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Abstract001

In text-video retrieval, auxiliary captions are of-002
ten used to enhance video understanding, bridg-003
ing the gap between the modalities. Recently,004
with the remarkable capabilities in multi-modal005
understanding, retrieval with MLLMs has006
emerged as a promising direction. However,007
we identify two key limitations: (1) retrieval008
models often fail to effectively leverage the aux-009
iliary captions, neglecting the semantic distinc-010
tion between the caption (as contextual knowl-011
edge) and text queries (as retrieval targets); and012
(2) auxiliary captions are not typically tailored013
for retrieval, evaluated with language genera-014
tion metrics such as BLEU that misalign with015
retrieval objectives, which require fine-grained016
discrimination. To address these challenges,017
we propose CaRe-DPO, a retrieval framework018
that integrates two key components. First, re-019
trieval role-embeddings are introduced to ex-020
plicitly differentiate between the roles of hetero-021
geneous textual inputs, allowing the model to022
better utilize auxiliary captions during retrieval.023
Second, we present DualGroup-Direct Prefer-024
ence Optimization (DG-DPO), a novel caption025
optimization strategy that directly uses retrieval026
relevance scores to supervise caption quality.027
Moreover, unlike traditional DPO, DG-DPO028
incorporates group-level preferences, enabling029
the model to learn a global retrieval ranking030
over video-caption pairs. Through extensive031
experiments, we show that CaRe-DPO signifi-032
cantly improves retrieval performance by effec-033
tively utilizing the auxiliary knowledge while034
generating better captions for retrieval.035

1 Introduction036

Text-video retrieval is a fundamental task in mul-037

timodal learning, aiming to align natural language038

descriptions with video content. Traditional re-039

trieval methods often adopt dual-encoder architec-040

tures, such as CLIP (Radford et al., 2021), which041

encode videos and text queries into a shared em-042

bedding space. However, these approaches often043
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Figure 1: (a) T2V retrieval with the original descriptive
caption (video-to-caption retrieval R@1 of 90.7) com-
pared to the random one. Nearly identical performance
suggests that the model fails to effectively leverage the
auxiliary knowledge. (b) illustrates that the top-1 cap-
tion selected based on captioning metric (BLEU) does
not correspond to the top-1 caption when ranked by the
retrieval score (placed at the bottom rank). Correlation
between those two rankings remains as low as 30%.

struggle with fine-grained semantic matching (Tian 044

et al., 2024; Wang et al., 2023), particularly when 045

videos contain complex temporal or contextual dy- 046

namics. To mitigate this, recent studies (Wu et al., 047

2023; Ma et al., 2024; Hur et al., 2025; Yang et al., 048

2025) have explored the use of video caption, natu- 049

ral language descriptions of video content, as aux- 050

iliary inputs to bridge the gap between the text 051

queries and video content. 052

Multimodal Large Language Models (MLLMs) 053

(Liu et al., 2024; Wang et al., 2024b; Li et al., 054
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2024c; Zhang et al., 2024) that encompass strong055

visual and text understandings, recently caught056

attention for handling multi-modal retrieval sys-057

tems (Lin et al., 2025; Liu et al., 2025; Wei et al.,058

2024). Their capacity to jointly attend to both vi-059

sual and textual inputs allows them to interpret di-060

verse and complex text queries in relation to video061

content while also leveraging auxiliary captions as062

additional semantic context, providing a promising063

direction for advancing retrieval performance.064

However, we observe that naively incorporating065

auxiliary captions into these retrieval models often066

leads to suboptimal gains. As shown in Fig. 1a,067

even when using descriptive captions (90.7 at R@1068

for video-to-caption), replacing them with random069

captions results in nearly identical performance for070

text-to-video retrieval (81.5 vs. 81.6). This sug-071

gests that the model fails to effectively leverage072

the auxiliary knowledge, overlooking the seman-073

tic distinction between the heterogeneous textual074

inputs: the caption (as contextual knowledge) and075

text queries (as retrieval targets). The inefficiency076

in leveraging auxiliary captions is further high-077

lighted when examining the alignment between078

the caption quality with the retrieval effectiveness.079

Specifically, as shown in Fig. 1b, we find that the080

top-1 caption selected based on conventional cap-081

tioning metrics, e.g., BLEU (Papineni et al., 2002),082

often does not correspond to the top-1 caption when083

ranked by the retrieval relevance score (placed at084

the bottom rank). We also further analyzed that the085

correlation between those two rankings is as low086

as 30% indicating a significant misalignment.087

To this end, we propose CaRe-DPO, Captioning088

for Text-Video Retrieval via DualGroup-Direct089

Preference Optimization, a retrieval framework090

that integrates two key components. First, the re-091

trieval role-embeddings introduced in the retrieval092

model explicitly differentiate the roles of heteroge-093

neous textual inputs, enabling the model to better094

utilize the auxiliary captions. Second, our Dual-095

Group Direct Preference Optimization (DG-DPO),096

which not only directly supervises the captioning097

model with the retrieval scores to align with the re-098

trieval objective, but also explores beyond standard099

single-group retrieval preference (local retrieval100

rank of captions given a single input video ), to101

dual group preference (global retrieval rank over102

video-caption pairs across the dataset). We em-103

pirically validate that CaRe-DPO encourages the104

MLLM-based retrieval model to further leverage105

the auxiliary captions during retrieval and enables106

to enhance the quality of the caption, yielding a per- 107

formance improvement across various text-video 108

retrieval benchmarks. 109

The main contributions of ours are as follows: 110

• We propose CaRe-DPO, a novel retrieval 111

framework that integrates retrieval role- 112

embeddings and a retrieval-aligned caption 113

optimization strategy to effectively leverage 114

auxiliary captions in MLLM-based text-video 115

retrieval. 116

• We introduce DualGroup-Direct Preference 117

Optimization (DG-DPO), a new objective to 118

caption for retrieval that supervises caption 119

generation using retrieval relevance scores 120

and incorporates both local (within-video) and 121

global (cross-video-caption pair) ranks. 122

• Our extensive analyses show that CaRe-DPO 123

significantly improves the retrieval perfor- 124

mance by enhancing both the utility of auxil- 125

iary captions and fine-grained alignment be- 126

tween the captions with the retrieval objective. 127

2 Related Work 128

2.1 Text-Video Retrieval 129

To improve text-video retrieval, recent studies have 130

explored the use of captions as auxiliary supervi- 131

sion. Cap4Video (Wu et al., 2023) treats captions 132

as data augmentation to generate new training pairs, 133

enhancing cross-modal interaction. NarVid (Hur 134

et al., 2025) uses frame-level captions to enrich 135

video understanding and applies a hard negative 136

loss for better discrimination. ExCae (Yang et al., 137

2025) refines captions through self-learning to en- 138

hance expressiveness while minimizing manual in- 139

tervention. Recently, with the advancement of Mul- 140

timodal Large Language Models (MLLMs), several 141

works (Lin et al., 2025; Liu et al., 2025) introduced 142

MLLMs in multi-modal retrieval systems. MM- 143

Embed (Lin et al., 2025) finetuned the MLLMs to 144

universal retrievers, adopting the thought prompt- 145

and-reranking strategies. LamRA (Liu et al., 2025) 146

proposes reranking strategies of pointwise and list- 147

wise to further boost the retrieval performance. Yet, 148

current approaches struggle to explore the adop- 149

tion of captions into MLLM-based retrieval models 150

while analyzing the effectiveness of those auxiliary 151

captions. 152
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2.2 Direct Preference Optimization153

Direct Preference Optimization (DPO) (Rafailov154

et al., 2023) has emerged as an efficient alterna-155

tive to reinforcement learning from human feed-156

back (RLHF) (Christiano et al., 2017; Ouyang157

et al., 2022; Stiennon et al., 2020) for aligning158

large language models with human preferences.159

Recent studies have explored several limitations160

of DPO. To mitigate length bias in preference161

data, prior approached introduce reward normal-162

ization (Meng et al., 2024), token-level probabil-163

ity down-sampling (Lu et al., 2024), and explicit164

length regularization (Park et al., 2024). Other stud-165

ies attempt to eliminate the reliance on a reference166

model to reduce computational cost (Meng et al.,167

2024; Xu et al., 2024; Hong et al., 2024). In the168

multimodal setting, DPO has been adapted to align169

multimodal large language models (MLLMs) for170

tasks such as visual question-answering (Li et al.,171

2024b) and mitigating hallucinations (Ouali et al.,172

2024; Wang et al., 2024a). In this work, we pro-173

vide a retrieval-oriented preference modeling for174

MLLMs, and propose a dual-group DPO formula-175

tion to capture both local and global preference.176

3 Preliminary177

3.1 Text-Video Retrieval178

Text-Video Retrieval consists of two tasks, video-179

to-text retrieval (V2T) and text-to-video retrieval180

(T2V), which aim to find the most relevant text181

or video given the query among the candidates of182

video or text. Often to enhance the cross-modal183

retrieval, several works (Wu et al., 2023; Yang184

et al., 2025; Hur et al., 2025) propose to utilize185

the generated caption c(i) of the given video v(i)186

to bridge the modality gap with the textual query187

t(i). Hence, the retrieval dataset can be defined188

as Dret = {v(i), c(i), t(i)}Ni=1, where c(i) is often189

sampled from a captioning model Mcap. During190

inference of text-video retrieval with auxiliary cap-191

tion, c(i) is paired with the v(i), which defined as:192

i∗T2V = argmax
i

P (v(i), c(i)|t). (1)193

Recently, MLLMs have often been employed194

for multi-modal retrieval systems, where they are195

adopted to re-rank the top-k text-video candidate196

pairs based on joint text-video similarity. Typi-197

cally, given the video v = [v1, .., vNv ] ∈ RNv×D,198

caption c = [c1, .., cNc ] ∈ RNc×D, and text199

t = [t1, .., tNt ] ∈ RNt×D, where Nv, Nc, Nt, and200

D denotes the numbers of video, caption, text to- 201

kens, and the hidden dimension respectively, the 202

objective for reranking with MLLM-based models 203

for retrieval can be defined as follows: 204

L = − logP (y|v, c, t, I). (2) 205

The output y is defined with y ∈ {True, False} 206

tokens, resembling a binary classification task, and 207

note that the auxiliary caption c is simply con- 208

catenated to the video along with the text query 209

t. Also, I denotes the instruction prompt to answer 210

‘True’ or ‘False’ that is omitted for the follow- 211

ing notations. Hence, for the matching triplets, 212

i.e., (v(i), c(i), t(j)) where i = j, the model is 213

trained to output ‘True’, while for the unmatch- 214

ing triples where i ̸= j the model is expected to 215

output ‘False’. During inference, following Lin 216

et al. (2025) and Liu et al. (2025) the typical ap- 217

proach of measuring the relevance score s is: 218

s(v, c, t) = logP (y+|v, c, t) (3) 219

where y+ = True. Thus, for T2V, we simply apply 220

softmax over the relevance scores across all can- 221

didate videos with a fixed text query t(i), and vice 222

versa for V2T. However, we observe that simply 223

concatenating the caption c into the input hinders 224

the model from differentiating between the hetero- 225

geneous textual inputs of the text query t and the 226

auxiliary caption c. We further observe that the 227

simple strategy of measuring the relevance score 228

with the probability of predicting the ‘True’ lacks 229

fine-grained sensitivity required for retrieval. 230

3.2 Direct Preference Optimization 231

Direct Preference Optimization (DPO) (Rafailov 232

et al., 2023), is a typical optimization strategy 233

adopted to align LLMs output with human pref- 234

erences, which is derived from the reinforcement 235

learning objective in RLHF (Ziegler et al., 2019). 236

DDPO the preference dataset for DPO can be de- 237

fined with {x(i), y(i)w , y
(i)
l }Ni=1, where x is an input, 238

yw, yl are the preferred and dispreferred outputs, 239

and the preference is estimated by the Bradley- 240

Terry (BT) (Bradley and Terry, 1952). Typically, 241

the objective of DPO, LDPO, can be written as fol- 242

lows: 243

LDPO(πθ;πref) = −E(x,yw,yl)∼D 244[
log σ(r̂θ(x, yw)− r̂θ(x, yl))

]
,

(4)
245
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Figure 2: Illustration of our CaRe-DPO framework. (a) depicts the MLLM-based retrieval model for text-video
retrieval where we propose to adopt retrieval role-embeddings Rcap and Rtext for the heterogeneous textual inputs
applied to each token, accordingly: auxiliary caption (orange) and retrieval target text (purple). In addition, we
illustrate the contrastive inference strategy (contrasting the probability of generation ‘True’ to ‘False’) of which
is more effective for retrieval. (b) visualizes our DualGroup-DPO mechanism where each caption given the video
is evaluated with the retrieval relevance score sp. Then, during training, SingleGroup-DPO adopts the local rank
preference, while the DualGroup-DPO adopts the global rank preference, exploring across video-caption pairs.

where r̂θ(x, y) = β log πθ(y|x)
πref(y|x) , given πθ the pol-246

icy model to optimize, and πref the reference model,247

β is a hyperparameter which determine distribution248

disparity of πθ and πref, and σ denotes the sigmoid249

function. In standard DPO, the preference of the250

given outputs, yw, yl, is determined conditioned251

solely on a single input x, where the model learns252

to prefer one output over another, referred to as the253

local preference of x.254

4 Method255

In this section, we introduce our CaRe-DPO,256

Captioning for Retrieval via DualGroup-Direct257

Preference Optimization, a novel retrieval frame-258

work that enhances text-video retrieval with aux-259

iliary captions. First in Sec. 4.1, we introduce a260

simple retrieval role embedding mechanism that261

helps the model learn the distinct functional roles262

of the retrieval target and the auxiliary knowledge.263

Then in Sec. 4.2, we present DualGroup-DPO, a264

preference optimization method that supervises the265

captioning model to further align with the retrieval266

objective and propose to explore beyond standard267

single group preference to dual group preference268

learning. Overall framework is illustrated in Fig. 2.269

4.1 Retrieval Role-embeddings 270

To enable the MLLM-based retrieval model, Mret, 271

to differentiate the functional roles of the text 272

query and the caption given as input for text- 273

video retrieval, we adopt a simple yet effective 274

retrieval role-embeddings. Specifically, given the 275

input triplet (v, c, t), we introduce a new role- 276

embeddings Rcap ∈ RD and Rtext ∈ RD, which 277

are combined to each corresponding tokens of c 278

and t, respectively. Hence, the training objective 279

of Eq. 2 can be modified as follows: 280

Lret = − logP (v, c+Rcap, t+Rtext) (5) 281

where Rcap = 1NcR
⊤
cap and Rtext = 1NtR

⊤
text. 282

Such a simple approach avoids Mref from refer- 283

encing the caption and the text as heterogeneous 284

textual input, but enables it to explicitly distinguish 285

according to its roles: the caption as contextual 286

knowledge and the text query as retrieval targets. 287

This role-specific encoding effectively guides the 288

model to attend differently to the auxiliary caption 289

and the query during training, leading to more pre- 290

cise cross-modal alignment and improved retrieval 291

performance. 292
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Inference Strategy. For the inference stage, we293

empirically observe that instead of simply adopting294

the probability of generating the y+ token as the295

retrieval relevance score (Eq. 3), it is more effective296

to use the pairwise score margin between y+ and297

y− generation as follows:298

s(v, c, t) = log
P (y+|v, c, t)
P (y−|v, c, t)

(6)299

Such a contrastive inference strategy allows the300

retrieval model to be more keen to the subtle differ-301

ences of the input and its output decision, enhanc-302

ing the retrieval performance.303

4.2 DualGroup-DPO304

Retrieval score driven Preference Dataset. To305

further handle the inefficiency in leveraging the306

auxiliary captions for retrieval, which stems from307

the misalignment between the training objective308

of the captioning and the retrieval models, we first309

construct the preference dataset that directly adopts310

the retrieval scores as supervision. First, we sample311

K number of captions {c(i)k }Kk=1 for each video312

v(i), denoted as c(i)k ∼ Mcap(v
(i)) where Mcap(·)313

refers to the pretrained captioning model. Then,314

we adopt Mret(·) to evaluate the quality of the315

sampled captions for video-text retrieval with the316

relevance score. We adopt the score between c
(i)
k317

and the text t(i)k while masking the video tokens318

in the attention mask (□), which we empirically319

observe to be more effective in terms of precision320

than that of un-masked video tokens. Formally, the321

relevance score for preference optimization, sp, is322

defined as:323

sp(v
(i), c

(i)
k , t(i)) = log

PMret(y
+|□, c

(i)
k , t(i))

PMret(y
−|□, c

(i)
k , t(i))

(7)
324

DualGroup-Direct Preference Optimization.325

The conventional approach of DPO considers only326

local retrieval rank preferences that reference a327

single input, referred to as the SingleGroup-DPO.328

For instance, given a single video v(i) with its as-329

sociated two sampled captions, the preferred c
(i)
w330

and dispreferred c
(i)
l , preference pair c(i)w | v(i) ≻331

c
(i)
l | v(i) satisfy the following condition:332

sp

(
v(i), c(i)w , t(i)

)
> sp

(
v(i), c

(i)
l , t(i)

)
+γ. (8)333

γ refers to the margin threshold, which en-334

forces a minimum difference between retrieval335

scores. Building upon the SingleGroup-DPO, our 336

DualGroup-DPO extends the framework to con- 337

sider preferences across distinct video-caption pairs 338

by leveraging their associated retrieval relevance 339

scores across the dataset, i.e., global retrieval rank 340

preferences. For instance, given two video-caption 341

pairs (v(i), c
(i)
k ) and (v(j), c

(j)
k ), where the for- 342

mer denote the k-th caption and video for the i- 343

th sample, and the latter denote the k-th caption 344

and the video for the j-th sample, the preference 345

pair among the video-caption pair i.e., c(i)w |v(i)
w ≻ 346

c
(j)
l |v(j)

l , can be defined as follows: 347

sp

(
v(i)
w , c(i)w , t(i)w

)
> sp

(
v
(j)
l , c

(j)
l , t

(j)
l

)
+ γ.

(9) 348

Notably, the preference can be defined where i = j 349

and i ̸= j, unlike the SingleGroup-DPO where the 350

sample pairs always satisfy i = j. Overall, the 351

model learns to prefer video-caption pairs, which 352

results in higher retrieval relevance scores, while 353

considering the local rank preference of the caption 354

and the global rank preference across distinct video- 355

caption pairs, enhancing the retrieval performance. 356

Hence the LDG-DPO can be written as: 357

LDG-DPO = −E
(v

(i)
w ,v

(j)
l ,c

(i)
w ,c

(j)
l )∼DDG-DPO[

log σ
(
r̂θ(c

(i)
w ,v(i)

w )− r̂θ(c
(j)
l ,v

(j)
l )

)]
.

(10) 358

Note that in practice, we do not increase the num- 359

ber of training samples; instead, we reuse the pre- 360

computed log probability values from the compu- 361

tation from when i = j to compute LDG-DPO for 362

samples where i ̸= j. Hence, we effectively lever- 363

age the samples within the same batch-aggregated 364

across multiple GPUs-to adopt the global rank of 365

video-caption pairs. As a result, without any ad- 366

ditional computational or memory overhead, the 367

captioning model is encouraged to explore con- 368

sistent ranking preferences across a wider range 369

of sample combinations of video-caption pairs for 370

video-text retrieval with auxiliary captions. 371

5 Experiments 372

5.1 Experiments Setup 373

Datasets and Metrics. To validate the effective- 374

ness of CaRe-DPO, we evaluate on three Text- 375

Video retrieval benchmarks: DiDeMo (Anne Hen- 376

dricks et al., 2017), ActivityNet (Caba Heilbron 377

et al., 2015), and MSRVTT (Xu et al., 2016). For 378

evaluation, we adopt the standard retrieval met- 379

rics: Recall@K (R@1, R@5, R@10). Note that 380
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Text-to-Video Video-to-Text
DiDeMo ActivityNet MSRVTT DiDeMo ActivityNet MSRVTT

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Non-MLLM-based
CLIP4Clip (Luo et al., 2022) 42.8 68.5 79.2 40.5 72.4 83.4 44.5 71.4 81.6 42.5 70.6 80.2 42.6 73.4 85.6 43.1 70.5 81.2
ViCLIP (Wang et al., 2024c) 49.4 - - 49.8 - - 52.5 - - 50.2 - - 48.1 - - 51.8 - -
MV-Adapter (Jin et al., 2024) 44.3 72.1 80.5 42.9 74.5 85.7 46.2 73.2 82.7 42.7 73.0 81.9 43.6 75.0 86.5 47.2 74.8 83.9
InternVideo (Wang et al., 2022) 57.9 82.4 88.9 62.2 85.9 93.2 55.2 79.6 87.5 59.1 81.8 89.0 62.8 86.2 93.3 57.9 79.2 86.4
UMT (Li et al., 2023) 70.4 90.1 93.5 66.8 89.1 94.9 58.8 81.0 87.1 67.9 88.6 93.0 64.4 89.1 94.8 58.6 81.6 86.5
Cap4Video (Wu et al., 2023) 52.0 79.4 87.5 - - - 51.4 75.7 83.9 - - - 49.0 75.2 85.0 - - -
InternVideo2 1B∗ (Wang et al., 2024d) 75.3 92.5 95.8 68.8 89.7 94.7 59.4 80.9 86.6 73.1 92.1 94.9 65.3 88.0 94.2 56.9 76.9 84.6
InternVideo2 6B (Wang et al., 2024d) 74.2 - - 74.1 - - 62.8 - - 71.9 - - 68.7 - - 60.2 - -

MLLM-based†
MM-Embed (Lin et al., 2025) 81.6 94.9 96.3 78.5 - - 61.2 82.7 88.8 79.7 94.9 96.2 70.7 - - 60.5 82.3 87.1
LamRA (Liu et al., 2025) 83.5 94.8 96.2 76.0 92.8 96.3 59.7 81.4 87.2 79.4 94.8 96.6 68.7 90.1 95.3 60.7 82.3 89.0

CaRe-DPO (Ours) 85.1 95.0 96.2 79.3 93.7 96.4 64.1 83.8 88.8 82.5 95.2 96.3 74.2 92.5 96.2 63.8 83.0 87.3

Table 1: Comparison with state-of-the-art Text-Video Retrieval models. * denotes reproduced results. We also
report the performance of MLLM-retrieval models, which we reproduced adequately for Text-Video Retrieval,
adopting their approach while applying to the same baseline as ours, VideoChat-Flash, denoted with the †.

Train Inf. Text-to-Video Video-to-Text Avg.
∆Lret(·) cap. c R@1 R@5 R@10 R@1 R@5 R@10

(v, t) ∅ 80.1 78.9 71.8 68.5 62.0 61.3 -

(v, c, t)
rand. 81.5 94.6 95.9 79.1 94.6 96.5 -
orig. 81.6 94.3 95.9 79.2 94.7 96.7 (+0.1)

(v, c+Rc, t+Rt)
rand. 82.6 94.4 96.0 76.5 95.0 96.2 -
orig. 83.1 94.4 96.2 79.6 94.6 96.6 (+1.8)

Table 2: Ablation on the Role-embeddings of Mret.
We adopt the zero-shot captions with the standard infer-
ence strategy. ‘Avg. ∆’ denotes an average change in
R@k performance. Rc, Rt refers to Rcap, Rtext, ‘rand’
and ‘orig.’ denote random and original captions, respec-
tively, and ‘Inf.’ denotes the inference stage.

for auxiliary captions, we sample two per instance381

and average the performance over those to mitigate382

the caption variability while providing more robust383

results. See the supplementary for more details.384

Implementation Details. For retrieval, we adopt385

InternVideo2-1B (Wang et al., 2024d) to initially386

compute the similarity between the video and the387

text query, and then we retrieve the top-16 candi-388

dates for re-ranking. Our baseline MLLM-based389

retrieval model, capable of adopting an auxiliary390

caption, is built upon VideoChat-Flash (Li et al.,391

2024c). For the captioning model, we adopt pre-392

trained LLaVA-OneVision (Li et al., 2024a). More393

details are presented in the supplement.394

5.2 Experimental Results395

Main Results. Tab. 1 shows the performance of396

the State-of-the-Art text-video retrieval models, in-397

cluding non-MLLM-based and MLLM-based. The398

results show that our CaRe-DPO outperforms base-399

line models across various datasets, especially in400

R@1 for both T2V and V2T. Among non-MLLM-401

based models, ours effectively improves perfor-402

DiDeMo ActivityNet MSRVTT Avg.
∆%T2V V2T T2V V2T T2V V2T

Baseline 83.1 79.6 78.3 74.0 62.7 63.6 -
+ LSFT 82.6 82.0 78.0 73.9 62.9 63.0 (+0.2)
+ LSG-DPO 84.4 82.4 78.8 74.1 63.5 63.3 (+1.1)
+ LDG-DPO 85.1 82.5 79.3 74.2 64.1 63.8 (+1.7)

Table 3: Anlaysis on training objectives for Mcap .
R@1 retrieval performance from the different training
objectives for Mcap. ‘Avg. ∆%’ denotes the percentage
increase compared to the baseline across the dataset.

mance over the SOTA model of InternVideo2-6B, 403

with an average of 14.7%, 7.5%, and 4.0% increase 404

in R@1 for DiDeMo, ActivityNet, and MSRVTT, 405

respectively. To further validate the effectiveness 406

among the MLLM-based retrieval models, we com- 407

pare against MM-Embed and LamRA. Notably, our 408

CaRe-DPO shows superior performance with 3.9%, 409

3.0%, and 5.1% increase compared to MM-Embed, 410

and 2.9%, 6.2%, and 6.2% increase on average for 411

R@1 compared to LamRA across datasets. Over- 412

all, outperforming the baseline models over T2V 413

and V2T, the results demonstrate its effectiveness 414

in adopting CaRe-DPO for Text-Video retrieval, 415

especially with MLLM-based models. 416

5.3 Quantitative Analysis 417

Effectiveness of Retrieval Role-embeddings. 418

Tab. 2 presents an ablation study on the impact of 419

retrieval role-embeddings for MLLM-based mod- 420

els. As shown, the model trained with the auxiliary 421

caption, +Lret(v, c, t), achieves solid performance 422

compared to the baseline i.e., R@1 of 81.6 for T2V 423

and 79.2 for V2T. Nevertheless, the model fails 424

to fully leverage the auxiliary caption of which 425

is shown with a minimal performance drop, a 0.1 426

decrease in R@1 on average, when replacing the 427
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DiDeMo ActivityNet MSRVTT
Inference Mcap T2V V2T T2V V2T T2V V2T

s(c, t)
Baseline 49.6 40.8 43.2 37.0 40.5 37.7

+ LDG-DPO 51.3 43.4 52.2 43.6 49.0 45.5

s(v, c)
Baseline 91.8 90.7 88.2 86.5 88.9 86.1

+ LDG-DPO 92.1 92.2 88.7 87.5 89.7 87.1

Table 4: Analysis on caption quality for retrieval.
Note that ‘Baseline’ denotes zero-shot caption adopted
for retrieval. For s(c, t), we adopt the model trained
with (v, c, t), while we mask the video tokens. For
s(v, c) we utilize the model trained solely on (v and t).
We report the R@1 performance for both T2V and V2T.

Text-to-Video Video-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

Captioning Metric

BLEU 84.1 95.0 96.3 82.3 94.7 96.4
METEOR 83.8 94.9 96.6 82.8 94.9 96.3

Retrieval Score (sp)

log
P (y+|v, c, t)
P (y−|v, c, t)

85.0 95.0 96.4 82.4 95.0 96.4

log
P (y+|□, c, t)

P (y−|□, c, t)
85.1 95.0 96.2 82.5 95.2 96.3

Table 5: Comparison on adopting different prefer-
ence scores sp for constructing DDG-DPO. Note that
‘Mean R@1’ signifies the average of the R@1 values.
We report the retrieval performance on DiDeMo. Also,
□ denotes masked attention for video tokens.

s(v, c, t)
Text-to-Video Video-to-Text

R@1 R@5 R@10 R@1 R@5 R@10
logP (y+|v, c, t) 82.6 94.7 96.2 79.7 94.7 96.1
logP (y−|v, c, t) 84.9 95.0 96.2 82.3 95.1 96.2

log
P (y+|v, c, t)
P (y−|v, c, t)

85.1 95.0 96.2 82.5 95.2 96.3

Table 6: Comparison on the inference strategy. Re-
trieval performance on DiDeMo, where s(v, c, t) de-
notes the relevance score adopted for the inference. y+

and y− denote denote ‘True’ and ‘False’ respectively.

caption with a random one. In contrast, our model428

trained with the role-embeddings presents a supe-429

rior performance with 83.1 for T2V and 79.6 in430

V2T, while showing higher sensitivity to the qual-431

ity of the caption, with notable +1.8 improvement432

in average for R@1 compared to the random cap-433

tion input. These results highlight the effectiveness434

of role-embeddings to encourage the model to dif-435

ferentiate the two roles of auxiliary knowledge and436

retrieval target, leading to more accurate retrievals.437

Analysis on training objectives for Mcap. In438

Tab. 3 we analyze different objectives for train-439

ing the captioning model on the performance of440

text-video retrieval. As shown, simply fine-tuning441

the model on the given dataset denoted as LSFT442

(row 2), results in an average of 0.2% improve-443

ment on average for R@1 while showing a perfor- 444

mance degradation for ActivitiyNet, and MSRVTT 445

of 0.3% for both. In contrast, adopting our LSG-DPO 446

or LDG-DPO, which optimizes the model with DPO 447

while adopting the retrieval scores for preference 448

determination, results in superior performance. 449

Specifically, LSG-DPO (row 2) that relies on local 450

preference of the retrieval score, shows 2.5%, 0.4%, 451

and 0.4% increase for DiDeMo, ActivityNet, and 452

MSRVTT, respectively. Moreover, further consid- 453

ering the global preference based on the retrieval 454

scores, LDG-DPO (row 3), results in better preci- 455

sion for retrieval with 3.0%, 0.8%, and 1.3% per- 456

formance improvement compared to the baseline 457

across the datasets. The results highlight the effec- 458

tiveness of adopting the retrieval scores with DPO 459

to better align the generated captions for retrieval, 460

and also demonstrate the effectiveness of DG-DPO, 461

which considers the global preference beyond local 462

preferences of video-caption pairs. 463

Analysis on the quality of caption for retrieval. 464

To further investigate the effectiveness of captions 465

in retrieval with CaRe-DPO, we design a series of 466

experiments shown in Tab. 4: text-to-caption (T2C) 467

(upper half) and video-to-caption retrieval (V2C) 468

(lower half). T2C assesses how well the auxiliary 469

caption semantically aligns with the query, V2C 470

measures the degree to which the caption captures 471

the distinctive content of the video itself. The re- 472

sults show that the caption generated from Mcap 473

trained with LDG-DPO results in consistent improve- 474

ments across both retrievals. Specifically, in T2C, 475

the caption generated after adopting our DG-DPO 476

yields an average of 15.0% increase in performance, 477

especially in MSRVTT with 21.0% increase in T2V 478

and 20.7% increase in V2T. In V2C, the zero-shot 479

caption itself shows strong explanability of the 480

video, yet with our LDG-DPO, it further leads to 481

performance enhancement with +1.0% in DiDeMo, 482

+0.9% in ActivityNet, and +1.0% in MSRVTT. 483

Ablation on preference score for DG-DPO. In 484

Tab 5, we compare T2V results while adopting 485

different types of preference scores sp for con- 486

structing DDG-DPO. We observe that directly us- 487

ing retrieval-based scores (rows 3 and 4) consis- 488

tently outperforms traditional captioning metrics 489

such as BLEU (Papineni et al., 2002) and ME- 490

TEOR (Banerjee and Lavie, 2005). Specifically, 491

in the T2V setting, using BLEU and METEOR 492

leads to a performance drop of 1.0% and 1.3% 493

in R@1, respectively, compared to using retrieval- 494
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The	video	begins	with	a	view	of	an	indoor	setting,	featuring	various	items	such	as
books	and	electronic	devices	on	the	floor. A	person	wearing	black	pants	enters	
from	behind	and	sits	down	to	play	a	guitar. The	scene	transitions	smoothly	to	show	
this	individual	playing	the	acoustic	guitar	while	seated	in	front	of	another	piece	of
furniture.

Ours:
The	video	begins	with	a	view	of	an	indoor	setting,	featuring	various	items	such	as	
books	and	speakers	in	the	background.	A	person	wearing	black	pants	enters	
from	behind	and	starts playing	a	guitar	while	seated	on	a	chair.	The	camera	
focuses	closely	on	their	hands	adjusting	chords	and strumming	strings	throughout	
different	scenes.	In	the	foreground,	there	is	always	a	smartphone	connected	to	
a	charger	placed	on	a	dark	surface.

The	video	begins	with	a	group	of	people	sitting	on	the	grass	in	an	outdoor	setting,	we
aring	various	colorful	clothing.	The	scene	transitions	to	show	more	individuals	
seated	and	interacting	casually	among	themselves	while	others	stand	nearby.	A	
person	stands	up	from	their	position	near	the	center	of	the	frame,	moving	towards	a
nother	individual	who	is	also	standing.

The	video	features	a	lively	scene	of	children	and	young	adults	sitting	on	the	grass	in	
an	outdoor	setting,	engaging	with	each	other.	The	group	is	diverse,	wearing	various	
colors	like	blue	jeans,	black	jackets,	orange	shirts,	red	jackets,	white	hoodies,
grey	pants,	dark	clothing,	light-colored	tops,	denim	shorts,	and	striped
sweaters.	A	person	stands	out	among	them,	possibly	leading	or	organizing	activities	
for	this	gathering.

Baseline:

Ours:

Baseline:

Text	Query:	A	man	walk	to	a	chair	and	sits	down.	Someone	with	a	guitar	sits	down.	
Person	sits	down	on	chair.	A	man	walks	back	to	his	seat	and	sits	down

T2V	RANK:	3

T2V	RANK:	1

T2V	RANK:	4

T2V	RANK:	1

Text	Query:	The	boy	in	a	white	jacket	moves	forward.

Figure 3: Qualitative example of video captioning. Comparison of the predictions of the caption generated by the
zero-shot captioning model with our model trained with DG-DPO on DiDeMo. We also report the Text-to-Video
retrieval rank for both cases, for which our model results in a higher rank. The highlighted green depicts the
fine-grained detail generated by our model, which is not provided in the caption generated by the baseline.

based preference scores. Note we adopt the masked495

version for training due to its better precision.496

Analysis on the inference strategy. Tab. 6 ex-497

plores the different inference strategies in MLLM498

retrieval, and we determine that our contrastive in-499

ference strategy yields the best result. The standard500

approach (row 1) results in significant performance501

degradation compared to those that adopt the proba-502

bility of generating ‘False’ (row 2 and 3). Specifi-503

cally, simply adopting logP (y−|v, c, t) (row 2),504

results in +2.5% increase in R@1 on average,505

and adopting logP (y+|v, c, t)− logP (y−|v, c, t)506

(row 3), results in +2.7% increase.507

5.4 Qualitative Results508

Qualitative results of DG-DPO. Fig. 3 illus-509

trates captions generated by the base model and510

ours. For the same video, our DG-DPO trained511

model with direct supervision of retrieval scores512

consistently provides more informative results that513

align more with retrieval. In Fig. 3 (left), while514

the base model only describes the act of playing515

the guitar resulting in T2V retrieval rank of 3, our516

model captures finer details such as the person be-517

ing "seated on a chair" and the presence of “a518

smartphone connected to a charger”, resulting in519

rank 1. In Fig. 3 (right), our caption depicts rich ele-520

ments like “blue jeans, black jackets, .., white hood-521

ies”, whereas the baseline model simply writes as522

“various colorful clothing”, improving the retrieval523

rank from 4 to 1. These richer descriptions align524

better with text-video retrieval that requires fine-525

grained discrimination among candidates, validat-526

ing the effectiveness of DG-DPO.527

Text	Query:	The	baby	first	waves	its	left	hand.	The	baby	lets	go	of	his	pajamas.
The	baby	drops	his	shirt	the	baby	lets	go	of	his	shirt

Caption:	The	video	features	a	baby	lying	on	patterned	bedding,	wearing	a	white	shirt	
with	purple	sleeves	and	adorned	with	colorful	graphics.	The	baby	engages	in	various	
playful	actions	such	as	holding	the	fabric	of	their	shirt,	moving	arms	around,	touching	
faces,	and	interacting	with	objects	like	a	red	toy	attached	to	the	shirt.

0.19
4.29

0.19
RANK:	4
RANK:	1	(Ours)

RANK:	4Identical

Improved

Figure 4: Qualitative example on effectiveness of
Role-embeddings. We report the relevance scores for
different baseline models on V2T, while adopting the
caption generated with DG-DPO on DiDeMo.

Qualitative results of Role-embeddings. Fig. 4 528

illustrates the effect of role-embeddings for video- 529

to-text retrieval, which illustrates that ours grounds 530

the auxiliary caption better (retrieval rank improves 531

from 4 to rank 1). Despite the descriptive caption of 532

“baby engages in various.. actions”, “interacting 533

with objects like .. attached to the shirt” that closely 534

relates with the text query, the baseline models 535

(without the role-embeddings) fails to utilize the 536

caption, showing retrieval relevance score of only 537

0.19, whereas ours shows 4.1 point increase to 4.29. 538

539
6 Conclusion 540

We present CaRe-DPO, a novel retrieval frame- 541

work that enhances text-video retrieval with aux- 542

iliary captions. Our role-embeddings enable re- 543

trieval models to explicitly distinguish the roles 544

of heterogeneous textual inputs. Furthermore, our 545

DualGroup-Direct Preference Optimization aligns 546

caption generation with retrieval relevance scores 547

while leveraging both local and global ranks. 548
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Limitations549

In this work, we propose CaRe-DPO that relies on550

the MLLM-based models for text-video retrieval.551

CaRe-DPO builds upon MLLM-based retrieval552

models, which inherently rely on the pre-trained553

multimodal knowledge encoded in the MLLM,554

which also includes the captioning model adopted.555

As a result, the performance of our approach may556

be constrained by the underlying capabilities and557

biases of the base MLLM, especially in domain-558

specific or low-resource settings. Furthermore, the559

group-level preference modeling in DG-DPO can560

benefit from larger sample groups to learn robust561

global ranking signals; however, this increases the562

computational cost, posing challenges when scal-563

ing to large-scale video-caption datasets.564
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A Dataset Details753

DiDeMo. DiDeMo (Anne Hendricks et al., 2017)754

is a text-video retrieval benchmark, namely the Dis-755

tinct Describable Moments, which comprises 10K756

videos, which are segmented into 5-second clips757

for annotation, totaling 26K annotated moments.758

Each moment is richly described with references759

to camera movement, temporal transitions, and ac-760

tions. We treat the retrieval task as a paragraph-to-761

video retrieval where we concatenate all the cap-762

tions within the video, following prior works (Luo763

et al., 2022; Wu et al., 2023; Li et al., 2023; Wang764

et al., 2024d; Cheng et al., 2023; Hur et al., 2025).765

Note that the dataset provides 8,394 training and766

1,003 test samples.767

ActivityNet. Activitynet (Caba Heilbron et al.,768

2015) is a text-video retrieval benchmark that is769

based on 19K YouTube videos, categorized into770

200 activity classes. For each class, there exists771

an average of 137 videos, and each video contains772

about 1.41 temporal activities. Similar to DiDeMo,773

we aggregate all the captions per video and im-774

plement the task as a paragraph-to-video retrieval,775

while we evaluate on the val1 split following Luo776

et al. (2022); Li et al. (2023); Wang et al. (2024d);777

Cheng et al. (2023); Hur et al. (2025).778

MSRVTT. The MSRVTT (Xu et al., 2016)779

dataset, namely Microsoft Research Video to Text,780

contains 10k video clips that span across 20 cate-781

gories, of which each clip is annotated by 20 sen-782

tences. Following previous protocols (Luo et al.,783

2022; Wang et al., 2024d; Li et al., 2023; Cheng784

et al., 2023; Hur et al., 2025), we use the 9k sample785

set for training (which is about 180k caption-video786

pairs), and adopt the 1,000 clips for testing.787

DiDeMo ActivityNet MSRVTT
Mret Mcap Mret Mcap Mret Mcap

Learning rate 8e-5 8e-6 2e-5 8e-6 1e-4 8e-6
Warmup Epochs 1 0.1 1 0.1 1 0.1

Epoch 5 1 5 1 3 1
Batch Size 32 8 32 8 512 8

LoRA r 8 64 8 64 8 64
LoRA α 32 128 32 128 32 128

β - 0.1 - 0.1 - 0.1
γ - 0.7 - 2.0 - 0.5

Table 7: Training hyperparameters for Mret with Lret
and Mcap with LDG-DPO.

B Implementation Details788

Training Details for retrieval. For training an789

MLLM-based model for retrieval, we adopt the790

recent MLLM of VideoChat-Flash-7B (Li et al., 791

2024c). The baseline model is equipped with a vi- 792

sual encoder of UMT-L (Li et al., 2023) and an 793

LLM of Qwen2 (Yang et al., 2024). For each 794

benchmark, we only train the linear projection 795

layer while adopting LoRA (Hu et al., 2022) for 796

fine-tuning the model for efficiency. We adopt 16 797

frames per video for all datasets. All the exper- 798

iments were done using 8 NVIDIA H100 80GB 799

GPUS. 800

Prompts for text-video retrieval. We built sev- 801

eral different models capable of implementing text- 802

video retrieval. For the model trained with the loss 803

of L = − logP (y|v, t), which is the baseline text- 804

video retrieval model that does not accept auxiliary 805

caption as input, we adopted the prompt of “Cap- 806

tion: [caption]. Does the above video match the 807

caption? True or False”. Note that we utilized the 808

word ‘Caption’ for referencing the text query that 809

is different from the auxiliary caption that we dealt 810

with in this paper. For training the model with the 811

loss of L = − logP (y|v, c, t), which is capable 812

of adopting the auxiliary caption for training, we 813

use the prompt of “Video description: [caption]. 814

Caption [caption]. Based on the video and its 815

description, is the video relevant to the caption? 816

Answer True or False.” To clarify, the ‘video de- 817

scription’ corresponds to the auxiliary caption dealt 818

with in the paper, whereas the ‘caption’ refers to 819

the text query (retrieval target). 820

Training Details for captioning. We adopt 821

LLaVA-OneVision-7B (Li et al., 2024a) for train- 822

ing the captioning model with Direct Preference 823

Optimization. Similar to MLLM-based retrieval 824

model finetuning, we adopt LoRA (Hu et al., 825

2022) for parameter-efficient finetuning. LLaVA- 826

Onevision consists of Qwen2 (Yang et al., 2024) 827

as the LLM, and SigLIP vision encoder (Zhai 828

et al., 2023). We adopt 16 frames per video for 829

all datasets. All the experiments were done using 8 830

NVIDIA H100 80GB GPUS. 831

Prompt for captioning. We empirically explored 832

several ways of generating the caption for the 833

dataset for zero-shot. Simply prompting the cap- 834

tioning model to generate a detailed description 835

about the video will cause the model to generate 836

a very long paragraph for the given video. Hence, 837

we utilized the prompt of “Describe this video in 838

detail with three sentences.”. 839
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Inference Details for retrieval. MLLM-based840

retrieval models are adopted as a re-ranker (Lin841

et al., 2025; Liu et al., 2025; Miech et al., 2021),842

benefiting from the ability to jointly attend to843

both visual and textual data. Hence, based on844

the InternVideo-1B (Wang et al., 2024d) similarity845

computed between the video and the text query, we846

retrieve the top-16 candidates for re-ranking. Fi-847

nally, we weight the output scores of the two mod-848

els following the protocol of Miech et al. (2021).849

Inference Details for captioning. To construct850

the dataset DDG-DPO, we sample k = 3 captions per851

video using a generation temperature of 0.2, follow-852

ing the settings provided by LLaVA-OneVision (Li853

et al., 2024a). For the caption generation of evaluat-854

ing the retrieval model, we sample k = 2 captions855

per video. For our experiments, we average the856

retrieval scores across both in order to account for857

the variability in caption generation and provide a858

more robust performance estimate.859

Training details for LDG-DPO. To construct pref-860

erence pairs from ranked retrieval results, we ex-861

plore two strategies. First, we compute a global862

rank for each sample in the dataset and refer to863

these ranks within each batch to determine prefer-864

ence between video-caption pairs. The first strat-865

egy treats the top half of the ranked samples (i.e.,866

higher-ranked pairs) as chosen and the bottom half867

as rejected. In contrast, the second strategy forms868

preference pairs by grouping the ranked indices869

into adjacent pairs, where the higher-ranked sam-870

ple in each pair is treated as the chosen one and871

the lower-ranked as the rejected. Empirically, we872

observe that the latter strategy yields greater per-873

formance improvements. We hypothesize that this874

is because it produces training pairs with relatively875

smaller marginal differences compared to the for-876

mer approach, allowing the model to learn more877

nuanced preference signals.878

C Hyperparameters879

In Tab. 7, we report the hyperparameters adopted880

for training the retrieval model Mret, and the cap-881

tioning model Mcap, across the text-video retrieval882

dataset.883

D Further ablation on Role-embeddings.884

We conduct further analysis on the role-885

embeddings for text-video retrieval on DiDeMo,886

Train Text-to-Video Video-to-Text
Lret(·) Rc Rt R@1 R@5 R@10 R@1 R@5 R@10

(v, c, t) ✗ ✗ 81.6 94.3 95.9 79.2 94.7 96.7

(v, c, t+Rt) ✗ ✔ 81.2 94.5 95.6 79.8 94.3 96.5

(v, c+Rc, t) ✔ ✗ 82.6 94.4 95.9 79.6 94.6 96.6

(v, c+Rc, t+Rt) ✔ ✔ 83.1 94.4 96.2 79.6 94.6 96.6

Table 8: Ablation on the Role-embeddings of Mret.
Note that we adopt the zero-shot captions with the stan-
dard inference strategy. Rc, and Rt denotes Rcap and
Rtext.

evaluating with and without each function role em- 887

bedding. The results suggest that the model trained 888

with Rtext, results in higher V2T retrieval at R@1 889

(79.2 to 79.8) whereas the model trained with Rcap, 890

results in higher T2V retrieval at R@1 (81.6 to 891

82.6). Notably, combining both role embeddings re- 892

sults in the best overall performance, achieving 83.1 893

R@1 in T2V and 79.6 R@1 in V2T. These find- 894

ings highlight the importance of role-embeddings 895

integrated for both heterogeneous textual inputs, 896

enhancing the model’s ability to distinguish the 897

auxiliary caption and the retrieval target, enabling 898

the model to utilize more of the auxiliary caption 899

for retrieval. 900

E Further qualitative examples 901

In Fig 5, Fig 6, we further show the qualitative 902

comparisons between captions from the baseline 903

and our model on DiDeMo, and ActivityNet. In 904

addition, we provide further qualitative examples 905

on the effectiveness of our role-embeddings pre- 906

sented in Fig. 7. The qualitative examples reveal 907

that the fine-grained descriptions of the video gen- 908

erated from our model trained with DG-DPO of 909

our CaRe-DPO enable the retrieval model to better 910

align with the text-video retrieval task. Further- 911

more, the role-embeddings improve the retrieval 912

models in distinguishing the roles of heterogeneous 913

textual inputs that include the auxiliary caption and 914

the text query as retrieval targets. 915
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The	video	begins	with	a	panoramic	view	of	a	landscape	featuring	rolling	hills,	green	
fields,	and	scattered	trees	under	a	clear	sky.	The	scene	transitions	to	an	urban	area	
nestled	among	the	hills,	showcasing	buildings	interspersed	between	patches	of	
greenery.	As	the	camera	pans	further,	it	reveals	more	details	of	the	cityscape	before	
zooming	in	on	two	individuals	standing	by	a	railing	overlooking	the	expansive	view	
below.	In	the	second	part	of	the	video,	the	focus	remains	on	the	same	scenic	view
from	above	ground	level,	highlighting	lush	vegetation	covering	much	of	the	lower	
portion	of	 the	frame.	In	the	background,	majestic	mountains	rise	against	the	
horizon,	creating	a	serene	backdrop	for	the	verdant	foreground.

Ours:
The	video	begins	with	a	panoramic	view	of	an	expansive	landscape	featuring	rolling	
hills,	green	fields,	and	scattered	trees.	The	scene	transitions	to	reveal	distant	mount
ains	in	the	background	under	a	clear	sky.	A	person	wearing	a	hat	appears	on	the	
right	side	near	a	concrete	structure,	pointing	towards	something	off-screen	
while	another	individual	is	partially	visible	next	to	them.	The	camera	then	shifts	
focus	back	to	the	scenic	view	before	returning	to	show	more	details	of	the	
landscape	from	different	angles.

The	video	begins	with	a	group	of	people	standing	on	the	roof	of	a	building,	
overlooking	an	urban	area.	The	scene	transitions	to	show	more	individuals	gathered	
around	and	taking	photos	or	videos	from	different	vantage	points	within	the	same	
building.	Finally,	it	shifts	focus	to	street-level	activities	where	several	people	are	
seen	walking	by	various	shops	and	vending	machines	under	clear	skies	in	daylight	
conditions.

The	video	begins	with	a	group	of	people	standing	on	the	roof	of	an	urban	building
,	overlooking	power	lines	and	clear	blue	skies.	The	scene	transitions	to	individuals	
descending	from	the	rooftop	into	a	bustling	street	below	where	various	shops	are	
visible	in	the	background.	A	person	wearing	a	red	shirt	is	seen	taking	photos	or	
filming	while	others	walk	around	near	vendingmachines	filled	with	cans.

Baseline:

Ours:

Baseline: V2T RANK:	2

V2T	RANK:	1

V2T	RANK:	3

V2T	RANK:	1

Text	Query:	Telephone	poll	with	a	transformer	is	seen	briefly. The	transformer	for	the	
power	line	is	in	view.	Person	in	a	red	shirt	appears.	A	man	in	red	comes	through	the	
door.	The	camera	pans	down	to	a	man	exiting	the	building.

Text	Query:	We	see	man	wearing	a	hat	for	the	first	time

Figure 5: Further qualitative example of video captioning. Comparison of the predictions of the caption generated
by the zero-shot captioning model with our model trained with DG-DPO on DiDeMo. The highlighted green depicts
the fine-grained detail generated by our model, which is not provided in the caption generated by the baseline.

The	video	showcases	a	male	athlete	in	the	midst	of his	pole	vaulting routine,	
demonstrating	exceptional	athleticism	and	precision.

Ours:

The	video	features	a	male	athlete	performing	a	javelin	throw	in	an	outdoor	
stadium,	with	spectators	watching	from	the	stands.	The	scene	captures	him	
running	up	to	gain	momentum	and	then	releasing	the	javelin	into the	air	before	
landing	back	on	his	feet	after	completing	the	throw.

The	video	showcases	a	fencing	event,	featuring	athletes	in	white	uniforms	and	
protective	gear.	It	highlights	the	intensity	of	matches	between	fencers	on	an	indoor
court	with	blue	seating	areas	visible	in	the	background.	The	scene	transitions	to	
show	multiple	fencers	engaged	in	their	respective	bouts	while	spectators	watch	from	
the	stands.

The	video	features	a	young	woman,	an	older	man	as	the	head	coach,	and	several	
fencers	engaged	in	matches	or	preparing	for	them.	It	also	includes	scenes	of
athletes	interacting	with	each	other	and	spectators	watching	from	empty
bleachers.

Baseline:

Ours:

Baseline: T2V	RANK:	4

T2V	RANK:	1

T2V	RANK:	7

T2V	RANK:	1

Text	Query:	A	woman	is	shaking	hands	and	handing	out	medals. She	hugs	her	fellow	
team	mates. She	is	then	seen	interviewing	with	the	camera	at	a	jousting	match.

Text	Query:	A	man	runs	holding	a	javelin	on	his	right	hand	on	front	a	crowd.	Then,	the	
man	throws	the	javelin.		A	person	wearing	white	shirt	walks	behind	the	man.	

Figure 6: Further qualitative example of video captioning. Comparison of the predictions of the caption generated
by the zero-shot captioning model with our model trained with DG-DPO on ActivityNet. The highlighted green
depicts the fine-grained detail generated by our model, which is not provided in the caption generated by the
baseline.

Text	Query:	We	first	see	the	baby's	hands.	Baby	looks	to	our	right	baby	places	hands	
to	face	a	baby	in	a	chair	shakes	excitely and	covers	its	face.

Caption:	The	video	features	a	baby	lying	on	their	back	in	various	positions,	
interacting	with	a	blue	and	yellow	toy	seahorse.	The	baby	is	dressed	in	white	clothing	
and	covered	by	a	blue	blanket	while	resting	on	a	purple	pillow	placed	over	a	dark	
fabric	surface	adorned	with	small	star	patterns.

0.29
3.89

0.29
RANK:	3
RANK:	1	(Ours)

RANK:	3Identical

Improved

Text	Query:	Cat	stands	up	on	post.	Blue	lamp	appears.	The	cat	is	now	sitting	up.

Caption:	The	video	features	a	calico	cat	engaging	in	playful	activities	on	top	of	a	
scratching	post,	interacting	with	various	objects	and	people	around	it.	The	
background	includes	elements	like	a	Christmas	tree	adorned	with	colorful	lights	and	
decorations,	adding	to	the	festive	atmosphere.

0.33
5.61

0.33
RANK:	3
RANK:	1	(Ours)

RANK:	3Identical
Improved

Figure 7: Further qualitative example on effectiveness of role-embeddings. We report the relevance scores for
different baseline models of V2T while adopting the caption generated with DG-DPO on DiDeMo. The results
reveal that our models effectively utilize the caption for retrieval.
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