remain several open directions to pursue, which we briefly touch on in Appendix H. We have been
able to provide examples that illustrate the differences between standard causal, and meta-causal
attribution. In particular, the combined application of standard and meta-causal explainability will
allow for the joint consideration of actual and mechanistic in future attribution methods. However,
our approach to recovering meta-causal states from unlabeled data is open to extension. Discovery
on the full causal graphs is a desirable goal that is difficult to achieve for the reasons discussed
in this paper. Finally, we made a first attempt to present examples for and against the controlling
or observational role of meta-causal models, which we briefly discuss further in Appendix I. While,
the presented observational perspective on MCM is mainly of interest for analytical applications, the
application to agent systems and reinforcement learning might open up further fields of application.
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Ondřej Chum, Jiřı́ Matas, and Josef Kittler. Locally optimized ransac. In Pattern Recognition: 25th
DAGM Symposium, Magdeburg, Germany, September 10-12, 2003. Proceedings 25, pp. 236–243.
Springer, 2003.

Sheldon Cohen, Tom Kamarck, and Robin Mermelstein. A global measure of perceived stress.
Journal of health and social behavior, pp. 385–396, 1983.

Taco Cohen. Towards a grounded theory of causation for embodied ai. arXiv preprint
arXiv:2206.13973, 2022.

11



Published as a conference paper at ICLR 2025

Juan D Correa, Sanghack Lee, and Elias Bareinboim. Counterfactual transportability: a formal
approach. In International Conference on Machine Learning, pp. 4370–4390. PMLR, 2022.

Ishita Dasgupta, Jane Wang, Silvia Chiappa, Jovana Mitrovic, Pedro Ortega, David Raposo, Edward
Hughes, Peter Battaglia, Matthew Botvinick, and Zeb Kurth-Nelson. Causal reasoning from
meta-reinforcement learning. arXiv preprint arXiv:1901.08162, 2019.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1–22, 1977.

Joel E Dimsdale. Psychological stress and cardiovascular disease. Journal of the American College
of Cardiology, 51(13):1237–1246, 2008.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the ACM, 24
(6):381–395, 1981.

Tamara B Franklin, Bechara J Saab, and Isabelle M Mansuy. Neural mechanisms of stress resilience
and vulnerability. Neuron, 75(5):747–761, 2012.

Tobias Gerstenberg. What would have happened? counterfactuals, hypotheticals and causal judge-
ments. Philosophical Transactions of the Royal Society B, 377(1866):20210339, 2022.

Tobias Gerstenberg. Counterfactual simulation in causal cognition. Trends in Cognitive Sciences,
2024.

Tobias Gerstenberg, Noah Goodman, David Lagnado, and Josh Tenenbaum. From counterfactual
simulation to causal judgment. In Proceedings of the annual meeting of the cognitive science
society, volume 36, 2014.

Giorgos Giannakakis, Dimitris Grigoriadis, Katerina Giannakaki, Olympia Simantiraki, Alexandros
Roniotis, and Manolis Tsiknakis. Review on psychological stress detection using biosignals.
IEEE transactions on affective computing, 13(1):440–460, 2019.

Robert J Haggerty. Stress, risk, and resilience in children and adolescents: Processes, mechanisms,
and interventions. Cambridge University Press, 1996.

Joseph Y Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelligence Research, 12:
317–337, 2000.

Joseph Y Halpern. Actual causality. MiT Press, 2016.

Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. Invariant causal prediction for
nonlinear models. Journal of Causal Inference, 6(2):20170016, 2018.

Stefan G Hofmann, Joshua E Curtiss, and Steven C Hayes. Beyond linear mediation: Toward a
dynamic network approach to study treatment processes. Clinical Psychology Review, 76:101824,
2020.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
causal discovery with additive noise models. Advances in neural information processing systems,
21, 2008.

Dominik Janzing and Sergio Hernan Garrido Mejia. Phenomenological causality. arXiv preprint
arXiv:2211.09024, 2022.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from coun-
terfactual explanations to interventions. In Proceedings of the 2021 ACM conference on fairness,
accountability, and transparency, pp. 353–362, 2021.
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APPENDIX FOR “SYSTEMS WITH SWITCHING CAUSAL RELATIONS: A
META-CAUSAL PERSPECTIVE”

The appendix is structured as follows: In Sec. A we describe the general emergence of causal re-
lations in SCM from the underlying mediating process. In Sec. B we discuss desirable classes of
identification functions. In Sec. C we consider the existence and compatibility of decomposed equa-
tions. In Sec. D we prove a condition for the reduction for meta-causal models to conditioned SCM.
In Sec. E we derive the formula for the theoretical upper bound of the 95% confidence interval.
Sec F present the sample statistics and convergence results of the applied LO-RANSAC algorithm.
In Sec. G we present the exact parameters for sampling bivariate meta-causal mechanism data. In
Sec. H we discuss further practical applications of meta-causal models. Finally, in Sec. I, we discuss
possible assertive properties of meta-causal models.

A EMERGENCE OF CAUSAL EFFECTS FROM MEDIATING PROCESSES

The definition of a meta-causal frames (Def. 1) grounds the emergence of standard SCM to an under-
lying mediating process E . In particular, for any meta-causal frame, particular causal interactions are
read via the identification function. While the underlying mediation process is time-dependent, the
resulting causal graph is the projection of all causal interactions within the process onto a graphical
structure. Note, however, that the resulting SCM still preserves the sequence of causal interactions
through the DAG induced partial ordering of variables. This ‘logical’ time ordering (induced via the
partial order) can be seen as an abstraction of the underlying process.

B DESIRABLE CLASSES OF IDENTIFICATION FUNCTIONS

Particular choices of different identification functions will result in different identified meta-causal
states. However, from a classical causal perspective it might be desirable to choose particular classes
of functions to identify faithful SCM. In particular, one could ask the question whether indirect
effects are of interest and should also be identified by the identification function. Consider a scenario
where three variables X,Y, Z are considered as part of an to-be-identified SCM from an underlying
process. In our scenario we identify the direct causal effects X → Y and Y → Z and –under the
assumption that no further direct edges can be identified–, assume the graph to be faithful and we do
not identify the indirect causal relation X → Z. This however changes, once variable Y is dropped
out of the variable set X of the SCM. Now, with the same underlying mediating process we want
our identification function to identify X → Z, which was omitted before. Generally, we assume
that in most cases identification function that identify direct causal effects with regard to X are the
most common.

Following this rather high-level discussion, we frame the previous procedure in terms of the iden-
tification function and functional relation. Given all functional relations XS , the type decoder can
determine whether the whole functional relation Xj between variables Xj is mediated by some
other (set of) intermediate mechanism(s) Xz

3. In situations where Xi → Xz → Xj the type en-
coder needs to identify whether the relation Xi → Xj is purely mediated via XS

z (meaning that
all computational paths from Xi to Xj in XS

j that does not passes through XS
z ) or some additional

direct effect exists that are not ‘shielded’ by XS
z . Conversely, whenever some Xk ∈ Xz of the

intermediate set is dropped/marginalized from the causal variables, the mechanism XS
k ⊂ XS

j is no
longer identified as the mechanism of a causal variable within the overall XS

j and (given that the
remaining XS

z\{k} does not shield Xi from Xj) a direct arrow Xi → Xj can be inferred.

Given our meta-causal framework we, however, have the freedom to identify the indirect relations.
In that case one might assign these edges a particular ‘[1-hop] indirection’ type, indicating it to

3Note in this context, that we assume structural equations to be uniquely identifiable. This might be im-
plemented via type-theoretic considerations in which every variable of the underlying process gets assigned a
unique type, such that for every si ∈ Si, ∀i, j.i ̸= j⇒Si ̸= Sj hold. Even though two functions might be
isomorphic they can be thus be differentiated via their domain and codomain. In practice, one might addition-
ally consider the computations graph of the mediation process to uniquely differentiate between isomorphic
functions
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be the result of an indirect relation via an (possibly unobserved) intermediate variable. Consider,
how this notion of edge types over unobserved variables is already in use in CPDAGs –as for ex-
ample produced by the PC or GES algorithms (Spirtes et al., 2000; Chickering, 2002)– to indicate
undirected edges for which the orientation is currently unknown.

C COMPATIBILITY OF DECOMPOSED EQUATIONS

In this section, we provide a brief discussion on the existence and compatibility of functions X as
considered in Equation 1.

Since the conditioned SCM in Eq. 1 is modeled after an the particular causal model that exists under
a meta-causal state indexed by z, it follows that a particular composition of functions fzij has to exist
(and that the functions are compatible), since the full function fzj exists for each meta-causal state.
In a naı̈ve approach, the order of composition i ∈ {1..N} enforces a particular evaluation order of
the functions, and in particular requires this order to be the same for every meta-causal state.

Generally, the presented function composition might not work, in the case that the individual func-
tions get chosen badly from the start. A simple solution to overcome such problem is to assume
compositions of lifted functions and assume their signatures to be compatible (which is always
permitted due to the known existence of the composed fzj ). Note that functions fzij , f

z′

ij , whose
functional type tij did not change under a change of z to z′, to make signatures compatible.

Common handling of compositionality in SCM: The adjustment of signatures is in fact often
considered in the case of compositional SCM, e.g. additive noise models, where the signature of
an outer ‘merging function’ fj(f1j , . . . , fNj), e.g.

∑
i∈pa(j) fij , is in fact adjusted based on the

number of parents (or, otherwise, zero weight edges are incorrectly excluded from the parent set).

D REDUCTION OF META-CAUSAL MODELS TO CONDITIONED SCM

In this section, we provide a condition under which meta-causal models can be reduced to ordinary
SCM with structural equations conditioned on some external variable as related to Eq. 1.

Definition 4 (MCM Reducability). For a given mediation process E = (S, σ) and abstraction
φ : S → X we call a meta-causal model A = (T N×N ,S, δ) reducible to a conditioned SCM if
there is some SCM over X∪{Z} where the types of functional dependencies between Xi, Xj ∈ X
can be fully determined by Z.

Theorem D.1 (Specific Criterion for Meta-Causal Reducability). If for a given mediation process
E = (S, σ) and abstraction φ : S → X , a meta-causal modelA = (T N×N ,S, δ) all its transitions
are loops, then it is reducible to a conditioned SCM.

Proof. If a meta-causal model only has loops as transitions, the meta-causal types are independent
of the modeled mediation process. While types can differ for different starting conditions in the
environment, its transition process never results in a type change. Hence, meta-causal types induce
an equivalence relation on S , compatible with σ and we can introduce an exogenous variable Z with
Z = T N×N or, alternatively, with values Z for each connected component in E = (S, σ).

We also see some potential to weaken this criterion and, therefore, find a more general condition
for reducibility by further examination of the abstraction that links the mediating process with the
causal variables for future work. The primary obstacle in this regard is that meta-causal models
abstract away some information about structural equations, such that interventions on Z might lead
to a mismatch between the resulting SCM and the underlying mediation process.

E PROBABILITIES FOR SAMPLE COMPUTATION AND UPPER BOUNDS

Consider a dataset D ∈ Rm×2 of m samples over two variables where we want to separate n
different functions. We assume that the data distribution contains a uniform number of samples from
each function, where each class could be under- or overrepresented by an offset of d. Specifically, we
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assume that each function is represented by (1±d) 1n |D| samples, i.e., the probability of encountering
a particular class X is 1−d

n ≤ P (X) ≤ 1+d
n and E[P (X)] = 1

n . To identify all functions between
these two variables, we assume linearity and apply EM with RANSAC on random pairs of samples
(see Section 4.2). By selecting n pairs, there is a chance that one pair is chosen from each function
(we will refer to such a set of pairs as a “correct” set of samples). In this section, we derive the
probability of a correct pair being chosen at random, so that we can estimate how many times pairs
need to be sampled to reliably encounter a correct set of samples.

We denote S as the event of “correctly” sampling all n pairs from all n different functions. If all
classes have the same number of samples, the chance of randomly selecting a pair from a new class
is n

n ·
1
n for the first pair of samples, n−1

n · 1n for the second, . . . , and 1
n ·

1
n for the last; in short:

E[Pn(S)] =
n!

nn
·
(
1

n

)n

=
n!

n2n
. (2)

If the data distribution is not perfectly uniform, i.e., d ̸= 0, we can also calculate a lower bound
for the same probability. Consider two probabilities per sample: the probability of selecting a new
class Pn(S

new) and the probability of selecting a second sample of the same class Pn(S
same)

afterwards. Across all samples, these correspond to n!
nn and ( 1n )

n in E[Pn(S)], respectively.

Let us first consider the probability of selecting a new class. When the first sample is taken, only
one new class can be selected (probability of 1). If this sample was taken from the largest class
first, the probability that subsequent samples will be taken from new classes decreases, since the
space of “unsampled” classes is smaller. For this lower bound, we therefore assume that maximally
large classes are sampled from as much and as early as possible. According to our assumptions, the
largest classes each take up a fraction of 1+d

n of the data. Therefore, the probability of selecting a
new class for successive samples has the following probabilities n

n ,
n−(1+d)

n , n−(1+d)2
n , . . . . First,

consider the case where n is even. Here, after all the n
2 largest classes have been selected, only

the small classes remain. For the last, second to last, . . . classes, this probability is represented by
(1−d)

n , 2(1−d)
n , . . . . Overall, we get the probability

Pn(S
new
even) ≥

 n∏
i=n

2

n− (1 + d)(n− i)
n

n
2 −1∏
i=1

i(1− d)

n

 .

If n is uneven, an average size class between the largest and smallest classes must be included:

Pn(S
new
odd ) ≥

 n∏
i=n

2 +0.5

n− (1 + d)(n− i)
n

(
n− (1 + d)(n2 − 0.5)− 1

n

)n
2 −1.5∏
i=1

i(1− d)

n

 .

The probability of selecting a second sample of the same class is easier to calculate. Instead of
constant probabilities as in the expectation with 1

n , we now have two different probabilities in the
even case and three in the odd case. In the even case, we have n

2 large batches and the same number
of small batches, so the probability of choosing the right batch each time is

Pn(S
same
even ) ≥

(
1 + d

n

)n
2
(
1− d

n

)n
2

.

In the uneven case, we also have to also consider the batch that has an average size

Pn(S
same
odd ) ≥

(
1 + d

n

)n
2 1

n

(
1− d

n

)n
2

.

Note that for both Pn(Snew) and Pn(Ssame), the distribution of the data into the largest and smallest
possible batches (according to our assumptions) results in the smallest possible probabilities; hence,
the computed probability is a lower bound. If the batches were more evenly sized, the probability
would be larger. We can also see that a deviation of up to 1 results in a probability of 0, since it is
impossible to sample from a class that is not represented in the data.
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Class Deviation 1 Mechanism 2 Mechanisms 3 Mechanisms 4 Mechanisms
0.0 4219 (84.38%) 1740 (34.80%) 592 (11.84%) 86 (1.72%)
0.1 " 1702 (34.04%) 577 (11.54%) 84 (1.68%)
0.2 " 1567 (31.34%) 555 (11.10%) 84 (1.68%)

Table 3: Empirical estimated convergence percentage of the EM algorithm for different class
imbalances and number of mechanisms. The table shows the number of samples converged and
the convergence rates (in parentheses) for a single random initialization and for estimating the pa-
rameterization of the underlying system for a given number of mechanisms. All results are reported
per 5000 samples.

In total, the probability of selecting of a correct sample set is the product of the two probabilities
above, i.e,

Pn(S) =

{
Pn(S

new
even)Pn(S

same
even ) if n is even

Pn(S
new
odd )Pn(S

same
odd ) if n is odd.

(3)

Pn(S) is the (lower bound on the) probability of selecting a correct set of samples. We can calculate
the number of trials k needed to find such a set of samples with at least 95% probability. The
opposite probability, of never finding it with less than 5% probability, is easier to calculate:

(1− P (S))k ≤ 1− 0.95 = 0.05

k ln(1− P (S)) ≤ ln(0.05)

k ≤ ln(0.05)
ln(1− P (S))

This allows us to determine how many attempts might be necessary. Note that while this would
leave a 5% chance of not picking the right samples, there are various practical reasons why the
actual probability of finding a working set of samples will be higher, e.g., if the number of samples
from each class is not as uneven as assumed, or if some samples are distributed in such a way that
even picking a sample from the “wrong” class might still lead to the identification of the correct
mechanisms.

For example, if n = 2 and d = 0.2, we have an expected probability of E[P (S)] = 2!
22·2 = 0.125 and

a lower bound of P2(S) = P (Snew
even)P (S

same
even ) ≥ 0.8

2 ·
2
2 ·

1.2
2 ·

0.8
2 = 0.096. Larger deviations decrease

the probability while a deviation of d = 0 results in the same probability as with E[P (S)]. For the
lower bound, this results in k = 30 samples for a confidence of 95% using the above calculation
steps. All resulting sample counts can be found in Table 2.

F EM CONVERGENCE RESULTS

The required number of resamples for a 95% success rate of the RANSAC algorithm is calculated
by log(0.05)/log(1−C1), where S1 are the convergence rates for the individual samples computed
in Sec. E.

Empirical convergence probabilities and resulting resampling counts for the LO-RANSAC algo-
rithm are shown in Tables 2 and 3. Table 4 lists the goodness of fit for all converged samples.
In general, we find that in cases where the approach is able to converge, it undercuts the required
parameter convergence boundary of 0.2 by factors of 4.8 and 3.5 for the slope and intercept, respec-
tively.

G MECHANISM SAMPLING

For our experiments in Sec. 4.2 we uniformly sample the number of mechanisms to be in K ∈
{1..4}. The slopes of the linear equations are uniformly sampled between α ∈ ±[0.2..5] and the
intercepts are in the range β ∈ [−5, 5]. We add Laplacian noise L(x|µ, b) = 1

2b ∗ exp(−
|x−µ|

b ) with
µ = 0 and b ∈ [0.1, 4.0]. X values are uniformly sampled in the range [−5, 5] and yi = αxi +
β + L(x|0, b). The average number of samples per class is set to 500. Throughout the experiments,
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K=1

K=2

K=3

K=4

Figure 3: Sampled Mechanisms. The figure shows a selection of different randomly sampled
mechanism distributions, ranging from one to up to four simultaneously present mechanisms. The
gray dotted lines represent the generating ground truth mechanisms. (Best Viewed In Color)

we vary the class probabilities by a class deviation factor D ∈ {0.0, 0.1, 0.2}. Specifically, we
maximize the class deviation by assigning K/2 classes the maximum probability 1/K ∗ (1 + D)
andK/2 classes the minimum probability 1/K∗(1−D). IfK is odd, a class is assigned the average
probability 1/K. We show a selection of the resulting sample distributions in Fig. 3.

H PRACTICAL APPLICATIONS OF META-CAUSAL MODELS

As the main focus of our initial work on meta-causal model lies on providing a first, formal, defi-
nition of meta-causal models, we tried to approach MCM from a spectrum of different theoretical
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Class Deviation 1 Mechanism 2 Mechanisms 3 Mechanisms 4 Mechanisms
0.0 0.0349|0.0590 0.0370|0.0543 0.0380|0.0592 0.0389|0.0516
0.1 " 0.0381|0.0555 0.0381|0.0566 0.0346|0.0528
0.2 " 0.0414|0.0548 0.0412|0.0567 0.0402|0.0570

Table 4: Mean average error for the slope and intercept of the correctly predicted mechanism
for different class imbalances and number of mechanisms. Mechanisms are accepted if their
parameters do not differ by more than 0.2 from the ground truth parameterization. The results show
that converged samples are typically estimated with an error well below the threshold.

perspectives. In this Section, we provide a brief discussion on two possible practical fields of appli-
cations for MCM.

Health and Medicine. First, we would like to expand on our stress-induced fatigue example as it can
not be reduced to a standard SCM, and provide an actionable perspective on MCM. While we still
assume the underlying neuropsychological process to be more complex, with multiple interplaying
factors to influence each other, we consider the same simplified model as presented in the paper. We
now assume that some drug exists that is able to influence certain health related processes within
the patient, such that the underlying –previously self-reinforcing– stress relation is unconditionally
changed to a suppressing one. (Upon closer consideration, the previous intervention might constitute
a meta-causal do-operator, as we detach the functional type from the underlying dynamics and fix
its particular functional type.)

This perspective not only allows the forecast of system changes, but also yields an actionable model
which can be actively steered between meta-causal states. To permanently treat a patient, one could
consider the objective to reach a self-stabilizing meta-causal state. Note how this meta-causal ob-
jective might be different to that of a classical causal one, where stress levels would similarly be
reduced, but no attention is placed on the (possibly unchanged) system dynamics, such that stress
levels might rise up again after the intervention ends.

Economics. Second, recall that our MCMs are defined as finite state machines. Figuring out exact
transition conditions that induce meta-causal state transitions also yield important insights on the
volatility/stability of systems in terms of risk analysis and policy making. Such scenarios might
commonly arise in economics, where relations in markets can change due to the sudden appearance
of disrupting factors (e.g. a new competitor entering the market or a financial crisis) while effects
might persist even with the disrupting factor having vanished.

I ASSERTIVE META-CAUSAL MODELS

In this section we will briefly touch upon possible assertive properties of meta-causal models. In this
initial paper we chose to utilize a very general definition of types, which intentionally held flexible
to allow for the most descriptive models. As for this definition, there might exist a gap between
between the descriptive modeling of MCM and their ‘assertive’, data generating, properties. This
gap primarily stems from the mapping of specific structural equations onto abstract types, which
prevents a back projection of types to structural equations in the general case. With the special
class of conditionally reducible SCM we, however, presented a particular class of MCM that yield
‘assertive’ properties by being able to translate types back onto the level of structural equations.
Further restrictions on types and their relations to structural equations might be placed in specific
applications, to shield users from misuse of the framework. Still, we where able to present several
relevant applications of MCM even with this this most general formalization of MCM.

While meta-causal states might be mapped back to configurations of ‘classical’ causal models, we
highlight that MCM are primarily concerned with the modeling of the overarching meta-causal state
transitions. By modeling MCM as (possibly non-deterministic) finite-state machines, we, in fact,
can make predictions about a systems’ future course on the meta-level. This includes the sampling
of state trajectories and making assertions about their stability and similar properties.
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Algorithm 1 Recovering Mechanisms for the Bivariate Case
1: procedure RECOVERMECHANISMS(x, y, maxClassDev Kmax,EMSteps)
2: for all k ∈ [1..Kmax] do
3: bestModelLogL← −∞
4: N← requiredSamples(k,maxClassDev, 0.95) ▷ Compute # of samples (c.f. Sec. E)
5: for all n ∈ [1..N] do ▷ RANSAC iteration.
6: px,py← sample(xi, yi, 2 ∗ k) ▷ Initialize parameters with 2× k points.
7: for all k′ ∈ [0..k) do
8: αk ← (py2k+1 − py2k)/(px2k+1 − px2k)
9: βk ← py2k − αk ∗ x2k

10: bk ← 1.0 ▷ Assume initial avg. deviation of the Laplacion to be 1.
11: dk ← ‘XY’ ▷ Assume X → Y direction first.
12: ck ← PLaplacian(x, y;α, β, b, d) ▷ Initial class probabilities for all samples.
13: end for
14: for all l ∈ [1..EMSteps] do ▷ EM Iteration.
15: α,β,b,d← regressLines(x, y; c) ▷ (Weighted) median regression.
16: c← PLaplacian(x, y;α,β,b,d)
17: end for
18: modelLogL←

∑
i LogPLaplacian(x, y;α,β,b,d)i ▷ Obtain the joint log probs.

19: if modelLogL > bestModelLogL then
20: bestModelLogL← modelLogL
21: bestParameters← (α,β,b,d)
22: end if
23: end for
24: allLaplacian← true ▷ Check if residuals are Laplacian distributed.
25: for all l ∈ [1..k] do
26: (α,β,b,d)← bestParameters
27: xl, yl, cl ← selectClass(x, y, c, l) ▷ Select points where argmaxc = l.
28: xl, yl ← filter(xl, yl, cl, 0.4) ▷ Keep points s.t. max#2cl < 0.4(1−max#1(cl).
29: r = LinEq(xl, yl;αl, βl, dl)− yl
30: if not AndersonDarling(r, 0.95) then
31: allLaplacian← false
32: break
33: end if
34: end for
35: if allLaplacian then
36: return k
37: end if
38: end for
39: return 0
40: end procedure
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