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Abstract
Sharpness-Aware Minimization (SAM), which
performs gradient descent on adversarially per-
turbed weights, can improve generalization by
identifying flatter minima. However, recent stud-
ies have shown that SAM may suffer from con-
vergence instability and oscillate around saddle
points, resulting in slow convergence and inferior
performance. To address this problem, we pro-
pose the use of a lookahead mechanism to gather
more information about the landscape by looking
further ahead, and thus find a better trajectory to
converge. By examining the nature of SAM, we
simplify the extrapolation procedure, resulting in
a more efficient algorithm. Theoretical results
show that the proposed method converges to a
stationary point and is less prone to saddle points.
Experiments on standard benchmark datasets also
verify that the proposed method outperforms the
SOTAs, and converge more effectively to flat min-
ima.

1. Introduction
Deep learning models have demonstrated remarkable suc-
cess in various real-world applications (LeCun et al., 2015).
However, highly over-parameterized neural networks may
suffer from overfitting and poor generalization (Zhang et al.,
2021). Hence, reducing the performance gap between train-
ing and testing is an important research topic (Neyshabur
et al., 2017). Recently, there have been a number of works
exploring the close relationship between loss geometry and
generalization performance. In particular, it has been ob-
served that flat minima often imply better generalization
(Chatterji et al., 2020; Jiang et al., 2020; Chaudhari et al.,
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2019; Dziugaite & Roy, 2017; Petzka et al., 2021).

To locate flat minima, a popular approach is based on
Sharpness-Aware Minimization (SAM) (Foret et al., 2021).
Recently, a number of variants have also been proposed
(Kwon et al., 2021; Zhuang et al., 2022; Du et al., 2022b;a;
Jiang et al., 2023; Liu et al., 2022). Their main idea is to
first add a (adversarial) perturbation to the weights and then
perform gradient descent there. However, these methods are
myopic as they only update their parameters based on the
gradient of the adversarially perturbed parameters. Conse-
quently, the model may converge slowly as it lacks good
information about the loss landscape. In particular, recent
research has found that SAM can suffer from convergence
instability and may be easily trapped in a saddle point (Kim
et al., 2023; Compagnoni et al., 2023; Kaddour et al., 2022;
Tan et al., 2024).

To mitigate this problem, one possibility is to encourage the
model to gather more information about the landscape by
looking further ahead, and thus find a better trajectory to con-
verge (Leng et al., 2018; Wang et al., 2022). In game theory,
two popular methods that can encourage the agent to look
ahead are the method of extra-gradient (Korpelevich, 1976;
Gidel et al., 2019; Lee et al., 2021) and its approximate
cousin, the method of optimistic gradient (Popov, 1980;
Gidel et al., 2019; Daskalakis & Panageas, 2018; Daskalakis
et al., 2018; Mokhtari et al., 2020). Their key idea is to first
perform an extrapolation step that looks one step ahead into
the future, and then perform gradient descent based on the
extrapolation result (Bohm et al., 2022). Besides game the-
ory, similar ideas have also been proven successful in deep
learning optimization (Zhou et al., 2021; Zhang et al., 2019;
Lin et al., 2020b), and reinforcement learning (Liu et al.,
2023). As SAM is formulated as a minimax optimization
problem (Foret et al., 2021), this also inspires us to leverage
an extrapolation step for better convergence.

In this paper, we introduce the look-ahead mechanism to
SAM. Our main contributions are fourfold:

(i) We incorporate the idea of extrapolation into SAM so
that the model can gain more information about the
landscape, and thus help convergence. We also discuss
a concrete example on how extrapolation reduces the
perturbation and thus helps escape saddle point.
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(ii) By studying the SAM update scheme, we develop a
method that combines SAM’s approximate maximizer
to its inner optimization subproblem with lookahead.
We further propose a method that reduces the compu-
tational cost by removing some steps from a straight-
forward application of extra-gradient or optimistic gra-
dient ascent.

(iii) We provide theoretical guarantees that they converge
to stationary points at the same rate as SAM, and are
not easily trapped at saddle points.

(iv) Experimental results show that the proposed method
has better performance and converge to a flatter mini-
mum.

2. Background
2.1. Sharpness-Aware Minimization (SAM)

SAM (Foret et al., 2021) attempts to improve generalization
by finding flat minima. This is achieved by minimizing the
worst-case loss within some perturbation radius. Mathemati-
cally, it is formulated as the following minimax optimization
problem:

minw∈Rn maxϵ:∥ϵ∥≤ρ L(w + ϵ), (1)

where L is the loss, w is the model parameter, and ϵ is
the perturbation whose magnitude is bounded by ρ. The
loss on the ith sample is denoted ℓi(wt). By taking first-
order approximation on the objective, the optimal ϵ for the
maximization sub-problem can be obtained as:

ϵ∗(w) =
ρ∇wL(w)

∥∇wL(w)∥
. (2)

Problem (1) is then solved by performing gradient descent
(with learning rate η) at each iteration t:

wt = wt−1 − η∇wt−1L(wt−1 + ϵt−1), (3)

where
ϵt−1 = ϵ∗(wt−1). (4)

As SAM requires two forward-backward calculations in
each iteration, it is computationally more expensive than
standard Empirical Risk Minimization (ERM). Recently, a
number of variants (e.g., AE-SAM (Jiang et al., 2023), Look-
SAM (Liu et al., 2022), SS-SAM (Zhao, 2022), ESAM (Du
et al., 2022a), GSAM (Zhuang et al., 2022)) have been
proposed to reduce this cost by using SAM only in itera-
tions that it is likely to be useful and use ERM otherwise.
For example, Jiang et al. (2023) proposes the AE-SAM,
which uses SAM only when the loss landscape is locally

sharp, with sharpness being approximated efficiently by
∥∇L(wt)∥2. It is shown that ∥∇L(wt)∥2 can be modeled
empirically with a normal distribution N (µt, σ

2
t ), in which

µt and σ2
t are estimated in an online manner by exponential

moving average as:

µt = δµt−1 + (1− δ)∥∇L(wt)∥2,
σ2
t = δσ2

t−1 + (1− δ)(∥∇L(wt)∥2 − µt)
2,

(5)

where δ ∈ (0, 1) controls the forgetting rate. When the loss
landscape is locally sharp (i.e., ∥∇L(wt)∥2 ≥ µt + ctσt),
SAM is used; otherwise, ERM is used. The threshold ct is
decreased linearly from κ2 to κ1 according to the schedule:

ct =
t

T
κ1 +

(
1− t

T

)
κ2, (6)

where T is the total number of iterations.

Besides reducing the training cost, there are recent attempts
on improving the generalization performance of SAM. For
example, ASAM (Kwon et al., 2021) introduces adaptive
sharpness, and GSAM (Zhuang et al., 2022) uses a new
surrogate loss that focuses more on sharpness.

2.2. Extra-Gradient (EG)

Consider the minimax problem:

minx∈Rm maxy∈Rn f(x, y). (7)

The method of extra-gradient (EG) (Korpelevich, 1976)
performs gradient descent-ascent (GDA), i.e., gradient as-
cent ∇yf(x, y) on y and gradient descent −∇xf(x, y)
on x. Specifically, let z := [x, y]⊤ and F (z) :=
[∇xf(x, y),−∇yf(x, y)]

⊤. At the tth iteration, the EG
update can be written as:

zt = zt − ηtF (zt), (8)
zt+1 = zt − ηtF (zt), (9)

where ηt is the learning rate at epoch t. Note that (8) is an
extra extrapolation step, which avoids the shortsightedness
of both players (x and y) by looking one step ahead into the
future (Gidel et al., 2019; Bohm et al., 2022; Jelassi et al.,
2020; Pethick et al., 2022). EG has been widely used in
two-player zero-sum games (Fudenberg & Tirole, 1991).
In machine learning, this has been used in the training of
generative adversarial networks (Gidel et al., 2019) and
poker games (Lee et al., 2021).

As shown in (8) and (9), each EG iteration requires com-
puting the gradients w.r.t. x and y twice. To reduce the
cost, the method of optimistic gradient (OG) (Popov, 1980)
stores the past gradient F (zt−1) and reuses it in the next
extrapolation step. The update in zt is thus changed to:

zt = zt − ηF (zt−1). (10)

2



Improving Sharpness-Aware Minimization by Lookahead

Hence, the gradients w.r.t. x and y only need to be computed
once in each iteration. It can be shown that OG enjoys a
similar convergence rate as EG (Gidel et al., 2019), and
has been commonly used in solving differentiable minimax
games (Gidel et al., 2019; Liang & Stokes, 2019; Daskalakis
& Panageas, 2018; Daskalakis et al., 2018).

3. Lookahead in SAM
Recently, it is observed that SAM can have convergence in-
stability near a saddle point (Kim et al., 2023; Compagnoni
et al., 2023), leading to slow convergence and poor perfor-
mance. As an illustration, consider minimizing the follow-
ing quadratic objective as in (Compagnoni et al., 2023):

minw∈R2 w⊤Hw, (11)

where H ≡ diag(−1, 1). The saddle point is at [0, 0]. We
run SAM with an initial w0 = [0.03, 0.03], and SGD opti-
mizer with a learning rate of 0.005. In every SGD step t, we
add Gaussian noise from N (0, 0.01) to the gradient as in
(Compagnoni et al., 2023). Figure 1a shows the trajectory,
and Figure 1b shows the objective with number of epochs.
As can be seen, SAM is trapped in the saddle point.

Inspired by the method of extra-gradient (EG), we propose
in the following a number of lookahead mechanisms to
alleviate the convergence instability problem of SAM.

3.1. Direct Adaptation of EG and Its Variant on SAM

First, we consider the direct adaptation of EG on SAM’s
minimax problem (1), which leads to the following update:

ϵ̂t = Π(ϵt−1 +∇ϵt−1
L(wt−1 + ϵt−1)), (12)

ŵt = wt−1 − ηt∇wt−1L(wt−1 + ϵt−1), (13)
ϵt = Π(ϵt−1 +∇ϵ̂tL(ŵt + ϵ̂t)) (14)
wt = wt−1 − ηt∇ŵt

L(ŵt + ϵ̂t). (15)

Here, Π(ϵ) is the projection argminϵ′:∥ϵ′∥≤ρ ∥ϵ − ϵ′∥ =
ϵ

max(1,∥ϵ∥/ρ) , and η′t is a learning rate. Note that the learning
rates in (12) and (14) are set to 1, as is commonly used in
SAM and its variants.

As can be seen, the update requires four gradient compu-
tations. This can be expensive, particularly for large deep
networks. By using the optimistic gradient (OG) approach
(Popov, 1980) (Section 2.2), we replace (12) and (13) by:

ϵ̂t = Π(ϵt−1 + η′t∇ϵ̂t−1
L(ŵt−1 + ϵ̂t−1)), (16)

ŵt = wt−1 − ηt∇ŵt−1
L(ŵt−1 + ϵ̂t−1), (17)

respectively. Since ∇ŵt−1
L(ŵt−1 + ϵ̂t−1) and

∇ϵ̂t−1
L(ŵt−1 + ϵ̂t−1) have already been computed

at iteration t − 1, we only need to compute the gradient
w.r.t. w and ϵ once in every epoch.

However, both EG and OG perform gradient descent ascent
(GDA) on (1), which converges at a O(T− 1

4 ) rate (where T
is the number of epochs) on non-convex strongly-concave
problems (Lin et al., 2020a; Mahdavinia et al., 2022) and
even slower on non-convex non-concave problems (Mah-
davinia et al., 2022). This is much slower than the O(1/

√
T )

rate of SAM (Andriushchenko & Flammarion, 2022).

3.2. Lookahead-SAM and Its Variants

3.2.1. LOOKAHEAD-SAM

Recall that the maximization subproblem in (1) has an ap-
proximated solution (2). We can directly use this approxi-
mate maximizer instead of performing gradient descent in
(12) and (14), leading to:

ϵ̂t = ϵ∗(wt−1) and ϵt = ϵ∗(ŵt). (18)

To further reduce gradient computation, we remove the
update of ϵt in (14) and replace ϵt−1 in (13) by ϵ̂t in (18).
The whole update rule is then:1

ϵ̂t = ϵ∗(wt−1), (19)
ŵt = wt−1 − η′t∇wt−1

L(wt−1 + ϵ̂t), (20)
wt = wt−1 − ηt∇ŵt

L(ŵt + ϵ̂t). (21)

In other words, we first compute the perturbation ϵ̂t in (19),
take a lookahead step wt−1 + ϵ̂t in (20), and then update
wt−1 using L(ŵt + ϵ̂t) via (21). This procedure, which
will be called Lookahead-SAM, is shown in Algorithm 1.
In Sections 4.1 and 4.2, we will show theoretically that it
can better avoid saddle points than SAM while having the
same convergence rate.

Note that the update (19)-(21) can also be rewritten as:

wt=wt−1−ηt∇wt−1
L(wt−1−η′t ⊥[∇wt−1

L(wt−1+ϵ̂t)]+ϵ̂t),

where ⊥ is the stop-gradient operator2 Compared to SAM, it
reduces the perturbation from ϵ̂t toϵ̂t − η′t∇wt−1

L(wt−1 +
ϵ̂t). Intuitively, this is desirable as larger perturbations can
make the model more prone to being trapped in saddle
points (Kim et al., 2023; Compagnoni et al., 2023). Fig-
ures 1a and 1b empirically demonstrate this on the toy prob-
lem in (11). Figure 1c shows the norms of the perturbations.
As can be seen, when the iterate is close to the saddle point
(before epoch 7), the perturbations from Lookahead-SAM
are smaller than those from SAM.

3.2.2. OPTIMISTIC LOOKAHEAD-SAM

Similar to EG, Lookahead-SAM has to compute the gradi-
ent w.r.t. w twice in each iteration, which can be expen-

1Note that we also allow the learning rates in (20) and (21) to
be different.

2In other words, ∇x ⊥[g(x)] ≡ 0 for any differentiable g.
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(a) Trajectory. (b) Objective. (c) Norm of perturbation.

Figure 1: Example showing that SAM can be trapped in a saddle point.

Algorithm 1: Lookahead SAM and Optimistic
Lookahead-SAM.
Input: Training set S, number of epochs T , batch size

b, w0, ϵ0 = 0.
1 Sample a minibatch It from S with size b;
2 for t = 1, 2, . . . , T do
3 ϵ̂t =

ρt∇wt−1
1
b

∑
i∈It

ℓi(wt−1)

∥∇wt−1
1
b

∑
i∈It

ℓi(wt−1)∥
;

4 if Lookahead SAM then
5 ŵt=wt−1−η′t∇wt−1

[
1
b

∑
i∈It

ℓi(wt−1 + ϵ̂t)
]

;
6 else if Optimistic Lookahead-SAM then
7 ŵt = wt−1 − η′tgt−1 ;
8 gt = ∇ŵt

[
1
b

∑
i∈It

ℓi(ŵt + ϵ̂t)
]

;
9 wt = wt−1 − ηtgt ;

10 return wT .

sive for large deep networks. Following the idea of opti-
mistic gradient (Popov, 1980), we reuse the past gradient
∇ŵt−1

L(ŵt−1 + ϵ̂t−1) in (20), which then becomes:

ŵt = wt−1 − η′t∇ŵt−1
L(ŵt−1 + ϵ̂t−1), (22)

and the gradient is only computed once.
Note that ŵt in (22) is also equal to
argminw

{
η′t(w · ∇ŵt−1

L(ŵt−1 + ϵ̂t−1)) +
∥w−wt−1∥2

2

2

}
.

Hence, update (22) can be interpreted as optimistic mirror
descent (Chiang et al., 2012; Wei et al., 2021), which
improves performance by leveraging information from the
past gradient (Rakhlin & Sridharan, 2013), and has been
widely used in online learning (Chiang et al., 2012) and
game theory (Wei et al., 2021). The procedure (again based
on stochastic gradient), called Optimistic Lookahead-SAM
(Opt-SAM), and is also shown in Algorithm 1.

3.2.3. ADAPTIVE LOOKAHEAD-SAM

Opt-SAM still has to compute the gradient in each itera-
tion, and can be expensive. To alleviate this issue, we fur-

Algorithm 2: Adaptive Optimistic SAM (AO-SAM).
Input: Training set S, number of epochs T , batch size

b, w0, ϵ0 = 0, µ0 = 0, and σ0 = e−10.
1 for t = 1, 2, . . . , T do
2 sample a minibatch It from S with size b;
3 gt =

1
b

∑
i∈It

∇wt
ℓi(wt);

4 update µt and σt as in AE-SAM (5);
5 if ∥ 1

b

∑
i∈It

∇wt
ℓi(wt)∥2 ≥ µt + ctσt then

6 ϵ̂t =
ρt∇wt−1

1
b

∑
i∈It

ℓi(wt−1)

∥∇wt−1
1
b

∑
i∈It

ℓi(wt−1)∥
;

7 ŵt = wt−1 − η′tgt−1 ;
8 gt = ∇ŵt

[
1
b

∑
i∈It

ℓi(ŵt + ϵ̂t)
]
;

9 wt = wt−1 − ηtgt;

10 return wT .

ther integrate the adaptive policy in AE-SAM (Jiang et al.,
2023) with Opt-SAM. Assume that ∥ 1

b

∑
i∈It

∇wt
ℓi(wt)∥2

follows the normal distribution N (µt, σ
2
t ) with mean µt

and variance σ2
t . If ∥ 1

b

∑
i∈It

∇wt
ℓi(wt)∥2 is large (i.e.,

≥ µt + ctσt, where ct is varied as in (6)), we use Opt-SAM.
Otherwise, SGD (i.e., ERM) is used instead.

Recall that in (22), we need to access ∇ŵt−1
L(ŵt−1 +

ϵ̂t−1) at iteration t. If ∥ 1
b

∑
i∈It−1∇wt−1ℓi(wt−1)∥2 <

µt−1 + ct−1σt−1 in iteration t − 1, SAM is not used, and
∇ŵt−1

L(ŵt−1 + ϵ̂t−1) is not computed. In that case, we
replace ∇ŵt−1

L(ŵt−1 + ϵ̂t−1) with ∇wt−1
L(wt−1). The

whole procedure, which will be called Adaptive lookahead-
SAM (AO-SAM), is shown in Algorithm 2.

4. Theoretical Analysis

4.1. Region of attraction (ROA)

In this section, we show theoretically that the proposed
method is less likely than SAM to be trapped in a saddle
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point. We consider the following minimization problem
which has been widely used in the theoretical analysis of
SAM and SGD (Compagnoni et al., 2023; Kim et al., 2023):

minw w⊤Hw. (23)

Recall that the ordinary differential equation (ODE)
of SAM is (Compagnoni et al., 2023): dwτ =

−H
(
wτ + ρHwτ

||Hwτ ||

)
dτ , where τ is the time. For a given

w′, its region of attraction (ROA) is the set of w such that
any trajectory starting inside it converges to w′ (Mao, 2007).
The ROA of SAM is given by the following.

Proposition 4.1. (Compagnoni et al., 2023) For a non-
singular H , the ROA for SAM is

{
wτ |ρ ≥ −∥H wτ∥

λmin

}
,

where λmin is the minimum eigenvalue of H .

The following Proposition provides the ODE and ROA of
Lookahead-SAM. Proof is in Appendix A.1.

Proposition 4.2. The ODE for Lookahead-SAM is:

dwτ=−H

(
wτ−η′τH

(
wτ +

ρHwτ

∥Hwτ∥

)
+

ρHwτ

∥Hwτ∥

)
dτ,

where η′τ is a function of τ . For a non-singular H ,
when η′τ > 0,∀τ , the ROA of Lookahead-SAM is:{
wτ |(1 + η′τλmin)ρ ≥ 1

λmin
||Hwτ ||(η′τλmin − 1)

}
.

The following Corollary shows that Lookahead-SAM has a
smaller ROA than SAM. In other words, Lookahead-SAM
has a smaller chance of being trapped in a saddle point.

Corollary 4.2.1. For non-singular H , Lookahead-SAM has
a smaller ROA than SAM.

As an illustration, Fig. 2 compares the ROAs of SAM
and Lookahead-SAM at the saddle point [0, 0] on the toy
function in (11).

Figure 2: ROAs for SAM and Lookahead-SAM at saddle
point.

4.2. Convergence Analysis

In this section, we study the convergence properties of
Lookahead-SAM, Opt-SAM, and AO-SAM. Note that our
analysis is different from those in the literature on extra-
gradient (EG) (Gidel et al., 2019; Bohm et al., 2022; Jelassi
et al., 2020; Pethick et al., 2022; Gorbunov et al., 2022;
Cai et al., 2022) and optimistic gradient (OG) (Gidel et al.,
2019; Liang & Stokes, 2019; Daskalakis & Panageas, 2018;
Daskalakis et al., 2018; Mahdavinia et al., 2022). EG and
OG assume that f in (7) is (strongly) convex w.r.t. x, and
(strongly) concave, (strongly) monotonic or co-coercive
w.r.t. y (Gorbunov et al., 2022; Cai et al., 2022; Mahdavinia
et al., 2022). In the context of SAM optimization, x cor-
responds to w, and y corresponds to ϵ. Obviously, these
assumptions do not hold for deep networks.

On the other hand, the following analysis does not need to
assume convex loss, and only uses the common assumptions
in smooth and non-convex analysis for stochastic gradient
methods. Specifically, Assumptions 4.3 and 4.4 below are
from (Andriushchenko & Flammarion, 2022; Bottou et al.,
2018; Cutkosky & Orabona, 2019), while Assumption 4.5
follows (Bottou et al., 2018; Hazan & Kale, 2014; Huang
et al., 2021). Assumptions 4.3, 4.4 and 4.5 are employed
collectively in the convergence analysis of SAM (Mi et al.,
2022; Zhang et al., 2023b; Yue et al., 2023; Mueller et al.,
2023; Si & Yun, 2023; Zhang et al., 2023a).

Assumption 4.3. (Bounded variance) There exists σ ≥ 0
s.t. Ei∼U([1,n])∥∇ℓi(w)−∇L(w)∥2 ≤ σ2. Here, U([1, n])
is the uniform distribution over {1, 2, . . . , n}, and n is the
number of samples.

Assumption 4.4. (β-smoothness) There exists β ≥ 0 s.t.
∥∇ℓi(w)−∇ℓi(v)∥ ≤ β∥w − v∥ for all w,v ∈ Rm and
i = 1, 2, . . . , n.

Assumption 4.5. (Uniformly Bounded Gradient) There ex-
ists G ≥ 0 s.t. Ei∼U([1,n])∥∇ℓi(w)∥2 ≤ G2.

The following Theorems provide convergence rates on
Lookahead-SAM, Opt-SAM, and AO-SAM. Proofs are in
Appendices A.3, A.4 and A.5 respectively. Note that we set
ρt related to T in our proofs, which is a necessary step as
shown in (Si & Yun, 2023).

Theorem 4.6. In Algorithm 1, set ρt = 1√
T

and

ηt = η′t = min
(

1√
T
, 1
2β

)
. Lookahead-SAM satisfies

1
T

∑T
t=0 E∥∇wtL(wt)∥2 = O

(
1√
Tb

)
.

Theorem 4.7. In Algorithm 1, set ρt = min
(

1
β ,

1√
T

)
and ηt = η′t = min

(
1√
T
, 1
β

)
. Opt-SAM satisfies

1
T

∑T
t=0 E∥∇wtL(wt)∥2 = O

(
1√
Tb

)
.

Theorem 4.8. In Algorithm 2, set ρt = min
(

1
β ,

1√
T

)
5
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(a) CIFAR-10. (b) CIFAR-100. (c) CIFAR-10. (d) CIFAR-100.

Figure 3: Convergence on CIFAR-10 and CIFAR-100 (with ResNet-18 backbone).

Table 1: Testing accuracy and fraction of SAM updates
(%SAM) on CIFAR-10 using ResNet-18. The best accuracy
is in bold.

accuracy %SAM

SAM 96.52 ±0.12 100.0 ±0.0

EG 96.45 ±0.05 200.0 ±0.0

OG 96.52 ±0.03 100.0 ±0.0

Lookahead-SAM 96.81 ±0.01 150.0 ±0.0

Opt-SAM 96.79 ±0.02 100.0 ±0.0

AO-SAM 96.82 ±0.04 61.1 ±0.0

Table 2: Testing accuracy and fraction of SAM updates
(%SAM) on CIFAR-100 using ResNet-18. The best accu-
racy is in bold.

accuracy %SAM

SAM 80.17 ±0.05 100.0 ±0.0

EG 79.91 ±0.16 200.0 ±0.0

OG 79.92 ±0.08 100.0 ±0.0

Lookahead-SAM 80.79 ±0.13 150.0 ±0.0

Opt-SAM 80.76 ±0.15 100.0 ±0.0

AO-SAM 80.70 ±0.14 61.2 ±0.0

and ηt = η′t = min
(

1√
T
, 1
2β

)
. AO-SAM satisfies

1
T

∑T
t=0 E∥∇wtL(wt)∥2 = O

(
1√
Tb

)
.

In summary, Lookahead-SAM, Opt-SAM, and AO-SAM
have the same O( 1√

Tb
) convergence rate as SAM (An-

driushchenko & Flammarion, 2022) and its variant AESAM
(Jiang et al., 2023), and is faster than the O(log T/

√
T ) rate

of GSAM (Zhuang et al., 2022) and SSAM (Mi et al., 2022).

5. Experiments

In this section, we empirically demonstrate the performance
of the proposed methods on a number of standard bench-
mark datasets.

Recall that for SAM-based algorithms, the training speed
is mainly determined by how often the SAM update is
used. As in (Jiang et al., 2023), we evaluate efficiency
by measuring the fraction of SAM updates used: %SAM ≡
100×(

∑T
t=1 #{SAMs} used at epoch t)/T , where T is the

number of epochs and is the same for all methods. Note that
as EG takes two SAM steps ((12), (13) and (14), (15)) in
every epoch, its %SAM is 200. Similarly, for Lookahead-
SAM, its %SAM is 150.

5.1. CIFAR-10 and CIFAR-100

In this experiment, we use the popular image classification
datasets CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009).

10% of the training set is used for validation.

First, we compare SAM with the direct adaptation of EG and
its OG variant (Section 3.1), and the proposed Lookahead-
SAM, Opt-SAM, AO-SAM. Experiment is performed on
the ResNet-18 backbone, and repeated 5 times with different
random seeds.

Following the setup in (Jiang et al., 2023; Foret et al., 2021),
we use batch size 128, initial learning rate 0.1, cosine learn-
ing rate schedule (Loshchilov & Hutter, 2017), and SGD op-
timizer. Learning rate η′t is always set to ηt. The number of
training epochs is 200. For the proposed methods, we select
ρ ∈ {0.01, 0.05, 0.08, 0.1, 0.5, 0.8, 1, 1.5, 1.8, 2} by using
CIFAR-10’s validation set on ResNet-18. The selected ρ is
then directly used on CIFAR-100 and the other backbones.
For the ct schedule in (6), since different SAM variants yield
different %SAM’s, we vary the hyper-parameters (κ1, κ2)
so that the %SAM obtained by AO-SAM matches their
%SAM values. Hyper-parameters for the other baselines are
the same as their original papers.

5.1.1. COMPARISON WITH DIRECT USE OF EG AND OG

Figure 3 shows the convergence of the testing accuracy with
number of epochs. First, we focus on SAM and the direct
adaptations of EG and OG. As can be seen from Figures 3a
and 3b, on CIFAR-10, EG and OG only converge slightly
faster than SAM. On CIFAR-100, EG is only slightly faster
than SAM, while OG is even slower. This is because, EG
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(a) ERM. (b) SAM. (c) Lookahead-SAM. (d) Opt-SAM. (e) AO-SAM.

Figure 4: Hessian spectra obtained by ERM, SAM, Lookahead-SAM, Opt-SAM, and AO-SAM on CIFAR-10 with ResNet18.

and OG belong to the GDA family (as discussed in Sec-
tion 3.2.1). In contrast, as can be seen from Figures 3c and
3d, Lookahead-SAM, Opt-SAM, and AO-SAM converge
faster than SAM on both datasets.

Tables 1 and 2 show the testing accuracies versus %SAM
for CIFAR-10 and CIFAR-100, respectively. Though
Lookahead-SAM has the highest accuracy on CIFAR-100
and the second highest on CIFAR-10, it also has a higher
%SAM. On the other hand, Opt-SAM is as fast as SAM
w.r.t. %SAM but is more accurate. AO-SAM is as accurate
as Opt-SAM, but is even faster. Hence, we will only focus
on OPT-SAM and AO-SAM in the sequel.

5.1.2. COMPARISON WITH SAM VARIANTS

Following (Jiang et al., 2023), we compare AO-SAM
and Opt-SAM with: (i) ERM; (ii) SAM (Foret et al.,
2021); and its variants (iii) ESAM (Du et al., 2022a), (iv)
ASAM (Kwon et al., 2021), (v) SS-SAM (Zhao, 2022), (vi)
AE-SAM (Jiang et al., 2023), and (vii) GSAM (Zhuang
et al., 2022). As different SAM variants yield differ-
ent %SAM’s, we vary the (κ1, κ2) values in (6) for AE-
SAM and AO-SAM so as to attain comparable %SAM
values for fairer comparison. Following the SAM litera-
ture (Jiang et al., 2023; Mi et al., 2022; Kwon et al., 2021),
we use the commonly-used ResNet-18 (He et al., 2016),
and WideResNet-28-10 (Zagoruyko & Komodakis, 2016)
as backbones. We also include deeper network models in-
cluding the PyramidNet-110 (Han et al., 2017) and vision
transformer Vit-S16 (Dosovitskiy et al., 2021).

Results are shown in Table 3. As can be seen, Opt-SAM
and AO-SAM are consistently more accurate than SAM and
its variants on all datasets and backbones. Moreover, The
improvements obtained over the second-best baseline are
statistically significant (achieving a p-value of less than 0.05
in t-test) across all network architectures.

To study the method’s robustness to label noise, it is com-
mon to use datasets with label noise in the SAM literature
(Jiang et al., 2023; Kwon et al., 2021; Foret et al., 2021;
Yue et al., 2023; Zhang et al., 2023b). We randomly flip a
certain fraction (20%, 40%, 60% and 80%) of the training
labels in CIFAR-10 and CIFAR-100.

Results are shown in Tables 8 and 9 in Appendix B. As can
be seen, on both datasets, AO-SAM and Opt-SAM outper-
form all baselines at all label noise ratios. Moreover, the
accuracy improvement gets larger as the label noise ratio in-
creases. This demonstrates the superiority of AO-SAM and
Opt-SAM, particularly in difficult learning environments.

5.1.3. TIME AND MEMORY.

Table 4 compares the total training time and GPU memory
for the proposed SAM variants with SAM and ERM (i.e.,
SGD), using CIFAR-10 with the ResNet-18 backbone.

As can be seen, ERM is the fastest, while Lookahead-SAM
is the slowest. Opt-SAM is comparable to SAM, while AO-
SAM is faster than SAM. These are also consistent with the
observations in Table 3 based on the %SAM, verifying that
%SAM is a useful metric. For GPU memory usage, SAM
and the proposed variants are very similar.

5.1.4. FLAT MINIMA

In this section, we demonstrate the abilities of Lookahead-
SAM, Opt-SAM and AO-SAM to avoid saddle points, using
CIFAR-10 with the ResNet-18 backbone.

Following (Mi et al., 2022; Foret et al., 2021), Figure 4
shows the eigenvalue spectra of the Hessians at the con-
verged solutions of the various methods. As can be seen, the
Hessian’s eigenvalues of Lookahead-SAM, Opt-SAM, and
AO-SAM are smaller than those of ERM and SAM, indi-
cating that the loss landscapes at the converged solutions of
these SAM variants are flatter compared to SAM and ERM.

As in (Foret et al., 2021; Mi et al., 2022), Table 5 shows the
largest eigenvalue of the Hessian (λ1) and the ratio λ1/λ5

(where λ5 is the 5th largest eigenvalue). As can be seen,
Lookahead-SAM, Opt-SAM, and AO-SAM have smaller λ1

and λ1/λ5 than ERM and SAM, again indicating that they
have flatter minima than SAM and ERM.

5.2. ImageNet

In this experiment, we perform experiments on the ImageNet
dataset using ResNet-50 (He et al., 2016), ResNet-100 (He
et al., 2016), and ViT-S/32 (Dosovitskiy et al., 2021) back-

7



Improving Sharpness-Aware Minimization by Lookahead

Table 3: Testing accuracies (mean and standard deviation) and fractions of SAM updates on CIFAR-10 and CIFAR-100.
Methods with similar %SAM’s are grouped together for easier comparison. Results of ERM, SAM, and ESAM are from
(Jiang et al., 2023), while the other baseline results are obtained with the corresponding authors’ codes. The best accuracy is
in bold. ∗ means the improvements over the second-best baseline are statistically significant (achieving a p-value of less
than 0.05 in t-test).

CIFAR-10 CIFAR-100
Accuracy % SAM Accuracy % SAM

R
es

N
et

-1
8

ERM 95.41 ±0.03 0.0 ±0.0 78.17 ±0.05 0.0 ±0.0

SAM (Foret et al., 2021) 96.52 ±0.12 100.0 ±0.0 80.17 ±0.15 100.0 ±0.0

ESAM (Du et al., 2022a) 96.56 ±0.08 100.0 ±0.0 80.41 ±0.10 100.0 ±0.0

ASAM (Kwon et al., 2021) 96.55 ±0.14 100.0 ±0.0 80.52 ±0.13 100.0 ±0.0

GSAM (Zhuang et al., 2022) 96.70 ± 0.01 100.0 ±0.0 80.48 ± 0.11 100.0 ±0.0

Opt-SAM 96.79 ±0.02 100.0 ±0.0 80.76∗ ±0.15 100.0 ±0.0

SS-SAM (Zhao, 2022) 96.64 ±0.02 60.0 ±0.0 80.49 ±0.10 60.0 ±0.0

AE-SAM (Jiang et al., 2023) 96.66 ±0.02 61.3 ±0.1 79.96 ±0.08 61.3 ±0.0

AO-SAM 96.82∗ ±0.04 61.1 ±0.0 80.70 ±0.14 61.2 ±0.0

W
id

eR
es

N
et

-2
8-

10

ERM 96.34 ±0.12 0.0 ±0.0 81.56 ±0.14 0.0 ±0.0

SAM (Foret et al., 2021) 97.27 ±0.11 100.0 ±0.0 83.42 ±0.05 100.0 ±0.0

ESAM (Du et al., 2022a) 97.29 ±0.11 100.0 ±0.0 84.51 ±0.02 100.0 ±0.0

ASAM (Kwon et al., 2021) 97.38 ±0.09 100.0 ±0.0 84.48 ±0.10 100.0 ±0.0

GSAM (Zhuang et al., 2022) 97.44 ± 0.07 100.0 ±0.0 84.50 ± 0.12 100.0 ±0.0

Opt-SAM 97.56∗ ±0.03 100.0 ±0.0 84.74 ±0.02 100.0 ±0.0

SS-SAM (Zhao, 2022) 97.32 ±0.03 60.0 ±0.0 84.39 ±0.04 60.0 ±0.0

AE-SAM (Jiang et al., 2023) 97.37 ±0.08 61.3 ±0.0 84.23 ±0.08 61.3 ±0.0

AO-SAM 97.49 ±0.02 61.2 ±0.0 84.80∗ ±0.11 61.2 ±0.0

P
yr

am
id

N
et

-1
10

ERM 96.62 ±0.10 0.0 ±0.0 81.89 ±0.15 0.0 ±0.0

SAM (Foret et al., 2021) 97.30 ±0.10 100.0 ±0.0 84.46 ±0.05 100.0 ±0.0

ESAM (Du et al., 2022a) 97.81 ±0.01 100.0 ±0.0 85.56 ±0.05 100.0 ±0.0

ASAM (Kwon et al., 2021) 97.71 ±0.09 100.0 ±0.0 85.55 ±0.11 100.0 ±0.0

GSAM (Zhuang et al., 2022) 97.74 ± 0.02 100.0 ±0.0 85.25 ± 0.11 100.0 ±0.0

Opt-SAM 97.79 ±0.04 100.0 ±0.0 85.74∗ ±0.14 100.0 ±0.0

SS-SAM (Zhao, 2022) 97.62 ±0.03 60.0 ±0.0 85.41 ±0.11 60.0 ±0.0

AE-SAM (Jiang et al., 2023) 97.52 ±0.07 61.4 ±0.1 85.43 ±0.08 61.4 ±0.1

AO-SAM 97.87∗ ±0.02 61.2 ±0.0 85.60 ±0.07 61.2 ±0.12

Vi
T-

S1
6

ERM 86.69 ±0.11 0.0 ±0.0 62.42 ±0.22 0.0 ±0.0

SAM (Foret et al., 2021) 87.37 ±0.09 100.0 ±0.0 63.23 ±0.25 100.0 ±0.0

ESAM (Du et al., 2022a) 84.27 ±0.11 100.0 ±0.0 62.11 ±0.15 100.0 ±0.0

ASAM (Kwon et al., 2021) 82.25 ±0.41 100.0 ±0.0 63.26 ±0.18 100.0 ±0.0

GSAM (Zhuang et al., 2022) 83.62 ± 0.11 100.0 ±0.0 59.82 ± 0.12 100.0 ±0.0

Opt-SAM 87.91 ±0.26 100.0 ±0.0 63.78 ±0.22 100.0 ±0.0

SS-SAM (Zhao, 2022) 83.36 ± 0.04 60.0 ±0.0 54.04 ±5.09 60.0 ±0.0

AE-SAM (Jiang et al., 2023) 77.37 ±0.07 61.4 ±0.0 57.13 ±2.87 61.3 ±0.0

AO-SAM 88.27∗ ±0.12 61.3 ±0.0 64.45∗ ±0.23 61.2 ±0.0

8
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Table 4: Comparison on training time (seconds) and GPU memory usage (GB) on CIFAR-10 with ResNet-18 backbone.

ERM SAM Lookahead-SAM Opt-SAM AO-SAM
training time 3,630 6,780 10,946 6,994 4,704
GPU memory 2.7 2.7 2.8 2.8 2.8

Table 5: Eigenvalues of the Hessian on CIFAR-10 with
ResNet18 backbone. The smallest is in bold.

λ1 λ1/λ5

ERM 88.8 3.3
SAM 29.6 3.3

Lookahead-SAM 10.2 1.8
Opt-SAM 13.1 2.0
AO-SAM 11.1 1.8

Table 6: Performance on MRPC with Bert-Large.

Accuracy F1-score %SAM

ERM 87.3 91.1 0.0
SAM 87.9 91.4 100.0

Opt-SAM 89.1 92.2 100.0
AO-SAM 88.7 91.9 60.8

bones. The batch size is 512, and the number of training
epochs is 90. The other experimental setup is the same as in
Section 5.1. Hyper-parameters for the other baselines are the
same as their original papers. The experiment is repeated
3 times with different random seeds. Table 7 shows the
testing accuracy and %SAM. As can be seen, the proposed
AO-SAM again outperforms all the baselines.

5.3. NLP Paraphrase Identification

Following (Zhong et al., 2022), we perform NLP para-
phrase identification using the pre-trained Bert-Large (De-
vlin et al., 2018) on the Microsoft Research Paraphrase
Corpus (MRPC) dataset (Dolan & Brockett, 2005). The
learning rate is 2× 10−5, batch size is 16, and the number
of epochs is 10. The other experiment setup follows (Zhong
et al., 2022).

Table 6 shows the accuracy, F1-score and %SAM for ERM,
SAM, Opt-SAM and AO-SAM. As can be seen, Opt-SAM
is the best, while AO-SAM still outperforms SAM and ERM
and has a smaller %SAM than Opt-SAM.

Table 7: Testing accuracies and fractions of SAM updates
(%SAM) on ImageNet. Results of ERM, SAM and ESAM
on ResNet-50 are from (Jiang et al., 2023), ASAM is from
(Kwon et al., 2021), GSAM is from (Zhuang et al., 2022),
while the other baseline results are obtained by the corre-
sponding authors’ codes. The best accuracy is in bold. †
means that the original papers do not provide standard devi-
ation. We do not report ASAM on ResNet-101 and Vit-S/32,
and GSAM on Vit-S/32 because they are not provided in the
original papers.

Accuracy %SAM

R
es

N
et

-5
0

ERM 77.11± 0.14 0.0

SAM 77.47± 0.12 100.0
ESAM 77.25± 0.75 100.0
ASAM 76.63± 0.18 100.0
GSAM 77.2† 100.0

AO-SAM 77.68± 0.04 61.1

R
es

N
et

-1
01

ERM 77.80† 0.0

SAM 78.90† 100.0
ESAM 79.09† 100.0
GSAM 78.9† 100.0

AO-SAM 79.38 ± 0.10 61.2

Vi
T-

S/
32

ERM 67.0† 0.0

SAM 69.1† 100.0
ESAM 66.1† 100.0

AO-SAM 69.38 ± 0.24 61.6

6. Conclusion
In this paper, we integrate lookahead into SAM. The looka-
head mechanism has been proven effective in game theory
and optimization. It enables the model to gain more informa-
tion about the loss landscape, thus alleviating the problem of
convergence instability in SAM’s minimax optimization pro-
cess. Theoretical results show that the proposed method can
converge to a stationary point and is not easy to be trapped in
saddle points. Experiments on standard benchmark datasets
also verify that the proposed method outperforms the SOTAs
and converges more effectively to flat minima.

In the future, we will study the performance of the proposed
methods in scenarios with distribution shift.
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A. Proofs
A.1. Proof of Proposition 4.2

Lemma A.1. The Euler’s discretization of

dwτ=−H

(
wτ−η′τH

(
wτ +

ρHwτ

∥Hwτ∥

)
+

ρHwτ

∥Hwτ∥

)
dτ (24)

is (21).

Proof. Given an ODE dy = f(y(τ))dτ , recall that the main process of Euler’s discretization (Sec. 2.1, (Butcher, 2016))
is to first set y0 = y(τ0), choose h as the step size along the τ -axis, and set τt+1 = τt + h. Then, we have the discretized

version of
dy

dτ
: yt+1 = yt + hf(yt).

For (24), we take the same approach and set h = ηt−1. We then have

wt = wt−1 − ηt−1 H

(
wt−1 − η′t−1H

(
wt−1 +

ρHwt−1

∥Hwt−1∥

)
+

ρHwt−1

∥Hwt−1∥

)
. (25)

Note that when L(w) = w⊤Hw, we have the following equation:

L

(
wt − η′t−1 ⊥ (∇wt−1L

(
wt−1 +

ρ∇wt−1
L(wt−1)

∥∇wt−1
L(wt−1)∥

)
+

ρ∇wt−1
L(wt−1)

∥∇wt−1
L(wt−1)∥

)

)
= H

(
wt − η′t−1H

(
wt−1 +

ρHwt−1

∥Hwt−1∥

)
+

ρHwt−1

∥Hwt−1∥

)
.

Therefore, (25) is exactly (21). We obtain the desired result.

Next, we provide the proof of Lookahead-SAM ODE:

Lemma A.2. (Lookahead-SAM ODE) For (23), if (1 + η′τλi)ρ ≥ 1
λi
||Hwτ ||(η′τλi − 1),∀i, τ , and H is non-singular, the

ROA for Lookahead-SAM is:
{
wτ |(1 + η′τλmin)ρ ≥ 1

λmin
||Hwτ ||(η′τλmin − 1)

}
, where λmin is the smallest eigenvalue

of H .

Proof. Let V (wτ ) :=
w⊤

τ Kwτ

2 be the Lyapunov function of Lookahead-SAM, where K is a diagonal matrix with positive
diagonal entries (k1, . . . , kd). We have

V (wτ ) =
1

2

d∑
i=1

kiw
2
i,τ > 0,

and

V̇ (wτ ) :=
dV (wτ )

dτ

=

d∑
i=1

kiwi,τ
dwi,τ

dτ

(a)
=

d∑
i=1

q2iikiwi,τ

(
−λi

(
wi,τ − η′τλiwi,τ +

ρη′τλ
2
iwi,τ

||Hwτ ||
+

ρλiwi,τ

||Hwτ ||

))

=

d∑
i=1

q2iiki(−λi)

(
1− η′τλi +

ρη′τλ
2
i

||Hwτ ||
+

ρλi

||Hwτ ||

)
(wi,τ )

2
dτ.

13
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(a) holds because H is symmetric and can be decomposed as H = Q⊤ΛQ (Theorem 5.11 in (Apostol, 1991)), where Q is
an orthogonal matrix (with elements [qij ]), and Λ is diagonal matrix containing the eigenvalues of H . Then, dwi,τ

dτ can be

written as dwi,τ

dτ = q2iiki(−λi)
(
1− η′τλi +

ρη′
τλ

2
i

||Hwτ || +
ρλi

||Hwτ ||

)
(wi,τ )

2.

For the term q2iiki(−λi)
(
1− η′τλi +

ρη′
τλ

2
i

||Hwτ || +
ρλi

||Hwτ ||

)
(wi,τ )

2, when λi < 0, , we use 1− η′τλi +
ρη′

τλ
2
i

||Hwτ || +
ρλi

||Hwτ || ≤
0,∀i to ensure V̇ (wτ ) ≤ 0, and thus (1 + η′τλi)ρ ≥ 1

λi
||Hwτ ||(η′τλi − 1).

Similarly, when λi > 0, we have 1 − η′τλi +
ρη′

τλ
2
i

||Hwτ || +
ρλi

||Hwτ || ≥ 0 to ensure V̇ (wτ ) ≤ 0, and thus we also have
(1 + η′τλi)ρ ≥ 1

λi
||Hwτ ||(η′τλi − 1).

Therefore, when (1 + η′τλi)ρ ≥ 1
λi
||Hwτ ||(η′τλi − 1),∀i, we have V (wτ ) > 0 and V̇ (wτ ) ≤ 0. Using Theorem 1.1

(Mao, 2007), the dynamics of wτ is bounded inside this set and cannot diverge if V (wτ ) > 0 and V̇ (wτ ) ≤ 0.

Since (1 + η′τλmin)ρ ≥ 1
λmin

||Hwτ ||(η′τλmin − 1) implies (1 + η′τλi)ρ ≥ 1
λi
||Hwτ ||(η′τλi − 1),∀i, by the definition of

ROA, we conclude that the ROA for Lookahead-SAM is:
{
wτ |(1 + η′τλmin)ρ ≥ 1

λmin
||Hwτ ||(η′τλmin − 1)

}
.

Now, we state the proof of Proposition 4.2.

Proof. This can be directly obtained by using the results of lemma A.2 and lemma A.1.

A.2. Proof of Corollary 4.2.1

Proof. Recall that a non-singular saddle point has both positive and negative eigenvalues (Theorem 9.6. in (Apostol, 1991)).
Note that for the minimum eigenvalue λmin of H , we have

(1 + η′τλmin)ρ ≥ 1

λmin
∥Hwτ∥(η′τλmin − 1)

⇒ (λmin + η′τλ
2
min)ρ ≤ ∥Hwτ∥(η′τλmin − 1)

⇒ −λminρ ≥ ∥Hwτ∥(1− η′τλmin) + η′τλ
2
minρ

⇒ −λminρ ≥ ∥Hwτ∥(1− η′τλmin) + η′τλ
2
minρ ≥ ∥Hwτ∥

⇒ −λminρ ≥ ∥Hwτ∥.

The second last inequality is due to the fact that −∥Hwτ∥η′τλmin + η′τλ
2
minρ ≥ 0.

Using Proposition 4.1, the ROA for SAM is:
{
wτ |ρ ≥ −∥H wτ∥

λmin

}
. The ROA for Lookahead-SAM is:{

wτ |(1 + η′τλmin)ρ ≥ 1
λmin

||Hwτ ||(η′τλmin − 1)
}

, using the results of Lemma A.2. Since (1 + η′τλmin)ρ ≥
1

λmin
∥Hwτ∥(η′τλmin − 1) implies −λminρ ≥ ∥Hwτ∥, we have

{
wτ |(1 + η′τλmin)ρ ≥ 1

λmin
||Hwτ ||(η′τλmin − 1)

}
⊂{

wτ |ρ ≥ −∥H wτ∥
λmin

}
, which implies that Lookahead-SAM has a smaller ROA than SAM.

A.3. Proof of Theorem 4.6

Let Lt(w) := 1
b

∑
i∈It

ℓi(w) be the mini-batch version of L(w) at epoch t, where w ∈ Rm, It is the mini-batch, and ℓi(w)

is the loss for sample i. Let wt−1/2 := ŵt + ϵ̂t = wt−1 − η′t∇wt−1L
(
wt−1 +

ρ∇wt−1L(wt−1)
∥∇wt−1L(wt−1)∥

)
+ ρ∇wt−1L(wt−1)

∥∇wt−1L(wt−1)∥ .
Note that the update of Lookahead-SAM in (21) can be rewritten as: wt = wt−1− ηt∇wt−1/2

Lt(wt−1/2). In the following,
we assume that ρ, η, β > 0 3. We define ⟨A,B⟩ as the inner product of vectors A and B.
Lemma A.3.〈

∇L

(
w + ρ

∇L(w)

∥∇L(w)∥ − η∇L(w + ρ
∇L(w)

∥∇L(w)∥ )
)
,∇L(w)

〉
≥ −βρ∥∇L(w)∥ − η2

2
G2 +

1

2
∥∇L(w)∥2.

3To simplify notations, we drop the subscript t from ηt and ρt.
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Proof.

〈
∇L

(
w − η∇L(w + ρ

∇L(w)

∥∇L(w)∥
) + ρ

∇L(w)

∥∇L(w)∥

)
,∇L(w)

〉
=

∥∇L(w)∥
ρ

〈
∇L

(
w − η∇L(w + ρ

∇L(w)

∥∇L(w)∥
) + ρ

∇L(w)

∥∇L(w)∥

)
−∇L(w − η∇L(w + ρ

∇L(w)

∥∇L(w)∥
)), ρ

∇L(w)

∥∇L(w)∥

〉
+⟨∇L(w − η∇L(w + ρ

∇L(w)

∥∇L(w)∥
)),∇L(w)⟩

≥ −β∥∇L(w)∥ρ|| ∇L(w)

∥∇L(w)∥
||2 + ⟨∇L(w − η∇L(w + ρ

∇L(w)

∥∇L(w)∥
))−∇L(w),∇L(w)⟩

= −βρ∥∇L(w)∥+ ⟨∇L(w − η∇L(w + ρ
∇L(w)

∥∇L(w)∥
))−∇L(w),∇L(w)⟩

≥ −βρ∥∇L(w)∥ − η2

2
G2 +

1

2
∥∇L(w)∥2.

The first equation is due to the fact that ⟨∇L(w),∇L(w)⟩ = ∥∇L(w)∥2, while the first inequality uses the property of the
smooth function L, i.e., ⟨∇L (w1)−∇L (w2) , w1 − w2⟩ ≥ −β||w1 − w2||2 for smooth L (Lemma 7 in (Andriushchenko
& Flammarion, 2022)). The last inequality is based on the following inequalities:

⟨∇L(w − η∇L(w + ρ
∇L(w)

∥∇L(w)∥
)),∇L(w)⟩

= ⟨∇L(w − η∇L(w + ρ
∇L(w)

∥∇L(w)∥
))−∇L(w),∇L(w)⟩+ ∥∇L(w)∥2

≥ −1

2
||∇L(w − η∇L(w + ρ

∇L(w)

∥∇L(w)∥
))−∇L(w)||2 − 1

2
||∇L(w)||2 + ∥∇L(w)∥2

≥ −η2

2
||∇L(w + ρ

∇L(w)

∥∇L(w)∥
)||2 + 1

2
∥∇L(w)∥2,

where the first inequality based on the Young’s inequality.

Lemma A.4.

〈
∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥ − η∇Lt(w + ρ
∇Lt(w)

∥∇Lt(w)∥ )
)
,∇L(w)

〉
≥ −βρ∥∇L(w)∥ − η2

2
G2 +

1

2
∥∇L(w)∥2 − β2σ2η2

2b
− ρ2β2.

Proof. Note that

〈
∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥ − η∇Lt(w + ρ
∇Lt(w)

∥∇Lt(w)∥ )
)
,∇L(w)

〉
=

〈
∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥ − η∇Lt(w + ρ
∇Lt(w)

∥∇Lt(w)∥ )
)
−∇Lt

(
w + ρ

∇L(w)

∥∇L(w)∥ − η∇L(w + ρ
∇Lt(w)

∥∇Lt(w)∥ )
)
,∇L(w)

〉
−
〈
−∇Lt

(
w + ρ

∇L(w)

∥∇L(w)∥ − η∇L(w + ρ
∇Lt(w)

∥∇Lt(w)∥ )
)
,∇L(w)

〉
.
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In the following, we bound the first term and second term of the RHS separately. For the first term,

−E
〈
∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥ − η∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥

))
−∇Lt

(
w + ρ

∇L(w)

∥∇L(w)∥ − η∇L

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥

))
,∇L(w)

〉
≤ 1

2
E
∥∥∥∥∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥ − η∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥

))
−∇Lt

(
w + ρ

∇L(w)

∥∇L(w)∥ − η∇L

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥

))∥∥∥∥2

+
1

2
∥∇L(w)∥2

≤ β2

2
E
∥∥∥∥ρ ∇Lt(w)

∥∇Lt(w)∥ − η∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥

)
−
(
ρ

∇L(w)

∥∇L(w)∥ − η∇L

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥

))∥∥∥∥2

+
1

2
∥∇L(w)∥2

(b)

≤ β2σ2η2

2b
+ ρ2β2 +

1

2
∥∇L(w)∥2.

(a) is based on the Young’s inequality, (b) is using the triangle inequality and Assumption 4.4.

For the second term, on using Lemma A.3,

〈
∇L

(
w + ρ

∇L(w)

∥∇L(w)∥ − η∇L(w + ρ
∇L(w)

∥∇L(w)∥ )
)
,∇L(w)

〉
≥ −βρ∥∇L(w)∥ − η2

2
G2 +

1

2
∥∇L(w)∥2.

Combining them together, we obtain the result.

Lemma A.5. With assumptions 4.3, 4.4 and 4.5, and also assume η < 1
2β , we have

η(1− ηβ)
1

2
∥∇L(w)∥2 ≤ EL(wt)− EL(wt+1) + η2β3ρ2 +G2η3β3 + βηρ∥∇L(w)∥+ η2

2
G2 + η2β

σ2

b
.

Proof. Using the property of smooth function L (Assumption (4.4)), we have:

EL(wt+1) ≤ EL(wt)− ηE⟨∇L(wt−1/2),∇L(wt)⟩+
η2β

2
E∥∇Lt(wt−1/2)∥2

≤ EL(wt)− ηE⟨∇L(wt−1/2),∇L(wt)⟩+
η2β

2
E∥∇Lt(wt)−∇L(wt−1/2)∥2

+
η2β

2
E∥∇L(wt−1/2)∥2

≤ EL(wt)− ηE⟨∇L(wt−1/2),∇L(wt)⟩+ η2β
σ2

2b
+

η2β

2
E∥∇L(wt−1/2)∥2.

The first inequality is using the property of smooth function (Assumption (4.4)) and take the expectation on both sides.
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Then,

EL(wt+1)
(a)

≤ EL(wt)−
η2β

2
E∥∇L(wt)∥2 +

η2β

2
E∥∇L(wt−1/2)−∇L(wt)∥2

−η(1− ηβ)E < ∇L(wt−1/2),∇L(wt) > +η2β
σ2

2b
(b)

≤ EL(wt)−
η2β

2
E∥∇L(wt)∥2 +

η2β3

2
E∥wt−1/2 −wt∥2

−η(1− ηβ)

[
−βρ∥∇L(w)∥ − η2

2
G2 +

1

2
∥∇L(w)∥2 − β2σ2η2G

2b
− ρ2β2G

]
+η2β

σ2

2b
(c)

≤ EL(wt)−
η2β

2
E∥∇L(wt)∥2 +

1

2
η2β3ρ2 +

1

2
G2η3β3

−
(
η2β − η

)
βρ∥∇L(w)∥ −

(
η2β − η

) η2

2
G2 +

(
η2β − η

) 1

2
∥∇L(w)∥2

+η2 (η2β − η
) β2σ2

2b
G+ ρ2β2 (η2β − η

)
G+ η2β

σ2

b

≤ EL(wt)−
η2β

2
E∥∇L(wt)∥2 + η2β3ρ2 +G2η3β3 + (1− ηβ)βηρ∥∇L(w)∥ − (1− ηβ)

η2

2
G2

+
(
η2β − η

) 1

2
∥∇L(w)∥2 + η2β

σ2

b
.

(a) is by using ∥∇L(wt−1/2)∥2 = −∥∇L(wt)∥2 + ∥∇L(wt−1/2)−∇L(wt)∥2 + 2⟨∇L(wt−1/2),∇L(wt)⟩. (b) is the
smooth property, the assumption 1 > 2ηβ > ηβ, and the Lemma A.4. (c) is by using the trick: E∥wt−1/2 − wt∥2 =

E||η∇L(wt + ρ ∇L(wt)
∥∇L(wt)∥ ) + ρ ∇L(wt)

∥∇L(wt)∥ ||
2 ≤ ρ2 + ηG2. The last inequality is by the assumption that 1 > 2ηβ > ηβ,

which implies η2β − η < 0. Finally, after simplification, we obtain the result.

Now, we state the proof for Theorem 4.6.

Proof. First, note that 1− 2ηβ > 0. Then from Lemma A.5, there exists a positive constant c such that

c
1

2
∥∇L(w)∥2 ≤ 1

η
[EL(wt)− EL(wt+1)] + ηβ3ρ2 +G2η2β3 + βρ∥∇L(w)∥+ η

2
G2 + ηβ

σ2

b
.

Set ρ = 1√
T

and ηt = min
(

1
2β ,

1√
T

)
. By telescoping from t = 1 to T , and divide by T , we have

1

T

T∑
t=1

E∥∇L(wt)∥2 ≤ 1

c
[
1

T

T∑
t=1

EL(wt)− EL(wt+1)

η
+ ηβ2ρ2

+ηβ3ρ2 +G2η2β3 + βρG+
η

2
G2 + ηβ

σ2

b
]

≤ EL(w0)√
Tc

+
β2

cT
√
T

+
β3

cT
√
T

+
β3G2

cT
√
T

+
βG√
Tc

+
G2

2
√
Tc

+
2βσ2c

c
√
Tb

= O

(
1√
Tb

)
.

The second inequality uses the fact that 2ηβE
〈
∇L(ρ ∇L(w)

∥∇L(w)∥ − η∇L(w + ρ ∇L(w)
∥∇L(w)∥ )),∇L(w)

〉
≤ 2ηβG2.

A.4. Proof of Theorem 4.7

Recall the update scheme of Opt-SAM in Alg. 1:
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ϵ̂t =
ρ∇wt−1L(wt−1)

∥∇wt−1L(wt−1)∥
, (26)

ŵt = wt−1 − η′
t∇ŵt−1L (ŵt−1 + ϵ̂t−1) (27)

wt = wt−1 − ηt∇ŵtL(ŵt + ϵ̂t). (28)

Recall from Section A.3 that Lt(w) := 1
b

∑
i∈It

ℓi(w). In the following, we assume ρ, η, β > 0, and setting η′t = ηt,∀t.
Also, we use assumptions 4.3, 4.4 and 4.5.
Lemma A.6. The update scheme of Opt-SAM is equivalent to

ŵt = ŵt−1 − 2ηt∇ŵt−1
L

ŵt−1 + ϵ̂t−1

∣∣∣∣
ϵ̂t−1=

ρ∇wt−1
L(wt−1)

∥∇ŵt−1
L(wt−1)∥


+ηt−1∇ŵt−2

L

ŵt−2 + ϵ̂t−2

∣∣∣∣
ϵ̂t−2=

ρ∇wt−2
L(wt−2)

∥∇wt−2
L(wt−2)∥

 .

Proof. Recall that in Opt-SAM, we have:

ŵt = wt−1 − ηt∇ŵt−1
L(ŵt−1 + ϵ̂t−1), (29)

and
wt−1 = wt−2 − ηt∇ŵt

L(ŵt−1 + ϵ̂t−1). (30)

Substitute wt−1 in (29) by (30), we have

ŵt = wt−2 − 2ηt∇ŵt−1
L(ŵt−1 + ϵ̂t−1). (31)

Also, note that in Opt-SAM,
ŵt−1 = wt−2 − ηt−1∇ŵt−2

L(ŵt−2 + ϵ̂t−2). (32)

Substitute (32) into (31), we have:

ŵt = ŵt−1 − 2ηt∇ŵt−1
L(ŵt−1 + ϵ̂t−1| ϵ̂t−1 =

ρ∇wt−1
L(wt−1)

∥∇wt−1
L(wt−1)∥

)

+ηt−1∇ŵt−2
L(ŵt−2 + ϵ̂t−2|ϵ̂t−2 =

ρ∇wt−2
L(wt−2)

∥∇ŵt−2
L(wt−2)∥

),

which is the desired result.

Lemma A.7. 〈
∇L

(
w + ρ

∇L(w)

∥∇L(w)∥

)
,∇L(w)

〉
≥ ∥∇L(w)∥2 − βρ∥∇L(w)∥.

Proof. 〈
∇L(w + ρ

∇L(w)

∥∇L(w)∥
),∇L(w)

〉
=

〈
∇L

(
w + ρ

∇L(w)

∥∇L(w)∥

)
−∇L(w),∇L(w)

〉
+ ∥∇L(w)∥2

=
∥∇L(w)∥

ρ

〈
∇L(w + ρ

∇L(w)

∥∇L(w)∥
)−∇L(w),

ρ

∥∇L(w)∥
∇L(w)

〉
+ ∥∇L(w)∥2

(a)

≥
(
1− βρ

∥∇L(w)∥

)
∥∇L(w)∥2

(b)

≥ ∥∇L(w)∥2 − βρ∥∇L(w)∥.

(a) is based on Lemma 7 in (Andriushchenko & Flammarion, 2022). (b) is by simple calculation.
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Lemma A.8.

E
[〈

∇wt−1 [L(wt−1)],∇wt−1Lt

(
wt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥

)〉]
≥ 1

2
∥∇L(wt−1)∥2 − βρ∥∇L(wt−1)∥ − ρ2β2.

Proof. Similar to the proof of Lemma A.14, note that〈
∇Lt

(
wt−1 + ρ

∇Lt(wt−1)

∥∇Lt(wt−1)∥

)
,∇L(wt−1)

〉
=

〈
∇Lt

(
wt−1 + ρ

∇Lt(wt−1)

∥∇Lt(wt−1)∥

)
−∇Lt(wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥
),∇L(wt−1)

〉
−
〈
−∇Lt(wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥
),∇L(wt−1)

〉
.

To bound the RHS,

−E
〈
∇Lt

(
wt−1 + ρ

∇Lt(wt−1)

∥∇Lt(wt−1)∥

)
−∇Lt(wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥
),∇L(wt−1)

〉
≤ 1

2
E∥∇Lt

(
wt−1 + ρ

∇Lt(wt−1)

∥∇Lt(wt−1)∥

)
−∇Lt

(
wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥

)
∥2 + 1

2
∥∇L(wt−1)∥2

≤ β2

2
E
∥∥∥∥ρ ∇Lt(wt−1)

∥∇Lt(wt−1)∥
− ρ

∇L(wt−1)

∥∇L(wt−1)∥

∥∥∥∥2 + 1

2
∥∇L(wt−1)∥2

≤ ρ2β2 +
1

2
∥∇L(wt−1)∥2.

The first inequality is by the Young’s inequality. Also, it has been proven in Lemma A.7 that〈
∇Lt(wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥
),∇L(wt−1)

〉
≥ ∥∇L(wt−1)∥2 − βρ∥∇L(wt−1)∥.

Combining the two inequalities together, we obtain the desired result.

Lemma A.9.

E
[〈
∇ŵt−1

L(ŵt−1),

∇ŵt−2

[
Lt−1

(
ŵt−2 + ρ

∇wt−2
Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

)
−∇wt−1

[
Lt

(
wt−1 + ρ

∇ŵt−1
Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)]〉]
≤ G

(
β2ρ2 +

5β2η2G2

2

) 1
2

.

Proof.

E
[〈

∇
ŵt−1

[L(ŵt−1)],∇ŵt−2
Lt−1(ŵt−2 + ρ

∇wt−2
Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

) − ∇ŵt−1
[Lt(ŵt−1 + ρ

∇wt−1
Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)]

〉]

≤
(
E∥∇

ŵt−1
[L(ŵt−1)]∥2

) 1
2

(
E∥ ∇ŵt−2

Lt−1(ŵt−2 + ρ
∇wt−2

Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

) − ∇ŵt−1
[Lt(ŵt−1 + ρ

∇wt−1
Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)]∥2

) 1
2

≤ G

((
β
2
ρ
2
+

β2

2
E
[
∥ 2η∇ŵt−2

[Lt−1(ŵt−2 + ρ
∇wt−2

Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

) − η∇ŵt−3
[Lt−2(ŵt−3 + ρ

∇wt−3
Lt−2(wt−3)

∥∇wt−3
Lt−2(wt−3)∥

)∥2

])2) 1
2

≤ G

(
β
2
ρ
2
+

5β2η2G2

2

) 1
2

.

The first inequality uses the Cauchy-Schwartz inequality. The last inequality uses the triangle inequality.
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Lemma A.10. With assumptions 4.3, 4.4 and 4.5,

E
∥∥∥∥2η∇ŵt−1

Lt(ŵt−1 + ρ
∇wt−1

Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)− η∇ŵt−2
Lt−1(ŵt−2 + ρ

∇wt−2
Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

)

∥∥∥∥2
≤ 4η2β2ρ2

b
+

4η2σ2

b
+ η2G2.

Proof. This can be done by using the triangle inequality:

E
∥∥∥∥2η∇ŵt−1

Lt(ŵt−1 + ρ
∇wt−1

Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)− η∇ŵt−2
Lt−1(ŵt−2 + ρ

∇wt−2
Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

)

∥∥∥∥2
≤ E∥2η∇ŵt−1

Lt(ŵt−1 + ρ
∇wt−1

Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)∥2 + E∥η∇ŵt−2
Lt−1(ŵt−2 + ρ

∇wt−2
Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

)∥2

≤ 4η2E
∥∥∥∥∇ŵt−1

Lt(ŵt−1 + ρ
∇wt−1Lt(wt−1)

∥∇wt−1Lt(ŵt−1)∥
)−∇wt−1Lt(ŵt−1)∥2 + η2E∥∇ŵt−1

Lt(ŵt−1)−∇ŵt−1
L(ŵt−1)

∥∥∥∥2
+η2G2

≤
4η2β2E

[
∥ρ ∇wt−1

Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥∥

2
]

b
+

4η2σ2

b
+ η2G2

≤ 4η2β2ρ2

b
+

4η2σ2

b
+ η2G2.

Lemma A.11. If ρ < 1
2β ,

E[L(wt−1)] ≤ E[L(ŵt)] +
βη2t
2

||gt−1∥2 + ηtG
2.

Proof. Based on the update scheme of Opt-SAM, wt−1 = ŵt+ηtgt−1. By the smoothness assumption on Assumption 4.4,

L(wt−1)− L(ŵt)− ηt⟨∇L(ŵt),∇Lt(wt)⟩ ≤
βη2t
2

||gt−1∥2 + ηtG
2.

Also, based on the Young’s inequality and assumption 4.5,

E [⟨∇L(wt−1 + ηtgt−1),∇Lt(wt−1)⟩] ≤ G2

Therefore,

E[L(wt−1)] ≤ E[L(ŵt)] +
βη2t
2

||gt−1∥2 + ηtG
2.

Lemma A.12. With assumptions 4.3, 4.4 and 4.5, we have:

1

2
ηE∥∇L(ŵt−1)∥2 ≤ E[L(ŵt−1)]− E[L(ŵt)] + ηβρE∥∇L(ŵt)∥+ ηρ2β2

+η

[
G

(
β2ρ2 +

5β2η2G2

2

) 1
2

]
+

β

2

(
4η2β2ρ2

b
+ 4η2σ2 + η2G2

)
.
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Proof. Using the definition of smoothness on Assumption (4.4) and taking the expectation on both sides, we have:

E[L(ŵt)] ≤ E[L(ŵt−1)]

−ηE
[〈

∇ŵt−1 [L(ŵt−1)], 2∇ŵt−1 [Lt(ŵt−1 + ρ
∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)−∇ŵt−2 [Lt−1(wt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)

〉]
+
β

2
E
∥∥∥∥2η∇ŵt−1 [Lt(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)− η∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)

∥∥∥∥2

≤ E[L(ŵt−1)]− ηE

[〈
∇ŵt−1 [L(ŵt−1)],∇ŵt−1 [Lt−1(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)

〉]
+ηE

[〈
∇ŵt−1 [L(ŵt−1)],∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)−∇ŵt−1 [Lt(wt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(ŵt−1)∥
)]

〉]
+
η2β

2
E
∥∥∥∥2∇ŵt−1 [Lt(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)−∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)

∥∥∥∥2

.

Using Lemmas A.10, A.9 and A.8 to the above RHS,

E[L(ŵt)] ≤ E[L(ŵt−1)]− ηE
[〈

∇ŵt−1 [L(ŵt−1)],∇ŵt−1 [Lt(ŵt−1 + ρ
∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)

〉]
+ηE

[〈
∇ŵt−1 [L(ŵt−1)],∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)−∇ŵt−1 [Lt(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)]

〉]
+
β

2
E
∥∥∥∥2η∇ŵt−1 [Lt(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)− η∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)

∥∥∥∥2

≤ E[L(ŵt−1)]− ηE
[
∥∇L(ŵt−1)∥2 − βρ∥∇L(ŵt−1)∥ − ρ2β2]

+ηE

[
G

(
β2ρ2 +

5β2η2G2

2

) 1
2

]
+

βη2

2

(
4β2ρ2

b
+ 4σ2 +G2

)
.

This can then be simplified as:
1

2
ηE∥∇L(ŵt−1)∥2 ≤ E[L(ŵt−1)]− E[L(ŵt)] + ηβρE∥∇L(ŵt)∥+ ηρ2β2

+η

[
G

(
β2ρ2 +

5β2η2G2

2

) 1
2

]
+

β

2

(
4η2β2ρ2

b
+ 4η2σ2 + η2G2

)
,

which is the desired result.

Now, we state the proof for Theorem 4.7:

Proof. Using Lemma A.12, and with ρt = min
(

1√
T
, 1
β

)
, ηt = min

(
1√
T
, 1
β

)
, and the fact that

√
a+ b ≤

√
a+

√
b, we

have

E∥∇L(ŵt−1)∥2 ≤ 2[E[L(ŵt−1)]− E[L(ŵt)]

η
+ 2βρG+ 2ρ2β2 +

2

[
βρ+

5βηG

2

]
+ 2ηβ

(
4β2ρ2

b
+ 4σ2 +G2

)
.

Telescoping from 1 to T , and substitute ηT to 1√
T

, we have:

1

T

T∑
t=1

E∥∇L(ŵt)∥2 ≤ 2(E[L(ŵ0)]− E[L(ŵt+1)])√
Tη

+
2βG√

T
+

2ρ2β2

T

+
2β√
T

+
5βG√

T
+

2β
(

4β2ρ2

b + 4σ2 +G2
)

T

≤ O

(
1√
Tb

)
.
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We obtain:
1

T

T∑
t=0

E∥∇ŵt
L(ŵt)∥2 = O

(
1√
Tb

)
.

Finally, using Lemma A.11, we have:

1

T

T∑
t=0

E∥∇wtL(wt)∥2 ≤ 1

T

T∑
t=0

E∥∇ŵt
L(ŵt)∥2 +

β +
√
TG2

T
= O

(
1√
Tb

)
.

A.5. Proof of Theorem 4.8

First, we prove the convergence of a surrogate update scheme, named Surrogate Lookahead-SAM, which will be used in the
proof of AO-SAM:

ŵt = wt−1 − ηt∇wt−1

1

b

∑
i∈It

ℓi(wt−1), (33)

ϵ̂t =
ρ∇wt−1

1
b

∑
i∈It

ℓi(wt−1)

∥∇wt−1

1
b

∑
i∈It

ℓi(wt−1)∥
, (34)

wt = wt−1 − ηt∇ŵt

1

b

∑
i∈It

ℓi(ŵt + ϵ̂t). (35)

Let Lt(w) := 1
b

∑
i∈It

ℓi(w) be the mini-batch version of L(w) at epoch t. Let wt−1/2 := ŵt + ϵ̂t = wt−1 +

ρ ∇Lt(wt−1)
||∇Lt(wt−1)∥ − η∇Lt(wt−1). Note that the update scheme of Surrogate Lookahead-SAM can be rewritten as: wt =

wt−1 − ηt∇Lt(wt−1/2). In the following, we assume that ρ, η, β > 0.

Lemma A.13. 〈
∇L

(
w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w)

)
,∇L(w)

〉
≥ (1 + βη)∥∇L(w)∥2 − βρ∥∇L(w)∥.

Proof. 〈
∇L(w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w)),∇L(w)

〉
= ⟨∇L(w + (ρ− η∥∇L(w)∥) ∇L(w)

∥∇L(w)∥
)−∇L(w),∇L(w)⟩+ ∥∇L(w)∥2

=
∥∇L(w)∥

ρ− η∥∇L(w)∥
⟨∇L(w + (ρ− η∥∇L(w)∥) ∇L(w)

∥∇L(w)∥
)−∇L(w),

(ρ− η∥∇L(w)∥)
∥∇L(w)∥

∇L(w)⟩

+∥∇L(w)∥2
(a)

≥ (1− β(ρ− η∥∇L(w)∥)
∥∇L(w)∥

)∥∇L(w)∥2

≥ (1 + ηβ)∥∇L(w)∥2 − βρ∥∇L(w)∥.

The first equation is based on the fact that ⟨∇L(w),∇L(w)⟩ = ∥∇L(w)∥2, while (a) uses Lemma 7 in (Andriushchenko &
Flammarion, 2022).

Lemma A.14.

E⟨∇Lt(w + ρ∇Lt(w)/∥∇Lt(w)∥ − η∇Lt(w)),∇L(w)⟩ ≥ (
1

2
+ ηβ)∥∇L(w)∥2 − βρ∥∇L(w)∥ − β2σ2η2

2b
− ρ2β2.
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Proof. Note that〈
∇Lt

(
w + ρ ∇Lt(w)

∥∇Lt(w)∥ − η∇Lt(w)
)
,∇L(w)

〉
=

〈
∇Lt

(
w + ρ ∇Lt(w)

∥∇Lt(w)∥ − η∇Lt(w)
)
−∇Lt(w + ρ ∇L(w)

∥∇L(w)∥ − η∇L(w)),∇L(w)
〉

−
〈
−∇Lt(w + ρ ∇L(w)

∥∇L(w)∥ − η∇L(w)),∇L(w)
〉
.

In the following, we bound the first term and second term of the RHS separately. For the first term,

−E
〈
∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥
− η∇Lt(w)

)
−∇Lt(w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w)),∇L(w)

〉
(a)

≤ 1

2
E∥∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥
− η∇Lt(w)

)
−∇Lt(w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w))∥2

+
1

2
∥∇L(w)∥2

≤ β2

2
E∥ρ ∇Lt(w)

∥∇Lt(w)∥
− η∇Lt(w)− (ρ

∇L(w)

∥∇L(w)∥
− η∇L(w))∥2 + 1

2
∥∇L(w)∥2

(b)

≤ β2σ2η2

2b
+ ρ2β2 +

1

2
∥∇L(w)∥2.

(a) is based on the Young’s inequality, (b) is using the triangle inequality and Assumption 4.4.

For the second term, on using Lemma A.13,

E
〈
∇Lt(w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w)),∇L(w)

〉
≥ (1 + βη)∥∇L(w)∥2 − βρ∥∇L(w)∥.

Combining them together, we obtain the result.

Lemma A.15. With assumptions 4.3, 4.4 and 4.5, and also assume η ≤ 1
2β , we have:

η

(
ηβ − η3β3 − 2ηβ

(
1

2
+ ηβ

)
+

(
1

2
+ ηβ

))
E∥∇L(wt)∥2

≤ EL(wt)− EL(wt+1) + η2β3ρ2 + η(1− 2ηβ)βρG+ η(1− 2ηβ)
β2σ2

2b

+2ρ2β2η(1− 2ηβ) + η2β
σ2

b
.

Proof. Using the property of smooth function L (Assumption (4.4)), we have:

EL(wt+1) ≤ EL(wt)− ηE⟨∇L(wt−1/2),∇L(wt)⟩+
η2β

2
E∥∇Lt(wt−1/2)∥2

≤ EL(wt)− ηE⟨∇L(wt−1/2),∇L(wt)⟩+
η2β

2
E∥∇Lt(wt−1/2)−∇L(wt−1/2)∥2

+
η2β

2
E∥∇L(wt−1/2)∥2

≤ EL(wt)− ηE⟨∇L(wt−1/2),∇L(wt)⟩+ η2β
σ2

2b
+

η2β

2
E∥∇L(wt−1/2)∥2.

The first inequality is using the property of smooth function (Assumption (4.4)) and take the expectation on both sides.
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Then,

EL(wt+1)
(a)

≤ EL(wt)− η2βE∥∇L(wt)∥2 + η2βE∥∇L(wt−1/2)−∇L(wt)∥2

−η(1− 2ηβ)E⟨∇L(wt−1/2),∇L(wt)⟩+ η2β
σ2

2b
(b)

≤ EL(wt)− η2βE∥∇L(wt)∥2 + η2β3E∥wt−1/2 −wt∥2

−η(1− 2ηβ)

[
−βρE∥∇L(wt)∥ +

(
1

2
+ ηβ

)
E∥∇L(wt)∥2 −

β2σ2η2

2b
− ρ2β2

]
+η2β

σ2

2b

≤ EL(wt)− η2βE∥∇L(wt)∥2 + η2β3ρ2 + η4β3 E∥∇L(wt)∥2

+η(1− 2ηβ)βρE∥∇L(wt)∥ − η(1− 2ηβ)

(
1

2
+ ηβ

)
E∥∇L(wt)∥2

+η3(1− 2ηβ)
β2σ2

2b
+ 2ρ2β2η(1− 2ηβ) + η2β

σ2

b
.

(a) is by using the trick: ∥∇L(wt−1/2)∥2 = −∥∇L(wt)∥2 + ∥∇L(wt−1/2) − ∇L(wt)∥2 + 2⟨∇L(wt−1/2),∇L(wt)⟩.
(b) is by using Lemma A.14. The last inequality is based on the fact that β2E∥wt−1/2 − wt∥2 ≤ β2E∥(ρ −
η∥∇L(wt)∥) ∇L(wt)

∥∇L(wt)∥∥
2 ≤ β2ρ2 + η2β2E∥∇L(wt)∥2, and the assumption η ≤ 1

2β . Finally, after simplification, we
obtain the result.

Theorem A.16. Assume that ηt = min
(

1
2β ,

1√
T

)
, ρ = 1√

T
, then Surrogate Lookahead-SAM satisfies

1
T

∑T
t=0 E∥∇wt

L(wt)∥2 = O
(

1√
Tb

)
.

Proof. With ηt = min
(

1
2β ,

2.99
4β

)
= 1

2β , we have
(
ηβ − ηβ3 − 2ηβ

(
1
2 + ηβ

)
+

(
1
2 + ηβ

))
> 0. By further using

Lemma A.15 and the above analysis, there exists a positive constant C such that:

CηE∥∇L(wt)∥2 ≤ EL(wt)− EL(wt+1) + η3(1− 2ηβ)
β2σ2

2b
+ 2ρ2η(1− 2ηβ) + η2β

σ2

b

+η2β3ρ2 + ηβρG.

Setting ρ = 1√
T

and ηt = min
(

1
2β ,

1√
T

)
. By telescoping from t = 1 to T , and divide by T ,

C

T

T∑
t=1

E∥∇L(wt)∥2

≤ L(w0)− EL(wT+1)

ηT
+ η2

β2σ2

2b
+ 2ρ2(1− 2ηβ) + ηβ

σ2

b
+ ηβ3ρ2 + βρG

=
L(w0)− EL(wT+1)√

T
+

(
β2σ2b/

√
T + 2b/

√
T + 2βσ2 + 2bβ2/T + 2βG

)
2
√
Tb

= O

(
1√
Tb

)
.

Now we state the proof of Theorem 4.8:

Proof. Note that for AO-SAM,

1. If ∥ 1
b

∑
i∈It

∇wtℓi(wt)∥2 < µt + ctσt, then it is the SGD update scheme on epoch t.

24



Improving Sharpness-Aware Minimization by Lookahead

2. If gt−1 in step 7 of Algorithm 2 is the gradient obtained by Opt-SAM, and ∥ 1
b

∑
i∈It

∇wt
ℓi(wt)∥2 ≥ µt + ctσt, i.e.,

gt−1 = ∇ŵt−1

[
1
b

∑
i∈It−1

ℓi (ŵt−1 + ϵ̂t−1)
]
, then it is the Opt-SAM update scheme on epoch t.

3. If gt−1 in step 7 of Algorithm 2 is the gradient obtained by SGD, and ∥ 1
b

∑
i∈It

∇wt
ℓi(wt)∥2 ≥ µt + ctσt, then

it is Surrogate Lookahead-SAM update scheme on epoch t. The reason is that when the last step is SGD, gt−1 =
∇wt−1Lt (wt−1), by following steps 7-8 in Algorithm 2, Therefore,

wt = wt−1 − ηtgt

= wt−1 − ηt∇wt

1

b

∑
i∈It

ℓi

wt−1 − ηt∇wt−1Lt (wt−1) +
ρ∇wt−1

1
b

∑
i∈It

ℓi (wt−1)∥∥∥∇wt−1
1
b

∑
i∈It

ℓi (wt−1)
∥∥∥
 ,

which is exactly Surrogate Lookahead-SAM.

Therefore, our goal is to combine these three different schemes together. Define ζ1t ∈ {0, 1}, ζ2t ∈ {0, 1} and ζ3t ∈ {0, 1} to
indicate which update scheme is used in epoch t: ζ1t = 1 means that Opt-SAM is used; ζ2t = 1 means that SGD is used;
while ζ3t = 1 means that Surrogate Lookahead-SAM is used. Obviously, ζ1t + ζ2t + ζ3t = 1.

Recall that in Theorem A.16, we have:

CE∥∇L(wt)∥2 ≤ EL(wt)− EL(wt+1) + η2(1− 2ηβ)
β2σ2

2
+ 2ρ2η(1− 2ηβ) + η2β

σ2

b

+η2β3ρ2 + ηβρG.

Recall that in Theorem 4.7, we have:

E∥∇L(wt−1)∥2 ≤ 2[E[L(wt−1)]− E[L(wt)]]

η
+ 2βρG+ 2ρ2β2

2

[
βρ+

5βηG

2

]
+ 2ηβ

(
4β2ρ2

b
+ 4σ2 +G2

)
+

βη2t
2

||gt−1∥2 + ηtG
2.

Also, from (2.9) in Theorem 2.1 of (Ghadimi & Lan, 2013),(
ηt −

L

2
η2t

)
∥∇L(wt−1)∥2 ≤ L(wt−1)− L(wt) +

β

2
η2t σ

2

for SGD. By simple calculation and using assumption 4.5, we have

∥∇L(wt−1)∥2 ≤ E[L(wt−1)]− E[L(wt)]

ηt
+

β

2
ηtσ

2 +
β

2
ηtG

2.

Therefore,

E∥∇L(wt−1)∥2

≤ ζ1t

[
E[L(wt−1)]− E[L(wt)]

η
+ 2βρG+ 2ρ2β2 + 2

[
βρ+

5βηG

2

]
+ 2ηβ

(
4β2ρ2

b
+ 4σ2 +G2

)
+

βη2
t

2
||gt−1∥2 + ηtG

2

]
+ζ2t

[
E[L(wt−1)]− E[L(wt)]

η
+

β

2
ησ2 +

β

2
ηG2

]
+
ζ3t
C

[
E[L(wt−1)]− E[L(wt)] + η(1− 2ηβ)

β2σ2

2
+ 2ρ2η2(1− 2ηβ) + η2β

σ2

b
+ η2β3ρ2 +Gβρη

]
≤

[
E[L(wt−1)]− E[L(wt)]

η
+ 2βρG+ 2ρ2β2 + 2

(
βρ+

5βηG

2

)
+ 2ηβ

(
4β2ρ2

b
+ 4σ2 +G2

)
+

βη2
t

2
||gt−1∥2 + ηtG

2

]
+

[
E[L(wt−1)]− E[L(wt)]

η
+

β

2
ησ2 +

β

2
ηG2

]
+

1

C

[
E[L(wt−1)]− E[L(wt)] + η2(1− 2ηβ)

β2σ2

2
+ 2ρ2η(1− 2ηβ) + η2β

σ2

b
+ η2β3ρ2 +Gβρη

]
.
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Table 8: Testing accuracies and fractions of SAM updates on CIFAR-10 with different levels of label noise. Results of ERM,
SAM, and ESAM with ResNet-18 and ResNet-32 are from (Jiang et al., 2023) (standard derivations for some baselines are
not provided in (Jiang et al., 2023)), while the other baseline results are obtained with the authors’ codes. The best accuracy
is in bold.

noise = 20% noise = 40% noise = 60% noise = 80%
accuracy %SAM accuracy %SAM accuracy %SAM accuracy %SAM

R
es

N
et

-1
8

ERM 87.92 0.0 70.82 0.0 49.61 0.0 28.23 0.0

SAM (Foret et al., 2021) 94.80 100.0 91.50 100.0 88.15 100.0 77.40 100.0
ESAM (Du et al., 2022a) 94.19 100.0 91.46 100.0 81.30 100.0 15.00 100.0

ASAM (Kwon et al., 2021) 91.17 ± 0.19 100.0 87.38 ± 0.61 100.0 83.22 ± 0.41 100.0 71.03 ± 0.88 100.0
GSAM (Zhuang et al., 2022) 94.54 ± 0.18 100.0 91.72 ± 0.05 100.0 87.70 ± 0.02 100.0 24.70 ± 10.69 100.0

Opt-SAM 95.12 ± 0.12 100.0 92.16 ± 0.35 100.0 88.45 ± 0.53 100.0 77.47 ± 0.65 100.0

SS-SAM (Zhao, 2022) 94.61 ± 0.16 60.0 91.81 ± 0.13 60.0 78.67 ± 0.42 60.0 62.94 ± 1.01 60.0
AE-SAM (Jiang et al., 2023) 92.13 ± 0.14 61.4 86.02 ± 0.62 61.4 75.95 ± 1.30 61.4 67.28 ± 1.66 61.4

AO-SAM 95.02 ± 0.04 61.2 92.62 ± 0.18 61.3 89.36 ± 0.12 61.2 78.12 ± 0.38 61.2

R
es

N
et

-3
2

ERM 87.43 0.0 70.82 0.0 46.26 0.0 29.00 0.0

SAM (Foret et al., 2021) 95.08 100.0 91.01 100.0 88.90 100.0 77.32 100.0
ESAM (Du et al., 2022a) 93.42 100.0 91.63 100.0 82.73 100.0 10.09 100.0

ASAM (Kwon et al., 2021) 92.04 ± 0.09 100.0 88.83 ± 0.11 100.0 83.90 ± 0.56 100.0 75.64 ± 0.75 100.0
GSAM (Zhuang et al., 2022) 94.12 ± 0.09 100.0 91.74 ± 0.05 100.0 89.23 ± 0.06 100.0 31.16 ± 2.77 100.0

Opt-SAM 95.25 ± 0.04 100.0 92.11 ± 0.07 100.0 88.36 ± 0.22 100.0 77.61 ± 0.39 100.0

SS-SAM (Zhao, 2022) 95.03 ± 0.23 60.0 90.59 ± 0.30 60.0 87.22 ± 0.46 60.0 48.89 ± 1.02 60.0
AE-SAM (Jiang et al., 2023) 92.04 ± 0.27 61.3 86.83 ± 0.49 61.3 73.90 ± 0.44 61.2 67.64 ± 1.34 61.3

AO-SAM 95.32 ± 0.12 61.2 91.73 ± 0.65 61.2 89.40 ± 0.44 61.2 77.78 ± 0.84 61.2

W
id

eR
es

N
et

-2
8-

10

ERM 90.07 ± 0.36 0.0 86.02 ± 0.33 0.0 80.98 ± 0.52 0.0 67.67 ± 0.72 0.0

SAM (Foret et al., 2021) 94.47 ± 0.12 100.0 91.74 ± 0.04 100.0 88.35 ± 0.21 100.0 71.37 ± 1.55 100.0
ESAM (Du et al., 2022a) 95.09 ± 0.04 100.0 89.16 ± 0.21 100.0 42.64 ± 0.55 100.0 20.14 ± 0.69 100.0

ASAM (Kwon et al., 2021) 91.25 ± 0.16 100.0 88.08 ± 0.07 100.0 83.45 ± 0.12 100.0 71.44 ± 0.46 100.0
GSAM (Zhuang et al., 2022) 95.19 ± 0.07 100.0 92.04 ± 0.07 100.0 88.11 ± 0.33 100.0 57.42 ± 4.99 100.0

Opt-SAM 95.31 ± 0.06 100.0 92.67 ± 0.13 100.0 88.37 ± 0.58 100.0 77.86± 1.83 100.0

SS-SAM (Zhao, 2022) 94.47 ± 0.09 60.0 91.90 ± 0.11 60.0 88.43 ± 0.37 60.0 74.64 ± 0.79 60.0
AE-SAM (Jiang et al., 2023) 93.49 ± 0.14 61.3 90.36 ± 0.12 61.3 85.95 ± 0.47 61.3 71.21± 1.56 61.3

AO-SAM 95.52 ± 0.24 61.1 92.68 ± 0.10 61.2 89.29 ± 0.28 61.2 77.13 ± 0.72 61.2

The second equation is due to the fact that ζ1, ζ2, ζ3 ≤ 1. Note that the summation of RHS from t = 0 to T is exactly the
summation of Surrogate Lookahead-SAM, Opt-SAM, and SGD together, which has been shown to have O( 1√

Tb
), O( 1√

Tb
),

and O( 1√
T
) rates in Theorem A.16, Theorem 4.7, and Theorem 2.1 in (Ghadimi & Lan, 2013), respectively. As the finite

summation of O( 1√
Tb

) is still O( 1√
Tb

), the result follows.

B. Supplementary Experimental Results
Tables 8 and 9 show the testing accuracies on CIFAR-10 and CIFAR-100, respectively, with label noise. As can be seen,
AO-SAM and Opt-SAM outperform all baselines at all label noise ratios.
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Table 9: Testing accuracy and fraction of SAM updates on CIFAR-100 with different levels of label noise. All baseline
results are obtained with the authors’ provided code. The best accuracy is in bold.

noise = 20% noise = 40% noise = 60% noise = 80%
accuracy %SAM accuracy %SAM accuracy %SAM accuracy %SAM

R
es

N
et

-1
8

ERM 66.83 ± 0.21 0.0 54.58 ± 0.96 0.0 47.98 ± 0.36 0.0 26.21 ± 3.40 0.0

SAM (Foret et al., 2021) 69.60 ± 0.19 100.0 59.85 ± 0.53 100.0 52.50 ± 0.25 100.0 23.79 ± 3.21 100.0
ESAM (Du et al., 2022a) 75.33 ± 0.19 100.0 67.75 ± 0.83 100.0 4.79 ± 3.58 100.0 1.29 ± 0.10 100.0

ASAM (Kwon et al., 2021) 67.76 ± 0.86 100.0 57.13 ± 0.06 100.0 48.69 ± 0.04 100.0 29.46 ± 0.10 100.0
GSAM (Zhuang et al., 2022) 70.30 ± 0.32 100.0 61.15 ± 0.01 100.0 53.08 ± 0.05 100.0 6.42 ± 0.70 100.0

Opt-SAM 75.45 ± 0.27 100.0 68.01 ± 0.19 100.0 56.63 ± 0.10 100.0 29.77 ± 1.08 100.0

SS-SAM (Zhao, 2022) 75.68 ± 0.62 60.0 64.72 ± 0.20 60.0 55.55 ± 1.49 60.0 23.90 ± 5.63 60.0
AE-SAM (Jiang et al., 2023) 68.69 ± 0.35 61.4 57.35 ± 0.24 61.4 47.95 ± 1.01 61.4 27.11 ± 0.57 61.4

AO-SAM 75.69 ± 0.35 61.2 68.35 ± 0.21 61.3 56.95 ± 1.00 61.2 29.76 ± 1.21 61.3

R
es

N
et

-3
2

ERM 69.33 ± 0.24 0.0 55.77 ± 0.74 0.0 46.96 ± 0.93 0.0 25.67 ± 0.98 0.0

SAM (Foret et al., 2021) 70.88 ± 0.32 100.0 60.40 ± 0.07 100.0 53.10 ± 0.36 100.0 10.66 ± 5.56 100.0
ESAM (Du et al., 2022a) 77.09 ± 0.22 100.0 66.17 ± 1.78 100.0 3.02± 0.26 100.0 1.85± 0.73 100.0

ASAM (Kwon et al., 2021) 69.64 ± 1.36 100.0 57.88 ± 0.61 100.0 48.79 ± 0.24 100.0 28.06± 1.05 100.0
GSAM (Zhuang et al., 2022) 71.69 ± 0.04 100.0 63.23 ± 0.04 100.0 54.22 ± 0.51 100.0 3.03 ± 0.88 100.0

Opt-SAM 78.05 ± 0.23 100.0 66.74 ± 0.19 100.0 56.06 ± 0.13 100.0 29.55 ± 2.08 100.0

SS-SAM (Zhao, 2022) 71.34 ± 0.32 60.0 61.45 ± 1.36 60.0 51.76 ± 0.04 60.0 13.96± 3.17 60.0
AE-SAM (Jiang et al., 2023) 68.94 ± 0.12 61.3 58.41± 1.89 61.3 51.48± 1.08 61.2 28.44 ± 0.76 61.3

AO-SAM 78.11 ± 0.14 61.2 68.71 ± 0.46 61.2 54.58 ± 0.30 61.2 29.78± 0.42 61.2

W
id

eR
es

N
et

-2
8-

10

ERM 74.31 ± 0.61 0.0 62.31 ± 0.41 0.0 48.23 ± 0.92 0.0 29.96 ± 0.21 0.0

SAM (Foret et al., 2021) 76.04 ± 0.38 100.0 64.65 ± 0.79 100.0 56.03 ± 0.76 100.0 29.48 ± 0.23 100.0
ESAM (Du et al., 2022a) 80.06 ± 0.12 100.0 72.03 ± 0.79 100.0 9.75 ± 2.12 100.0 1.16 ± 0.08 100.0

ASAM (Kwon et al., 2021) 74.37 ± 0.18 100.0 62.91 ± 0.71 100.0 51.35 ± 0.31 100.0 33.12 ± 0.16 100.0
GSAM (Zhuang et al., 2022) 75.90 ± 0.06 100.0 64.57 ± 0.16 100.0 56.80 ± 0.39 100.0 11.72 ± 0.25 100.0

Opt-SAM 80.14 ± 0.29 100.0 72.79± 0.51 100.0 57.01± 0.34 100.0 36.33± 1.68 100.0

SS-SAM (Zhao, 2022) 75.48 ± 0.26 60.0 64.72 ± 0.25 60.0 54.83 ± 0.48 60.0 35.88 ± 3.23 60.0
AE-SAM (Jiang et al., 2023) 75.46 ± 0.36 61.3 63.04 ± 0.68 61.3 52.29 ± 0.63 61.3 33.72 ± 0.62 61.3

AO-SAM 80.32 ± 0.07 61.2 72.10 ± 0.48 61.2 56.89 ± 0.30 61.2 36.03 ± 0.59 61.2
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