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Abstract

In text-video retrieval, auxiliary captions are of-
ten used to enhance video understanding, bridg-
ing the gap between the modalities. Recently,
with the remarkable capabilities in multi-modal
understanding, retrieval with MLLMs has
emerged as a promising direction. However,
we identify two key limitations: (1) retrieval
models often fail to effectively leverage the aux-
iliary captions, neglecting the semantic distinc-
tion between the caption (as contextual knowl-
edge) and text queries (as retrieval targets); and
(2) auxiliary captions are not typically tailored
for retrieval, evaluated with language genera-
tion metrics such as BLEU that misalign with
retrieval objectives, which require fine-grained
discrimination. To address these challenges,
we propose CaRe-DPO, a retrieval framework
that integrates two key components. First, re-
trieval role-embeddings are introduced to ex-
plicitly differentiate between the roles of hetero-
geneous textual inputs, allowing the model to
better utilize auxiliary captions during retrieval.
Second, we present DualGroup-Direct Prefer-
ence Optimization (DG-DPO), a novel caption
optimization strategy that directly uses retrieval
relevance scores to supervise caption quality.
Moreover, unlike traditional DPO, DG-DPO
incorporates group-level preferences, enabling
the model to learn a global retrieval ranking
over video-caption pairs. Through extensive
experiments, we show that CaRe-DPO signifi-
cantly improves retrieval performance by effec-
tively utilizing the auxiliary knowledge while
generating better captions for retrieval.

1 Introduction

Text-video retrieval is a fundamental task in mul-
timodal learning, aiming to align natural language
descriptions with video content. Traditional re-
trieval methods often adopt dual-encoder architec-
tures, such as CLIP (Radford et al., 2021), which
encode videos and text queries into a shared em-
bedding space. However, these approaches often
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Figure 1: (a) T2V retrieval with the original descriptive
caption (video-to-caption retrieval R@1 of 90.7) com-
pared to the random one. Nearly identical performance
suggests that the model fails to effectively leverage the
auxiliary knowledge. (b) illustrates that the top-1 cap-
tion selected based on captioning metric (BLEU) does
not correspond to the top-1 caption when ranked by the
retrieval score (placed at the bottom rank). Correlation
between those two rankings remains as low as 30%.

struggle with fine-grained semantic matching (Tian
et al., 2024; Wang et al., 2023), particularly when
videos contain complex temporal or contextual dy-
namics. To mitigate this, recent studies (Wu et al.,
2023; Ma et al., 2024; Hur et al., 2025; Yang et al.,
2025) have explored the use of video caption, natu-
ral language descriptions of video content, as aux-
iliary inputs to bridge the gap between the text
queries and video content.

Multimodal Large Language Models (MLLMs)
(Liu et al., 2024; Wang et al., 2024b; Li et al.,



2024c; Zhang et al., 2024) that encompass strong
visual and text understandings, recently caught
attention for handling multi-modal retrieval sys-
tems (Lin et al., 2025; Liu et al., 2025; Wei et al.,
2024). Their capacity to jointly attend to both vi-
sual and textual inputs allows them to interpret di-
verse and complex text queries in relation to video
content while also leveraging auxiliary captions as
additional semantic context, providing a promising
direction for advancing retrieval performance.

However, we observe that naively incorporating
auxiliary captions into these retrieval models often
leads to suboptimal gains. As shown in Fig. 1a,
even when using descriptive captions (90.7 at R@1
for video-to-caption), replacing them with random
captions results in nearly identical performance for
text-to-video retrieval (81.5 vs. 81.6). This sug-
gests that the model fails to effectively leverage
the auxiliary knowledge, overlooking the seman-
tic distinction between the heterogeneous textual
inputs: the caption (as contextual knowledge) and
text queries (as retrieval targets). The inefficiency
in leveraging auxiliary captions is further high-
lighted when examining the alignment between
the caption quality with the retrieval effectiveness.
Specifically, as shown in Fig. 1b, we find that the
top-1 caption selected based on conventional cap-
tioning metrics, e.g., BLEU (Papineni et al., 2002),
often does not correspond to the top-1 caption when
ranked by the retrieval relevance score (placed at
the bottom rank). We also further analyzed that the
correlation between those two rankings is as low
as 30% indicating a significant misalignment.

To this end, we propose CaRe-DPO, Captioning
for Text-Video Retrieval via DualGroup-Direct
Preference Optimization, a retrieval framework
that integrates two key components. First, the re-
trieval role-embeddings introduced in the retrieval
model explicitly differentiate the roles of heteroge-
neous textual inputs, enabling the model to better
utilize the auxiliary captions. Second, our Dual-
Group Direct Preference Optimization (DG-DPO),
which not only directly supervises the captioning
model with the retrieval scores to align with the re-
trieval objective, but also explores beyond standard
single-group retrieval preference (local retrieval
rank of captions given a single input video ), to
dual group preference (global retrieval rank over
video-caption pairs across the dataset). We em-
pirically validate that CaRe-DPO encourages the
MLLM-based retrieval model to further leverage
the auxiliary captions during retrieval and enables

to enhance the quality of the caption, yielding a per-
formance improvement across various text-video
retrieval benchmarks.

The main contributions of ours are as follows:

* We propose CaRe-DPO, a novel retrieval
framework that integrates retrieval role-
embeddings and a retrieval-aligned caption
optimization strategy to effectively leverage
auxiliary captions in MLLM-based text-video
retrieval.

* We introduce DualGroup-Direct Preference
Optimization (DG-DPO), a new objective to
caption for retrieval that supervises caption
generation using retrieval relevance scores
and incorporates both local (within-video) and
global (cross-video-caption pair) ranks.

* Our extensive analyses show that CaRe-DPO
significantly improves the retrieval perfor-
mance by enhancing both the utility of auxil-
iary captions and fine-grained alignment be-
tween the captions with the retrieval objective.

2 Related Work

2.1 Text-Video Retrieval

To improve text-video retrieval, recent studies have
explored the use of captions as auxiliary supervi-
sion. Cap4Video (Wu et al., 2023) treats captions
as data augmentation to generate new training pairs,
enhancing cross-modal interaction. NarVid (Hur
et al., 2025) uses frame-level captions to enrich
video understanding and applies a hard negative
loss for better discrimination. ExCae (Yang et al.,
2025) refines captions through self-learning to en-
hance expressiveness while minimizing manual in-
tervention. Recently, with the advancement of Mul-
timodal Large Language Models (MLLMs), several
works (Lin et al., 2025; Liu et al., 2025) introduced
MLLMs in multi-modal retrieval systems. MM-
Embed (Lin et al., 2025) finetuned the MLLMs to
universal retrievers, adopting the thought prompt-
and-reranking strategies. LamRA (Liu et al., 2025)
proposes reranking strategies of pointwise and list-
wise to further boost the retrieval performance. Yet,
current approaches struggle to explore the adop-
tion of captions into MLLM-based retrieval models
while analyzing the effectiveness of those auxiliary
captions.



2.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) has emerged as an efficient alterna-
tive to reinforcement learning from human feed-
back (RLHF) (Christiano et al., 2017; Ouyang
et al., 2022; Stiennon et al., 2020) for aligning
large language models with human preferences.
Recent studies have explored several limitations
of DPO. To mitigate length bias in preference
data, prior approached introduce reward normal-
ization (Meng et al., 2024), token-level probabil-
ity down-sampling (Lu et al., 2024), and explicit
length regularization (Park et al., 2024). Other stud-
ies attempt to eliminate the reliance on a reference
model to reduce computational cost (Meng et al.,
2024; Xu et al., 2024; Hong et al., 2024). In the
multimodal setting, DPO has been adapted to align
multimodal large language models (MLLMs) for
tasks such as visual question-answering (Li et al.,
2024b) and mitigating hallucinations (Ouali et al.,
2024; Wang et al., 2024a). In this work, we pro-
vide a retrieval-oriented preference modeling for
MLLMs, and propose a dual-group DPO formula-
tion to capture both local and global preference.

3 Preliminary

3.1 Text-Video Retrieval

Text-Video Retrieval consists of two tasks, video-
to-text retrieval (V2T) and text-to-video retrieval
(T2V), which aim to find the most relevant text
or video given the query among the candidates of
video or text. Often to enhance the cross-modal
retrieval, several works (Wu et al., 2023; Yang
et al., 2025; Hur et al., 2025) propose to utilize
the generated caption c(?) of the given video v(?)
to bridge the modality gap with the textual query
t(). Hence, the retrieval dataset can be defined
as Dyt = {V(i), c®, t(i)}fil, where ¢ is often
sampled from a captioning model M.,,. During
inference of text-video retrieval with auxiliary cap-
tion, c is paired with the v(i), which defined as:

ity = argmax PV, cD]e). (1)

Recently, MLLMs have often been employed
for multi-modal retrieval systems, where they are
adopted to re-rank the top-£ text-video candidate
pairs based on joint text-video similarity. Typi-
cally, given the video v = [v1, .., vy,] € RNvXD,
caption ¢ = [c1,..,cn,] € RN*P | and text
t = [t1,..,tn,] € RYVXP where N,, N., N;, and

D denotes the numbers of video, caption, text to-
kens, and the hidden dimension respectively, the
objective for reranking with MLLM-based models
for retrieval can be defined as follows:

L =—log P(ylv,c,t,T). 2)

The output y is defined with y € {True,False}
tokens, resembling a binary classification task, and
note that the auxiliary caption c is simply con-
catenated to the video along with the text query
t. Also, I denotes the instruction prompt to answer
‘True’ or ‘False’ that is omitted for the follow-
ing notations. Hence, for the matching triplets,
ie., (v, c® t0)) where i = j, the model is
trained to output ‘True’, while for the unmatch-
ing triples where ¢ # j the model is expected to
output ‘False’. During inference, following Lin
et al. (2025) and Liu et al. (2025) the typical ap-
proach of measuring the relevance score s is:

s(v,c,t) =log P(y"|v,c, t) 3)

where 4y = True. Thus, for T2V, we simply apply
sof'tmax over the relevance scores across all can-
didate videos with a fixed text query t(?), and vice
versa for V2T. However, we observe that simply
concatenating the caption c into the input hinders
the model from differentiating between the hetero-
geneous textual inputs of the text query t and the
auxiliary caption c. We further observe that the
simple strategy of measuring the relevance score
with the probability of predicting the ‘True’ lacks
fine-grained sensitivity required for retrieval.

3.2 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023), is a typical optimization strategy
adopted to align LLMs output with human pref-
erences, which is derived from the reinforcement
learning objective in RLHF (Ziegler et al., 2019).
Dppo the preference dataset for DPO can be de-
fined with {z®, 4, 5P }Y | where a is an input,
Yw, Y are the preferred and dispreferred outputs,
and the preference is estimated by the Bradley-
Terry (BT) (Bradley and Terry, 1952). Typically,
the objective of DPO, Lppo, can be written as fol-
lows:

ﬁDPo(We; 7Tref) = _E(w,yw,yz)ND

log o (7 (@, ) — Fo(w, 1)),
“)
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Figure 2: Illustration of our CaRe-DPO framework. (a) depicts the MLLM-based retrieval model for text-video
retrieval where we propose to adopt retrieval role-embeddings Rcap and Ryex for the heterogeneous textual inputs
applied to each token, accordingly: auxiliary caption (orange) and retrieval target text (purple). In addition, we
illustrate the contrastive inference strategy (contrasting the probability of generation ‘True’ to ‘False’) of which
is more effective for retrieval. (b) visualizes our DualGroup-DPO mechanism where each caption given the video
is evaluated with the retrieval relevance score s,,. Then, during training, SingleGroup-DPO adopts the local rank
preference, while the DualGroup-DPO adopts the global rank preference, exploring across video-caption pairs.

where 7¢(z,y) = Blog - fy“m)) given my the pol-
icy model to optimize, and Trret the reference model,
B is a hyperparameter which determine distribution
disparity of mg and 7f, and o denotes the sigmoid
function. In standard DPO, the preference of the
given outputs, 4., ¥;, is determined conditioned
solely on a single input x, where the model learns
to prefer one output over another, referred to as the
local preference of x.

4 Method

In this section, we introduce our CaRe-DPO,
Captioning for Retrieval via DualGroup-Direct
Preference Optimization, a novel retrieval frame-
work that enhances text-video retrieval with aux-
iliary captions. First in Sec. 4.1, we introduce a
simple retrieval role embedding mechanism that
helps the model learn the distinct functional roles
of the retrieval target and the auxiliary knowledge.
Then in Sec. 4.2, we present DualGroup-DPO, a
preference optimization method that supervises the
captioning model to further align with the retrieval
objective and propose to explore beyond standard
single group preference to dual group preference
learning. Overall framework is illustrated in Fig. 2.

4.1 Retrieval Role-embeddings

To enable the MLLM-based retrieval model, M,
to differentiate the functional roles of the text
query and the caption given as input for text-
video retrieval, we adopt a simple yet effective
retrieval role-embeddings. Specifically, given the
input triplet (v,c,t), we introduce a new role-
embeddings Ry € RP and Riex € RP, which
are combined to each corresponding tokens of ¢
and t, respectively. Hence, the training objective
of Eq. 2 can be modified as follows:

Eret = - IOg P(Va c—+ Rcapa t+ Rtext) (5)

where Reap = 1, RCpo and Riext = 1n, Ry
Such a simple approach avoids Mt from refer-
encing the caption and the text as heterogeneous
textual input, but enables it to explicitly distinguish
according to its roles: the caption as contextual
knowledge and the text query as retrieval targets.
This role-specific encoding effectively guides the
model to attend differently to the auxiliary caption
and the query during training, leading to more pre-
cise cross-modal alignment and improved retrieval
performance.



Inference Strategy. For the inference stage, we
empirically observe that instead of simply adopting
the probability of generating the ™ token as the
retrieval relevance score (Eq. 3), it is more effective
to use the pairwise score margin between y and
y~ generation as follows:

P(y*|v,c,t)

S(V, C, t) = log W

(6)
Such a contrastive inference strategy allows the
retrieval model to be more keen to the subtle differ-
ences of the input and its output decision, enhanc-
ing the retrieval performance.

4.2 DualGroup-DPO

Retrieval score driven Preference Dataset. To
further handle the inefficiency in leveraging the
auxiliary captions for retrieval, which stems from
the misalignment between the training objective
of the captioning and the retrieval models, we first
construct the preference dataset that directly adopts
the retrieval scores as supervision. First, we sample
K number of captions {cg)}szl for each video
v, denoted as c,(j) ~ Meap(vD) where Mgp(+)
refers to the pretrained captioning model. Then,
we adopt M (+) to evaluate the quality of the
sampled captions for video-text retrieval with the

relevance score. We adopt the score between c,(j)

and the text t,(;) while masking the video tokens
in the attention mask ([J), which we empirically
observe to be more effective in terms of precision
than that of un-masked video tokens. Formally, the
relevance score for preference optimization, s, is
defined as:

PMrct(er ||:|7 C](gi)7 t(Z))

PMret(y_ “Zl? Cl(gi)7 t(Z))
(7

DualGroup-Direct Preference Optimization.
The conventional approach of DPO considers only
local retrieval rank preferences that reference a
single input, referred to as the SingleGroup-DPO.
For instance, given a single video v(%) with its as-

sociated two sampled captions, the preferred cg)

and dispreferred cl(i)

sp(v(i) , c,(j) , t(i)) = log

, preference pair ¢\ | v(?) =

cl(i) | v(®) satisfy the following condition:
Sp (v(i), cg),t(i)) > sy (V(i), cl(i),t(i)>+’y. 8)

v refers to the margin threshold, which en-
forces a minimum difference between retrieval

scores. Building upon the SingleGroup-DPO, our
DualGroup-DPO extends the framework to con-
sider preferences across distinct video-caption pairs
by leveraging their associated retrieval relevance
scores across the dataset, i.e., global retrieval rank
preferences. For instance, given two video-caption
pairs (v(®), c,(j)) and (v, c,gj )), where the for-
mer denote the k-th caption and video for the i-
th sample, and the latter denote the k-th caption
and the video for the j-th sample, the preference
pair among the video-caption pair i.e., ch) ]vg) -
cl(] ) |Vl(] ) , can be defined as follows:

Sp (vg),cg),tg)) > Sp <vl(j),cl(j),tl(j)) + 7.

€)
Notably, the preference can be defined where ¢ = j
and ¢ # j, unlike the SingleGroup-DPO where the
sample pairs always satisfy ¢+ = j. Overall, the
model learns to prefer video-caption pairs, which
results in higher retrieval relevance scores, while
considering the local rank preference of the caption
and the global rank preference across distinct video-
caption pairs, enhancing the retrieval performance.
Hence the Lpg.ppo can be written as:

Loeoro = —E, o o o 0
DG-DPO (vfj),vl@),cg) ,CZ(J))NDDG-DPO

[logg <f6(cg>’vg>) _ fg(cl(j)’vl(j))ﬂ .

Note that in practice, we do not increase the num-
ber of training samples; instead, we reuse the pre-
computed log probability values from the compu-
tation from when ¢ = j to compute Lpg.ppo for
samples where ¢ # j. Hence, we effectively lever-
age the samples within the same batch-aggregated
across multiple GPUs-to adopt the global rank of
video-caption pairs. As a result, without any ad-
ditional computational or memory overhead, the
captioning model is encouraged to explore con-
sistent ranking preferences across a wider range
of sample combinations of video-caption pairs for
video-text retrieval with auxiliary captions.

(10)

S Experiments

5.1 Experiments Setup

Datasets and Metrics. To validate the effective-
ness of CaRe-DPO, we evaluate on three Text-
Video retrieval benchmarks: DiDeMo (Anne Hen-
dricks et al., 2017), ActivityNet (Caba Heilbron
et al., 2015), and MSRVTT (Xu et al., 2016). For
evaluation, we adopt the standard retrieval met-
rics: Recall@K (R@1, R@5, R@10). Note that



Text-to-Video

DiDeMo ActivityNet

Video-to-Text

MSRVTT DiDeMo ActivityNet MSRVTT

R@] R@5 R@10|R@]1 R@5 R@10|R@] R@5 R@I10|R@]1 R@5 R@10|R@] R@5 R@10|R@]1 R@5 R@10

Non-MLLM-based

CLIP4Clip (Luo et al., 2022) 428 685 792 | 405 724 834 |445 714 81.6 |425 70.6 802 |42.6 73.4 856 |43.1 70.5 812
ViCLIP (Wang et al., 2024c) 494 - - 498 - - 525 - - 502 - - 48.1 - - 51.8 - -
MV-Adapter (Jin et al., 2024) 443 72,1 805 | 429 745 857 |462 732 827 427 73.0 819 [43.6 750 86.5 |47.2 748 839
InternVideo (Wang et al., 2022) 579 824 889 |622 859 932 |552 79.6 875 |59.1 81.8 89.0 |62.8 862 933 |579 792 864
UMT (Li et al., 2023) 704 90.1 935 | 66.8 89.1 949 |58.8 81.0 87.1 [67.9 88.6 93.0 | 644 89.1 948 |58.6 81.6 865
Cap4Video (Wu et al., 2023) 520 794 875 - - - 514 757 839 - - - 49.0 752 85.0 - - -
InternVideo2 1B* (Wang et al., 2024d) | 75.3 92.5 95.8 | 68.8 89.7 94.7 |59.4 80.9 86.6 |73.1 92.1 949 |653 88.0 942 [569 769 84.6
InternVideo2 6B (Wang et al., 2024d) | 742 - - 741 - - 62.8 - - 719 - - 68.7 - - 602 - -
MLLM-basedt

MM-Embed (Lin et al., 2025) 81.6 949 963 | 785 - - 61.2 827 88.8 |79.7 949 962 |70.7 - 60.5 823 87.1
LamRA (Liu et al., 2025) 835 948 962 |76.0 928 96.3 |59.7 814 872 |794 948 96.6 | 68.7 90.1 953 |60.7 823 89.0

CaRe-DPO (Ours) ‘85.1 95.0 96.2 ‘79.3 93.7

96.4 | 64.1 83.8

88.8 | 825 952 963 | 742 925 96.2 | 63.8 83.0 873

Table 1: Comparison with state-of-the-art Text-Video Retrieval models. * denotes reproduced results. We also
report the performance of MLLM-retrieval models, which we reproduced adequately for Text-Video Retrieval,
adopting their approach while applying to the same baseline as ours, VideoChat-Flash, denoted with the .

Train Inf. | Text-to-Video | Video-to-Text | Avg. ‘ DiDeMo ‘ ActivityNet | MSRVTT ‘ Avg.
Lra(*) cap. cR@1 R@SR@10R@I R@5SR@10| A T2V V2T | T2V V2T | T2V V2T | A%
(v,t) @ [80.1 78.9 71.8 [68.5 62.0 613 | - Baseline | 83.1 79.6 | 783 740 | 627 636 | -

rand. |81.5 94.6 95.9 |79.1 94.6 96.5 - + Lspr ‘ 82.6 820 | 780 739 | 629 630 | (+0.2)

(v.et) orig. [81.6 943 959 |79.2 947 96.7 |(+0.1) +Lsgopo 844 824|788 741 | 635 633 | (+1.1)

+Lpoppo 851 825|793 742 | 641 638 | (+1.7)

rand. |82.6 94.4 96.0 |76.5 95.0 96.2 | -

(vic+Re,t+ R
orig. 83.1 944 96.2|79.6 94.6 96.6 |(+1.8)

Table 2: Ablation on the Role-embeddings of M ..
We adopt the zero-shot captions with the standard infer-
ence strategy. ‘Avg. A’ denotes an average change in
R@k performance. R, R, refers to Reap, Riexi, ‘rand’
and ‘orig.” denote random and original captions, respec-
tively, and ‘Inf.” denotes the inference stage.

for auxiliary captions, we sample two per instance
and average the performance over those to mitigate
the caption variability while providing more robust
results. See the supplementary for more details.

Implementation Details. For retrieval, we adopt
InternVideo2-1B (Wang et al., 2024d) to initially
compute the similarity between the video and the
text query, and then we retrieve the top-16 candi-
dates for re-ranking. Our baseline MLLM-based
retrieval model, capable of adopting an auxiliary
caption, is built upon VideoChat-Flash (Li et al.,
2024c). For the captioning model, we adopt pre-
trained LLaVA-OneVision (Li et al., 2024a). More
details are presented in the supplement.

5.2 Experimental Results

Main Results. Tab. 1 shows the performance of
the State-of-the-Art text-video retrieval models, in-
cluding non-MLLM-based and MLLM-based. The
results show that our CaRe-DPO outperforms base-
line models across various datasets, especially in
R@1 for both T2V and V2T. Among non-MLLM-
based models, ours effectively improves perfor-

Table 3: Anlaysis on training objectives for M, .
R@1 retrieval performance from the different training
objectives for Mc,p. ‘Avg. A%’ denotes the percentage
increase compared to the baseline across the dataset.

mance over the SOTA model of InternVideo2-6B,
with an average of 14.7%, 7.5%, and 4.0% increase
in R@1 for DiDeMo, ActivityNet, and MSRVTT,
respectively. To further validate the effectiveness
among the MLLM-based retrieval models, we com-
pare against MM-Embed and LamRA. Notably, our
CaRe-DPO shows superior performance with 3.9%,
3.0%, and 5.1% increase compared to MM-Embed,
and 2.9%, 6.2%, and 6.2% increase on average for
R@1 compared to LamRA across datasets. Over-
all, outperforming the baseline models over T2V
and V2T, the results demonstrate its effectiveness
in adopting CaRe-DPO for Text-Video retrieval,
especially with MLLM-based models.

5.3 Quantitative Analysis

Effectiveness of Retrieval Role-embeddings.
Tab. 2 presents an ablation study on the impact of
retrieval role-embeddings for MLL.M-based mod-
els. As shown, the model trained with the auxiliary
caption, +L(V, ¢, t), achieves solid performance
compared to the baseline i.e., R@1 of 81.6 for T2V
and 79.2 for V2T. Nevertheless, the model fails
to fully leverage the auxiliary caption of which
is shown with a minimal performance drop, a 0.1
decrease in R@1 on average, when replacing the



MSRVTT

Inference T2V V2T

DiDeMo ActivityNet
Meap T2V V2T | T2V V2T

(,t) Baseline
56 513 434 | 522 436 490 455
91.8 90.7 ‘ 882 86.5 ‘ 88.9 86.1

921 922 | 837 875 | 89.7 87.1

+ LpG.pPo

49.6 40.8 | 432 37.0 ‘ 40.5 377

s(v, c) Baseline

+ LpG-pro

Table 4: Analysis on caption quality for retrieval.
Note that ‘Baseline’ denotes zero-shot caption adopted
for retrieval. For s(c,t), we adopt the model trained
with (v, c,t), while we mask the video tokens. For
s(v, ) we utilize the model trained solely on (v and t).
We report the R@1 performance for both T2V and V2T.

Text-to-Video Video-to-Text

R@! R@5 R@10 | R@1 R@5 R@10
Captioning Metric
BLEU 841 950 963 | 823 947 964
METEOR 83.8 949 966 | 82.8 949 963
Retrieval Score (s;)
P(yT[v,c,t
G LWVt oy 950 964 | 824 950 964
P(y~|v,c,t)
P(y*|0,c,t)
log =2 —S% 1 g5 1 950 962 | 825 952 963
% Py-O.c.t)

Table 5: Comparison on adopting different prefer-
ence scores s, for constructing Dpg.ppo. Note that
‘Mean R@1’ signifies the average of the R@1 values.
We report the retrieval performance on DiDeMo. Also,
L] denotes masked attention for video tokens.

Text-to-Video Video-to-Text
s(v,c,t) R@l R@5 R@I0 | R@1 R@5 R@10
log P(y*|v,c,t) | 82.6 947 962 | 79.7 947  96.1
log P(y~|v,c,t) | 849 950 962 | 823 951 962
P(y*|v,c,t)
lo 851 950 962 | 825 952 96.3
P(y~|v,c,t)

Table 6: Comparison on the inference strategy. Re-
trieval performance on DiDeMo, where s(v, ¢, t) de-
notes the relevance score adopted for the inference. 3+
and y~ denote denote ‘True’ and ‘False’ respectively.

caption with a random one. In contrast, our model
trained with the role-embeddings presents a supe-
rior performance with 83.1 for T2V and 79.6 in
V2T, while showing higher sensitivity to the qual-
ity of the caption, with notable +1.8 improvement
in average for R@1 compared to the random cap-
tion input. These results highlight the effectiveness
of role-embeddings to encourage the model to dif-
ferentiate the two roles of auxiliary knowledge and
retrieval target, leading to more accurate retrievals.

Analysis on training objectives for Mc,p. In
Tab. 3 we analyze different objectives for train-
ing the captioning model on the performance of
text-video retrieval. As shown, simply fine-tuning
the model on the given dataset denoted as Lspr
(row 2), results in an average of 0.2% improve-

ment on average for R@1 while showing a perfor-
mance degradation for ActivitiyNet, and MSRVTT
of 0.3% for both. In contrast, adopting our Lsg.ppo
or LpG.ppo, Which optimizes the model with DPO
while adopting the retrieval scores for preference
determination, results in superior performance.
Specifically, Lsg.ppo (row 2) that relies on local
preference of the retrieval score, shows 2.5%, 0.4%,
and 0.4% increase for DiDeMo, ActivityNet, and
MSRVTT, respectively. Moreover, further consid-
ering the global preference based on the retrieval
scores, Lpg.ppo (row 3), results in better preci-
sion for retrieval with 3.0%, 0.8%, and 1.3% per-
formance improvement compared to the baseline
across the datasets. The results highlight the effec-
tiveness of adopting the retrieval scores with DPO
to better align the generated captions for retrieval,
and also demonstrate the effectiveness of DG-DPO,
which considers the global preference beyond local
preferences of video-caption pairs.

Analysis on the quality of caption for retrieval.
To further investigate the effectiveness of captions
in retrieval with CaRe-DPO, we design a series of
experiments shown in Tab. 4: text-to-caption (T2C)
(upper half) and video-to-caption retrieval (V2C)
(lower half). T2C assesses how well the auxiliary
caption semantically aligns with the query, V2C
measures the degree to which the caption captures
the distinctive content of the video itself. The re-
sults show that the caption generated from My
trained with Lpg.ppo results in consistent improve-
ments across both retrievals. Specifically, in T2C,
the caption generated after adopting our DG-DPO
yields an average of 15.0% increase in performance,
especially in MSRVTT with 21.0% increase in T2V
and 20.7% increase in V2T. In V2C, the zero-shot
caption itself shows strong explanability of the
video, yet with our Lpg.ppo, it further leads to
performance enhancement with +1.0% in DiDeMo,
+0.9% in ActivityNet, and +1.0% in MSRVTT.

Ablation on preference score for DG-DPO. In
Tab 5, we compare T2V results while adopting
different types of preference scores s, for con-
structing Dpg.ppo. We observe that directly us-
ing retrieval-based scores (rows 3 and 4) consis-
tently outperforms traditional captioning metrics
such as BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005). Specifically,
in the T2V setting, using BLEU and METEOR
leads to a performance drop of 1.0% and 1.3%
in R@1, respectively, compared to using retrieval-



Text Query: A man walk to a chair and sits down. Someone with a guitar sits down.
Person sits down on chair. A man walks back to his seat and sits down

Text Query: The boy in a white jacket moves forward.

Baseline: T2V RANK: 3
e \

The video begins with a view of an indoor setting, featuring various items such as
books and electronic devices on the floor. A person wearing black pants enters
from behind and sits down to play a guitar. The scene transitions smoothly to show
this individual playing the acoustic guitar while seated in front of another piece of

furniture.
\ J

Baseline: T2V RANK: 4
— —

The video begins with a group of people sitting on the grass in an outdoor setting, we

aring various colorful clothing. The scene transitions to show more individuals

seated and interacting casually among themselves while others stand nearby. A

person stands up from their position near the center of the frame, moving towards a
nother individual who is also standing.

\

J

Ours: T2V RANK: 1

Ours: T2V RANK: 1

The video begins with a view of an indoor setting, featuring various items such as
books and speakers in the background. A person wearing black pants enters
from behind and starts playing a guitar while seated on a chair. The camera
focuses closely on their hands adjusting chords and strumming strings throughout
different scenes. In the foreground, there is always a smartphone d

The video features a lively scene of children and young adults sitting on the grass in
an outdoor setting, engaging with each other. The group is diverse, wearing various
colors like blue jeans, black jackets, orange shirts, red jackets, white hoodies,
grey pants, dark clothing, light-colored tops, denim shorts, and striped

S. A person stands out among them, possibly leading or organizing activities

L2 charger placed on a dark surface.

_for this gathering. )

Figure 3: Qualitative example of video captioning. Comparison of the predictions of the caption generated by the
zero-shot captioning model with our model trained with DG-DPO on DiDeMo. We also report the Text-to-Video
retrieval rank for both cases, for which our model results in a higher rank. The highlighted green depicts the
fine-grained detail generated by our model, which is not provided in the caption generated by the baseline.

based preference scores. Note we adopt the masked
version for training due to its better precision.

Analysis on the inference strategy. Tab. 6 ex-
plores the different inference strategies in MLLM
retrieval, and we determine that our contrastive in-
ference strategy yields the best result. The standard
approach (row 1) results in significant performance
degradation compared to those that adopt the proba-
bility of generating ‘False’ (row 2 and 3). Specifi-
cally, simply adopting log P(y~|v,c,t) (row 2),
results in +2.5% increase in R@1 on average,
and adopting log P(y™|v,c,t) —log P(y~|v,c,t)
(row 3), results in +2.7% increase.

5.4 Qualitative Results

Qualitative results of DG-DPO. Fig. 3 illus-
trates captions generated by the base model and
ours. For the same video, our DG-DPO trained
model with direct supervision of retrieval scores
consistently provides more informative results that
align more with retrieval. In Fig. 3 (left), while
the base model only describes the act of playing
the guitar resulting in T2V retrieval rank of 3, our
model captures finer details such as the person be-
ing "seated on a chair" and the presence of “a
smartphone connected to a charger”, resulting in
rank 1. In Fig. 3 (right), our caption depicts rich ele-
ments like “blue jeans, black jackets, .., white hood-
ies”, whereas the baseline model simply writes as
“various colorful clothing”, improving the retrieval
rank from 4 to 1. These richer descriptions align
better with text-video retrieval that requires fine-
grained discrimination among candidates, validat-
ing the effectiveness of DG-DPO.

Text Query: The baby first waves its left hand. The baby lets go of his pajamas.
The baby drops his shirt the baby lets go of his shirt

Caption: The video features a baby lying on patterned bedding, wearing a white shirt
with purple sleeves and adorned with colorful graphics. The baby engages in various
playful actions such as holding the fabric of their shirt, moving arms around, touching
faces, and interacting with objects like a red toy attached to the shirt.
s(v,t) w/o Rey 710.19 +11dentical RANK: 4
s(v,c,t) w/o Rey 1 0.19« Improved RANK: 4
s(v,c,t) w/ Rey RANK: 1 (Ours)

4.29

Figure 4: Qualitative example on effectiveness of
Role-embeddings. We report the relevance scores for
different baseline models on V2T, while adopting the
caption generated with DG-DPO on DiDeMo.

Qualitative results of Role-embeddings. Fig. 4
illustrates the effect of role-embeddings for video-
to-text retrieval, which illustrates that ours grounds
the auxiliary caption better (retrieval rank improves
from 4 to rank 1). Despite the descriptive caption of
“baby engages in various.. actions”, “interacting
with objects like .. attached to the shirt” that closely
relates with the text query, the baseline models
(without the role-embeddings) fails to utilize the
caption, showing retrieval relevance score of only
0.19, whereas ours shows 4.1 point increase to 4.29.

6 Conclusion

We present CaRe-DPO, a novel retrieval frame-
work that enhances text-video retrieval with aux-
iliary captions. Our role-embeddings enable re-
trieval models to explicitly distinguish the roles
of heterogeneous textual inputs. Furthermore, our
DualGroup-Direct Preference Optimization aligns
caption generation with retrieval relevance scores
while leveraging both local and global ranks.



Limitations

In this work, we propose CaRe-DPO that relies on
the MLLM-based models for text-video retrieval.
CaRe-DPO builds upon MLLM-based retrieval
models, which inherently rely on the pre-trained
multimodal knowledge encoded in the MLLM,
which also includes the captioning model adopted.
As a result, the performance of our approach may
be constrained by the underlying capabilities and
biases of the base MLLM, especially in domain-
specific or low-resource settings. Furthermore, the
group-level preference modeling in DG-DPO can
benefit from larger sample groups to learn robust
global ranking signals; however, this increases the
computational cost, posing challenges when scal-
ing to large-scale video-caption datasets.
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A Dataset Details

DiDeMo. DiDeMo (Anne Hendricks et al., 2017)
is a text-video retrieval benchmark, namely the Dis-
tinct Describable Moments, which comprises 10K
videos, which are segmented into 5-second clips
for annotation, totaling 26K annotated moments.
Each moment is richly described with references
to camera movement, temporal transitions, and ac-
tions. We treat the retrieval task as a paragraph-to-
video retrieval where we concatenate all the cap-
tions within the video, following prior works (Luo
etal., 2022; Wu et al., 2023; Li et al., 2023; Wang
et al., 2024d; Cheng et al., 2023; Hur et al., 2025).
Note that the dataset provides 8,394 training and
1,003 test samples.

ActivityNet. Activitynet (Caba Heilbron et al.,
2015) is a text-video retrieval benchmark that is
based on 19K YouTube videos, categorized into
200 activity classes. For each class, there exists
an average of 137 videos, and each video contains
about 1.41 temporal activities. Similar to DiDeMo,
we aggregate all the captions per video and im-
plement the task as a paragraph-to-video retrieval,
while we evaluate on the vall split following Luo
et al. (2022); Li et al. (2023); Wang et al. (2024d);
Cheng et al. (2023); Hur et al. (2025).

MSRVTT. The MSRVTT (Xu et al.,, 2016)
dataset, namely Microsoft Research Video to Text,
contains 10k video clips that span across 20 cate-
gories, of which each clip is annotated by 20 sen-
tences. Following previous protocols (Luo et al.,
2022; Wang et al., 2024d; Li et al., 2023; Cheng
etal., 2023; Hur et al., 2025), we use the 9k sample
set for training (which is about 180k caption-video
pairs), and adopt the 1,000 clips for testing.

DiDeMo ActivityNet MSRVTT
Ml’€| M cap M ret Mcap ‘ M ret MCBP

Learning rate 8e-5 8e-6 | 2e-5 8e-6 le-4  8e-6

Warmup Epochs 1 0.1 1 0.1 1 0.1
Epoch 5 1 5 1 3 1
Batch Size 32 8 32 8 512 8

LoRA r 8 64 8 64 8 64

LoRA « 32 128 32 128 32 128

B - 0.1 - 0.1 - 0.1

¥ - 0.7 - 2.0 - 0.5

Table 7: Training hyperparameters for M, with Ly
and Mcap with Lpg-ppo-

B Implementation Details

Training Details for retrieval. For training an
MLLM-based model for retrieval, we adopt the

recent MLLM of VideoChat-Flash-7B (Li et al.,
2024c). The baseline model is equipped with a vi-
sual encoder of UMT-L (Li et al., 2023) and an
LLM of Qwen2 (Yang et al., 2024). For each
benchmark, we only train the linear projection
layer while adopting LoRA (Hu et al., 2022) for
fine-tuning the model for efficiency. We adopt 16
frames per video for all datasets. All the exper-
iments were done using 8 NVIDIA H100 80GB
GPUS.

Prompts for text-video retrieval. We built sev-
eral different models capable of implementing text-
video retrieval. For the model trained with the loss
of £ = —log P(y|v,t), which is the baseline text-
video retrieval model that does not accept auxiliary
caption as input, we adopted the prompt of “Cap-
tion: [caption]. Does the above video match the
caption? True or False”. Note that we utilized the
word ‘Caption’ for referencing the text query that
is different from the auxiliary caption that we dealt
with in this paper. For training the model with the
loss of £ = —log P(y|v,c,t), which is capable
of adopting the auxiliary caption for training, we
use the prompt of “Video description: [caption].
Caption [caption]. Based on the video and its
description, is the video relevant to the caption?
Answer True or False.” To clarify, the ‘video de-
scription’ corresponds to the auxiliary caption dealt
with in the paper, whereas the ‘caption’ refers to
the text query (retrieval target).

Training Details for captioning. We adopt
LLaVA-OneVision-7B (Li et al., 2024a) for train-
ing the captioning model with Direct Preference
Optimization. Similar to MLLM-based retrieval
model finetuning, we adopt LoRA (Hu et al,,
2022) for parameter-efficient finetuning. LLaVA-
Onevision consists of Qwen2 (Yang et al., 2024)
as the LLM, and SigLIP vision encoder (Zhai
et al., 2023). We adopt 16 frames per video for
all datasets. All the experiments were done using 8
NVIDIA H100 80GB GPUS.

Prompt for captioning. We empirically explored
several ways of generating the caption for the
dataset for zero-shot. Simply prompting the cap-
tioning model to generate a detailed description
about the video will cause the model to generate
a very long paragraph for the given video. Hence,
we utilized the prompt of “Describe this video in
detail with three sentences.”.



Inference Details for retrieval. MLLM-based
retrieval models are adopted as a re-ranker (Lin
et al., 2025; Liu et al., 2025; Miech et al., 2021),
benefiting from the ability to jointly attend to
both visual and textual data. Hence, based on
the InternVideo-1B (Wang et al., 2024d) similarity
computed between the video and the text query, we
retrieve the top-16 candidates for re-ranking. Fi-
nally, we weight the output scores of the two mod-
els following the protocol of Miech et al. (2021).

Inference Details for captioning. To construct
the dataset Dpg.ppo, we sample k = 3 captions per
video using a generation temperature of 0.2, follow-
ing the settings provided by LLaVA-OneVision (Li
et al., 2024a). For the caption generation of evaluat-
ing the retrieval model, we sample & = 2 captions
per video. For our experiments, we average the
retrieval scores across both in order to account for
the variability in caption generation and provide a
more robust performance estimate.

Training details for Lpg.ppo. To construct pref-
erence pairs from ranked retrieval results, we ex-
plore two strategies. First, we compute a global
rank for each sample in the dataset and refer to
these ranks within each batch to determine prefer-
ence between video-caption pairs. The first strat-
egy treats the top half of the ranked samples (i.e.,
higher-ranked pairs) as chosen and the bottom half
as rejected. In contrast, the second strategy forms
preference pairs by grouping the ranked indices
into adjacent pairs, where the higher-ranked sam-
ple in each pair is treated as the chosen one and
the lower-ranked as the rejected. Empirically, we
observe that the latter strategy yields greater per-
formance improvements. We hypothesize that this
is because it produces training pairs with relatively
smaller marginal differences compared to the for-
mer approach, allowing the model to learn more
nuanced preference signals.

C Hyperparameters

In Tab. 7, we report the hyperparameters adopted
for training the retrieval model M, and the cap-
tioning model My, across the text-video retrieval
dataset.

D Further ablation on Role-embeddings.

We conduct further analysis on the role-
embeddings for text-video retrieval on DiDeMo,

12

Train Text-to-Video Video-to-Text
Lret(+) R. | R{ | R@l R@5 R@I0 | R@] R@5 R@I0
(v,c,t) X | X | 81,6 943 959 | 792 947 967
(v,e,t +Ry) X | v | 812 945 956 | 798 943 965
(v,c+ Re, t) v | X | 826 944 959 | 796 946 96.6
(vic+Re,t+Ry) | vV | vV | 831 944 962 79.6 946 96.6

Table 8: Ablation on the Role-embeddings of M.
Note that we adopt the zero-shot captions with the stan-
dard inference strategy. R, and R, denotes Rc,p and
Rtext-

evaluating with and without each function role em-
bedding. The results suggest that the model trained
with Riext, results in higher V2T retrieval at R@1
(79.2 t0 79.8) whereas the model trained with Rcqp,
results in higher T2V retrieval at R@1 (81.6 to
82.6). Notably, combining both role embeddings re-
sults in the best overall performance, achieving §83.1
R@1 in T2V and 79.6 R@1 in V2T. These find-
ings highlight the importance of role-embeddings
integrated for both heterogeneous textual inputs,
enhancing the model’s ability to distinguish the
auxiliary caption and the retrieval target, enabling
the model to utilize more of the auxiliary caption
for retrieval.

E Further qualitative examples

In Fig 5, Fig 6, we further show the qualitative
comparisons between captions from the baseline
and our model on DiDeMo, and ActivityNet. In
addition, we provide further qualitative examples
on the effectiveness of our role-embeddings pre-
sented in Fig. 7. The qualitative examples reveal
that the fine-grained descriptions of the video gen-
erated from our model trained with DG-DPO of
our CaRe-DPO enable the retrieval model to better
align with the text-video retrieval task. Further-
more, the role-embeddings improve the retrieval
models in distinguishing the roles of heterogeneous
textual inputs that include the auxiliary caption and
the text query as retrieval targets.



Text Query: We see man wearing a hat for the first time 1

power line is in view. Person in a red shirt appears. A man in red comes through the

Baseline: V2T RANK: 2 1 |door. The camera pans down to a man exiting the building.

( N

The video begins with a panoramic view of a landscape featuring rolling hills, green 1 Baseline: V2T RANK: 3
fields, and scattered trees under a clear sky. The scene transitions to an urban area - N\

nestled among the hills, showcasing buildings interspersed between patches of
greenery. As the camera pans further, it reveals more details of the cityscape before 1
zooming in on two individuals standing by a railing overlooking the expansive view .
below. In the second part of the video, the focus remains on the same scenic view
from above ground level, highlighting lush vegetation covering much of the lower 1
portion of the frame. In the background, majestic mountains rise against the N
J\orizon, creating a serene backdrop for the verdant foreground.

The video begins with a group of people standing on the roof of a building,

overlooking an urban area. The scene transitions to show more individuals gathered

1 | around and taking photos or videos from different vantage points within the same

* | building. Finally, it shifts focus to street-level activities where several people are

seen walking by various shops and vending machines under clear skies in daylight

1 | conditions.

) NG 7
Ours: V2T RANK: 1 Ours: V2T RANK: 1

' — ) e )

The video begins with a panoramic view of an expansive landscape featuring rolling
hills, green fields, and scattered trees. The scene transitions to reveal distant mount The video begins with a group of people standing on the roof of an urban building
ains in the background under a clear sky. _on the 1 5 and clear blue skies. The scene transitions to individuals
right side near a concrete structure, pointing towards something off-screen M descending from the rooftop into a bustling street below where various shops are
while another individual is partially visible next to them. The camera then shifts visible in the background. _or
focus back to the scenic view before returning to show more details of the 1 filming while others walk around near vending machines filled with cans.

L landscape from different angles. N

Figure 5: Further qualitative example of video captioning. Comparison of the predictions of the caption generated
by the zero-shot captioning model with our model trained with DG-DPO on DiDeMo. The highlighted green depicts
the fine-grained detail generated by our model, which is not provided in the caption generated by the baseline.

= [ = g L : 1
Text Query: A man runs holding a javelin on his right hand on front a crowd. Then, the I Text Query: A woman is shaking hands and handing out medals. She hugs her fellow
man throws the javelin. A person wearing white shirt walks behind the man. team mates. She is then seen interviewing with the camera at a jousting match.

Baseline: T2V RANK: 4 Baseline: T2V RANK: 7

The video showcases a fencing event, featuring athletes in white uniforms and
1 protective gear. It highlights the intensity of matches between fencers on an indoor

N\

The video showcases a male athlete in the midst of his pole vaulting routine,

demonstrating exceptional athleticism and precision. 1 court with blue seating areas visible in the background. The scene transitions to
. . show multiple fencers engaged in their respective bouts while spectators watch from
1 the stands.
\ J - \ J

r

Ours: T2VRANK:1 ! Ours: T2V RANK: 1

—\ | ( —
The video _in an outdoor | | Thevideo features _ an older man as the head coach, and several
stadium, with spectators watching from the stands. The scene captures him . fencers engaged in matches or preparing for them. It also includes scenes .
Funning up to gain momentum and then releasing the favelin nto the wi before | 1 | athletes interacting with each other and spectators watching from empty
landing back on his feet after completing the throw. 1 bleachers.

\. J

\ J

Figure 6: Further qualitative example of video captioning. Comparison of the predictions of the caption generated
by the zero-shot captioning model with our model trained with DG-DPO on ActivityNet. The highlighted green
depicts the fine-grained detail generated by our model, which is not provided in the caption generated by the
baseline.

Text Query: We first see the baby's hands. Baby looks to our right baby places hands I -

to face a baby in a chair shakes excitely and covers its face. 1 |T9Xt Query: Cat stands up on post. Blue lamp appears. The cat is now sitting up. |
Caption: The video features a baby lying on their back in various positions, Caption: The video features a calico cat engaging in playful activities on top of a
interacting with a blue and yellow toy seahorse. The baby is dressed in white clothing I scratching post, interacting with various objects and people around it. The

and covered by a blue blanket while resting on a purple pillow placed over a dark . | background includes elements like a Christmas tree adorned with colorful lights and
fabric surface adorned with small star patterns. decorations, adding to the festive atmosphere.

s5(v,t) w/o Rey [ 0.294 " [dentical RANK: 3 ' s(v,t) w/o R, [ 033+
5(v,c,t) W/o Rey [ 0.29 improved RANK: 3 ! s(v.e,t) w/o Rey (70.33+
s(v,e,t) w/ Rey 3.89 RANK: 1 (Ours) ! s(v,c,t) w/ R,

RANK: 3
Improved RANK: 3
RANK: 1 (Ours)

Figure 7: Further qualitative example on effectiveness of role-embeddings. We report the relevance scores for
different baseline models of V2T while adopting the caption generated with DG-DPO on DiDeMo. The results
reveal that our models effectively utilize the caption for retrieval.
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