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ABSTRACT

We present an effective method for fusing visual-and-language representations for
several question answering tasks including visual question answering and visual
entailment. In contrast to prior works that concatenate unimodal representations
or use only cross-attention, we compose multimodal representations via channel
fusion. By fusing on the channels, the model is able to more effectively align the
tokens compared to standard methods. These multimodal representations, which
we call compound tokens are generated with cross-attention transformer layers.
First, vision tokens are used as queries to retrieve compatible text tokens through
cross-attention. We then chain the vision tokens and the queried text tokens along
the channel dimension. We call the resulting representations compound tokens.
A second group of compound tokens are generated using an analogous process
where the text tokens serve as queries to the cross-attention layer. We concate-
nate all the compound tokens for further processing with multimodal encoder.
We demonstrate the effectiveness of compound tokens using an encoder-decoder
vision-language model trained end-to-end in the open-vocabulary setting. Com-
pound Tokens achieve highly competitive performance across a range of question
answering tasks including GQA, VQA2.0, and SNLI-VE. We will make the code
public.

1 INTRODUCTION

Multimodal learning will continue to play an increasingly fundamental role as we build increas-
ingly more general purpose artificial agents. Tasks that seek information about visual inputs based
on text queries such as visual question answering (VQA) (Goyal et al., 2017; Hudson & Manning,
2019) have emerged as effective frameworks for multimodal learning as they require a thorough
understanding of both visual and textual information. For example, to correctly answer the question
“what type of drink is to the right of the soda bottle?”, a model must be able to distinguish a soda
bottle from other bottles, left from right, understand language, and recognize the drink in question.
Thus, effectively mixing or fusing the joint representations is critical for these tasks that have en-
joyed so much progress in recent years (Li et al., 2021a; 2022; Wang et al., 2021; Yu et al., 2022;
Wang et al., 2022b; Alayrac et al., 2022; Wang et al., 2022a).

One common strategy for fusing multimodal representations is to simply concatenate the vision and
text tokens together, and feed them into a multimodal transformer encoder with self-attention layers.
This approach, which we use as our main comparison reference is christened merged attention, and
has been employed extensively in several vision-language models (Luowei Zhou, 2019; Hendricks
et al., 2021; Dou et al., 2022; Piergiovanni et al., 2022a). A second multimodal fusion method
called co-attention (shown in Figure 1), feeds the text and visual tokens separately into independent
transformer encoders, and leverages cross-attention to communicate information between the two
modalities (Tan & Bansal, 2019; Bugliarello et al., 2021; Hendricks et al., 2021; Li et al., 2021a;
Dou et al., 2022).

While merge attention based models may struggle to align complementary tokens across different
modalities effectively, co-attention based models forfeit the benefits of global self-attention across all
tokens. Interestingly, Dou et al. (2022) observed a performance boost from co-attention compared to
merged attention, suggesting a beneficial effect from the cross-attention mechanism. The downside
of co-attention, however, is that it is parameter inefficient compared to merged attention as it requires
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(a) Merged Attention (b) Co-Attention (c) Compound Tokens

Figure 1: Different multimodal fusion methods: Illustrations of two types of fusions methods
in previous works: (a) co-attention, and (b) merged attention from the perspective of one visual
token Fi, and one text token Tj . Our proposed compound tokens fusion method is illustrated in
(c). Note that we use only one cross-attention layer for each modality compared to co-attention
which uses both cross-attention and self-attention in all blocks. We concatenate the input query to
the cross-attention module with the cross-attention output along the channel dimension. Q, K, and
V denote the input query, keys and values respectively to the attention module. X represents the
cross-attention layer’s output. Finally, the subscripts V , L, and CT respectively identify an input as
visual features, text features or compound tokens, e.g.,QV indicates an input query that is composed
of visual tokens.

separate sets of parameters for vision and language features. Our work unifies merge attention and
co-attention in an efficient pipeline that produces more powerful multimodal representations than
either method for several multimodal tasks.

Compound Tokens fusion aligns multimodal tokens using cross-attention without losing the advan-
tages of global self-attention over all vision and text tokens. We use the tokens from one modality
to query the other modality, and concatenate the output with the query tokens on the channels. An
analogous process is repeated where we switch the roles of the two modalities. The resulting sets of
compound tokens are concatenated and fed into a multimodal transformer encoder. Different from
merged attention, we concatenate the vision and text tokens along the channel dimension. Unlike
co-attention that uses both functions in every block, we use only two cross-attention functions at the
beginning to facilitate channel concatenation.

Combining the query features and the cross-attention outputs on the channels (illustrated in Fig-
ure 1c) does not increase the token length, thus eliminating any additional computational or mem-
ory overheads in the multimodal transformer, and decoder modules. To further ensure that our
method is efficient, we first embed each modality into half of their original feature dimension before
compounding them. We show in Table 1 that other ways of mixing the input queries and the cross-
attention outputs, such as weighting or element-wise product, are less effective compared to channel
concatenation.

We evaluate compound tokens through extensive experiments in the challenging open-vocabulary
setting via exact matching. In this setting, the generated responses must match exactly with the
ground truth answers to be considered correct. This is notably more difficult than making predic-
tions from a small predefined set of responses as in encoder only models. We adopt a generation
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pipeline following works such as Cho et al. (2021); Wang et al. (2022b); and Piergiovanni et al.
(2022a) that demonstrated the flexibility of that approach and its relevance to practical scenarios.
However, as observed in Dou et al. (2022), this setting is less suitable for small models like ours.
Accordingly, we provide separate results for VQA (Goyal et al., 2017) using an encoder only model.
Even in the encoder only setting, our pretraining setup still uses an encoder-decoder architecture as
in Piergiovanni et al. (2022a) and illustrated in Figure 2.

Compound Tokens fusion outperforms both merged attention and co-attention on GQA (Hudson
& Manning, 2019), SNLI-VE (Xie et al., 2019), and VQA (Goyal et al., 2017) with and without
vision-language pretraining. Our proposed fusion method obtained 82.87% on SNLI-VE beating
METER (Dou et al., 2022) by 2.26%. Additionally, Compound Tokens recorded 82.43% on GQA
significantly outperforming CFR (Nguyen et al., 2022) by 8.83%. Our VQA score of 70.62% on the
VQA dataset is competitive among existing models.

To summarize, our work contributes a novel multimodal fusion method for vision-language tasks
that enjoys the benefits of both cross-attention and self-attention without substantial additional com-
putational overhead. We show the superiority of the proposed method over other fusion methods
across several question answering tasks.

2 RELATED WORKS

Similar to the remarkable impact models such as T5 (Raffel et al., 2020), BERT (Devlin et al.,
2019), and GPT-3 (Brown et al., 2020) have had on natural language process by pretraining on
large amounts of text data, multimodal models like VilBERT (Lu et al., 2019), BEiT-3 Wang et al.
(2022a), SimVLM (Wang et al., 2022b), Flamingo (Alayrac et al., 2022), and PaLI (Chen et al.,
2022b) have increasingly shown significant advantages from pretraining on large scale and diverse
multimodal data. Unsurprisingly, vision-and-language tasks including visual dialog (Das et al.,
2017; Kottur et al., 2018; Chen et al., 2022a), visual reasoning (Suhr et al., 2017; Zellers et al.,
2019), entailment (Xie et al., 2019; Chen et al., 2020), visual question answering (Antol et al., 2015;
Goyal et al., 2017; Jiang et al., 2020; Wang et al., 2022b), caption generation (Anderson et al., 2018;
Changpinyo et al., 2021), and cross-modality retrieval (Mao et al., 2016; Kamath et al., 2021) have
all made great strides in recent years.

Important architectural innovations in vision-and-language models have been instrumental in ac-
celerating these impressive scaling capabilities. One such innovation is the switch from expensive
object detectors such as Faster-RCNN (Ren et al., 2015) in earlier models (Tan & Bansal, 2019;
Lu et al., 2019; Li et al., 2019; 2020; Zhang et al., 2021) to simpler modules such as ResNet (He
et al., 2015) or Vision Transformer (Dosovitskiy et al., 2021) for encoding visual features. Remov-
ing the object detectors reduced the need to train on clean human-annotated datasets such as Visual
Genome (Krishna et al., 2016), thus paving the way to more impactfully use copious amounts of
weakly-supervised image-text datasets from the internet.

Pretraining vision-and-language models with different cross-modal objectives has been another ma-
jor axis of exploration in recent works. Contrastive learning (Li et al., 2021b; Yu et al., 2022), image
captioning (Anderson et al., 2018), image-text matching (Lee et al., 2018; Lu et al., 2019), prefix
language modeling (Wang et al., 2022b), word-patch alignment (Kim et al., 2021), etc., are some of
the variety of losses proposed recently. Other works combine several losses during pretraining (Li
et al., 2022; Dou et al., 2022), while still more methods unify several question answering tasks into
a multi-task framework (Nguyen & Okatani, 2019; Lu et al., 2020; Piergiovanni et al., 2022a).

While a majority of works on vision-and-language representation learning have concentrated on
improving feature extraction of the distinct modalities (e.g., using an object detector versus a con-
volutional neural network or a Transformer for vision feature extraction) or devising novel objective
functions, efforts on improving the fusion of the multimodal representations have garnered relatively
little attention. Most researchers simply adopt concatenation as described in merged attention (Dou
et al., 2022) for fusion (Luowei Zhou, 2019; Piergiovanni et al., 2022a; Wang et al., 2022b). These
methods differ sometimes on whether merging is done early in the model or at a deeper stage after
processing each modality with large independent backbones. Co-attention is another popular method
for mixing the multimodal features (Tan & Bansal, 2019; Li et al., 2021a; Dou et al., 2022). In co-
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Figure 2: Model Architecture: Compound Tokens Fusion is illustrated in Figure 1c. ResNet-50 (He
et al., 2015) and T5-base (Raffel et al., 2020) are used for the image and text encoders respectively.

attention, the vision and text features are modeled independently in separate transformer encoders,
with a cross-attention mechanism serving as the bridge between the two modalities.

This work focuses on improving the multimodal fusion of the different representations for question
answering tasks. As a result, we do not dwell heavily on the type of backbone encoders, the pre-
training style nor the loss functions used. We propose a novel fusion of multimodal tokens through
channel concatenation to encourage better alignment between the tokens, while preserving the capa-
bility to use self-attention over the joint representations. We use (1) a vision-to-text cross-attention,
and (2) a text-to-vision cross-attention to retrieve more aligned representations. These aligned rep-
resentations are concatenated with the query tokens on the feature dimension to form what we call
compound tokens. The vision-to-text and text-to-vision compound tokens are merged and fed into
a transformer encoder. See Figure 1 for illustrative comparisons between merged attention, co-
attention and compound tokens fusion.

3 COMPOUND TOKENS

3.1 BACKGROUND

We now provide a high level background on relevant functions necessary for the understanding of
our method. We ignore layer normalization and multi-layer perceptrons in attention blocks in this
overview for simplicity. For the same reason, we do not discuss residual connections between layers.

Attention: Given a set of query vectors Q ∈ RN×d and a set of key vectors K ∈ RM×d, an
attention layer gathers information from context vectors V ∈ RM×c proportional to the normalized
scores between the elements of Q and K. Specifically, for softmax dot-product attention (Vaswani
et al., 2017), the scalar output zi,`, of an attention layer for query vector qi ∈ Q and key vector
kj ∈ K, is the weighted sum of the elements of V,

ai,j =
qTi kj√
d

αi,j =
exp(ai,j)∑
` exp(ai,`)

zi,` =
∑
j

αi,jVj,` . (1)

An attention mechanism is called self-attention when the query vectors are also members of the
context vectors, i.e., qi ∈ K ∀i. It is known as cross-attention otherwise.
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Multimodal Fusion: Token concatenation followed by self-attention is one of the most adopted
approaches for cross-modal learning in recent vision-language architectures (Li et al., 2019; Pier-
giovanni et al., 2022a; Wang et al., 2022b; Chen et al., 2022b). Formally, given a sequence of N
image tokens, I ∈ RN×d, and M text tokens, T ∈ RM×d, most methods concatenate I and T
into a single representation O ∈ R(N+M)×d which is then fed into a multimodal transformer for
further modeling. The target outputs are produced using either a linear layer or a decoder. Besides
concatenation, other methods such as (Tan & Bansal, 2019; Li et al., 2021a; 2022) use multimodal
transformers composed of both self-attention and cross-attention in every block.

3.2 PROPOSED FUSION METHOD

Our method, illustrated in Figures 1c & 2, draws from both co-attention and merged-attention. Com-
pound Tokens fusion first projects the visual and language tokens into half of the embedding space so
that the total number of features is maintained after channel concatenation: Ĩ ∈ RN× d

2 ; T̃ ∈ RM× d
2

for the image and text tokens respectively. Next, we employ only two cross-attention layers (unlike
co-attention (Dou et al., 2022) that uses cross-attention and self-attention in every block) to create
visual and language compound tokens

Î = A
(
Ĩ, T̃ , T̃

)
∈ RN× d

2 T̂ = A
(
T̃ , Ĩ, Ĩ

)
∈ RM× d

2 (2)

Icmpd = C-Concat
(
Ĩ, Î

)
∈ RN×d Tcmpd = C-Concat

(
T̃ , T̂

)
∈ RM×d , (3)

where A(q, k, v) is the cross-attention function with q, k, and v as queries, keys, and values re-
spectively. C-Concat(u, υ) concatenates tensors u and υ along the feature dimension. We combine
vision-to-text compound tokens Icmpd, and text-to-vision compound tokens Tcmpd, into a set of
output compound tokens as in merged attention architectures

Ocmpd = Concat (Icmpd, Tcmpd) ∈ R(N+M)×d . (4)

Following previous methods, we feed Ocmpd into a self-attention multimodal encoder before gen-
erating the target outputs with an auto-regressive decoder. We also show results in Figure 3 and
Table 2 where we do not use a multimodal encoder: Ocmpd is passed directly into the decoder to
produce the outputs.

4 EXPERIMENTAL SETUP

4.1 MODEL

We use ResNet-50 (He et al., 2015) as our image encoder and T5-base (Raffel et al., 2020) as our
text encoder. The output of the image and text encoders are provided to our novel fusion method
described in Section 3.2. A T5-base decoder consumes the output of the fusion module and generates
free form text for all question answering tasks. The image encoder is pretrained on ImageNet-
1k (Deng et al., 2009) while the text encoder and decoder use pretrained T5 weights.

4.2 DATASETS

SNLI-VE (Xie et al., 2019) is a dataset of approximately 500,000 image-text pairs used for vi-
sual entailment (VE). Given an image and a proposed statement, the task for this dataset requires
determining whether the statement is neutral, entails, or contradicts the image.

Visual Question Answering (VQA2.0) (Goyal et al., 2017) is a widely used benchmark for many
question-answering models and contains 400,000 image-text pairs spanning 3,130 output categories.
Each image-question pair is associated with 10 answers.

GQA (Hudson & Manning, 2019) is a vision question answering dataset of complex compositional
questions comprising scene-object relations formed from Visual Genome (Krishna et al., 2016) with
approximately 22 million question-answer pairs and 113 thousand images.

We emphasize that for all tasks, our model must generate a correct answer in an open-vocabulary
setting of about 32,000 words irrespective of the number of categories in the task. A generated
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response is counted as correct if and only if it matches exactly with the ground-truth answer. We use
the VQA metric1 for VQA2.0 and simple accuracy for GQA and SNLI-VE as evaluation metrics.

In addition to the downstream datasets, we also use CC3M2 (Sharma et al., 2018) and COCO Cap-
tions (Lin et al., 2014) for pretraining. The pretraining setup uses a mixture of these datasets across
four objectives: (1) image-text matching where the model predicts whether an image-text pair is a
match or not, (2) captioning where the model generates the full caption given an image, (3) caption
completion where the model completes a masked caption, and (4) masked-language modeling as
in BERT (Devlin et al., 2019).

Unless otherwise stated, we pretrain our models for 300k iterations using a batch size of 512 and
perform an additional 100k iterations of finetuning at a batch size of 128 on the downstream tasks:
SNLI-VE, VQA, and GQA. When pretraining, the image resolution is set to 224 × 224 which is
increased to 384 × 384 during finetuning or when training from scratch without vision-language
pretraining (VLP). The input text length is set to 32. The output text length is 32 during pretraining
and reduced to 8 during finetuning. Table 6 in the Appendix documents all our hyper-parameter
settings including learning rates, weight-decay, etc. Generally, we use SNLI-VE and GQA for
ablations as performance on those datasets in our setup is more stable than results on VQA.

5 EXPERIMENTAL RESULTS

5.1 WHY CHANNEL CONCATENATION?

To determine the best way of composing compound tokens, we examined a number of options with a
prime objective to not increase the token length. To this end, we sampled four combination methods
and compared them on SNLI-VE and GQA as the performances on these datasets in our setup are
more stable compared to VQA. Given input queries q and cross-attention layer’s outputs X , we
explored the following: (1) channel concatenation where we concatenate q and X along the feature
dimension as described in Section 3.2. (2) weighting uses the operation Y = αq + βX where α
and β are learnable scalars initialized randomly, and Y is the output. (3) In Element-wise product,
Y = q�X . (4) Finally, we tested a simple summation of the tensors, Y = q+X . All these methods
use approximately the same number of flops and parameters. The results in Table 1 show channel
concatenation is better than the other methods, hence our use of channel concatenation in the rest of
the paper.

Table 1: Different Methods of Formulating Compound Tokens: Channel concatenation obtains
the highest accuracy on SNLI-VE and GQA.

Method GFlops SNLI-VE GQA

Channel Concatenation 20.71 80.85 80.79
Weighting 20.71 80.63 80.61

Summation 20.71 80.75 80.35

Element-wise Product 20.71 80.81 78.31

5.2 COMPARISON OF COMPOUND TOKENS WITH MERGED ATTENTION

We first compare merged attention and compound tokens fusion (our method) in Figure 3 without
vision-language pretraining to establish some baseline results. We then incorporate vision-language
pretraining and reassess the performance of each method in Table 2. All three downstream tasks for
each fusion method uses the same pretrained model.

For these baseline comparisons, the fusion modules do not use a multimodal encoder. Merged
attention simply feeds a concatenation of the multimodal tokens to the decoder while compound
tokens fusion passes the tokens to the decoder immediately after channel chaining.

1https://visualqa.org/evaluation.html
2The version of the dataset we used has about 2 million samples

6



Under review as a conference paper at ICLR 2023

Figure 3: Merged Attention versus Compound Tokens without Vision Language Pretraining:
With a relatively minimal amount of additional flops, Compound Tokens demonstrate a much im-
proved performance over merged attention across all tasks. Compound Tokens (TAQ) is a more
efficient version of our fusion method where we use only one cross-attention layer. For this method,
we use the Text tokens As the input Query. We then compound the output with the text tokens along
the channels as illustrated in Figure 1c. Note that even this more efficient compound tokens version
outperforms merged attention, albeit with only marginal gains.

Table 2: Merged Attention versus Compound Tokens with Vision Language Pretraining: We re-
peat the experiments in Figure 3, but include vision-language pretraining on a mixture of CC3M and
COCO captions. While pretraining generally increases performance across all methods, compound
tokens continue to surpass merged attention, further underscoring the superiority of our method.

Fusion Method GFlops VQA SNLI-VE GQA

Merged Attention 19.31 53.33 81.25 78.25
Compound Tokens (Ours) 19.87 57.51 81.49 80.45
Compound Tokens (TAQ, Ours) 17.34 53.23 81.21 77.74

The results in Figure 3 and Table 2 show clearly that compound tokens fusion is superior to merged
attention with and without vision-language pretraining at a relatively small amount of additional
compute. This performance boost suggests that the use of cross-attention to align the multimodal
representations is positively impactful on performance for various question answering tasks. When
vision-language pretraining is employed, Compound Tokens fusion outperforms merged attention
by substantial margins on VQA (+4.18%) and GQA (2.20%). The improvement on SNLI-VE is
a relatively modest 0.24%. Our method enjoys similar improvement margins when training from
scratch without vision-language pretraining. We include a more efficient version of our method
(Compound Tokens (TAQ)) where we use only the text tokens as queries to these baseline compar-
isons. Even this reduced capacity version of our method outperforms merged attention across all
tasks when training from scratch while using fewer flops. The ablation in Table 7 in the Appendix
shows that the ranking here is consistent across different image resolutions. In Table 9, we show
that Compound Tokens also beat merged attention when a Vision Transformer (Dosovitskiy et al.,
2021) is used as the image-encoder instead of the ResNet-50 we used in these experiments.

5.3 MULTIMODAL TRANSFORMER ENCODER

After establishing the superiority of compound tokens over merged attention when no multimodal
encoder is used before the decoder, we expand the models to include a multimodal encoder with 12
self-attention blocks to match the setting in most previous vision-language models (Li et al., 2021a;
Dou et al., 2022). We also compare with two other fusion methods Co-Attention (illustrated in
Figure 1b), and Co-Tokenization (Piergiovanni et al., 2022b). Originally implemented for question
answering tasks in videos, Co-Tokenization iteratively fuses visual features with text features using
a TokenLearner (Ryoo et al., 2021). We use an adaptation of Co-Tokenization for images. The Co-
Attention fusion module uses 6 blocks each for the vision and the text branches as in METER (Dou
et al., 2022) where each block has a self-attention, cross-attention and feedforward layers. Co-
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Table 3: Comparisons with other Fusion models without Vision-Language Pretraining: We ex-
tend the models to include a multimodal encoder with 12 self-attention layers in merged attention
to match the typical setting in previous works. Compound Tokens outperform merged attention
and Co-Attention with fewer parameters than both methods and fewer flops than merged attention.
Co-Attention and merged attention are from Dou et al. (2022) while Co-Tokenization is from Pier-
giovanni et al. (2022b). The results here are our implementations of the these methods. Params
shows the number of parameters in the entire model (not just the fusion module); RES is the image
resolution and L is the total number of transformer blocks in the multimodal encoder: Compound
Tokens uses two cross-attention blocks before the multimodal encoder.

Fusion Method L Params (×106) RES GFlops SNLI-VE GQA

Merged Attention 12 332.94 384× 384 34.89 79.81 78.07
Co-Attention 12 361.26 384× 384 29.61 80.20 77.75
Compound Tokens (Ours) 10 325.82 384× 384 32.90 80.52 78.21
Co-Tokenization 12 392.14 384× 384 57.78 80.79 81.07
Compound Tokens (Ours) 10 325.82 384× 384 32.90 80.52 78.21

Tokenization uses 64 image tokens and 4 transformer blocks per each tokenization round. There
are 3 tokenization rounds, constituting 12 self-attention blocks overall. A self-attention block in
our implementation is made up of a self-attention function and a feedforward layer. The multimodal
encoder for Compound Tokens fusion has 10 blocks to compensate for the two cross-attention blocks
that it uses.

The results of these experiments are shown in Table 3. The models are trained for 300k iterations at
a batch size of 128 on each downstream task without any vision-language pretraining (See Table 8
in the Appendix for results with pretraining across different resolutions). Compound Tokens fusion
continues to outperform merged attention and co-attention in this setting as well, indicating the fu-
sion mechanism remains competitive even when a multimodal encoder is used. However, it slightly
underperforms the more expensive Co-Tokenization module when training from scratch.

5.4 AN ENCODER ONLY MODEL FOR VQA

The performance of our models on VQA in the encoder-decoder setup is significantly lower than
reported results in previous works even for small models like ours. We note again that this sub-
optimal performance is not unique to compound tokens fusion; we observe similar low values for
all the fusion methods we tested in our architectural setup (See Table 10 in the Appendix for VQA
results in the encoder-decoder architecture for all fusion methods.). We believe the low performance
is an effect of the decoder not being able to learn the VQA vocabulary sufficiently. To address any
problems introduced by the decoder, we use an encoder only model for the VQA task during fine-
tuning by replacing the decoder in a pretrained model with a linear layer of size 3130. The results
in Table 4 show that the encoder only model significantly outperforms the encoder-decoder model.
We, thus, adopt that setup in our comparison with previous work discussed in the next section. The
VQA metric is still used for evaluation in the encoder only model.

Table 4: Encoder only versus Encoder-Decoder: The Encoder only model outperforms the
encoder-decoder model by a large margin. The models here use the same pretrained encoder-decoder
model: the decoder is replaced with a linear classifier when transitioning to an encoder-only version.
We finetune both models for 100k steps after pretraining for 300k steps.

Fusion Method Architecture GFlops VQA Accuracy

Compound Tokens Encoder-Decoder 35.50 58.14
Compound Tokens Encoder Only 31.77 70.39
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5.5 COMPARISON WITH EXISTING APPROACHES

Finally, we compare our results with various competitive recent models such as METER (Dou et al.,
2022), ALBEF (Li et al., 2021a), and CFR (Nguyen et al., 2022). The models in Table 5 gener-
ally have approximately the same number of parameters, but differ significantly on the pretraining
datasets, pretraining objectives, and backbone encoders. For example, while we use Conceptual
Captions (Sharma et al., 2018) and COCO (Lin et al., 2014) as our pretraining datasets, METER
used Conceptual Captions, COCO, Visual Genome (Krishna et al., 2016) and SBU Captions (Or-
donez et al., 2011). ALBEF used all the datasets in METER in addition to Conceptual Captions
12M (Changpinyo et al., 2021).

The model we use for this comparison has 340 million parameters in total. We pretrain it for 500k
iterations with a batch-size of 512 using an image resolution of 224 × 224 and further finetune for
200k iterations on each of the downstream tasks at resolution 384 × 384 with batch size 128. This
model uses a multimodal encoder with 12 blocks.

Except for SimVLM (Wang et al., 2022b) which has about 1.5 billion parameters and uses a signifi-
cantly large pretraining data (a 1.8 billion private dataset), our model outperforms all other methods
on SNLI-VE and GQA by large margins. We are confident that further pretraining and increasing
image resolution will improve our already competitive result on the VQA dataset. Scaling up the
model may also yield additional performance improvements.

Table 5: Comparison with SOTA: Compound Tokens outperforms all other models on SNLI-VE
and GQA in an open-vocabulary evaluation except SimVLM (Wang et al., 2022b) which used a
privat dataset of 1.5B samples. For VQA, we present the results in the closed-vocabulary setting
for fair comparisons with the other methods: our open-set evaluation is significantly worse than the
closed-set evaluation model on this task. The best values among the models besides SimVLM are in
bold. The second best values are underlined. *The flops are based on our calculations. Our model
is extremely more efficient than the rest partly because we use a short text sequence length of 32 and
a ResNet-50 backbone that produces 49 visual tokens.

Approach Params GFlops∗ VQA SNLI-VE GQA

SimVLMHuge (Wang et al., 2022b) 1.5B 890 80.34 86.32 -
VisualBERT (Li et al., 2019) 66.70 75.69 -
UNITER (Chen et al., 2020) 73.82 79.39 -
LXMERT (Tan & Bansal, 2019) 69.90 - 60.00
ALBEF (Li et al., 2021a) 418M 122 75.84 80.91 -
METER (Dou et al., 2022) 336M 130 77.68 80.61 -
BLIP (Li et al., 2022) 475M 122 77.54 - -
12-in-1 (Lu et al., 2020) 71.30 - 60.50
VinVL (Zhang et al., 2021) 75.95 - 65.05
VL-T5 (Cho et al., 2021) 70.30 - 60.80
CFR (Nguyen et al., 2022) 69.80 - 73.60
Compound Tokens (Ours) 340M 36 70.62 82.87 82.43

6 CONCLUSION

We introduce Compound Tokens, a new multimodal fusion method for vision-and-language rep-
resentation learning. Our method beat super competitive models such as ALBEF and METER on
SNLI-VE by close to 2%. Furthermore, Compound Tokens performance on GQA beats the next best
model we are aware of by more than 8 percentage points. Finally, we demonstrated through numer-
ous comparative experiments that our method is better than merged attention and co-attention across
three popular question answering tasks. We consistently outperformed these standard methods with
and without pretraining on image-text pairs, across different image resolutions and image encoding
backbones.

With this strong demonstration as an effective fusion method, we hope that Compound Tokens will
inspire other methods of modeling multimodal representations beyond token concatenation.
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7 CODE OF ETHICS AND REPRODUCIBILITY STATEMENTS

We describe the datasets we used in Section 4.2, our main model in 4.1, and hyper-parameter in
Sections 4 & A. We also list all hyper-parameters for the ablation experiments in Table 6 to enhance
reproducibility of our method. Finally, we will make the code public to the research community.

All datasets used in this work are publicly available. The work did not involve any human subjects
and has no immediate harmful insights or implications for society. We are confident that our fusion
method will help advance multimodal learning and machine learning at large.
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APPENDIX

A HYPER-PARAMETER SETTINGS

We provide full details of our hyper-parameter settings in this section. We use Adam (Kingma &
Ba, 2015) to optimize all our models. The learning rate starts from zero and warms up linearly to
the base rate after 8k iterations. Cosine annealing (Loshchilov & Hutter, 2017) with a cycle rate of
100k steps is then used to decay the rate to zero by the end of training. We use gradient clipping
with a maximum norm of 1.0 in all our experiments.

We do not use any data augmentation beyond resizing and normalization in all the ablation exper-
iments and finetuning experiments. We apply random cropping and AutoAugment (Cubuk et al.,
2019) during pretraining of our main model.

All our pretraining experiments use a batch size of 512 and image resolution 224× 224. The batch
size is divided equally among the four pretraining objectives: image captioning, caption completion,
image-text matching, and masked language modeling. We also sample the same number of examples
from CC3M and COCO in every iteration. The batch size and resolutions are set to 128, and 384×
384 respectively whenever training from scratch or finetuning.

The datasets we used and our model are described in Section 4. The rest of the hyper-parameters are
listed in Table 6.
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Table 6: Hyper-parameter Settings: We enumerate the hyper-parameters for our ablation exper-
iments and main model. L is the number of blocks in a multimodal encoder. Main Model is the
model we used in Table 5 for comparison with existing works.

Experiment Phase L Iterations LR Dropout Weight Decay

Ablations

Pretraining 0 / 12 300k 1.1e−4 1e−3 0.1

Finetuning 0 100k 5e− 5 0
1e−4

12 3.1e−3 1e−3

Scratch 0 300k 7.5e−5

1e−2 1e−3

12 3e−5

Main Model Pretraining 12 500k 1.1e−4

1e−3 0.1
Finetuning 200k 3e−5 1e−4

B FURTHER ABLATIONS

B.1 IMAGE RESOLUTION

Increasing image resolution generally leads to better performance for various question answering
tasks. As a consequence, most prior works use a larger resolution during finetuning compared to
the pretraining resolution. For example, Wang et al. (2022b) pretrained at resolution 224 × 224
and finetuned at 480 × 480. In this work, we followed the setting in METER (Dou et al., 2022)
by pretraining and finetuning at resolutions 224 × 224 and 384 × 384 respectively. We now inves-
tigate whether Compound Tokens also enjoy improved performance relative to merged attention at
different resolutions in this section.

The results of this ablation is shown in Table 7 for models without a multimodal encoder and in
Table 8 for models with a multi-modal encoder. The models in Table 7 do not use any pretrain-
ing on paired image-text data while the models in Table 8 are pretrained on CC3M and COCO for
300k iterations. As in prior works, increasing image resolution improves performance across all
fusion methods and datasets. In all cases, Compound Tokens continue to outperform merge atten-
tion, further underlining the fact that our proposed method is more effective than traditional merge
attention.

Table 7: Impact of Image Resolution without Vision-Language Pretraining: Increasing the res-
olution increases performance for both merged attention and compound tokens, with compound
tokens continuing to outperform merged attention at both resolutions. Bold numbers shows the best
results within each comparison setting.

Fusion Method RES GFlops SNLI-VE GQA

Merged Attention 224× 224 9.94 78.70 75.62
Compound Tokens 224× 224 10.22 79.59 76.62
Merged Attention 384× 384 19.31 79.15 76.66
Compound Tokens 384× 384 19.87 80.44 79.02

B.2 TYPE OF IMAGE ENCODER

The image encoder is an important component in vision-language models. While earlier models
used object detectors such as Faster-RCNN, more recent models use either a CNN (Lecun et al.,
1998) or a Vision Transformer (ViT) (Vaswani et al., 2017) for image feature extraction. We used
ResNet-50 for our main experiments and investigate the impact of using a transformer as the image
encoder in this ablation. The results of using using a ViT as the image encoder is shown in Table 9.
All models in that experiment use 224 × 224 as the image resolution. A patch size of 16 × 16 was
used for the ViT based models. The ViT based models perform slightly less than the comparable
ResNet based models. As is the case with using ResNet-50, Compound Tokens fusion remains
superior to merged attention here as well.
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Table 8: Impact of Image Resolution with Vision-Language Pretraining: The results here our
implementations of the various methods. Params shows the number of parameters in the entire
model (not just the fusion module). L is the number of self-attention blocks overall in the multi-
modal encoder. RES is the image resolution during finetuning: we pretrain all models at resolution
224× 224. Increasing resolution generally leads to better performance on both datasets. Compound
Tokens outperform all other fusion methods across the two resolutions.

Fusion Method L Params (×106) RES GFlops SNLI-VE GQA

Merged Attention 12 332.94 224× 224 16.95 81.01 77.06
Co-Attention 12 361.26 224× 224 14.63 79.89 75.06
Co-Tokenization 12 391.27 224× 224 28.84 81.52 77.60
Compound Tokens 10 337.67 224× 224 16.55 80.44 77.55
Compound Tokens 12 339.97 224× 224 17.23 81.75 79.92
Merged Attention 12 332.94 384× 384 34.89 81.78 78.13
Co-Attention 12 361.26 384× 384 29.61 80.50 75.92
Compound Tokens 10 337.67. 384× 384 33.95 79.93 78.73
Compound Tokens 12 339.97 384× 384 35.50 82.47 79.55

Table 9: Impact of Image Encoder: Both the ViT-base and ResNet-50 are pretrained on ImageNet
but we do not use any additional image-language pretraining. All models are trained for 300k
iterations. Compound Tokens obtains a higher accuracy than merged attention across all image
encoders.

Image Encoder Fusion Method SNLI-VE GQA

ViT-base Merged Attention 77.44 74.02
Compound Tokens 78.59 74.74

ResNet-50 Merged Attention 78.70 75.62
Compound Tokens 79.59 76.62

C ENCODER-DECODER VQA MODEL

We observed a generally low performance on VQA in our encoder-decoder model across all fusion
mechanisms. We believe this is the case because our decoder is unable to generalize well to the VQA
vocabulary due to our limited pretraining dataset. Besides the low performance, we also noticed that
this dataset is very sensitive to hyper-parameter changes such as learning rate and dropout in our
models. Faced with these challenges, we removed VQA from our ablations as indicated in the main
text and show the results in this section for completeness.

Table 10: Encoder-Decoder VQA Accuracy: The VQA results in our encoder-decoder setup are
generally low for all fusion methods and very sensitive to learning rate and dropout changes.

Setup Merged Attention Co-Attention Co-Tokenization Compound Tokens

Scratch 55.20 52.43 51.94 54.43

Pretrained 47.92 45.04 53.29 55.83
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