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ABSTRACT

Label collection is costly in many applications, which poses the need for label-
efficient learning. In this work, we present Diverse and Consistent Multi-view
Networks (DiCoM) – a novel semi-supervised regression technique based on a
multi-view learning framework. DiCoM combines diversity with consistency –
two seemingly opposing yet complementary principles of multi-view learning -
based on underlying probabilistic graphical assumptions. Given multiple deep
views of the same input, DiCoM encourages a negative correlation among the
views’ predictions on labeled data, while simultaneously enforces their agreement
on unlabeled data. DiCoM can utilize either multi-network or multi-branch ar-
chitectures to make a trade-off between computational cost and modeling perfor-
mance. Under realistic evaluation setups, DiCoM outperforms competing meth-
ods on tabular and image data. Our ablation studies confirm the importance of
having both consistency and diversity.

1 INTRODUCTION

Deep neural networks have achieved tremendous success across several domains, ranging from com-
puter vision, natural language processing, to audio analysis (LeCun et al., 2015). However, to train
neural networks that perform well typically requires a large amount of labeled data. In many cases,
this requirement for a large labeled dataset presents a challenge, because the annotation process can
be labour-intensive and thus expensive, especially when specialized expertise is required. To address
this challenge, semi-supervised learning methods (Van Engelen & Hoos, 2020) that can achieve sim-
ilarly high performance with less labeled data by using unlabeled data have been developed.

We focus on semi-supervised learning in the regression setting. There are several approaches for
semi-supervised regression, including graph-based methods (Zhur & Ghahramanirh, 2002), co-
training (Blum & Mitchell, 1998) and entropy minimization (Jean et al., 2018). Consistency-based
approaches that have been popular in the classification setting, such as Mean Teacher (Tarvainen
& Valpola, 2017) and Virtual Adversarial Training (Miyato et al., 2018), which reinforce the out-
put consistency of the network under input perturbations, have also been adapted to the regression
setting (Jean et al., 2018). However, enforcing consistency alone may not be sufficient for good
performance, and may lead to model collapsing (Qiao et al., 2018) or confirmation bias issues (Ke
et al., 2019).

To address these issues, we draw inspiration from ensemble learning with neural networks for re-
gression. A necessary and sufficient condition for an ensemble of learners to be more accurate than
any of its individual members is if the base learners are accurate and diverse (Dietterich, 2000).
Therefore, the key component that can make or break an ensemble is the diversity (or disagreement)
among its individual regressors. If this diversity is insufficient, the ensembling may not result in
better performance. On the other hand, overemphasizing diversity can degrade the learnability of
the ensemble members. So far, the most successful mechanism to leverage ensemble diversity in
regression is Negative Correlation Learning (Liu & Yao, 1999; Zhang et al., 2019).

In this work, we propose Diverse and Consistent Multi-view Networks for Semi-supervised Regres-
sion (DiCoM) that elegantly unifies consistency and diversity in a multi-view learning framework.
Based on probabilistic graphical assumptions, we derive a loss function that integrates both con-
sistency and diversity components – diversity is encouraged on labeled data, while consistency is
enforced on unlabeled data. Furthermore, we develop two variants of DiCoM: the first uses multiple
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networks to achieve better performance, while the second employs a single network with multiple
branches to help with scalability. We compare DiCoM against state-of-the-art methods on eight
tabular datasets and a crowd-counting dataset, where we show that DiCoM outperforms existing
methods. We further perform ablation studies to analyze the importance of diversity and consis-
tency, and the effect of varying the number of views in the model.

While other works have leveraged related ideas of complementary and consensus in multi-view
classification (Xu et al., 2013); or explored commonality and individuality in multi-modal curricu-
lum learning (Gong, 2017), these methods were developed for classification or clustering tasks, and
cannot be easily modified to suit semi-supervised regression.

In summary, the major contributions of this work are as follows:

• We derive a novel objective function from a probabilistic graphical perspective. Our objec-
tive function unifies multi-view diversity and consistency and provides theoretical insights
into the relationship between diversity-consistency trade-off and the number of views.

• We show the high flexibility of DiCoM, which can be adaptively scaled up to larger number
of views while maintaining competitive performance.

• We demonstrate the performance of DiCoM on both tabular and visual types of input data,
where it outperforms competing methods. Our ablation studies validate the importance of
having both diversity and consistency.

2 RELATED WORK

Semi-supervised Regression: Semi-supervised learning is a data-efficient learning paradigm that
offers the ability to learn from unlabeled data. In recent years, much work has focused on semi-
supervised classification, and there have been far fewer studies on semi-supervised regression. For
regression tasks, graph-based methods are among the first to be developed. One example is Label
Propagation (LP) (Zhur & Ghahramanirh, 2002) which defines a graph of training data and prop-
agates ground-truth labels through high density regions of the graph. Kernel methods have also
been proposed, such as Semi-supervised Deep Kernel Learning (SSDKL) (Jean et al., 2018). This
method minimizes the predictive variance in a posterior regularization framework to learn a more
generalizable feature embedding on unlabeled data. Co-training regressors (COREG) (Zhou & Li,
2005) employs k-Nearest neighbor regressors, each of which generate pseudo-labels for the other
during training; this helps to maximize their agreement on unlabeled data.

Apart from the aforementioned approaches, consistency-based methods are also gaining traction.
Mean Teacher (MT) (Tarvainen & Valpola, 2017) enforces posterior consistency between two neural
networks, a student and a teacher, the latter being an exponential moving average of the former in
the parameter space. An orthogonal approach is to enforce consistency on adversarially augmented
input, as implemented in Virtual Adversarial Training (VAT) (Miyato et al., 2018). These methods
were originally developed for classification, and were subsequently adapted to regression tasks (Jean
et al., 2018). However, both MT and VAT maintain only a single trainable network, which may lead
to problems such as confirmation bias (Ke et al., 2019) and overly-sensitive hyperparameters. In this
paper, we show that consistency-based methods can be further improved with ensemble diversity.

Ensemble Diversity: Ensembles of neural networks have been extensively studied and widely used
in many applications. Their effectiveness largely depends on the level of diversity (or disagreement)
among members of the ensemble. It is well-understood that a good ensemble must manage the trade-
off between the accuracy of the individual learners and the diversity among them (Brown et al., 2005;
Tang et al., 2006). For regression tasks, a commonly-used ensemble technique is Negative Correla-
tion Learning (NCL) (Liu & Yao, 1999; Liu et al., 2000), which formulates a diversity-promoting
loss using an ambiguity decomposition of the squared ensemble loss (Krogh et al., 1995). In this for-
mulation, a correlation penalty term (also refered to as an ambiguity term) measures how much each
member’s prediction deviates from the ensemble output. When this penalty term is maximized, the
errors of individual learners become negatively correlated. It was theoretically proven (Brown et al.,
2005) that the strategy employed by NCL is equivalent to leveraging a bias-variance-covariance
trade-off (Ueda & Nakano, 1996) of the ensemble error.
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Recently, NCL has been extended to semi-supervised learning (Chen et al., 2018), where the cor-
relation penalty term is extended to the unlabeled data. However, this method was demonstrated
only on tabular data. Another variant of NCL is Deep Negative Correlation Learning (DNCL) (Shi
et al., 2018; Zhang et al., 2019), which is designed for visual regression tasks in a purely supervised
learning setting.

Multi-view Learning: A dataset is considered as having multiple views when its data samples are
represented by more than one feature set, each of which is sufficient for the learning task. Although
each view is supposed to be sufficient for learning the task, a model trained on only one single
view often faces the risk of overfitting, especially when labeled data is limited (Xu et al., 2013).
To address this problem, multi-view learning assigns a modeling function to each view and jointly
optimize these functions to improve overall generalization performance (Zhao et al., 2017). By ana-
lyzing the development of various techniques, Xu et al. (Xu et al., 2013) summarized two significant
principles that underpin multi-view learning: consensus and complementary. The consensus prin-
ciple states that a multi-view technique must aim at maximizing the agreement on different views.
This is similar to how consistency-based semi-supervised learning methods works: for instance, MT
enforces agreement with its past self. The complementary principle states that in order to make
improvement, each view must contain some information that the other views do not carry. In other
words, the views should be sufficiently diverse. This is related to diversity regularization in ensem-
ble learning, where individual learners are encouraged to give diverse predictions. Thus, multi-view
learning offers a unifying perspective of both consistency and diversity.

3 PROPOSED METHOD

We start by describing how multiple deep views can be generated from input data. Then, we pro-
pose our multi-view learning framework for regression, in which multiple deep views can be si-
multaneously optimized via backpropagation. We then discuss the graphical models that govern the
probabilistic dependencies among the ground-truth label and the deep views. Finally, we derive the
DiCoM loss function using these graphical models and provide a few insights.

View creation: Consider a regression task where the goal is to estimate a label y ∈ R from an in-
put x. To create multiple views, our first approach is to use M neural networks F1,F2, . . . ,FM ,
each parameterized by θ1, θ2, . . . , θM , respectively. By applying different data augmentations
η1, η2, . . . , ηM on the original x, we generate M different augmented inputs xm = ηm(x) ∀m=
1, . . . ,M . With each augmented input, the corresponding neural network produces a regression
output fm(x) = Fm(xm, θm) ∀ m = 1, . . . ,M . Due to the different augmentations and network
parameters, each output fm can be treated as one deep view of the original input x. We call this
multi-network setup DiCoM-N, where the N stands for ‘network’ (see Fig. 1 (a)).

The second approach is to utilize a single network with a shared backbone B and multiple
branches F1,F2, . . . ,FM . We use θB to denote the learnable parameters from the backbone and
θ1, θ2, . . . , θM to denote the parameters of the branches. The hidden features generated by the back-
bone serve as input to the branches. While the backbone still applies a random augmentation to the
input x, each branch Fm applies its own random augmentation ηm as well. Thus, regression outputs
f1, f2, . . . , fM from the branches can be considered as deep views of the original input. We name
this setup DiCoM-B, where the B is short for ‘branch’ (see Fig. 1 (b)). Multi-branch technique was
widely adopted for supervised classification (Xie et al., 2017). In this work, it allows us to harness
the power of multi-view learning with a relatively lower number of trainable parameters.

Multi-view learning framework for regression: Regardless of how they are generated, the deep
views are used together with the true label y to compute a semi-supervised loss function LDiCoM.
During training phase, LDiCoM is back-propagated simultaneously through the deep views to opti-
mize network parameters θ1, θ2, . . . , θM (including θB in the case of DiCoM-B). During inference,
all augmentations are removed so that the forward pass is applied on the raw input x. The final
prediction is computed as the average of all deep views: µ(x) =

∑M
i=1

1
M fm(x). The general Di-

CoM framework is illustrated in Fig. 1. In the next step, we derive LDiCoM based on a probabilistic
graphical assumption.

Probabilistic graphical models: Since the augmented inputs are generated from the same sample,
the deep views should be close to each other. Motivated by previous work in kernel learning (Yu
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Figure 1: The DiCoM framework with two variants: (a) DiCoM-N (multi-network) and (b) DiCoM-
B (multi-branch). Solid black arrows denote input/output; double black arrows denote augmenta-
tions; solid blue and dotted red arrows represent forward and backward passes, respectively.

et al., 2011) and linear regression (Nguyen et al., 2019), we consider f1, f2, . . . , fM as random
variables and introduce a consensus function fc as a latent variable that connects to each of the deep
views. This function enforces the mutual agreement among the views. We assume that the difference
between the consensus function and each view follows a zero-mean Gaussian distribution

fc − fm ∝ N
(
0, σ2

m

)
∀m = 1, . . . ,M. (1)

Figure 2: Undirected probabilistic graphical models of DiCoM: (a) for an unlabeled sample, (b)
after marginalization of the views and (c) for a labeled sample.

This probabilistic relation is known as the consensus potential (Yu et al., 2011). Considering the
whole graph, this potential implies that all views are random Gaussian variables with a shared mean
fc and variance σ2

m. As a result, the views stay consistent w.r.t. each other by taking values not too
far away from the shared consensus. This graphical model, shown in Fig. 3 (a), is assumed for each
unlabeled sample. The joint density associated with the graph is given by

p (fc, f1, . . . , fM ) =
1

Z

M∏
m=1

Ψ(fc, fm) (2)

where Z is a normalizing constant and Ψ(fc, fm) = exp
[
− (fc−fm)2

2σ2
m

]
is the potential function of

the edge connecting fc and fm. From this model, we derive two important results. On a side note,
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our derivation generalizes to vector-valued labels y, but here we assume scalar labels for ease of
exposition. The proofs of our results are provided in Appendix A.

(I) Marginalization of the views: By integrating the latent consensus function fc out of the joint
density, the marginal distribution of the views is

p (f1, . . . , fM ) ∝ exp

[
M∑
m=1

∑
k>m

−λm,k (fm − fk)2
]

(3)

where λm,k =
[
2σ2

mσ
2
k

(∑
m

1
σ2
m

)]−1
. This result implies that the marginal likelihood can be fac-

torized as a product of
(
M
2

)
terms. Each term is an isotropic Gaussian distribution on the difference

between a pair of views (fm, fk), with zero mean and variance (2λm,k)
−1. The equivalent graphical

model is shown in Fig. 3(b).

(II) Conditional of the consensus function: By applying Bayes’ theorem, the conditional distribu-
tion of the consensus function fc given all the views is a Gaussian

fc|f1, . . . , fM ∼ N
(
µ̃, σ2

µ

)
. (4)

where σ2
µ =

(∑
m

1
σ2
m

)−1
and µ̃ = σ2

µ

∑
m

fm
σ2
m

. This result highlights that the conditional distri-
bution of fc depends only on the weighted average µ̃, and the values of individual views are not
required. Furthermore, µ̃ can be treated as a view itself, with a variance that is smaller than any of
the variances of the views.

Derivation of DiCoM loss function: For simplicity, we assume equal variance for different deep
views, i.e., σ2

m = σ2
v ∀m. For an unlabeled sample (xn), we directly apply the first result (I) to

obtain the following negative log likelihood function

Lunl =

M∑
m=1

∑
k>m

1

2Mσ2
v

[fm(xn)− fk(xn)]2 (5)

For a labeled sample (xn, yn), since the ground-truth is given, we assume a graphical model that
involves the final DiCoM prediction, i.e., the averaged output µ. This graph is shown in Fig. 3(c).
Since we assume a shared variance σ2

v, the weighted output now reduces to an equal-weight average,
following from result (II)

µ̃(xn) =

M∑
m=1

fm(xn)

M
= µ(xn) σ2

µ =
σ2
v

M
(6)

Subsequently, we apply result (I) on this graph to get the negative log likelihood as follows

Llab =
M

2Mσ2
y + 2σ2

v

[yn − µ(xn)]2 (7)

=
1

2Mσ2
y + 2σ2

v

M∑
m=1

{
[fm(xn)− yn]2 − [fm(xn)− µ(xn)]2

}
(8)

≈ 1

2σ2
v

M∑
m=1

{
[fm(xn)− yn]2 − [fm(xn)− µ(xn)]2

}
(9)

where in equation (8), we have applied the ambiguity decomposition (Krogh et al., 1995) and in
equation (9), we have assumed that the label is accurate, i.e., σ2

y � σ2
v.

Given a training batch of labeled samples {(xn, yn)}Ln=1 and unlabeled samples {(xn)}Un=1, assum-
ing that the samples are independently generated, we can add the log-likelihood functions across all
training samples. This can be done via simply adding up two equations (5) and (9)

LDiCoM =
1

L

L∑
n=1

M∑
m=1

{
[fm(xn)− yn]2 − κdiv [fm(xn)− µ(xn)]2

}
+

1

U

U∑
n=1

M∑
m=1

∑
k>m

κcsc [fm(xn)− fk(xn)]2
(10)
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where we introduce two hyperparameters κdiv and κcsc to absorb other constants and to enable a
trade-off between diversity and consistency components of the loss.

The DiCoM loss encourages diversity on labeled data, while enforcing consistency on unlabeled
data. These two seemingly opposing components can both be derived from the same underlying
graphical assumptions. Furthermore, they should not be weighted equally. In fact, we have shown
that it depends on the number of views: when M increases, diversity grows in O(M), while con-
sistency grows in O(M2). It is worth noting that our method is fundamentally different from other
extensions of NCL such as Semi-supervised NCL (Jean et al., 2018), which enforces diversity on
both labeled and unlabeled data. Last but not least, since both diversity and consistency are incorpo-
rated in the DiCoM objective function, the method is highly adaptable to different implementations
such as multi-network or multi-branch, as long as the views are provided.

4 EXPERIMENTS

In this section, we study the proposed method in different settings, including regression tasks on
eight tabular datasets and a crowd counting task on image data. We provide additional experiment
results in Appendix C and an additional experiment on toy data in Appendix D.

4.1 EXPERIMENTS ON UCI TABULAR DATA

Datasets: We evaluate DiCoM on eight datasets from the UCI repository (Dua & Graff, 2017)1:
skillcraft, parkinsons, elevators, protein, blog, ctslice, buzz, and electric. These datasets are collected
from real-world regression scenarios, with varying sample sizes and input dimensions. For each
dataset, we keep 1000 labeled samples as a hold-out test set; further retain N = 300 samples for the
labeled training set, and keep the rest as the unlabeled training set. We follow the realistic evaluation
setup in (Oliver et al., 2018) and use a 90%-10% train-validation split, i.e., 270 samples are used for
training, leaving only 30 for validation.

Experiment Setup: We implement both variants of DiCoM. Our DiCoM-N networks adopt the
same architecture as (Jean et al., 2018; Wilson et al., 2016), which is a fully-connected multilayer
perceptron with four hidden layers, containing 100, 50, 50 and 2 hidden nodes, respectively. Our
DiCoM-B also utilizes this architecture, but branch out after the third hidden layer, i.e., the backbone
contains hidden layers of 100, 50 and 50 nodes, while the branches each contains one hidden layers
of 2 nodes. This model is trained end-to-end, the backbone is trained together with the branches.
DiCoM hyperparameters (κdiv, κcsc) are chosen from a grid of values based on validation errors.
Across 10 random seeds, we report the root-mean-squared errors (RMSE) statistics on the test set.
For simplicity, we append ‘-M ’ to the end of our method name to denote the number of views, e.g.,
DiCoM-B-4 represents the multi-branch DiCoM network with 4 branches.

Data Augmentation: we apply zero-mean Gaussian noise which is commonly used for tabular data.
For the DiCoM-B model, Gaussian noise is applied on the input and on the features at the beginning
of each branch, right after branching out. Since the independent Gaussian noise is added during the
forward pass, it does not affect the gradient values during backpropagation. The exact amount of
Gaussian noise can be found in Appendix B.

We compare DiCoM against six semi-supervised regression methods: SSDKL (Jean et al., 2018),
COREG (Zhou & Li, 2005), LP (Zhur & Ghahramanirh, 2002), VAE (Jean et al., 2018), MT (Tar-
vainen & Valpola, 2017) and VAT (Miyato et al., 2018). These methods span a wide range of
approaches such as consistency regularization (MT, VAT), entropy minimization (SSDKL), multi-
view learning (COREG), graph-based (LP), or generative modeling (VAE). The detailed information
about the datasets and experiment setup can be found in Appendix B.

Results: Fig. 3 shows the experiment results. We observe significant improvements compared
to the state-of-the-art semi-supervised regression methods. The largest performance gains are
achieved on parkinsons and ctslice, where DiCoM-N-2 improves upon the best competing method
by 32.4% and 42.5%, respectively. DiCoM-N-2 also outperforms DiCoM-B-2 on all datasets, ex-
cept for protein. This is expected since DiCoM-N-2 has almost twice as many learnable param-
eters as DiCoM-B-2. For elevators, the most frequently selected hyperparameters across 10 ran-

1https://archive.ics.uci.edu/ml/index.php
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dom seeds are (κdiv, κcsc) = (1, 0.01), while for ctslice, the most frequently selected values are
(κdiv, κcsc) = (0.1, 1). This shows that different datasets require different trade-offs between con-
sistency and diversity. We also notice that LP (a graph-based method) and COREG (a nearest-
neighbors-based method) performs relatively well on blog, ctslice and buzz. Meanwhile, MT and
VAT, which are based on consistency regularization (without diversity regularization), did not per-
form well on these regression datasets, even though they have been shown to be effective on classi-
fication tasks.
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Figure 3: Test RMSE on UCI datasets: each subplot shows the results for one dataset.

Ablation study on the components: We analyse the effect of different components of the DiCoM-
N-2 model by individually removing them from the model. For the first model, Ablation-1, we
remove data augmentation. In Ablation-2, we remove the diversity loss on the unlabeled data. Next,
the consistency loss on labeled data is set to zero for Ablation-3 model. Lastly, we apply diversity
loss to both labeled and unlabeled training data for model Ablation-4. Using the results of DiCoM-
N-2 as the baseline, we also report the percentage reduction in test RMSE (% Redc.) for the other
methods as follows:

Percentage Reduction =
(baseline score− new score)× 100

baseline score
(11)

Table 1 reports the ablation results. The average percentage reduction scores tell us the importance
of each component. Augmentation has a small impact on the performance of DiCoM-N-2, while
diversity and consistency regularization are both important. DiCoM-N-2 outperforms Ablation-4 in
all cases, which suggests that a mere reliance on diversity is insufficient.

Table 1: Test RMSE from Ablation Study on UCI Datasets.
DiCoM-N-2 Ablation-1 Ablation-2 Ablation-3 Ablation-4

Aug. X X X X
Lab. Div. X X X X
Unlab. Csc. X X X
Unlab. Div. X

RMSE RMSE % Redc. RMSE % Redc. RMSE % Redc. RMSE % Redc.

skillcraft 0.313 ± 0.005 0.330 ± 0.017 -5.559 0.327 ± 0.008 -4.610 0.333 ± 0.012 -6.446 0.330 ± 0.011 -5.326
parkinsons 2.285 ± 0.208 2.437 ± 0.280 -6.666 2.390 ± 0.278 -4.593 2.563 ± 0.299 -12.159 2.438 ± 0.286 -6.692
elevators 0.145 ± 0.025 0.142 ± 0.031 2.082 0.149 ± 0.022 -2.328 0.155 ± 0.027 -6.225 0.157 ± 0.028 -7.936
protein 0.646 ± 0.031 0.679 ± 0.029 -5.153 0.654 ± 0.025 -1.313 0.669 ± 0.034 -3.546 0.661 ± 0.030 -2.327
blog 0.930 ± 0.040 1.014 ± 0.039 -8.998 1.021 ± 0.051 -9.752 1.027 ± 0.036 -10.455 1.007 ± 0.045 -8.261
ctslice 5.575 ± 0.606 6.976 ± 0.984 -25.120 7.154 ± 1.176 -28.306 7.461 ± 1.014 -33.813 7.398 ± 0.662 -32.699
buzz 0.715 ± 0.136 0.757 ± 0.064 -5.825 0.938 ± 0.489 -31.184 0.830 ± 0.131 -16.045 1.038 ± 0.550 -45.085
electric 0.114 ± 0.025 0.097 ± 0.026 14.658 0.153 ± 0.124 -33.833 0.107 ± 0.011 6.327 0.150 ± 0.117 -31.543

Average -5.073 -14.490 -10.295 -17.484

Varying the number of views: We further evaluate the impact of the number of views M . Fig. 4
shows the performance of three DiCoM-N models with increasing number of views M ∈ {2, 4, 8}.
The results show that a larger value of M leads to an improvement in the performance. When M
increases from 4 to 8, the average reduction in test RMSE is 3.48%, larger than the average reduction
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rate of 1.70% when M increases from 2 to 4. While varying the number of views, we also monitor
the changes in the model hyperparameters. Using the values that were selected to minimize the
validation error of DiCoM-N, Table 2 shows the log ratio of log10(κdiv/κcsc). For most datasets,
we see that this log ratio tends to increase for larger number of views. This is because in LDiCoM, the
number of diversity terms grows in O(M) while the number of consistency terms grows in O(M2).
Thus, as M increases, a larger (κdiv/κcsc) ratio is required to keep those terms balanced.
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Figure 4: Test RMSE of DiCoM-N on UCI datasets with varying number of views M ∈ {2, 4, 8}.
The x-axis shows number of views M , the y-axis shows test RMSE.

Table 2: Median Values of log10(κdiv/κcsc) across 10 Seeds from DiCoM-N.
skillcraft parkinsons elevators protein blog ctslice buzz electric

M = 2 1.849 −0.151 1.151 0.500 1.000 −1.000 0.151 1.849
M = 4 2.000 −0.301 1.151 0.301 1.151 0.199 0.349 2.000
M = 8 1.699 −0.500 1.500 1.151 1.849 0.349 0.500 2.000

Comparing multi-network and multi-branch: In this experiment, we compare the two variants
of DiCoM against each other, by reporting both their performance and execution time (adding train
and test time). Table 3 shows the percentage reduction computed using equation (11) by treating
DiCoM-N’s results as the baseline scores and DiCoM-B’s corresponding results as the new scores.
It can be seen that DiCoM-N is consistently outperforming DiCoM-B in terms of test RMSE. The
multi-network variant is also the faster option when M = 2. However, as the number of views
increases, the execution time of DiCoM-B is significantly faster. This shows that while DiCoM-N
achieves better test performance, DiCoM-B demonstrates better scalability.

Table 3: From DiCoM-N to DiCoM-B: Percentage Reduction in Test RMSE and Execution Time.

Dataset Test RMSE Execution Time
M = 2 M = 4 M = 8 M = 2 M = 4 M = 8

skillcraft -0.702 2.012 -2.945 -33.336 23.505 48.462
parkinsons -43.903 -24.177 -57.821 36.845 55.590 72.481
elevators -0.436 -13.126 -21.811 -52.633 19.389 60.346
protein 2.798 -0.536 -0.520 -45.076 19.876 62.177
blog -0.430 -6.908 -18.729 -39.355 39.847 47.129
ctslice -54.862 -34.924 -73.619 45.016 81.627 83.731
buzz -15.885 -4.984 -17.976 4.194 33.759 51.035

Average -16.203 -11.806 -27.632 -12.049 39.085 60.766

4.2 EXPERIMENTS ON VISION DATA

In order to show the versatility of DiCoM, we further conduct experiments on a crowd counting task.
Crowd counting is a fundamental question in the vision community due to its far-reaching applica-
tions in many scenarios, including video surveillance, metropolis security, human behavior analysis.
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Crowd counting has been recently used as a benchmark for deep regression algorithms (Zhang et al.,
2019); for this task, counting by regression has been perceived as the state-of-the-art approach.

Dataset: We study the ShanghaiTech Part-A dataset (Zhang et al., 2016)2. This is a new large-
scale crowd counting dataset that contains extremely congested scenes, with varying perspective and
unfixed resolution. The data are split into 300 training and 182 test samples. Among the 300 training
samples, we randomly select N ∈ {30, 120, 210} samples as the labeled set and use the remaining
data as the unlabeled set. We follow the common practice to report both mean absolute errors (MAE)
and root-mean-squared errors (RMSE) on the test set. We note that this dataset inevitably contains
personally identifiable information, which has been made public by the owner of the dataset.

Experiment Setup: In our experiments, we adopt the network architecture of CSRNet B (Li et al.,
2018) and implement DiCoM-B-4. More specifically, we use a pre-trained VGG16 network as the
encoder and append another decoder on top of it. In the penultimate layer of the decoder, we enlarge
the number of hidden channels by M times. We then apply a group-convolutional layer as the
last layer, setting both the number of output channels and group size to M . Thus, the backbone
of DiCoM-B-4 includes the pre-trained VGG16 and the decoder up to its penultimate layer. This
architecture has been shown to be very effective in generating multiple predictions without much
increase in computational cost over a single network (Shi et al., 2018; Zhang et al., 2019; Zhou
et al., 2021).

We compare DiCoM with the following competing methods: (i) the supervised baseline which uses
only the labeled training samples and standard MSE loss; (ii) the DNCL model (Zhang et al., 2019);
and (iii) the Co-Regression model. Since we are not running for multiple random seeds, we remove
all random data augmentations (e.g., cropping, flipping) to enable fair comparison between different
methods.

Results: From the results in Table 4, we observe that both DNCL and Co-Regression outperform
the supervised baseline by enforcing either diversity on labeled data or consistency on unlabeled
data, and that overall, DiCoM-B-4 outperforms other methods by incorporating both diversity and
consistency on the unlabeled data.

Table 4: Test Results on ShanghaiTech.
Supervised Baseline DNCL Co-Regression DiCoM-B-4
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

N = 30 297.45 551.68 250.91 360.66 224.63 344.46 163.41 227.42
N = 120 132.05 210.82 119.48 186.80 128.57 206.90 114.31 181.91
N = 210 107.76 165.91 104.00 165.97 103.20 165.04 101.90 155.49

5 CONCLUSION

In this paper, we proposed novel Diverse and Consistent Multi-view Networks for Semi-supervised
Regression (DiCoM), that elegantly combines ensemble diversity with consistency regularization.
DiCoM utilizes probabilistic graphical models to control the underlying dependencies among mul-
tiple regression outputs and label. We also show that DiCoM is highly flexible, it can be adopted
for multi-network or multi-branch implementations, the latter significantly improves the scalability
of the method. Experiments on tabular UCI and visual ShanghaiTech datasets demonstrated the
effectiveness of the proposed method across diverse domains, while ablation studies validated the
importance of both consistency and diversity. In the future, one may extend the DiCoM frame-
work by introducing asymmetric views (of non-identical architectures), which naturally causes the
final output µ to be an unequally-weighted average. Another interesting direction is to explore the
potential impact of data augmentation techniques, since multi-view learning often benefits from
diversified inputs.

2https://github.com/desenzhou/ShanghaiTechDataset (BSD 2-clause license)
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A MATHEMATICAL PROOFS

Consider again the general model, where there are M deep views, i.e., {fm}Mm=1. Graphically,
these functions are represented by nodes that are connected not directly, but only via the consensus
function fc using isotropic Gaussian potentials

fc − fm ∝ N
(
0, σ2

mI
)
. (12)

We note that in this general case, each deep view is a vector (instead of a scalar) and is assigned a
separate variance σ2

m, which are not necessarily equal to each other. In terms of notation, we use
italic letters for scalar variables and boldface letters for vectors and matrices.

A.1 MARGINAL DENSITY OF THE VIEWS

In this proof, we derive the marginal distribution of the views. Given the DiCoM graphical model,
it is necessary to integrate fc out of the joint density distribution of the graph, because fc is a latent
variable. The joint density distribution function of this graphical model is as follows

p (fc, f1, . . . , fM ) =
1

Z1

M∏
m=1

exp

(
−‖fc − fm‖2

2σ2
m

)
(13)

=
1

Z1
exp

(
−
∑
m

f>c fc
2σ2

m

+
∑
m

f>c fm
σ2
m

−
∑
m

f>mfm
2σ2

m

)
(14)

=
1

Z1
exp

(
−ψ
2

f>c fc + φ>fc + χ

)
, (15)

where the normalizing factor Z1 is a constant w.r.t. fc, f1, . . . , fM and

ψ =

M∑
m=1

1

σ2
m

φ =

M∑
m=1

fm
σ2
m

χ =

M∑
m=1

− f>mfm
2σ2

m

. (16)

Notice that ψ,φ, χ are constants w.r.t. fc. By applying the following integration rule for a multivari-
ate Gaussian variable x Petersen et al. (2008)∫

exp

(
−1

2
x>Ax + c>x

)
dx =

√
det (2πA−1) exp

(
1

2
c>A−>c

)
, (17)

we can integrate fc out of the joint distribution in (15) to obtain the following marginal likelihood

p (f1, . . . , fM ) =

∫
p (fc, f1, . . . , fM ) dfc (18)

=
1

Z2
exp

(
φ>φ

2ψ
+ χ

)
(19)

=
1

Z2
exp

[
1

2ψ

(∑
m

f>mfm
σ4
m

+ 2
∑
m

∑
k>m

f>mfk
σ2
mσ

2
k

− ψ
∑
m

f>mfm
σ2
m

)]
(20)

=
1

Z2
exp

[
1

2ψ

(∑
m

∑
k>m

− f>mfm − 2f>mfk + f>k fk
σ2
mσ

2
k

)]
(21)

=
1

Z2
exp

(∑
m

∑
k>m

−‖fm − fk‖2

2ρ2m,k

)
(22)

=
1

Z2
exp

(∑
m

∑
k>m

−λm,k‖fm − fk‖2
)
, (23)
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where Z2 is another constant w.r.t. fc, f1, . . . , fM , and

ρm,k = σ2
mσ

2
kψ = σ2

mσ
2
k

(
M∑
i=1

1

σ2
i

)
(24)

λm,k = (2ρm,k)
−1

=

[
2σ2

mσ
2
k

(
M∑
i=1

1

σ2
i

)]−1
. (25)

A.2 CONDITIONAL DENSITY OF THE CONSENSUS FUNCTION

In this proof, we derive the conditional density distribution of the consensus function fc given the
views. Consider again the general model withM views, i.e., {fm}Mm=1. Each view is represented by
a random variable connected only to the consensus function fc via an isotropic Gaussian potential
as defined in (12). From (13), (22), the conditional distribution of fc given the views f1, . . . , fM is

p (fc|f1, . . . , fM ) =
p (fc, f1, . . . fM )

p (f1, . . . , fM )
(26)

=
1

Z3
exp

(
M∑
m=1

−‖fc − fm‖2

2σ2
m

+

M∑
m=1

M∑
k>m

‖fm − fk‖2

2ρ2m,k

)
(27)

=
1

Z3
exp

(∑
m

−f>c fc + 2f>mfc − f>mfm
2σ2

m

+
∑
m

∑
k>m

‖fm − fk‖2

2ρ2m,k

)
(28)

=
1

Z3
exp

(
−f>c fc
2σ2

µ

+
µ̃>fc
σ2
µ

+ ℵ
)
, (29)

where the normalizing factor Z3 is a constant w.r.t. fc, f1, . . . , fM and

σ2
µ =

(
M∑
m=1

1

σ2
m

)−1
(30)

µ̃ = σ2
µ

M∑
m=1

fm
σ2
m

(31)

ℵ =

M∑
m=1

−f>mfm
2σ2

m

+

M∑
m=1

M∑
k>m

‖fm − fk‖2

2ρ2m,k
. (32)

Using the definitions (24), (30) and (31), ℵ can be rewritten as follows

ℵ = σ2
µ

(∑
m

−f>mfm
2σ2

mσ
2
µ

+
∑
m

∑
k>m

‖fm − fk‖2

2σ2
mσ

2
k

)
(33)

= σ2
µ

[(∑
m

−f>mfm
2σ2

m

)(∑
k

1

σ2
k

)
+
∑
m

∑
k>m

‖fm − fk‖2

2σ2
mσ

2
k

]
(34)

= σ2
µ

∑
m

∑
k

−f>mfm
2σ2

mσ
2
k

+
∑
m

∑
k 6=m

f>mfm
2σ2

mσ
2
k

+
∑
m

∑
k>m
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k

 (35)

= σ2
µ
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m
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∑
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)
(36)

= −
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µ
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σ2
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m

fm
σ2
m

)
(37)

=
−µ̃>µ̃
2σ2

µ

. (38)
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Thus, we can rewrite (29) in its Gaussian form

p (fc|f1, . . . , fM ) =
1

Z3
exp

(
−f>c fc
2σ2

µ

+
µ̃>fc
σ2
µ

− µ̃>µ̃

2σ2
µ

)
=

1

Z3
exp

(
−‖fc − µ̃‖2

2σ2
µ

)
. (39)

Therefore,
fc|f1, . . . , fM ∼ N

(
µ̃, σ2

µI
)
. (40)
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B EXPERIMENT SETUP DETAILS

In this section, we provide the detailed setups for our benchmarking experiments. All experiments
are run on NVIDIA GeForce GTX 1080Ti GPUs, using an Anaconda virtual environment installed
with CUDA version 10.1, Python version 3.7.10 and Pytorch version 1.7.0.

Experiment setup for DiCoM in UCI experiments:

• Network architecture: for DiCoM-N, fully-connected multilayer perceptron with hidden
layers of size [100, 50, 50, 2]. For DiCoM-B, the backbone includes the first 3 hidden layers
of size [100, 50, 50] and the branches include one hidden layer of size 2. Note that we are
not counting the input and output layers.

• Parallelization: for DiCoM-B, we use group convolution in order to back-propagate
through all branches simultaneously.

• Random seeds: 20, 40, . . . , 200 (10 seeds in total).
• Training: 2000 epochs with 250 epoch patience for early stopping (stop if no improvement

is observed on validation set for 250 consecutive epochs).
• Optimizer: Stochastic Gradient Descent with momentum 0.95 and weight decay 10−9.

Learning rate is 10−4 for ctslice and is 10−3 for other datasets.
• Augmentation: additive random Gaussian noise with mean 0 and standard deviation 0.05

for DiCoM-N and 0.01 for DiCoM-B.
• Diversity hyperparameter search range: κdiv ∈ {0.01, 0.05, 0.1, 0.5, 1}.
• Consistency hyperparameter search range: κcsc ∈ {0.01, 0.05, 0.1, 0.5, 1}.

Experiment setup for DiCoM in ShanghaiTech experiment:

• Network architecture: CSRNet B Li et al. (2018).
• Random seeds: 9999 (only 1 seed).
• Training: 1000 epochs with no early stopping.
• Optimizer: Adam with weight decay 10−5 and learning rate 10−5.
• Augmentation: None.
• Diversity hyperparameter search range: κdiv ∈ {10−5, 10−4, 10−3}.
• Consistency hyperparameter search range: κcsc ∈ {10−5, 10−4, 10−3}.
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C ADDITIONAL EXPERIMENT RESULTS ON UCI DATASETS

Information of UCI datasets: The detailed statistics of the eight UCI datasets are given in the table
below.

Table 5: UCI Regression Datasets
Dataset No. of Samples Input Dim. No. of Unique

Label Values
Prediction Target

skillcraft 3,325 18 7 Skill level of gamers (ordinal classification)
parkinsons 5,875 20 1,129 Unified Parkinson’s Disease Rating Scale (UPDRS) scores
elevators 16,599 18 61 Aileron control of F16 aircraft
protein 45,730 9 15,903 Physicochemical properties of protein tertiary structure
blog 52,397 280 438 Number of comments received within 24 hrs
ctslice 53,500 384 53,347 Relative location of the image on the axial axis
buzz 583,250 77 8,123 Popularity of a topic in social media
electric 2,049,280 6 4,186 Power consumption in one household per minute

Additional experiment results on UCI datasets with labeling budget N = 300: Please see the
below additional results from Section 4.1.

Table 6: Test RMSE on UCI Datasets with Labeling Budget N = 300.
Dataset SSDKL COREG LP VAE MT VAT DiCoM-N-2 DiCoM-B-2
skillcraft 0.346 ± 0.036 0.361 ± 0.009 0.342 ± 0.012 0.396 ± 0.014 0.418 ± 0.038 0.454 ± 0.025 0.313 ± 0.005 0.315 ± 0.013
parkinsons 3.379 ± 0.387 4.285 ± 0.200 5.371 ± 0.994 10.655 ± 0.151 8.725 ± 0.904 10.612 ± 0.198 2.285 ± 0.208 3.289 ± 0.481
elevators 0.151 ± 0.013 0.195 ± 0.006 0.189 ± 0.005 0.228 ± 0.010 0.261 ± 0.031 0.261 ± 0.012 0.145 ± 0.025 0.146 ± 0.035
protein 0.714 ± 0.043 0.703 ± 0.020 0.685 ± 0.011 0.780 ± 0.017 0.763 ± 0.018 0.766 ± 0.010 0.646 ± 0.031 0.628 ± 0.014
blog 1.146 ± 0.072 1.076 ± 0.040 1.017 ± 0.048 1.033 ± 0.045 1.117 ± 0.036 1.087 ± 0.063 0.930 ± 0.040 0.934 ± 0.036
ctslice 9.691 ± 1.135 10.023 ± 1.235 10.230 ± 1.410 16.301 ± 0.773 16.845 ± 1.996 16.992 ± 4.839 5.575 ± 0.606 8.634 ± 0.923
buzz 0.766 ± 0.040 0.752 ± 0.035 0.851 ± 0.030 1.098 ± 0.026 1.702 ± 0.160 1.743 ± 0.186 0.715 ± 0.136 0.829 ± 0.065
electric 0.117 ± 0.011 0.261 ± 0.008 0.418 ± 0.010 0.977 ± 0.017 0.696 ± 0.023 0.916 ± 0.127 0.114 ± 0.025 0.279 ± 0.021

Table 7: Test RMSE of DiCoM-N on UCI Datasets with Varying Number of Views, N = 300

Dataset DiCoM-N-2 DiCoM-N-4 DiCoM-N-8
RMSE RMSE % Redc.

2→ 4
RMSE % Redc.

4→ 8

skillcraft 0.313 ± 0.005 0.319 ± 0.025 -1.917 0.304 ± 0.008 4.702
parkinsons 2.285 ± 0.208 2.291 ± 0.355 -0.263 2.200 ± 0.219 3.972
elevators 0.145 ± 0.025 0.135 ± 0.020 7.187 0.125 ± 0.010 7.407
protein 0.646 ± 0.031 0.636 ± 0.027 1.548 0.635 ± 0.029 0.157
blog 0.930 ± 0.040 0.912 ± 0.030 1.935 0.897 ± 0.020 1.645
ctslice 5.575 ± 0.606 6.233 ± 0.524 -11.795 6.174 ± 0.587 0.947
buzz 0.715 ± 0.136 0.688 ± 0.078 3.804 0.654 ± 0.041 4.942
electric 0.114 ± 0.025 0.099 ± 0.008 13.132 0.095 ± 0.012 4.058

Average 1.704 3.479

Additional experiment results on UCI datasets with labeling budget N = 100: Using the same
UCI datasets, we conduct experiments similar to the ones in Section 4.1 with a smaller labeling
budget of N = 100 samples. The results are provided below.

Table 8: Test RMSE on UCI Datasets with Labeling Budget N = 100.
Dataset SSDKL COREG LP VAE MT VAT DiCoM-N-2 DiCoM-B-2
skillcraft 0.360 ± 0.029 0.360 ± 0.013 0.345 ± 0.016 0.412 ± 0.020 0.447 ± 0.039 0.454 ± 0.034 0.342 ± 0.011 0.330 ± 0.021
parkinsons 4.701 ± 0.687 5.552 ± 0.358 7.037 ± 1.373 10.694 ± 0.216 8.998 ± 0.778 10.738 ± 0.254 3.580 ± 0.662 4.442 ± 0.929
elevators 0.182 ± 0.019 0.213 ± 0.009 0.202 ± 0.008 0.251 ± 0.029 0.269 ± 0.039 0.261 ± 0.015 0.179 ± 0.030 0.194 ± 0.029
protein 0.741 ± 0.050 0.751 ± 0.015 0.746 ± 0.022 0.789 ± 0.036 0.757 ± 0.025 0.784 ± 0.050 0.691 ± 0.021 0.675 ± 0.013
blog 1.129 ± 0.081 1.067 ± 0.078 1.115 ± 0.061 1.051 ± 0.102 1.112 ± 0.053 1.136 ± 0.111 1.031 ± 0.055 0.998 ± 0.052
ctslice 12.646 ± 1.059 12.911 ± 0.983 13.726 ± 1.178 19.750 ± 3.178 17.752 ± 1.352 18.318 ± 3.720 10.742 ± 0.629 12.062 ± 1.413
buzz 0.904 ± 0.117 0.830 ± 0.063 0.911 ± 0.066 1.114 ± 0.036 1.786 ± 0.125 1.625 ± 0.339 0.836 ± 0.093 0.974 ± 0.059
electric 0.152 ± 0.030 0.352 ± 0.020 0.484 ± 0.032 0.982 ± 0.034 0.838 ± 0.105 0.937 ± 0.071 0.185 ± 0.116 0.308 ± 0.043
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Table 9: Test RMSE from ablation study on UCI datasets, N = 100
DiCoM-N-2 Ablation-1 Ablation-2 Ablation-3 Ablation-4

Aug. X X X X
Lab. Div. X X X X
Unlab. Csc. X X X
Unlab. Div. X

RMSE RMSE % Redc. RMSE % Redc. RMSE % Redc. RMSE % Redc.

skillcraft 0.342 ± 0.011 0.354 ± 0.030 -3.404 0.361 ± 0.032 -5.372 0.355 ± 0.031 -3.756 0.363 ± 0.032 -6.124
parkinsons 3.580 ± 0.662 4.044 ± 0.623 -12.969 3.688 ± 0.674 -3.039 3.674 ± 0.326 -2.643 3.516 ± 0.374 1.783
elevators 0.179 ± 0.030 0.186 ± 0.033 -3.844 0.192 ± 0.032 -6.864 0.193 ± 0.029 -7.574 0.197 ± 0.026 -9.775
protein 0.691 ± 0.021 0.705 ± 0.023 -1.959 0.711 ± 0.013 -2.818 0.723 ± 0.040 -4.603 0.714 ± 0.023 -3.268
blog 1.031 ± 0.055 1.074 ± 0.052 -4.214 1.090 ± 0.043 -5.721 1.124 ± 0.072 -9.030 1.117 ± 0.081 -8.295
ctslice 10.742 ± 0.629 10.822 ± 0.564 -0.747 11.341 ± 1.114 -5.575 10.290 ± 0.911 4.209 10.673 ± 1.070 0.642
buzz 0.836 ± 0.093 0.918 ± 0.085 -9.760 0.933 ± 0.263 -11.599 1.019 ± 0.183 -21.893 1.017 ± 0.242 -21.613
electric 0.185 ± 0.116 0.176 ± 0.103 4.602 0.198 ± 0.115 -6.798 0.158 ± 0.023 14.693 0.193 ± 0.104 -4.460

Average -4.037 -5.973 -3.825 -6.389

Table 10: Test RMSE of DiCoM-N on UCI Datasets with Varying Number of Views, N = 100

Dataset DiCoM-N-2 DiCoM-N-4 DiCoM-N-8
RMSE RMSE % Redc.

2→ 4
RMSE % Redc.

4→ 8

skillcraft 0.342 ± 0.011 0.349 ± 0.022 -1.977 0.334 ± 0.018 4.250
parkinsons 3.580 ± 0.662 3.343 ± 0.394 6.610 3.250 ± 0.323 2.782
elevators 0.179 ± 0.030 0.171 ± 0.026 4.605 0.169 ± 0.028 1.185
protein 0.691 ± 0.021 0.681 ± 0.021 1.456 0.679 ± 0.024 0.294
blog 1.031 ± 0.055 0.975 ± 0.038 5.432 0.961 ± 0.053 1.436
ctslice 10.742 ± 0.629 11.164 ± 1.972 -3.924 10.457 ± 1.109 6.333
buzz 0.836 ± 0.093 0.832 ± 0.083 0.447 0.796 ± 0.052 4.350
electric 0.185 ± 0.116 0.171 ± 0.059 7.650 0.137 ± 0.029 20.096

Average 2.537 5.091

Table 11: From DiCoM-N to DiCoM-B: Percentage Reduction in Test RMSE and Execution Time,
N = 100.

Dataset Test RMSE Execution Time
M = 2 M = 4 M = 8 M = 2 M = 4 M = 8

skillcraft 3.503 -1.323 -10.419 -72.882 18.200 59.470
parkinsons -24.102 -30.058 -57.663 28.085 28.085 65.291
elevators -8.069 -13.635 -20.037 -11.291 37.481 37.481
protein 2.260 -5.401 -15.882 -57.697 20.049 63.618
blog 3.219 -4.069 -11.128 23.903 23.812 56.539
ctslice -7.157 -6.599 -45.748 22.144 42.888 77.162
buzz -16.619 -9.784 -25.956 0.524 46.706 68.124

Average -6.709 -10.124 -26.690 -9.602 31.032 61.098
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Figure 5: Test RMSE on UCI datasets: each subplot shows the results for one dataset, N = 100.

D ADDITIONAL EXPERIMENT ON TOY DATA

We conduct an experiment on a synthetic toy dataset to illustrate how multi-view diversity and
consistency work together to affect the training and inference of DiCoM-N.

Dataset: We synthesize a regression dataset where inputs x ∈ R30 and labels y ∈ R2. The labels are
related to the inputs by y = Ax+ε, whereA is a fixed 2×30 coefficient matrix and ε ∼ N (0, 0.32I).
Each coordinate of x is drawn from the standard normal distribution. We generate a training set of
100 labeled and 1000 unlabeled samples, and a hold-out test set of 1000 labeled samples.

Experiment Setup: Our DiCoM-N model has M = 5 views, each uses a simple neural network
with a single hidden layer containing two hidden nodes. We train the model with SGD for 50 epochs
with a learning rate of 5 × 10−2, then evaluate the mean-squared-error (MSE) of the model on the
test set.

Results: We keep κdiv = 1 and vary κcsc on a log scale: κcsc ∈ {0.01, 0.1, 1}. Both quantitative
and qualitative results are shown in Fig. 6. We plot the training losses on the top row and visually
show the predictions of each network on eight random test samples. On the left scenario (Fig. 6(a))
when κdiv � κcsc, the diversity loss dominates the consistency component. Even though the total
loss converges on the training set, the individual views’ losses do not, resulting in their large bias
on test samples. This can be an issue if the DiCoM-N model contains a smaller number of views.
On the other hand, the consistency enforcement is too strong on the right scenario (Fig. 6(c)). The
individual views and the averaged output seem to have all collapsed into a single point. Where the
models collapse to is limited by the individual networks’ capacity and may not necessarily be the
global optimum for the averaged output. Finally, in the middle scenario (Fig. 6(b)), the effects of
diversity and consistency losses are balanced, yielding a good trade-off. The averaged model output
is able to perform better than each individual view, and is also the best among three scenarios. These
results also suggest that even though diversity and consistency are contradicting forces, they can still
be applied simultaneously on the regression outputs to produce the desirable behaviours.
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(a) κdiv = 1, κcsc = 0.01 (b) κdiv = 1, κcsc = 0.1 (c) κdiv = 1, κcsc = 1

Figure 6: Experiment results on toy data. The top row shows training losses in symmetric log scale.
The bottom row shows model predictions on eight random test samples. In the legend, next to the
model name, we report the MSE scores evaluated on 1000 test samples.
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