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Abstract

We introduce networked communication to the mean-field game framework, in particular
to oracle-free settings where N decentralised agents learn along a single, non-episodic run
of the empirical system. We prove that our architecture has sample guarantees bounded
between those of the centralised- and independent-learning cases. We provide the order of
the difference in these bounds in terms of network structure and number of communication
rounds, and also contribute a policy-update stability guarantee. We discuss how the sample
guarantees of the three theoretical algorithms do not actually result in practical convergence
times. We thus contribute practical enhancements to all three algorithms allowing us to
present their first empirical demonstrations, where we do not need to enforce several of
the theoretically required assumptions. We then show that in practical settings where the
theoretical hyperparameters are not observed (leading to poor estimation of the Q-function),
our communication scheme considerably accelerates learning over the independent case,
which hardly seems to learn at all. Indeed networked agents often perform similarly to
the centralised case, while removing the restrictive assumption of the latter. We provide
ablations and additional studies showing that our networked approach also has advantages
over both alternatives in terms of robustness to update failures and to changes in population
size.

1 Introduction

The mean-field game (MFQG) framework (Huang et al., |2006} Lasry & Lions| 2007) models a representative
agent as interacting not with the other individuals in the population on a per-agent basis, but instead with
a distribution of other agents, known as the mean field. The framework analyses the limiting case when the
population consists of an infinite number of symmetric and anonymous agents, that is, they have identical
reward and transition functions which depend on the mean field rather than on the actions of specific other
players. In this work we focus on MFGs with stationary population distributions (‘stationary MFGs’, where
learning is more tractable than in non-stationary ones) (Xie et al.l|2021}; |/Anahtarci et al., 2023; Zaman et al.,
2023} [Yardim et all |2023; |[Li et all |2025b; |Osborne & Smears, [2025), for which the solution concept is the
MFG-Nash equilibrium (MFG-NE), which reflects the situation when each agent responds optimally to the
population distribution that arises when all other agents follow that same optimal behaviour. The MFG-NE
can be used as an approximation for the Nash equilibrium (NE) in a finite-agent game, with the error in
the solution reducing as the number of agents N tends to infinity (Saldi et al., 2018} |Anahtarci et al. 2023;
Yardim et al., [2024; [Toumi et al., [2024; |Hu & Zhang]| [2024; |Chen et all] 2024e; [Yang et al.| |2025; [Yardim
et al.l [2025]).

MFGs can therefore be used to address the difficulty faced by multi-agent reinforcement learning (MARL),
where it has been computationally difficult to scale algorithms beyond configurations with agents numbering
in the low tens, as the joint state and action spaces grow exponentially with the number of agents (Daskalakis
et al 2006} [Vinyals et all [2019} Mcaleer et al. [2020; [Shavandi & Khedmati, 2022} [Li et al.} [Yardim & Hel
2024)). The value of reasoning about interactions among very large populations of agents has been recognised,
and an informal distinction is sometimes drawn between multi- and many-agent systems (Zheng et al.| [2018;
Wang et all 2020a; [Cui et al.| [2022)). The latter situation can be more useful (as in cases where better
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solutions arise from the presence of more agents (Shiri et al., 2019; |Ornia et al. |2022; Orr & Dutta, [2023;
2023)), more parallelisable (Andréen et al., 2016), more fault tolerant (Chang et al. [2023), or
otherwise more reflective of certain real-world systems involving large numbers of decision makers
let al] [2016} Meigs et all, 2020} [Shavandi & Khedmatil, 2022} [Eck et all [2023). The MFG-NE has therefore
been used to find approximate solutions for a wide variety of real-world problems involving a large but finite
number of agents, which might otherwise have been too difficult to solve, including;:

financial/energy markets, ticket pricing and the green economy (Trimborn et al.| [2018} [Tchuendom)
let all, 2024} Becherer & Hesse), [2024; [Zhang & Ren| 2024} [Chen et all, [2024aje} [Bernasconi et al.
[2023; [Cecchin et all [2025} [Bo et al. 2025} [Fu & Horst], 2025, [Wang et al., [2025b}; [Moll & Ryzhik|
2025; [Tchuendom et al.] LLi et al., [2025a} [Aydin et al. [2025} |Grosset & Sartori,
2025; [Aksamit et al. 2025} [Feng & Liu, [2025; [He & Liul [2025));

e autonomous vehicles, traffic signal control, ride-hailing platforms and electric vehicle charging
(Huang et al. 2020; Hu et al., 2023; Dey & Xul 2023} [Hedel & Nguyen, 2024; 2025; Mo et al,
12024; |Pande et al., [2025; Niu et al., 2025; |Chen et al.l |2024c; [Li et al., |2025¢);

e cryptocurrency mining, edge computing, cloud resource management, smart grids, and other large-
scale cyber-physical systems (Bauso & Tembine, |2016; Benamor et al.,|2022; Mao et al., | 2022; [Mishra|
let al.l 2023} [Gao et all, 2023} [Wang et al. [2024a} [Wu et all], [2024b} [Xu et al., [2024b} [Aggarwal et al.

2024} [Shen et all], [2024 [Li et all, [2024b} [Miao et all [2024; [Aggarwal et all, 2025} [Kang et al., [2025a}
Yang et al., 2025} [Garcia et al., [2025);

 swarms, defence, communication networks and data collection by UAVs (Wang et al., 2020b; 2024c

Le Ménec, [2024; [Lei et al., [2024; [Emami et al.| 2024} 2024} [You et all, [2024; [Kang et al.
2025¢; [Choutri et al. [2025; [Xu et al.| 2025¢; Bai et al., [2025);

o social network modelling, crowd modelling, crowdsensing (Yang et al. [2023; Kang et all [2025b}
|Glukhov et al., [2025));

e pollution regulation, resource management in fisheries and political governance (Del Sarto et al.
[2024; [Yoshioka et al., 2024} Dayanikli & Lauriere, 2025} |Chu et al.| [2025).

For such large, complex many-agent systems in the real world, it may be infeasible to find MFG-NEs
analytically or via oracles/simulations of an infinite population (as they have been traditionally), such that
learning must instead be conducted directly by the original finite population in its deployed environment. In
such settings, in contrast to many previous methods, desirable qualities for MFG algorithms include: learning
from the empirical distribution of N agents (i.e. this distribution is generated only by the policies of the
agents, rather than being updated by the algorithm itself or an external oracle/simulator); learning online
from a single, non-episodic system run (also referred to in other works as a single sample path/trajectory
(Zaman et all [2023} |Yardim et al., 2023)) - i.e. similar to the above, the population is not arbitrarily reset
by an external controller; model-free learning; decentralisation; fast practical convergence
@; and robustness to unexpected failures of decentralised learners or changes in population size

et a1.|, .

Conversely, works on MFGs have traditionally been largely theoretical (Huang et al., [2006; Lasry & Lions|
2007) (often works do not present any empirical results (Yardim et al., 2023; [Li et al. [2025b; [Huang &]
Warnett], 2025; [Ferreira et al.l [2025; [Lascu & Majkal, 2025))), and methods for finding equilibria have often
relied on assumptions that are too strong for real-world applications. The MFG-NE is classically found by
solving a coupled system of dynamical equations: a forward evolution equation for the mean-field distribution,
and a backwards equation for the representative agent’s optimal response to the mean field, as in Def.

below{T} crucially, these methods generally relied on the assumption of an infinite population (Lauriére et al.

'See, for example, [Yoshioka et al| (2024); [Wang et al.| (2024b); [Li et al. (2024al); [Zhou et al. (2024); [Chen et al. (2024b);
|Ren et al.| (2024); |Si & Shi| (2024)); [Federico et al.| (2024)); |Lee et al.| (2024)); |[Yang et al.| (2025); |Bai et al| (2025)); |Cecchin et al.|
(2025); |Sun & Trafalis| (2025); Dayanikli & Lauriere| (2025)); [Wang et al.| (2025a); |Yang & Zhang) (2025); [Ersland et al | (2025);
Ghosh| (2025b)); |Aydin et al.| (2025)); Yang & Song (2025); Pande et al.| (2025);|Cao & Lauriere| (2025); Osborne & Smears| (2025);
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. Early work solved the coupled equations using numerical methods that did not scale well for more
complex state and action spaces (Achdou & Capuzzo-Dolcetta, 2010} |Carlini & Silval [2014; Briceno-Arias|
let al., [2018; |Achdou et al., [2020); or, even if they could handle higher-dimensional problems, the methods
were based on known models of the environment’s dynamics (i.e. they were model-based) (Guo et all
20194); [Fouque & Zhang], [2020; [Cao et al 2020} [Carmona & Lauriére] 2021} [Germain et all 2022} [Anahtarci
et al [2023; [Huang et all [2024alb; [Barreiro-Gomez & Park, 2025), and/or computed a best-response to the
mean-field distribution (Huang et al. 2006; |Guo et all 2019a} [Elie et al., 2020; [Perrin et al., [2020; 2021}
[Lauriere et all, [2022alb; [Algumaei et al., [2023). The latter approach is both computationally inefficient
in non-trivial settings (Lauriere et al.l 2022a; [Yardim et al. 2023), and in many cases is not convergent
(as in general it does not induce a contractive operator) (Cui & Koeppl, 2021; |[Lauriere et al. 2022Db).
Subsequent work, including our own, has therefore moved towards model-free and/or policy-improvement
scenarios (Subramanian & Mahajan| 2019; Mishra et al., [2020; Cacace, Simone et al. 2021} Perolat et al.,
[2021} [Lee et all [2021; [Lauriere et all [2022a} |[Angiuli et al.l [2022; Mishra et all [2023} |Guo et al, 2023),
possibly with learning taking place by observing N-agent empirical population distributions (Yongacoglu
let all [2024} [Yardim et al., 2023; [Hu & Zhang, 2024).

Most prior works, including algorithms designed to solve MFGs using an N-agent empirical distribution, have
also assumed an oracle that can generate samples of the game dynamics (for any distribution) to be provided
to the learning agent (Anahtarci et al.| [2019; [Fu et al.;[2019;|Guo et al.,[2019a; [2023; |Anahtarci et al.,|2023)), or
otherwise that the algorithm (rather than agents’ policies) has direct control over the population distribution
at each time step (Zhang et al.,|2024; |Chen et al) [2024d; 2023)), such as cases where the agents’ policies and
distribution are updated on different timescales (Angiuli et al., 2023; Zeng et al., 2024), with the ‘fictitious
play’ method being particularly popular (Tembine et al., 2012} |Cardaliaguet, Pierre & Hadikhanloo, Saeed
[2017; [Mguni et all, [2018}; [Subramanian & Mahajan| 2019; [Perrin et al.| 2020} 2021} Xie et all, [2021}; [Geist
et al [2021} [Frédéric Bonnans et al., [2021} [Lauriére| 2021} [Angiuli et all, 2022} [Mao et all 2022; [Lauriére|
et al [2022b} [Zaman et all 2023} [Cui et al., [2024; [Yu et all [2024Db). In practice, many-agent problems may
not admit such arbitrary generation or manipulation (for example, in the context of robotics or controlling
vehicle traffic), and so a desirable quality of learning algorithms is that they update only the agents’ policies,
rather than being able to arbitrarily reset their states. Learning may thus also need to leverage continuing,
rather than episodic, tasks (Sutton & Bartol [2018). [Yardim et al. (2023), [Yongacoglu et al| (2024) and
our own work therefore present algorithms that seek the MFG-NE using only a single run of the empirical
population.

Almost all prior work relies on a centralised node to learn on behalf of all the agents. In this context
‘centralised’ does not necessarily imply global observability of the whole population’s actions - which would
generally make computation infeasible given the complexity of the problem - but rather that learning is
only conducted from the samples of a single representative agent, whose policy updates are assumed to be
automatically pushed to the rest of the population by the central node (Guo et al. [2019b; Xie et al., 2021
Lauricre et all [Anahtarci et all, [2023; [Zaman et all, 2023 [noue et all, 2023} [Yardim et al. [2023
Jeloka et all, [2025} [Yang & Song [2025). However, outside of MFGs, the multi-agent systems community
has recognised that the existence of a central coordinator is a very strong assumption even without global
observability, and one that can both restrict scalability by constituting a bottleneck for computation and
communication, and reveal a single point of failure for the whole system (Wai et al., 2018; Zhang et al.
2018} [2021aibt [Chen et all 2021} [Jiang et all 2024} Xu et all [2025a} [Agyeman et all 2025} [Horyna et al.
2025)). For example, if the single server coordinating all of a smart city’s autonomous vehicles were to
crash, the entire road network would cease to operate. As an alternative, some work has explored MFG
algorithms for independent learning with N agents (Parise et al., [2015; Grammatico et al. 2015aib} |2016;
[Mguni et al., 2018 [Yongacoglu et al., 2024} |2022; [Yardim et al., [2023; [Li et al. 2024a; [He & Liu, 2025).
However, those works generally focus on existence proofs for equilibria or theoretical sample guarantees,
instead of practical convergence speed, and have largely not considered robustness in the senses we address,
despite fault-tolerance being an original motivation behind many-agent systems.

Martinez-Garcia et al (2025); [Opper & Reich| (2025)); |Carlini & Coscetti| (2025); [Plank & Zhang| (2025); [Hua & Luo| (2025);
Moll & Ryzhik| (2025); [Ferreira et al.| (2025); |Chen et al.| (2025)); |Tchuendom et al.| (2025)); [Dey & Xul (2025)); [Fedorov] (2025));
Hedel & Nguyen)| (2025); [Wang| (2025); |Li et al.|(2026); [Xiang & Shi (2025); |Li et al.| (2025a)); Ghosh| (2025a)); Xu et al|(2025b);

Si & Shil (2025a)).
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We address all of the desiderata discussed above by novelly introducing a communication network to the
MFG setting. Communication networks have had success in other multi-agent settings, removing the reliance
on inflexible, centralised structures (Zhang et al., [2021aib; |Chen et al., 2021)E| We focus on ‘coordination
games’, where agents can increase their individual rewards by following the same strategy as others and
therefore have an incentive to communicate policies, even if the MFG setting itself is technically non-
cooperative. Thus our work can be applied to real-world problems in e.g. traffic signal control, formation
control in swarm robotics, and consensus and synchronisation e.g. for sensor networks (Soleimani et al.
2024).

We prove that our networked algorithm’s theoretical sample guarantees lie between those of earlier centralised
and independent algorithms. As in previous works, ‘centralised’ continues to mean that the updates of a
representative agent are pushed from the central learner to the whole population, without implying global
observability of the whole population’s actions. While ‘centralised learning’ is the term used in prior works,
we sometimes refer to ‘central-agent learning’ to reduce confusion. Next, to compare the architectures
experimentally, we extend all three theoretical algorithms with experience replay buffers, without which we
found them unable to learn in practical time. We show empirically that when the agents’ Q-functions can be
only roughly estimated due to fewer samples/updates, possibly leading to high variance in policy updates,
then using the communication network to propagate better-performing policies through the population leads
to faster learning than that achieved by agents learning entirely independently, which still hardly appear to
learn at all. This is crucial in large complex environments that may be encountered in real applications,
where the idealised hyperparameter choices (such as learning rates and numbers of iterations) required in
previous works for theoretical convergence guarantees will be infeasible in practice. As well as demonstrating
the empirical benefits of our scheme for learning speed, we conduct additional studies showing the advantages
of communication for system robustness. In summary, our contributions include the following:

o We prove that a theoretical version of our networked algorithm (Alg. has sample guarantees
bounded between those of centralised (i.e. learning from a representative agent) and independent
algorithms for learning with a non-episodic run of the empirical system. We provide the order of
the difference in these bounds in terms of network structure and number of communication rounds,
and contribute a policy-update stability guarantee (Sec. [5]).

o All three theoretical algorithms do not permit any learning in practical time. We modify all three
(Alg. Sec. @ to make their practical convergence feasible by including an experience replay
buffer, allowing us to contribute the first empirical demonstrations of all three algorithms. An
ablation study of the replay buffer is given in Sec. - agents do not seem to learn at all without
it.

e Our experiments demonstrate that in practical settings our communication scheme can markedly
benefit learning speed over the independent case, sometimes performing similarly to the centralised
case while removing the restrictive assumption of the latter. We also show that via our practical
modifications we can learn without enforcing several of the algorithms’ other theoretical assumptions
(a goal shared by other works on practical MFG algorithms (Cui et al [2024))) (Sec. [7.4).

o We provide ablations and additional empirical studies showing that our decentralised communication
architecture brings further benefits over both the central-agent and independent alternatives in terms
of robustness to unexpected update failures and changes in population size. For further discussion
of the relevance of these scenarios in large multi-agent systems, see Sec. [7.4.2]

The paper structure is as follows: we give further related work in Sec. [2] and preliminaries in Sec. We
present our theoretical algorithms in Sec. [d] and theoretical results in Sec. [f] We give enhancements to the

2We preempt objections that communication with neighbours might violate the anonymity that is characteristic of the
mean-field paradigm, by emphasising that the communication in our algorithm takes place outside of the ongoing learning-
and-updating parts of each iteration. Thus the core learning assumptions of the mean-field paradigm are unaffected, as they
essentially apply at a different level of abstraction (a convenient approximation) to the reality we face of N agents that interact
within the same environment. Indeed, prior works have combined networks with mean-field theory in different ways, such as
using a mean field to describe adaptive dynamical networks (Berner et al.} [2023).
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Figure 1: Two possible ways to conceive of our work regarding the relationship between the infinite- and
finite-population games. Note that using the finite empirical population to try to learn a single MFG-NE
policy m = (7*,..., ") that is to be followed by the whole infinite population (Def. is not the same as
directly finding 7* = (n!,...,7V), i.e. the tuple of individual policies that gives the finite-population NE
in Def. a problem known to be hard (Daskalakis et al., |2006; |Vinyals et al., [2019; Mcaleer et al., 2020;
Shavandi & Khedmati, [2022; |[Li et al.|; [Yardim & Hel [2024)).

algorithms necessary for learning in practical time in Sec. [6] and provide experiments and discussion in Sec.
We conclude by discussing limitations and suggestions for future work in Sec.

Remark 1.1. Solving the theoretical MFG problem involves finding the single policy that, when given
to all agents in the infinite population, best responds to the resulting mean-field distribution. We preempt
objections to our use of a finite population for learning in a mean-field context by giving two ways to conceive
of our work (illustrated in Fig. , which mirror and make more explicit the similar motivations underpinning
many other MFG works (Cui et al., |2023b; [Dayanikli et al., 2024; [Zaman et al., |2024; |Bayraktar & Karal,
2024} [Yongacoglu et al., [2024; [Yang et al. [2025; |[Jeloka et al.l [2025; |Cecchin et all [2025; Bo et al. 2025f
Tchuendom et al.l 2025 [Magnino et al.l 2025 |Graber, [2025; |Aggarwal et all 2025; [Yardim et al., 2025}
Hofer et al., |2025; [Feng & Liuj [2025; [Si & Shil 2025aj [Yang et al., 2025). Firstly, we contribute algorithms
that allow the solution to a MFG problem to be learnt using the empirical distribution of a decentralised
finite population, without needing to make unrealistic assumptions about access to an oracle for the infinite
population. Note that it is impractical to assume that the decentralised agents always follow a single identical
policy throughout training, a logic also followed by earlier works (Yardim et al.| [2023).

Alternatively, we may have originally been interested in finding a NE for a large, finite population, but, due
to the scalability issues of learning approaches like MARL, forced to turn to the MFG framework to find a
policy that gives an approximate solution to the finite-population problem. We contribute algorithms that
allow the deployed finite population to find the MFG solution that in turn approximately solves the original
problem, without unrealistic assumptions about centralised training. Under this framing, it may matter less
whether all agents follow a single policy throughout training.

2 Related work

In our introduction in Sec. [I] we place our work in the general context of the MFG algorithms that preceded
it. We now discuss research specifically relevant to our own work in more detail.
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Naturally, decentralised communication is most applicable in settings where learning takes place along a
continuing system run, rather than the distribution being manipulated by an oracle or arbitrarily reset for
new episodes, since these imply a level of external control over the population that results in centralised
learning. Equally, it is in situations of learning from finite numbers of real, deployed agents (rather than
settings able to simulate infinite populations) that we are most likely to be concerned with fault tolerance.
As such, our work is most closely related to Yardim et al.| (2023)) and [Yongacoglu et al.|(2024), which provide
algorithms for centralised and independent learning with empirical distributions along non-episodic system
runs: we contribute a networked learning algorithm in this setting. [Yongacoglu et al.| (2024) empirically
demonstrates an independent learning algorithm when agents observe compressed information about the
mean-field distribution as well as their local state, but they do not compare this to any other algorithms or
baselines. [Yardim et al. (2023) compares algorithms for centralised and independent learning theoretically,
but does not provide empirical demonstrations. In contrast, in addition to providing theoretical guarantees,
we empirically demonstrate our networked learning algorithm, where agents observe only their local state,
in comparison to both centralised and independent baselines, as well as concerning ourselves with the speed
of practical convergence and robustness, unlike these works.

More generally, a number of works refer to ‘decentralisation’ in MFGs, but often in a different sense to our
understanding of it. In particular, many works that say they consider decentralisation actually learn/derive
policies via a centralised method (often involving a representative player), and simply mean that agents’
policies are ezrecuted independently based on local information, which we take as a given across our learning
architectures (Wang, [2025} |Choutri et al., |2025; Xiang & Shil 2025; |[Feng & Liu, [2025} |Si & Shi, [2025a3b).
use reinforcement learning (RL) to solve a two-level mean-field problem, where there is a MFG
between ‘aggregators’, each of which is solving a local mean-field control (MFC) problem (the cooperative
alternative to a MFG). They solve the MFG via decentralised learning by the N aggregators, but each
aggregator solves its MFC problem in a centralised manner via the assumption of a single agent that is
representative of the heterogenous population. Moreover, they prove the existence of and convergence to
a unique equilibrium, but do not provide sample guarantees or a convergence rate. Other works involve
decentralisation in learning but under different MFG settings to our own: [Li et al.| (2025al); |(Ghosh! (2025a));
Xu et al.| (2025b]) derive controls in a decentralised way, but rely on a model of the environment, while
Yardim et al| (2025)) uses independent learning but not via RL, as they focus on repeated play of static,
stateless games.

Improving the training speed and sample efficiency of (deep) (multi-agent) RL is gaining increasing attention
(Wiggins et al.,[2023} [Yu et al.,2024a; [Wu et al., 2024a; Patel et al., [2024)), though our own work is one of the
only on MFGs to be concerned with this. [Huang & Lai| (2024) trains on a distribution of MFG configurations
to speed up inference on unseen problems, but does not learn online in a decentralised manner as in our own
work. Similarly, while some attention has been given to the robustness of multi-agent systems to changes
in population size, where it is sometimes referred to as ‘ad-hoc teaming’, ‘open-agent systems’, ‘scalability’
or ‘generalisation’ 2023), it has more commonly been addressed in MARL (Dawood et all, 2023}
than in MFGs (Wu et al} [2024d]). [Wu et al, (2024c) presents an MFG approach that allows
new agents to join the population during execution, but training itself takes place offline in a centralised,
episodic manner. Qur networked communication framework, on the other hand, allows decentralised agents
to join the population during online learning and to have minimal impact on the learning process by adopting
policies from existing members of the population through communication (Sec. .

An existing area of work called ‘robust mean-field games’ studies the robustness of these games to uncertainty
in the transition and reward functions (Bauso et al. 2012} 2016; Bauso & Tembine| 2016, [Moon & Basarl,
[2017}; [Huang & Huang| 2017, [Yang et al., [2018a; Tirumalai & Baras, 2022; |Aydin & Saldi, 2023), but does
not consider resilience to agent update failures, despite fault tolerance being one of the original motivations
behind many-agent systems. On the other hand, we focus on robustness to failures and changes in the agent
population itself.

We note a similarity between 1. our method for deciding which policies to propagate through the population
(described in Sec. and 2. the computation of evaluation/fitness functions within evolutionary algorithms
to indicate which solutions are desirable to keep in the population for the next generation
[2015; [Sissodia et al., 2025). Moreover, the research avenue broadly referred to as ‘distributed embodied
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evolution’ involves swarms of agents independently running evolutionary algorithms while operating within
a physical/simulated environment and communicating behaviour parameters to neighbours (Haasdijk et al.
[2014} |Trueba et al., [2015)), and is therefore even more similar to our setting, where decentralised RL updates
are computed locally and then shared with neighbours. In distributed embodied evolution, the computed
fitness of solutions helps determine both which are preserved by agents during local updates, and also which
are chosen for broadcast or adoption between neighbours (Hart et al., |2015; [Ferndndez Pérez et al., [2018;
[Ferndndez Pérez & Sanchez), [2019). Indeed, some works on distributed embodied evolution specifically
consider features or rewards relating to the joint behaviour of the whole population (Gomes & Christensen),
[2013}; [Prieto et al. [2016)), similar to MFGs. The adjacent research area of cultural/language evolution for
swarm robotics (Cambier et al., 2018;2020;2021) has similarly demonstrated the combination of evolutionary
approaches and multi-agent communication networks for self-organised behaviours in swarms. However,
unlike our own work, none of these areas employ reinforcement learning in the update of policies or the
computation of the fitness functions.

Our work also shares parallels with ‘population-based training’ (Jaderberg et al. [2017)), an approach that is
likewise related to evolutionary algorithms. Population-based training involves optimising neural networks by
performance-based transfer of parameters and hyperparameters among a population of concurrent processes.
Our algorithms are tabular rather than neural network-based, and we are also interested in the interactive
behaviour of the population itself rather than simply using it for parallelising the optimisation.

3 Preliminaries

We use the following notation. N is the number of agents in a population, with S and A representing the
finite state and common action spaces, respectively. The sets S and A are equipped with the discrete metric
d(z,y) = 1%,. The set of probability measures on a finite set X" is denoted Ay, and e, € Ay for z € X is
a one-hot vector with only the entry corresponding to = set to 1, and all others set to 0. For time ¢ > 0, iy
= % Zivzl Y oses ]lsi:seS € Ag is a vector denoting the empirical state distribution of the IV agents at time
t. The set of policies is II = {m : S — A4}, and the set of Q-functions is denoted Q = {g: § x A — R}.
For m,n" € Il and ¢,¢" € Q, we have the norms |7 — 7'||; := sup,cg||7(s) — 7'(s)|[1 and ||¢ — ¢'||~ =
SupsES,aeA |q(3) a) - q’(s, a)|

Function h : A 4 — R>( denotes a strongly concave function, which we implement in our experiments as the
scaled entropy regulariser Ahen(u) = =AY u(a)logu(a), for a € A, u € Ay and A > 0. As in many earlier
works (Cui & Koeppl, 2021} |Guo et al., 2022; |Anahtarci et al., 2023; |Algumaei et al.| 2023; [Yu & Yuan),
2023t [Yardim et all, [2023; 2025, [Lu & Monmarché), 2025; [Ferreira et all, [2025; [Lascu & Majka) [2025}
& Liu| 2025)), regularisation is theoretically required to ensure the contractivity of operators and continued
exploration, and hence algorithmic convergence. However, it has been recognised that modifying the RL
objective in this way can bias the NE (Lauriere et al. 2022b} [Su & Lu, 2022; |Yardim et al.| 2023; [Hu &
|Zhang] [2024; |[Lu & Monmarché, |2025)). We show in our experiments that we are able to reduce A to 0 with
no detriment to convergence.

L

Definition 3.1 (N-player symmetric anonymous games). An N-player stochastic game with symmetric,
anonymous agents is given by the tuple (N, S, A, P, R, v), where A is the action space, identical for each
agent; S is the identical state space of each agent, such that their initial states are {s}}¥; € SV and their
policies are {7}, € TIN. P: & x A x As — Ag is the transition function and R : S x A x Ag —
[0,1] is the reward function, which map each agent’s local state and action and the population’s empirical
distribution to transition probabilities and bounded rewards, respectively, i.e. Vi € {1,..., N}

5i+1 ~ P(‘|Siaaiaﬂt) and 7”2' = R(sivaivﬂt)‘

The policy of an agent is given by al ~ 7(s!), that is, each agent only observes its own state, and not the
joint state or empirical distribution of the population.

Definition 3.2 (N-player discounted regularised return). With joint policies 7 := (7!,... 7)€ TIVV, initial
states sampled from a distribution vy € Ags and v € [0,1) as a discount factor, the expected discounted
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regularised returns of each agent ¢ in the symmetric anonymous game are given by, Vi,j € {1,..., N},
c- - . .
\Ijh T, UO Z 5f7az7,at) + h(ﬂ'l(si))) a‘ZNTrj(‘S'Z)‘
= st~V PClst,at )

Definition 3.3 (§-NE). Say § > 0 and (7,7~ %) := (7!,... 7" 7,7t ... 7)) € IV, An initial distribu-
tion vy € As and an N-tuple of policies 7 := (7!,...,7V) € IV form a §-NE (7, vg) if

Ui (m,v0) > mé%{\l'ﬁb((ﬂ,ﬂ_i),vo) -6 Vie{l,...,N}.

At the limit as V — oo, the population of infinitely many agents can be characterised as a limit distribution
u € Ags. We denote the expected discounted return of the representative agent in the infinite-agent game -
termed a MFG - as V, rather than ¥ as in the finite N-agent case.

Definition 3.4 (Mean-field discounted regularised return). For a policy-population pair (m, u) € II x Ag,

SO~
ar~(se)

st41~P(-|se,ae,p)

=E Z’yt(R(Sh at, i) + h(m(s¢)))
t=0

A stationary MFG is one that has a unique population distribution that is stable with respect to a given
policy, and the agents’ policies are not time- or population-dependent.

Definition 3.5 (NE of stationary MFG). For a policy 7* € II and a population distribution p* € Ag, the
pair (7*, u*) is a stationary MFG-NE if the following optimality and stability conditions hold:

optimality: V(7™ u*) = max Vi (7, 1),

stability: p*( Z w( |s"\P(s|s',a’, u*).

s’ a’

If the optimality condition is only satisfied with V3, (7}, u5) > max, Vi (7, p5) — 9, then (73, u3) is a 6-NE of
the MFG, where p5 is obtained from the stability equation and 7.

The MFG-NE is an approximate NE of the finite N-player game, in which we may have originally been
interested but which is difficult to solve in itself (Lauriere et al., |2022bj [Yardim et al., [2023):

Proposition 3.6 (N-player NE and MFG-NE (Thm. 1, (Anahtarci et al.} 2023))). If (n*, u*) is a MFG-NE,
then, under certain Lipschitz conditions (Anahtarci et all, |2023), for any § > 0, there exists N(§) € Nsq
such that, for all N > N(0), the joint policy w = {n*,7*,...,7*} € 1Y is a 6-NE of the N-player game.

Remark 3.7. We can show that § can be characterised further in terms of N, with (7*,u*) being an
O(\;—N)—NE of the N-player symmetric anonymous game (Yardim et al,, 2023; |(Chen et al.| [2024¢; [Yardim

et al., 2025).

For our new, networked learning algorithm, we also introduce the concept of a time-varying communication
network, where the links between agents that make up the network may change at each time step t. Most
commonly we might think of such a network as depending on the spatial locations of decentralised agents,
such as physical robots, which can communicate with neighbours that fall within a given broadcast radius.
When the agents move in the environment, their neighbours and therefore communication links may change.
However, the dynamic network can also depend on other factors that may or may not depend on each agent’s
state si. For example, even a network of fixed-location agents can change depending on which agents are
active and broadcasting at a given time ¢, or if their broadcast radius changes, perhaps in relation to signal
or battery strength.

Definition 3.8 (Time-varying communication network). The time-varying communication network {G; };>o
is given by G; = (N, &), where N is the set of vertices each representing an agent ¢ € {1,..., N}, and the
edge set & C {(44) : i,j € N, i # j} is the set of undirected communication links by which information can
be shared at time t.
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A network is connected if there is a sequence of distinct edges forming a path between each distinct pair of
vertices. The union of a collection of graphs {G, Gi11, -+ ,Gi+w} (w € N) is the graph with vertices and
edge set equalling the union of the vertices and edge sets of the graphs in the collection (Jadbabaie et al.
2003). A collection is jointly connected if its members’ union is connected. A network’s diameter dg is the
maximum of the shortest path length between any pair of nodes.

3.1 Further technical conditions for algorithms and theorems

Our theoretical results, which compare our networked algorithm with the centralised and independent alter-
natives from Yardim et al.| (2023), rely on several further definitions from their work and assumptions from
their theorems. We introduce these here as some values are referenced when describing our algorithm in Sec.
[ in advance of the theoretical analysis in Sec. [f]

Assumption 3.9 (Lipschitz continuity of P and R). There exist constants K, K, Ko, L, Ls, L, € R>g
such that Vs, s’ € §,Va,a' € A, Vu, ' € As,

1P(ls,a, 1) = P(Ls o, p)lly < Kyllp = p'll + Ked(s, s') + Kad(a, a'),

|R(s,a,p) = R(s",a', 1) < Lyllp = 1|11 + Lsd(s, s') + Lad(a, a').

Definition 3.10 (Population update operator). The single-step population update operator I'ppp : Ag xIT —
Ag is defined as, Vs € S:

Tpop(m)(s) = 5 57 )P(s]s' ', ).

s’eSa’eA

We will use the short hand notation ', (14, ) := Tpop (- - - Tpop(Dpop(pt; T), ), - oo, 7).

n times

We recall that I',,, is known to be Lipschitz:
Lemma 3.11 (Lipschitz population updates). I'pop is Lipschitz with

K,
||Fp0p(/~tv7r) - PPOP(MI77T/)||1 < LPOP’H”M - NIHI + 7”77 - 7T/||17

where Lyop := (5 + B2+ K,), Vr € I, p € As.

For stationary MFGs the population distribution must be stable with respect to a policy, requiring that
Tpop(-, ™) is contractive Vr € II:
Assumption 3.12 (Stable population). Population updates are stable, i.e. Lpop <1

Definition 3.13 (Stable population operator I'p; ). Given Assumption [3.12} the operator I'D; ), :
maps a given policy to its unique stable population distribution such that Fpop(Fpop( m),m) = Lo (m), ie.
the unique fixed point of I'pop (-, 7) 1 As — As.

Definition 3.14 (Q), and g, functions). We define, for any pair (s,a) € S x A:

Qns, alm,w) = E | 324 (R(se, ar, ) + h(r(se))) |3z, * 2P0 s0aom e > 0

arp1~m(-lsesn)

and
an(s alm 1) == R(s,a,m) + 3 P(s']s, a,m)m(a|s)Qu(s', |, ).

s’,a’

Definition 3.15 (T'; operator). The operator I'; : II x As — Q, which maps population-policy pairs to
Q-functions, is defined as T'y(m, 1) = qp (-, -|m, 1) € Q Vr € I, p € As.
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We define, for hpayx > 0 and h: Ayg = [0, hmax)s Umax € A4 such that h(tumax) = Amax. We further define
Qumax = %7 and set Tmax € I such that Tmax(S) = Umax, Vs € S. For any Ah € R-q, we also define the
convex set Unp := {u € Ay : h(u) > hpmax — Ah}. We assume that the regulariser h ensures that all actions

at all states are explored with non-zero probability:

Assumption 3.16 (Persistence of excitation). We assume there exists p;, s > 0 such that:

1. Tmax(als) > piny Vs € S,a € A,

2. For any m € IT and ¢ € Q that satisfy, V(s,a) € S x A, m(a|s) > piny and 0 < ¢(s,a) < Qmax, it
holds that F;’Ld(q, m)(als) > ping, V(s,a) € S x A.

Assumption 3.17 (Sufficient mixing). For any m € II satisfying m(a|s) > piny > 0 Vs € S,a € A,
and any initial states {s{}; € SV, there exist Tz > 0,0miz > 0 such that IP(SJTWI = s'[{s{}:) > Ormias
Vs € 8,5 € [N].

Definition 3.18 (Nested learning operator). For a learning rate n > 0, I';, : IT — II is defined as

Ly(m) := Tyd(Ty(m, Doy (), 7).
Lemma 3.19 (Lipschitz continuity of I';). For any n > 0, the operator I';, : I — II is Lipschitz with
constant Ly, on (IL || - ||1).

4 Learning with networked, decentralised agents

Roadmap We first introduce theoretical versions of our operators and algorithm (Secs. , in order
to show that our networked framework has sample guarantees bounded between those of the centralised-
and independent-learning cases (Sec. . We then show that our novel incorporation of an experience
replay buffer (Sec. , along with networked communication, means that empirically we can remove many
of the theoretical assumptions and practically infeasible hyperparameter choices that are required by the
sample guarantees of the theoretical algorithms, in which cases we demonstrate experimentally that our
networked algorithm can significantly outperform the independent algorithm, often performing similarly to
the central-agent one (Sec. .

4.1 Learning with N agents from a single run

We begin by outlining the basic procedure for solving the MFG using the N-agent empirical distribution
and a single, non-episodic system run. The two underlying operators are the same for the centralised,
independent and networked architectures; in the latter two cases all agents apply the operators individually,
while in the centralised setting a single representative agent (the agent with arbitrary index i = 1) estimates
the Q-function and computes an updated policy that is pushed to all the other agents.

Learning agents use the stochastic temporal difference (TD)-learning operator to repeatedly update an
estimate of the Q-function of their current policy with respect to the current empirical distribution, i.e. to

approximate the operator I'y (Def. Sec. :

Definition 4.1 (Stochastic TD-learning operator, simplified from Def. 4.1 in [Yardim et al. (2023)). We
define Z := 8§ x A x[0,1] x § x A, and say that (] is the transition observed by agent 7 at time ¢, given by
¢/ = (s,af,r},8{11,0a;,,). The TD-learning operator F§ : Q x Z — Q is defined, for any Q € Q,(; € Z,53 €
R, as

FF(Q,¢) = Qs ar) — 3(@(8:5»%) =1 — M7 (se)) — 7Q(st41, at+1)>~

Having estimated the Q-function of their current policy, agents update this policy by selecting, for each
state, a probability distribution over their actions that maximises the combination of three terms (Def. :
1. the value of the given state with respect to the estimated Q-function; 2. a regulariser over the action
probability distribution (in practice, we maximise the scaled entropy of the distribution); 3. a metric of
similarity between the new action probabilities for the given state and those of the previous policy, given by

10
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Algorithm 1 Networked learning with single system run

Require: loop parameters K, My, Miq,C,  learning parameters  17,{Bm}mefo,...Mpy—1}> M7

{Tk}ke{o,...,K—l} )
Require: initial states {s}}¥

1: Set 7r6 = Tmax, V¢ and t < 0

2: for k=0,..., K—1do

3 Vs,a,i: Qé(s,a) = Qmax

4 form=0,...,M,; —1do

5: for M, iterations do

6: Take step Vi : ai ~ mi.(-|s}),ri = R(si,a}, i), st ~ P(:|si,al, fig); t + t+1
7: end for .

8: Compute TD update (Vi): Qi = F5* (Qh,, ¢i_,) (Def. D
9: end for N _
10:  PMA step Vi : mf,, = Ip9(Q4, k) (Def.
11:  Vi: Generate oy, associated with 7}
12:  for C rounds do
13: Vi : Broadcast o}, |, 7 4
14: Vi:Ji=iU{jeN:(i,j) € &}

15: Vi : Select adopted” ~ Pr(adoptedi = j) _ > exp (03,1 /7k) Vje Ji

exp (o";Jrl/‘rk)

ze.fz'
. ) adoptedi’ i adoptedi
16: Vz.ak+1<—ok+‘1 ?Wk+1<_—7r_k,+1 o ‘ o
17: Take step Vi : ay ~ m;_(:|s}), i = R(s}, ay, fie), sipq ~ P(-[st, at, fig); t =t +1
18: end for
19: end for

20: return policies {W}(}f\i1

the squared two-norm of the difference between the two distributions. We can alter the importance of the
similarity metric relative to the other two terms by varying a parameter 7, which is equivalent to changing
the learning rate of the policy update. The three terms in the maximisation function can be seen in the
policy mirror ascent (PMA) operator:

Definition 4.2 (Policy mirror ascent operator (Def. 3.5, (Yardim et al.| [2023))). For a learning rate n > 0
and Ly, := Lo + 75282 (where these constants are defined in Assumption in Sec. , the PMA update

2— K,
operator F;"'d : Q X II = 11 is defined as, Vs € §,VQ € Q,Vr € 11

md ;= argmax | (u, q(s, - u—iu—ws
L7Q, m)(s) == arg << 2q(s,°)) + h(w) 77|| ()II§>'

u€UL,

The theoretical learning algorithm has three nested loops (see Lines and |5| of Alg. [1). The policy update
is applied K times. Before the policy update in each of the K loops, agents update their estimate of the
Q-function by applying the stochastic TD-learning operator M, times. Prior to the TD update in each of
the M,, loops, agents take M;q steps in the environment without updating. The M4 loops exist to create
a delay between each TD update to reduce bias when using the empirical distribution to approximate the
mean field in a non-episodic system run (Kotsalis et al.; |2022). However, we find in our experiments that we
are able to essentially remove the inner My, loops (Sec. .

4.2 Decentralised communication between agents

In our novel algorithm Alg. [I} agents compute policy updates in a decentralised way as in the independent
case (Lines , before exchanging policies with neighbours in Lines by the following method, which
allows policies to spread through the populationﬂ Coupled to their updated policy 7, agents generate

3As discussed in Sec. 2l our communication method is reminiscent of the use of fitness functions in distributed evolutionary
algorithms (Eiben & Smith} 2015} |Hart et al., [2015)).

11
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a scalar value a}; 41 (Line . The value provides information that helps agents decide between policies
that they may wish to adopt from neighbours. Different methods for choosing between values received from
neighbours, and for generating the values in the first place, lead to different policies spreading through
the population. For example generatmg or choosing oy ., at random leads to policies being exchanged at
random (required in Thm. , whereas generatmg 0}, as an approximation of the return of 7, and

then selecting the highest recelved value of o7, 41 leads to better performing policies spreading through the
population. The latter is the approach we use for accelerating learning empirically (described in Sec.
on the practical running of our algorithm), albeit we use a softmax rather than a max function for selecting
between received values. However, for generality in our theoretical results, we do not focus on a specific
method for generating o}, 41, such that it can be arbitrary for Thms. and below, and with few
restrictions for Thms. (.3l and (.6l

Agents broadcast their policy ¥, 41 and the associated oL 41 value to their neighbours (Line. Agents have
a certain broadcast radius, defining the structure of the possibly time-varying communication network. Of
the pohcles and associated values received by a given agent (including its own) (Line D the agent selects
a o}, 41 with a probablhty defined by a softmax function over the received values, and adopts the policy
associated with this o}, i.e. it sets its own current 7rk+1 and ok+1 to the ones it has selected (Lines
116)). This process repeats for C' communication rounds, before the Q-function estimation steps begin again.
After each communication round, the agents take a step in the environment (Line , such that if the
communication network is affected by the agents’ states, then agents that are unconnected from any others
in a given communication round might become connected in the next. (In our experiments we set C as 1
to show the benefits to convergence speed brought by even a single communication round.) We assume the
softmax function is subject to a possibly time-varying temperature parameter 7. We discuss the effects of
the values of C and 7, and the mechanism for generating a,iC 41, in subsequent sections.

Remark 4.3. Our networked architecture is effectively a generalisation of both the central-agent and inde-
pendent settings (Algs. 2, 3, |[Yardim et al.| (2023)). The independent setting is the special case where there
is no communication, i.e. C'= 0. The central-agent setting is the special case when o7}, 41 is generated from a
unique ID for each agent, with the central learner agent assumed to generate the highest value by default. In
this case we assume 7, — 0 (such that the softmax becomes a max function), and that the communication
network becomes jointly connected repeatedly, so the central learner’s policy is always adopted by the entire
population, assuming C' is large enough that the number of jointly connected collections of graphs occurring
within C' is equal to the largest diameter of the union of any collection (Rajagopalan & Shah| 2010; [Zhang
et al., 2020).

Remark 4.4. In practice, when referring to a central-agent version of the networked Alg. [1] for simplicity we
assume there is no networked communication and instead that the updated policy 7T,£ ., of the representative
learner ¢ = 1 is pushed to all agents after Line as in Alg. 2 of (Yardim et al., [2023).

5 Theoretical results

We first give two theoretical results comparing the sample guarantees of our networked case with those of the
other settings; the results respectively depend on whether the networked agents select which communicated
policies to adopt at random or not. We then provide the order of the difference in these bounds in the
non-random case in terms of the network structure and number of communication rounds. We finally give a
policy-update stability guarantee, which applies in all scenarios.

Lemma 5.1 (Independent learning, from Thm. 4.5, Yardim et al.| (2023)). For piny and 0mie defined in

2
Assumptions |3.16 and |3.17 respectively, define to := % Assume that Assumptions 3.12
and [3.17 hold, and that ©* is the unique MFG-NE pol@cy For Lr, defined in Lem. [3.19, we assume

n > 0 satisfies Ly, < 1. The learning rates are B, = Vm > 0, and let € > 0 be arbitrary.

TG

There exists a problem-dependent constant a € [0,00) such that if K = 11018;_11, by > O(e727%) and

Mg > O(log®c™"), then the random output {m% }; of Alg. |1 I 1| when run with C = 0 (such that there is no

12
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communication) satisfies for all agents i € {1,..., N},

E[[|r — 7] < e+0O (%) .

We first give a result for the trivial situation of random adoption to provide an intuition that networked
communication preserves the sample guarantees of independent learning, before showing the conditions under
which the latter can be outperformed.

Theorem 5.2 (Networked learning with random adoption). For piny and 0mis defined in Assumptions

3.16| and |3.17 respectively, define ty := % Assume that Assumptions 3.12,15.16/ and |3.17

hold, and that 7 is the unique MFG-NFE polzcy For Lr, defined in Lem. |3. Ig, we assume 1 > 0 satisfies
Ly, < 1. The learning rates are By, = vYm > 0, and lete > 0 be arbitrary. Let us set C > 0 and

- - “/)(to+m 1)

T, — 00. There exists a problem-dependent constant a € [0,00) such that if K = llogSLE 11, M,y > O(7%279)

and Myq > O(log*e™"), then the random output {r% }; of Alg. I 1| preserves the sample guarantees of the
independent-learning case given in Lem. i.e. the output satisfies, for all agentsi € {1,..., N},

E[|lri — 7] < e+ 0 <¢1ﬁ> .

Proof. If 1, — oo, the softmax function that defines the probability of a received policy being adopted in Line
of Alg. [1] gives a uniform distribution. Policies are thus exchanged at random between communicating
agents for an arbitrary C' > 0 rounds, which does not affect the random output of the algorithm, such that
the random output satisfies the same expectation as if C' = 0. O

If ot 41 is generated arbitrarily and uniquely for each i, then for 7, € R (such that the softmax function
gives a non-uniform distribution and adoption of received policies is therefore non-random), the sample com-
plexity of the networked algorithm is bounded between that of the centralised and independent algorithms:

Theorem 5.3 (Networked learning with non-random adoption). Assume that Assumptions
and[3.17 hold, and that Alg. [1] is run with learning rates and constants as defined in Thm. except now
let us set 7, € Rsq. Assume that o}, is generated uniquely for each i, in a manner independent of any

metric related to 7r2+1, e.g. J,i+1 is random or related only to the index i (so as not to bias the spread of
i,net

any particular policy). Let the random output of this Algorithm be denoted as {my*“" };. Also consider an
independent-learning version of the algorithm (i.e. with the same parameters except C' = 0) and denote its
random output {ﬂ}(md i; and a central-agent version of the algorithm with the same parameters (see Rem.
and denote its random output as 75" . Then for all agentsi € {1,..., N}, the random outputs {71’ nety
{ﬂ};nd i and ﬂce”t satisfy the following relations, where ubyer, Ubing cmd Ubcens are respective upper bounds

for each case:

[Hﬂ_cent 7T*||1] S chent7 |:||7TZ e 7T*||1:| S Ubnety |:||7TZ ind 7T*||1:| S Ubindv

1

where  Ubeent < Ubper < Ubipng e+ 0O (\/]V) .

Proof. We build off the proof of our Lem. given in Thm. D.9 of |Yardim et al| (2023). There the
sample guarantees of the independent case are worse than those of the centralised algorithm as a result
of the divergence between the decentralised policies due to the stochasticity of the PMA updates. For an
arbitrary policy 7, € II, for all £k = 0,1,..., K define the policy divergence as the random variable Ay :=
Zi]\il |7 — 7x|[1. We can say that A cent = 0 Vk is the divergence in the central-agent case, while in the
networked case the policy divergence is Aj41,. after communication round ¢ € 1,...,C. The independent
case is equivalent to the scenario when C' = 0, such that its policy divergence can be written Agyq .

13
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Zw:] exp (o 1 /7k)
is higher for some j € J{ than for others. This means that for ¢ > 0 for which there are communication links
in the population, in expectation the number of unique policies in the population will decrease, as it will
likely become that 7T2+1 = ﬂi_H for some ¢,j € {1,...,N}. As such, Agi1,cent < E[Apy1,0] < E[Agt1,0],
i.e. the policy divergence in the independent-learning case is expected to be greater than or equal to that of
the networked case.

The proof of Lem. given in Thm. D.9 of [Yardim et al.| (2023)) ends with, for constants x and &,

For 7, € Ry, the adoption probability Pr (adoptedi = aiﬂ) = OXP (i1 /Th) (as in Line|15| of Alg.

7 * X
E [||rf —7*|h] <2Lf + T Lo

n

K—1
L€ ST LEFIR (A,
k=1

where in our context the policy divergence in the independent case E [Aj11] is equivalent to E [Ag41,¢] when
C= 0, ie. E [A]H_Lo].

i,net i,ind

Thus, for all agents ¢ € {1,..., N}, the random outputs {7 };, {m"“}; and 7%

cent

satisfy:

K—1
E |llmi" = 7] < ubina = 2LE, + +6 3 LEFTE A,

1-Lr, P
X K—-1
{Hﬂz et 77*||1] < ubper = 2L + Tt SO LETTE AR,
n k=1
B[l = ] < wbeene = 2L, + 5 6 Z Le, " [Bkcend]

Since Agit1cent < E[Art1,0] <E[Akt1,0], we obtain our result, i.e.

1
chent < Ubnet < ubmd =+ 0 (\/N> .

O

Lemma 5.4 (Conditional TD learning from a single continuous run of the empirical distribution of N agents,

from Thm. 4.2, [Yardim et al,| (2023)). Define to := %. Assume that Assumption |3.17 holds

and let policies {m" }; be given such that 7*(als) > pins Vi. Assume Lmes@-@ of Alg. |1 I are run with policies
{7t }i, arbitrary initial agents states {s} };, learning rates B, = W Vm >0 and M,, > O(e7?),

Mg > O(loge™t). If # € I is an arbitrary policy, A := Zi:l [|7t — 7||1 and Q* := Qn(-, |7, puz), then the
random output QlMpg of Lines H—B satisfies

B [0k, - @lle] <40 (o4 A+l =1l ).
Remark 5.5. It may help to see that our Thm. is a Consequence of the following. Denote QZ ”et7 AE\/}Zj

and ch"t as the random outputs of Lines |3H9| of Alg 1n the networked, independent and central-agent
cases respectlvely In Lem. [5.4] we can see that policy divergence gives bias terms in the estimation of the
Q-value. Therefore, given Agi1 cent < E[Apt1.c] < E[Akt10], we can also say

A A, * Aiyind
E[11057 - @7lloe| < E[IQ5 - @7ll] < B[IQY - @711nc]
In other words, the networked case will require the same or fewer outer iterations K to reduce the variance

caused by this bias than the independent case requires (where the bias is non-vanishing), and the same or
more iterations than the central-agent case requires.

14
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Theorem 5.6 (Relation between communication network structure and order of difference between the
architectures’ bounds). In addition to the assumptions in Thm. now also assume that the communication
network G, remains static and connected during the C communication rounds. Assume also the diameter dg
of the network is equal for all k. Let us set 7, Vk as a small positive constant chosen to be sufficiently close
to zero that the softmax essentially becomes a max function. Then, for the tight bound big Theta (©), we
can say that the difference in the upper bounds ubner, ubing and ubeens from Thm. depends on C and
the network diameter dg as follows (where the ‘~’ relation comes from the approxzimate spread of policies
through the network as explained in the proof):

chent + © (f(c? dg)) ~ U'bnet ~ Ubind -0 (1 - f(Ca dg)) )

for the piecewise function f(C,dg) defined as

1\¢
£Cdo) = (17@) if C < dg,
0 if C > dg

When C' > dg, ubpet = Ubcent, so for C' > dg there is no additional improvement over the centralised bound.
Equally when C' = 0, we have exactly ubper = ubjng-

Proof. From the proof of Thm. [5.3| we have:

K-1
E [Hw;g”d - W*M < ubia = 2L + —— 1+ ¢ 3 LETFIE (A,

I—Lp, ~&
) K-—1
E [||7r};"et - 77*”1} < ubner = 2LF + ﬁ +&Y " LEFE[Ak o],
n k=1
Y K—-1
E[[|r5e™ = m*ll1] < wboent = 2LF, + 7= p— € > Lr, T E [Akcent]
n k=1

Say that oY is the highest 0" value in the population before the communication rounds at k4 1. With a
static, connected network and 7 close to 0 for all k, max-consensus will always be reached on oY after
C = dg communication rounds, such that Ay cent = Ap g, = 0 (Nejad et al.l |2009). The convergence rate

of the max-consensus algorithm is % (Nejad et al., [2009), i.e. there is a decrease in the number of policies
in the population by a factor of approximately é with each communication round up to C' = dg, and

therefore there is also a decrease in the policy divergence E[Ay ] by a factor of approximately é with each
communication round. Thus

1
E[Akct1] = E[Ak ] — (IE [Ag,c] X d) , simplifying to
g

E[Aperr] ~ E[A ] x (1 - 1) .

E [Ao] ~ E [Ag o] X ((1 - d1g>0> 7

however, we know that Ay 4, = 0, so we can more accurately use the piecewise function f(C,dg), defined
as:

By induction

f(C,dg) = (1 B $>C if ¢ < dg,

0 if C >dg

)

15



Under review as submission to TMLR

giving
E[Arc] = E[Ako] x f(C,dg).

We can therefore also say:

K-1
ubina = 2LE + —— 1+ ¢ 3 LETFIR[A ],

1—-Lr, =
X K—1
Ubnet ~ QLII\(TI + 1_71/1—‘” +£ ]; Ll{(n_k_l]E [Ak,o] X f(C, dg)7
X
beent = 2L{ + —=—.
U t r, + 1_ Ll"n
We therefore firstly have
K-1 K—1
Ubing — Ubner & & Y LETFTE[Ag o] =€ Y LETFTIR[Ay o] x £(C,dg),
k=1 k=1
which simplifies to
K—1
Ubing — Ubper ~ & Y LETF TR [Ag o] x (1= f(C,dg)).
k=1

This gives us one of the results, where we focus on the functional dependence on C' and dg by using the tight
bound big Theta (©):
Ubpet = ubing — © (1 — f(C,dg)) .
Secondly, we have
K-1

Ubpet R Ubcent +£ Z LII‘(n_k_lE [Ak,O] X f(C, dg)7
k=1

giving us the second result
Ubnet A Ubcent + © (f(ca dg)) :

O

Remark 5.7. If it is always U,i_H and 7r,£+1 that is adopted by the whole population (i.e. ¢ = 1), then this
is exactly the same as the central-agent case. If the o7, 41 and M, 41 that gets adopted has different j for each
k, then this is akin to a version of the central-agent setting where the index of the representative learning
agent may differ for each k.

Remark 5.8. Thm. depends on the assumptions that the communication network is static and fixed,
and has the same diameter dg for all k. If we assume instead that the network is only repeatedly jointly
connected, we can replace dg in the results in Thm. with dgyg - w, namely the average diameter of the
union of each jointly connected collection of graphs multiplied by the average number w of graphs in each
jointly connected collection. As noted in Rem. [£:3] max-consensus is reached if C' is large enough that the
number of jointly connected collections of graphs occurring within C' is equal to the largest diameter of the
union of any collection. This is equivalent to the central-agent case; there is no added benefit to higher
values of C' than this.

Remark 5.9. Thm. [5.6] assumes 74 is a small positive value close to 0 such that the softmax function
becomes a max function. If we assume instead 7, € R is not close to 0 such that the softmax function
is less peaked, then we have ub,e; — ubjng as C — 0, and ub,er — Ubeen: as C — o0o. This is because the
spread of policies is now probabilistic rather than deterministic, and depends on the interplay of 7, with
how large are the differences in the received values of o7 ;. Therefore consensus (and hence reduction in
divergence between policies) is reached only asymptotically. This applies to both static, connected networks
and to repeatedly jointly connected ones, assuming the latter becomes jointly connected infinitely often.
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For completeness, we finally give a stability guarantee that follows from the earlier theorems.
Theorem 5.10 (Policy-update stability guarantee). Let Alg. || run as per Thm. or Thms. 5.0

-1
and say that €y is the error term at iteration k = llc;ggszﬁl . For all agents 1, the maximum possible distance
r
between 7" and ﬁ,i’ﬁt is given by E {||7r,i’"et - ﬂ',iﬁtﬂl} <eptept1+0O (ﬁ) This bound provides a

stability guarantee during the learning process; moreover the bound shrinks with each successive k since €
decreases with k. Equivalent analysis can also be conducted for both the centralised and independent cases.

Proof. Thms. and bound the difference between each agent’s current policy i and the unique
equilibrium policy 7*, with the difference depending on the bias term e that relates to the iteration k as

indicated. Policies 7, and 7}, ,; fall within balls centred on 7* with radii of e, +O (ﬁ) and 41 +0O (ﬁ)
respectively. This means that the maximum possible distance between 7} and 7}, 41 is the sum of these radii,

ie Elllnt —7miilh] <er+ery1+0O (ﬁ), giving the result. O

6 Practical modifications to theoretical algorithms for empirical use

The theoretical analysis in Sec. [5| requires algorithmic hyperparameters (see Thm. that render con-
vergence impractically slow in all of the centralised, independent and networked cases. In particular, the
values of 0,,i, and pinr give rise to very large to, causing very small learning rates {ﬂm}me{o’prg_l},
and necessitating very large values for M;q and M,,. Indeed |Yardim et al|(2023) do not provide empirical
demonstrations of their algorithms for the centralised and independent cases.

For convergence of the algorithms in practical time, we seek to drastically increase {8}, and reduce
M;q and Mp,. We found empirically that the two algorithmic enhancements below helped achieve feasible
convergence times with significantly reduced numbers of loops. The first involves recycling transitions using
a buffer, and the second gives a principled way of selecting J,i 41 in Linein Alg. |1} There is therefore only a
minimal conceptual gap between our theoretical and empirical algorithms, but the replay buffer and reduced
numbers of loops do break the theoretical guarantees above, which we trade off for practical convergence.
Future works lies in updating the guarantees in light of the practical enhancements.

6.1 Algorithm acceleration by use of experience-replay buffer

We modify our Alg. [I|as follows, shown in blue in Alg. 2l Instead of using a transition ¢/ _, to compute the
TD update within each M, iteration and then discarding the transition, we store the transition in a buffer
(Line E[) until after the M, loops. Replay buffers are a common (MA)RL tool used especially with deep
learning, precisely to improve data efficiency and reduce autocorrelation (Lin, |1992; Fedus et al., 2020;  Xu
et al} |2024a). When learning does take place in our modified algorithm (Lines , it involves cycling
through the buffer for L iterations - randomly shuffling the buffer between each - and thus conducting the
TD update on each stored transition L times. This allows us to reduce the number of My, loops, as well
as not requiring as small a learning rate {8,,}m, allowing much faster learning in practice. Moreover, by
shuffling the buffer before each cycle we reduce bias resulting from the dependency of samples along the
continued, non-episodic system run, which may justify being able to achieve adequate stable learning even
when reducing the number of M;; waiting steps within each M, loop (Sec. .

The replay buffer allows the first practical demonstrations of all three architectures for learning from a
single continued system run. Without it, the empirical learning of our original algorithm is too slow for
practical demonstration, as also in the centralised and independent cases - see the ablation study in Sec.
[7-45] The intuition behind the better learning efficiency resulting from the buffer is as follows. The value
of a state-action pair p is dependent on the values of subsequent states reached, but the value of p is only
updated when the TD update is conducted on p, rather than every time a subsequent pair is updated.
By learning from each stored transition multiple times, we not only make repeated use of the reward and
transition information in each costly experience, but also repeatedly update each state-action pair in light
of its likewise updated subsequent states.
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Algorithm 2 Networked learning with experience replay and performance-related generation of o}, 11

Require: loop parameters K, Mg, Myq,C, L, I, learning parameters 7, 3, A, 7, {Tk}ke{o,_.q]{_l}
Require: initial states {s)}¥,
1: Set 776 = Tmax, Vi and t < 0
2: for k:O,.A..,K—l do
3 Vs, a,i: Q(s,a) = Qmax
Vi: Empty i’s buffer
form=0,...,M,; —1do
for M, iterations do
Take step Vi : aj ~ m;(-|s}),ri = R(s}, a}, fu), st ~ P(:|s},af, fig); t <t +1
end for
Vi: Add ¢}_, to i’s buffer
10:  end for
11: forl=0,...,L—1do
12: Vi : Shuffle buffer

© %NSk

13: for transition ¢/ in ¢’s buffer (Vi) do
14: Compute TD update (Vi): Q% ., = Fg’;( )i ¢y (see Def.
15: end for

16:  end for .
17: PMA step Vi: ), = and(wapq, 1) (see Def.

24:  for C rounds do

25: Vz: : B_road.cast.UzH, 77,?_‘_1.
26: Vi:Ji=iU{j eN:(i,)) € &}

. ; ; . (ol /7) ) ;
27: Vi : Select adopted’ ~ Pr(adopted® = j) = P Tt Vi e J;

p | ( p ‘7) Zzle cxp(aerl/Tk) J t

28: Vi:oh,, aZi‘}ptedl,wi 41— WZiolptedL
20:  Takestep Vi:aj ~mj . (-[s}), 7f = R(sf, af, fu), si41 ~ P(lsy,af, fu)i t <t +1
30: end for
31: end for

32: return policies {r% }¥,

We leave [ fixed across all iterations, as we found empirically that this yields sufficient learning. We have

not experimented with decreasing § as [ increases, though this may benefit learning.

The transitions in the buffer are discarded after the replay cycles and a new buffer is initialised for the next
iteration k, as in Line [l As such the space complexity of the buffer only grows linearly with the number of

M, iterations within each outer loop k, rather than with the number of K loops.

6.2 Generation of o},

Reducing the number of loops in the hope of achieving practical convergence times can lead to poorer
estimation of the Q-function Qﬁupg, and hence a greater variance in the quality of the updated policies 7 , ;.
This problem will increase with the size of the state and action spaces. In such cases we found empirically
that an appropriate method for generating o}, dependent on 7, allows our networked algorithm to
significantly outperform the independent case by advantageously biasing the spread of particular policies.

This is instead of generating o}, , arbitrarily as required in the theoretical settings in Sec.
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We do so via the steps added in in Alg. which replace Line in Alg. for mpy1 =
(Thy1r- - Thyq), we set of ) to a finite-step approximation W} , . (mx11,v0) of the discounted return

‘Ijél’k+1(ﬂ.k+1a vg) (Def. . The approximation is given by, Vi,j € {1,...,N}

t=tte
ay N”iﬂ(si) .

5§+1NP('|Si 70';”&4)

E
Ul o1 (mrr1,00) = [ D7 (R(sh, af, i) + (' (s})))
e=0

This is calculated by tracking each agent’s discounted return for E evaluation steps (Lines [L9523)).

Generating O']i 41 in this way means policies that are more likely to spread through the network are those
estimated to receive a higher return in reality, despite being generated from poorly estimated Q-functions,
biasing the population towards faster learning. Naturally the quality of the finite-step approximation depends
on the number of evaluation steps E, but we found empirically that E can be much smaller than M,, and
still give marked convergence benefits.

7 Experiments

Our technical contribution of the replay buffer to MFG algorithms for online learning from non-episodic
system runs allows us also to contribute the first empirical demonstrations of these algorithms, not just in
the networked case but also in the central-agent and independent cases. The latter two serve as baselines
to show the advantages of the networked architecture. Experiments were conducted on a MacBook Pro,
Apple M1 Max chip, 32 GB, 10 cores. We use scipy.optimize.minimize (employing Sequential Least
Squares Programming) to conduct the optimisation step in Def. and the JAX framework to accelerate
and vectorise some elements of our code. For reproducibility, our code is included in the publicly available
Supplementary Material.

7.1 Games

We follow the gold standard in prior works on stationary MFGs regarding the types of game demonstrated:
we focus on grid-world environments where agents can move in the four cardinal directions or remain in
place (Lauriere, 2021} |[Lauriere et al., [2022bj [Zaman et al.l [2023; |Algumaei et al., [2023; |Cui et al.| |2023a;
Wu et all 2024c|). While this type of experiment is characteristic of similar MFG works, we recognise that
these are simple games. They nevertheless serve as useful preliminary demonstrations of the validity of our
algorithms and the considerations necessary for achieving practical learning; we leave experiments in more
complex environments to future work, which would likely require extending the algorithms to handle non-
tabular Q-functions. Moreover, grid-world environments naturally reflect the deployed, spatial applications
in which we are interested in our setting, where agents learn online and communicate with neighbours on a
network (which is likely to be defined spatially, though is not restricted to such a case).

We conduct numerical tests with two tasks (defined by the agents’ reward functions), chosen for being
particularly amenable to intuitive understanding of whether the agents are learning behaviours that are
appropriate and explainable for the respective objective functions. In all cases, rewards are normalised in
[0,1] after they are computed.

Cluster. This is the inverse of the ‘exploration’ game in (Lauriere et al., 2022b)), where in our case agents
are encouraged to gather together by the reward function R(s¢, al, fi;) = log(fi;(s})). That is, agent i receives
a reward that is logarithmically proportional to the fraction of the population that is co-located with it at
time ¢. We give the population no indication where they should cluster, agreeing this themselves over time.

Agree on a single target. Unlike in the above ‘cluster’ game, the agents are given options of locations
at which to gather, and they must reach consensus among themselves. If the agents are co-located with one
of a number of specified targets ¢ € ® (in our experiments we place one target in each of the four corners
of the grid), and other agents are also at that target, they get a reward proportional to the fraction of the
population found there; otherwise they receive a penalty of -1. In other words, the agents must coordinate
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on which of a number of mutually beneficial points will be their single gathering place. The reward function
is given by R(S%, CL%, /:Lt) = ’rtarg(rcollab(ﬂt(si))% where

Frana (1) = x if3p € @ s.t. dist(st, ) =0
targt ) 11 otherwise,

oot () = z if fy(st) > 1/N
cona -1 otherwise.

These are both coordination games, where selfish agents can increase their individual rewards by following
the same strategy as others and therefore have an incentive to communicate policies. Moreover, they require
more sophisticated solutions than the dispersal/exploration games often considered in similar MFG works
(Lauriere et al., |2022b} |Zaman et al., [2023; [Wu et al.,2024c), where a trivial starting policy that encourages
agents to move across the grid at random may already be close to the equilibrium policy.

7.2 Experimental metrics

To give as informative results as possible about both performance and proximity to the NE, we provide
three metrics for each experiment. All metrics are plotted with 2-sigma confidence intervals (2 x standard
deviation), computed over 10 trials (each with a random seed) of the system evolution in each setting. This
is computed based on a call to numpy.std for each metric over each run.

7.2.1 Exploitability

Works on MFGs most commonly use the exploitability metric to evaluate how close a given policy 7 is to a
NE policy 7* (Perrin et al.l [2020} [Pérolat et al., |2022; [Lauriere et al., 2022azb; |Algumaei et al., 2023; 'Wu
et al, [2024c). The metric usually assumes that all agents are following the same policy 7, and quantifies how
much an agent could benefit by deviating from =, by measuring the difference between the return V3, (Def.
gained by 7 and that gained by a policy that best responds to the population distribution generated
by m. Let us denote by u™ the distribution generated when 7 is the policy followed by all of the population
aside from the deviating agent; then the exploitability of policy 7 is defined as follows:

Definition 7.1 (Exploitability of ). The exploitability £ of policy 7 is given by:

E(m) = max Vi(m', 1) = Vi (m, ™).

If 7 has a large exploitability then an agent can significantly improve its return by deviating from 7, meaning
that 7 is far from 7*, whereas an exploitability of 0 implies that m = 7* - i.e. lower exploitability is considered
better.

Since we do not have access to the exact best response policy arg max, Vi (7', u™) as in some related works
(Lauriere et al., [2022b; [Wu et al.l 2024c|), we instead approximate the exploitability metric, similarly to
(Perrin et al., |2021)), as follows. We freeze the policy of all agents apart from a deviating agent, for which
we store its current policy and then conduct 40 ‘deviation’ k loops of policy improvement. To approximate
the expectations in Def. we take the best return of the deviating agent across the 40 k loops, as well
as the mean of all the other agents’ returns across these same loops. We then revert the agent back to its
stored policy, before learning continues for all agents. Due to the expensive computations required for this
metric, we evaluate it only on alternate k iterations of the actual system evolution (for our ablation study
of the experience replay buffer in Sec. we evaluate only every 20 k).

Since prior works conducting empirical testing have generally focused on the centralised setting, evaluations
have not had to consider the exploitability metric when not all agents are following a single policy my, as
may occur in the independent or networked settings, i.e. when 7T;.€ # ] for i,k € {1,...,N}. The method
described above for approximating exploitability involves calculating the mean return of all non-deviating
agents’ policies. While this is 7 in the centralised case, if the non-deviating agents do not share a single
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policy, then this method is in fact approximating the exploitability of their joint policy w,;d, where d is the
deviating agent.

The exploitability metric has a number of limitations in our setting. In coordination games (the setting for
our tasks), agents benefit by following the same behaviour as others, and so a deviating agent generally
stands to gain less from a ‘best-responding’ policy than it might in the non-coordination games on which
many other works focus. For example, the return of a best-responding agent in the ‘cluster’ game still
depends on the extent to which other agents coordinate on where to cluster, meaning it cannot significantly
increase its return by deviating from a badly clustering policy. This means that the downward trajectory of
the exploitability metric is less clear in our plots than in other works.

Moreover, our approximation takes place via policy improvement steps (as in the main algorithm) for an
independent, deviating agent while the policies of the rest of the population are frozen. As such, the quality
of our approximation is limited by the number of policy-improvement/expectation-estimation rounds, which
must be restricted for the sake of the running speed of the experiments. Moreover, since one of the findings of
our paper is that networked agents can improve their policies faster than independent agents, it is arguably
unsurprising that approximating the best response by an independently deviating agent sometimes gives an
unclear and noisy metric.

Given the limitations presented by approximating exploitability, we also provide the second metric to indicate
the progress of learning.

7.2.2 Average discounted return

We record the average finite-step discounted return of the agents’ policies 7r,ic during the M,  steps of each
outer k loop. This allows us to observe that settings that converge to similar exploitability values may not
have similar average agent returns, suggesting that some algorithms are better than others not just at finding
any Nash equilibria, but also at finding preferable equilibria (when the assumption of a unique MFG-NE is
removed by reducing regularisation; see Sec. - cf. |Graber| (2025); [Li et al. (2025¢). See, for example,
Fig. |8l where the networked agents converge to similar exploitability as the independent agents, but receive
higher average reward.

7.2.3 Policy divergence

We record the population’s average policy divergence %Ak = % ZZI\LI [|[mi — mi]|1 for the arbitrary policy
7 = w!. Many of our theoretical results and proofs relate to the policy divergence, and in Sec. |5| we show
extensively how the comparatively worsening sample complexities between the centralised, networked and
independent cases are the result of their range of policy divergences. We therefore include this metric to
show how this relationship affects learning in practice.

Furthermore, the theoretical guarantees assume that the population is trying to learn the unique equilibrium
policy n*, with the implication that all agents should end up with this identical policy, regardless of the
learning architecture (Sec. . However, we find in practice that populations may be converging (in terms
of exploitability /return) while having non-diminishing policy divergence, particularly in the independent
setting. We therefore also include this metric to indicate the difference between theoretical and empirical
convergence.

7.3 Hyperparameters

See Table [I] for our hyperparameter choices. In general, we seek to show that our networked algorithm is
robust to ‘poor’ choices of hyperparameters, such as low numbers of iterations, as may be required when
aiming for practical convergence times in complex real-world problems. By contrast, the convergence speed
of the independent algorithm suffers much more significantly without idealised hyperparameter choices. As
such, our experimental demonstrations in the plots generally involve hyperparameter choices at the low end
of the values we tested during our research.
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Table 1: Hyperparameters

Hyper- Value Comment

param.

Grid- 8x8/ Most experiments are run on the smaller grid, while Figs. [8] and [9] showcase learning in a

size 16x16 larger state space.

Trials 10 We run 10 trials with different random seeds for each experiment. We plot the mean and
2-sigma error bars for each metric across the trials.

Pop. 250 We tested N in {25,50,100,200,250}, with the networked architecture generally performing
equally well with all population sizes > 50. We chose 250 for our demonstrations, to
show that our algorithm can handle large populations, indeed often larger than those
demonstrated in other mean-field works, especially for grid-world environments (Yang et al.
2018b}; [Subramanian & Mahajan|, 2019} [Ganapathi Subramanian et all, 2020} 2021}, [Cui &
Koeppl,, 2021} [Yongacoglu et all [2024; [Subramanian et all 2022} [Guo et all, 2023;
et al.| [2023al). In experiments testing robustness to population increase, the population
instead begins at 50 agents and has 200 added at the marked point.

K 200 / K is chosen to be large enough to see exploitability reducing, and converging where possible.

400
My, 500/ We wish to illustrate the benefits of our networked architecture and replay buffer
1000  in reducing the number of loops required for convergence, i.e. we wish to
select a low value that still permits learning. We tested M,, in {300,500,
600,800,1000,1200,1300,1400,1500,1800,2000,2500,3000}, and chose 500 for demonstrations
on the 8x8 grids, and 1000 for the 16x16 grids. It may be possible to optimise these values
further in combination with other hyperparameters.

My 1 We tested My in {1,2,10,100}, and found that we could still achieve convergence with
M4 = 1. This is much lower than the requirements of the theoretical algorithms, essentially
allowing us to remove the innermost nested learning loop.

C 1 We tested C in {1,5,10}. We choose 1 to show the convergence benefits brought by even a
single communication round, even in networks that may have limited connectivity.

L 100 As with M,g4, we wish to select a low value that still permits learning. We tested L
in {50,100,200,300,400,500}. In combination with our other hyperparameters, we found
L < 50 led to less good results, but it may be possible to optimise this hyperparameter
further.

E 100 We tested E in {100,300,1000}, and choose the lowest value to show the benefit to conver-
gence even from few evaluation steps. It may be possible to reduce this value further and
still achieve similar results.

¥ 0.9 Standard choice across RL literature.

I} 0.1 We tested 8 in {0.01,0.1} and found 0.1 to be small enough for adequate learning at an
acceptable speed. Further optimising this hyperparameter (including by having it decay
with increasing [ € 0,...,L — 1, rather than leaving it fixed) may lead to better results.

n 0.01  We tested 7 in {0.001,0.01,0.1,1,10} and found that 0.01 gave stable learning that pro-
gressed sufficiently quickly.

A 0 We tested A in {0,0.0001,0.001,0.01,0.1,1}. Since we can reduce A to 0 with no detriment
to empirical convergence, we do so in order not to bias the NE.

Tk cf. For fixed 7 Vk, we tested {1,10,100,1000}. In our experiments for fixed 74 the value is 100

com- (see Figs. and ; this yields learning, but does not perform as well as if we anneal 7
ment  as follows. We begin with 79 = 10000/(10*[(K —1)/10]), and multiply 74 by 10 whenever

k mod 10 = 1 i.e. every 10 iterations. Further optimising the annealing process may lead
to better results.
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7.4 Results and discussion

We first provide results for our standard algorithmic setting, before giving robustness studies and numerous
ablations. We summarise findings in the body of each sub-section, while the specific results are discussed
fully in each figure’s caption. In each plot the decimals refer to each agent’s broadcast radius as a fraction
of the maximum possible distance in the grid (i.e. the diagonal).

We preempt possible concerns regarding the wide confidence intervals in many of our plots by saying that
many works with similar experiments do not report error bars at all, and if they do they usually only
give 1-sigma intervals, whereas we give 2-sigma (Lauriere} 2021} [Lauriere et al., [2022b; |Zaman et al., [2023;
Algumaei et al.l |2023; |Cui et al., |2023a)). Moreover, the central-agent architecture usually has similar or
higher variance to the networked agents in the plots, indicating that this is not an issue introduced by our
communication algorithm; it is instead likely to be due to poor estimation of the Q-function when using the
small numbers of loops required for practical runtimes. The independent agents have very low variance, but
this is because they hardly appear to increase their returns at all in most cases.

We also give the following remark regarding the exploitability metric in some of our experimental plots,
relating to the issues with this metric in coordination games, as discussed in Sec. [7.2.1}

Remark 7.2. The reward structure of our coordination games is such that exploitability sometimes increases
from its initial value before it decreases down to 0 (e.g. Fig. [2). This is because agents are rewarded
proportionally to how many other agents are co-located with them: when agents are evenly dispersed at the
beginning of the run, it is difficult for even a deviating, best-responding agent to significantly increase its
reward. However, once some agents start to aggregate, a best-responding agent can take advantage of this
to substantially increase its reward (giving higher exploitability), before all the other agents catch up and
aggregate at a single point, reducing the exploitability down to 0. Due to this arc, in some of our plots the
independent case may have lower exploitability at certain points than the other architectures, but this is not
necessarily a sign of good performance. In fact, in such cases we can often see that the independent agents
are hardly learning at all, with the independent agents’ average return not increasing and the exploitability
staying level rather than ultimately decreasing (see, for example, Figs. |§| and .

7.4.1 Standard experimental setting

Even with only a single communication round in each of the K loops, networked agents learn faster and
reach higher returns than independent agents, which hardly appear to learn at all. Moreover networked
agents appear to match the central-agent population in the ‘cluster’ game (Fig. . Our experiments show
that our practical algorithmic enhancements enable convergence within a practical number of iterations even
when we remove a number of the assumptions required for the theoretical algorithms:

o We reduce M), by many orders of magnitude from its theoretically required value (see Sec. @, while
still converging within a reasonable K. We keep the learning rate § fixed, removing the annealing
scheme for {ﬁm}me{o,..‘, M,,—1} required in the theorems, and use a much higher value.

e In our experiments we do not ensure that the communication network G; remains static and con-
nected, nor that the diameter dg of the network is equal for all k. Nevertheless, even with a single
communication round the networked agents learn faster than independent ones (which hardly learn
at all), sometimes performing similarly to the centralised case.

e The M;; parameter is theoretically required for the learner to wait between collecting samples when
learning from the empirical distribution in a non-episodic system run. However, our replay buffer
allows us to reduce it to 1, effectively removing the innermost loop of the nested learning algorithm

(see Line [5] of Alg. [I).

e We can reduce the scaling parameter A of the entropy regulariser to 0, i.e. we converge even without
regularisation, allowing us to leave the MFG-NE unbiased and also removing Assumption In
general an unregularised MFG-NE is not unique (Yardim et al., |2023); the ability of centralised
and networked agents to coordinate on one of the multiple possible solutions may explain why they
outperform the independent case (cf. |Graber] (2025)); [Li et al.| (2025c])).
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Figure 2: ‘Cluster’ game. Even with only a single communication round, our networked architecture signif-
icantly outperforms the independent case, which hardly appears to be learning at all. All broadcast radii
except the smallest (0.2, green) have similar mean exploitability and return to the centralised case.

e For the PMA operator (Def. , we conduct the optimisation over the set u € A 4 instead of
u € Uy, , i.e. we can choose from all possible distributions over actions instead of needing to identify
the Lipschitz constants given in Assumption [3.9

7.4.2 Robustness experiments

We consider two scenarios to which we desire real-world many-agent systems (e.g. robotic swarms, au-
tonomous vehicle traffic, etc.) to be robust. The networked setup affords population fault-tolerance and
online scalability, which are motivating qualities of many-agent systems.

Fault-tolerance We consider a scenario in which the learning/updating procedure of agents fails with a
certain probability within each iteration, in which cases 7}, = i (see Figs. E and [5| for our experimental
results in this scenario). In real-life decentralised settings, this might be particularly liable to occur since
the updating process might only be synchronised between agents by internal clock ticks, such that some
agents may not complete their update in the allotted time but will nevertheless be required to take the next
step in the environment. Regardless of their cause, such failures slow the improvement of the population
in the independent case, and in the central-agent population it means no improvement occurs at all in any
iteration in which failure occurs, as there is a single point of failure. Networked communication instead
provides redundancy in case of update failures, with the updated policies of any agents that have managed
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Figure 3: ‘Target agreement’ game. Even with only a single communication round, our networked case out-
performs the independent case with respect to exploitability and return. The fact that the lowest broadcast
radius (0.2, green) ends with similar exploitability to the independent case yet higher return suggests our
networked algorithm might help agents find ‘preferable’ equilibria.

to learn spreading through the population to those that have not (cf. [Horyna et al. (2025))). This feature
thus ensures that improvement can continue for potentially the whole population even if a high number of
agents do not manage to learn at a given iteration.

Our experimental setup for this scenario is as follows: at every k iteration each learner (whether centralised
or decentralised) fails to update its policy (i.e. Line of Alg. [1)is not executed such that w}; = ’/T]lc) with a
50% probability. The communication network allows agents that have successfully updated their policies to
spread this information to those that have not, providing redundancy that the centralised and independent
settings do not have. See Figs. [4 and [5

Online scalability We may want to arbitrarily increase the size of a population of agents that are already
learning or operating in the environment (we can imagine extra fleets of autonomous cars or drones being
deployed) - see Sec. [2| for comparison with other works considering this type of robustness
2023} [Eck et al| [2023; |Gao et all,[2024; [Wu et al.,[2024c). A purely independent setting would require all the
new agents to learn a policy individually given the existing distribution, and the process of their following
and improving policies from scratch may itself disturb the MFG-NE that has already been achieved by the
original population. With a communication network, however, the policies that have been learnt so far can
quickly be shared with the new agents in a decentralised way, hopefully before their unoptimised policies can
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Figure 4: ‘Cluster’ game, testing robustness to 50% probability of policy update failure. The communication
network allows agents that have successfully updated their policies to spread this information to those that
have not, providing redundancy. Independent learners cannot do this and hardly appear to learn at all (no
increase in return); likewise the centralised population is susceptible to its single point of failure and learns
slower than before. Thus our networked architecture outperforms both the centralised and independent
cases.

destabilise the current MFG-NE. This would provide, for example, a way to bootstrap a large population
from a smaller pre-trained group, if training were considered expensive in a given setting.

Our experimental setup for this scenario is as follows: instead of having 250 agents throughout, the population
begins with 50 agents learning normally, and a further 200 agents are added to the population at the marked
point. The networked architectures are quickly able to spread the learnt policies to the newly arrived agents
such that learning progress is minimally disturbed, whereas convergence is significantly impacted in the
independent case. See Figs. [6] and [

The remainder of our experiments provide further studies and ablations in the standard settings (i.e. not
the robustness scenarios):

7.4.3 Experiments on larger grid

Figs. [§] and [0 show the result of learning on a grid of size 16x16 instead of 8x8 as in all other experiments.
There is at times greater differentiation in this setting than in the 8x8 grid between the performances of
the different broadcast radii of the networked architecture (as is to be expected in a less densely populated
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Figure 5: ‘Target agreement’ game, testing robustness to 50% probability of policy update failure. All the
networked cases outperform the independent case and also learn faster than the centralised case for long
periods. The communication network allows agents that have successfully updated their policies to spread
this information to those that have not, providing redundancy. Independent learners cannot do this so have
even slower convergence than normal in this task; likewise the centralised architecture is susceptible to its
single point of failure, hence learning can be slower than in the networked case.

environment). The networked architecture continues to outperform the independent case for most broadcast
radii.

7.4.4 Ablation study of softmax temperature annealing scheme

Figs. and [11]illustrate the effect of fixed {7%}reqo,....k—13 = 100, where the networked architecture does
not perform as well as if we use the stepped annealing scheme employed in all the other experiments and
detailed in Table[I} The intuition behind the better performance achieved with the annealing scheme is as
follows. If we begin with small 75 (such that the softmax approaches being a max function), we heavily
favour the adoption of the highest rewarded policies to speed up progress in the early stages of learning.
Subsequently we increase 7y, in steps, promoting greater randomness in adoption, so that as the agents come
closer to equilibrium, poorer policy updates that nevertheless receive a high return (due to randomness) do
not introduce too much instability to learning and prevent convergence.
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Figure 6: ‘Cluster’ game, testing robustness to a five-times increase in population. While the independent
algorithm appears to enjoy similar exploitability to the other cases (see Rem. , we can see from its
average return that it is not in fact learning at all; while the return rises after the increase in population size
this is only because there are now more agents with which to be co-located, rather than because learning
has progressed. Since here, unlike in the ‘target agreement’ game in Fig. [7] independent agents have hardly
improved their return in the first place, we do not see the adverse effect that the addition of agents to the
population has on the progress of learning. All networked populations perform similarly to or outperform the
centralised case, and all markedly outperform the independent case in terms of return. The communication
network allows the learnt policies to quickly spread to the newly arrived agents, such that the progression of
learning is minimally disturbed, without needing to rely on the assumption of a centralised learner. The fact
that, in all cases, the return prior to the population increase at k = 300 is lower than in Fig. [2] is reflective
of the fact that the error in the solution reduces as N tends to infinity.

7.4.5 Ablation study of experience replay buffer

Figs. [I2 and [[3] illustrate the importance of our incorporation of the experience replay buffer. Without it,
as in the original theoretical version of the algorithms, there is no noticeable improvement in any of the
agents’ returns, i.e. no noticeable learning, even after K = 400 iterations. When removing the buffer for
these experiments we run the core learning section of the algorithm as in Lines of Alg. [1] keeping the
hyperparameters the same as in our main experiments, i.e. Mp, = 500, Mg = 1, etc. (see Tab. . These
experiments are run for 5 trials rather than 10 as in all other cases, and with exploitability evaluated every
20 k instead of every 2 k for computational efficiency.
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Figure 7: ‘Target agreement’ game, testing robustness to a five-times increase in population. The networked
architectures are quickly able to spread the learnt policies to the newly arrived agents such that learning
progress is minimally disturbed, whereas convergence is significantly impacted in the independent case. The
largest broadcast radius (1.0, pink), in particular, suffers no disturbance at all, being more robust than the
centralised case, which takes a significant amount of time to return to equilibrium.

8 Conclusion and future work

We contributed networked communication as a novel framework for learning MFGs from the empirical
distribution, and provided accompanying theoretical and practical algorithms. We showed theoretically
and experimentally that networked agents can considerably outperform independent ones, often performing
similarly to the central-agent architecture while avoiding the restrictive assumption of the latter and its
single point of failure.

Our experiments are based on relatively simple examples that demonstrate the advantages of our new ap-
proach, but which lack the complexity of the real-world applications to which we wish to address the approach.
Moreover in our current experiments only the reward function depends on the mean-field distribution, and
not the transition function, even though this is possible in theory; we will explore this element in future
experiments. It is feasible that in more complex problems, it may not be possible to reduce hyperparameter
values to the same extent we have demonstrated in our experimental examples.

Moreover, real-world examples would likely require handling larger and continuous state/action spaces (the
latter perhaps building on related work such as |Tang et al.| (2024))), which in turn may require (non-linear)
function approximation. Future work therefore involves incorporating neural networks into our networked
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Figure 8: ‘Cluster’ game on the larger 16x16 grid. While the independent-learning case has similar ex-
ploitability to the other settings, we can see that it is not actually learning to increase its return at all,
making this an undesirable equilibrium. (L.e. agents are moving about randomly so there is little a deviating
agent can do to increase its reward, hence exploitability is low even though the agents are not in fact clus-
tered - see Rem. ) All the networked settings perform similarly to the centralised case and outperform
the return of the independent agents.

communication architecture for oracle-free, non-episodic MFG settings. Extending our algorithms in this
way, which would depend on modifying the PMA step (Vieillard et al., 2020; Wu et al., 2024c), would allow
us to introduce communication networks to MFGs with non-stationary equilibria, in addition to those with
larger state/action spaces. Our method for non-stationary games will likely have agents’ policies depending
both on their local state and also on the population distribution (Mishra et al., [2020; Lauriere et al., 2022a;
[Perrin et all 2022; |Carmona et al., [2023)), but such a high-dimensional observation object is only possible
with function approximation. The present work demonstrates the benefits of the networked communication
architecture when the Q-function is poorly estimated and introduces experience relay buffers to the setting
of learning from a non-episodic run of the empirical system. Both elements are an important bridge to
employing (non-linear) function approximation in this setting, where the problems of data efficiency and
imprecise value estimation can be even more acute, and where we may want to employ experience replay
buffers to provide uncorrelated data to train the neural networks (Zhang & Sutton) [2017). When the policy
functions are approximated rather than tabular, our agents would communicate the functions’ parameters
instead of the whole policy as now.

In our future work with non-stationary equilibria, where agents’ policies will also depend on the population
distribution, it may be a strong assumption to suppose that decentralised agents with local state observations

30



Under review as submission to TMLR

Exploitability

0 50 100 150 200 250 300 350 400

—— Centralised
------- Independent
——- Networked (0.2)
6- —-=- Networked (0.4)
=+ Networked (0.6)
44— Networked (0.8)
- Networked (1.0)

Average discounted return

T T T T T T T
0 50 100 150 200 250 300 350 400

:_';M: nlrhg' WHNQ'“-‘ | Lkl _" Ir‘_' M. . *"ll o | f."‘
fﬁwm N Muh mw n&mw miw»m\q‘,ﬁwﬁl,wum

0 50 100 150 200 250 300 350 400

Figure 9: ‘Target agreement’ game on the larger 16x16 grid. There is greater differentiation in this setting
than in the 8x8 grid (Fig. between the different broadcast radii in the networked cases, as might be
expected in a less densely populated environment. The two largest broadcast radii (1.0, pink, and 0.8, brown),
which have the most connected networks, outperform the independent case in terms of both exploitability
and return. However, the other broadcast radii perform similarly to the independent case.

and limited communication radius would be able to observe the entire population distribution. We will
therefore explore a framework of networked agents estimating the empirical distribution from only their local
neighbourhood as in (Ganapathi Subramanian et al. [2021)), and possibly also improving this estimation by
communicating with neighbours (Yongacoglu et al., 2024]), such that this useful information spreads through
the network along with policy parameters.

Our algorithm for the networked case (Alg. , as well as prior work on the centralised and independent
cases (Yardim et all], [2023)), all have multiple nested loops. This is a potential limitation for real-world
implementation, since the decentralised agents might be sensitive to failures in synchronising these loops.
However, in practice, we show that our networked architecture provides redundancy and robustness (which
the independent-learning algorithm lacks) in case of learning failures that may result from the necessities of
synchronisation (see Sec. . We have also shown that networked communication in combination with the
replay buffer allows us to reduce the hyperparameter M;q to 1, essentially removing the inner ‘waiting’ loop.
Nevertheless, our algorithm still features multiple loops, and future work lies in simplifying the algorithms
further to aid practical implementation, possibly by techniques such as asynchronous communication
[2024). Future works should also consider updating our theoretical guarantees in light of our current
practical algorithmic enhancements, as well as any future modifications.
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Figure 10: ‘Cluster’ game with 73, fixed as 100 for all k; compare this to Fig. [2] where 7 is annealed. Without
the annealing scheme, the networked architecture appears to perform similarly to the independent case in
terms of exploitability, but several broadcast radii outperform the independent case in terms of return,
demonstrating that our networked algorithm can still help agents find ‘preferable’ equilibria. However,
whereas with annealing the networked architecture converges similarly to the centralised case, here it performs
less well.

Since the MFG setting is technically non-cooperative, we have preempted objections that agents would not
have incentive to communicate their policies by focusing on coordination games, i.e. where agents seek to
maximise only their individual returns, but receive higher rewards when they follow the same strategy as
other agents. In this case they stand to benefit by exchanging their policies with others. Future work lies
in extending our networked communication algorithms to mean-field control, the cooperative counterpart
to MFGs, where agents would have incentive to communicate across different types of game. Nevertheless,
in real-world settings, the communication network could still be vulnerable to malfunctioning agents or
adversarial actors poisoning the equilibrium by broadcasting untrue policy information (Agrawal et al. 2024]).
It is outside the scope of this paper to analyse how much false information would have to be broadcast by how
many agents to affect the equilibrium, but real-world applications may need to compute this and prevent
it. Future research to mitigate this risk might build on work such as [Piazza et al| (2024), where ‘power
regularisation’ of information flow is proposed to limit the adverse effects of communication by misaligned
agents.

While our MFG algorithms are designed to handle arbitrarily large numbers of agents (and theoretically
perform better as N — o0), the code for our experiments naturally still suffers from a bottleneck of compu-
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Figure 11: ‘Target agreement’ game with 7, fixed as 100 for all k. Without our annealing scheme for the
softmax temperature, the networked architecture does not outperform the independent case. Compare this
to Fig. [3] which shows the benefit of annealing 7.

tational speed when simulating agents that in the real world would be acting and learning in parallel, since
the GPU can only process JAX-vectorised elements in batches of a certain size.

Broader Impact Statement

We identified no specific ethical concerns regarding our work, which explores new game theoretical and
machine learning algorithms in general settings.
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