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ABSTRACT

Multi-agent reinforcement learning in cooperative tasks usually follows the self-
play setting, where agents are trained by playing with a fixed group of agents.
However, in the face of zero-shot coordination, where an agent must coordinate
with unseen partners, self-play agents may fail. Zero-shot coordination perfor-
mance is traditionally measured by cross-play, where individually trained agents
are required to play with each other. However, cross-play scores vary a lot for dif-
ferent combinations of agents, making it not reliable enough to only use a model’s
average cross-play scores with several models to evaluate its zero-shot coordi-
nation performance. We think the reason for this phenomenon may be that the
cross-play score is highly related to the similarity between an agent’s training
partner and testing partner, and this similarity varies widely. Therefore, we define
the Conditional Policy Similarity between an agent’s Training partner and Testing
partner (CPSTT) and conduct abundant experiments to confirm a strong linear
correlation between CPSTT and cross-play scores. Based on it, we propose a new
criterion to evaluate zero-shot coordination performance: a model is considered
better if it has higher cross-play scores compared to another model given the same
CPSTT. Furthermore, we put forward a Similarity-Based Robust Training (SBRT)
scheme that improves agents’ zero-shot coordination performance by disturbing
their partners’ actions during training according to a pre-defined CPSTT value.
We apply our scheme to four multi-agent reinforcement learning frameworks and
their zero-shot coordination performance is improved whether measured by the
traditional criterion or ours.

1 INTRODUCTION

In recent years, multi-agent reinforcement learning has been attracting increasing attention for its
broad applications in cooperative tasks such as robot navigation (Han et al., 2020), traffic light
control (Calvo & Dusparic, 2018) and fleet management (Lin et al., 2018). To tackle the instability of
multi-agent settings, numerous researchers design specialized training frameworks and get satisfying
outcomes (Rashid et al., 2018; Wang et al., 2020). These algorithms usually follow the setting of
self-play (Tesauro, 1994), where a fixed group of agents is trained and tested together. Self-play-
based training makes it easy for agents to learn cooperative behaviors, however, self-play-trained
agents might overfit training partners and cannot cooperate with unseen agents well.

In order to deeply study the generalization performance of cooperative agents, Hu et al. (2020) put
forward the concept of zero-shot coordination, where agents must coordinate with unfamiliar part-
ners they have not seen before. Since then, researchers have been proposing methods to solve the
problem, such as breaking symmetries (Hu et al., 2020; Treutlein et al., 2021) and learning conven-
tions (Shih et al., 2021). In these papers, cross-play is adopted to evaluate zero-shot coordination
performance, where individually trained agents are required to play with each other. However, we
notice that the cooperative performance of different combinations of agents varies widely, even if
they are trained by the same framework with different random number seeds. Therefore, cross-play
scores of one kind of model with a few kinds of models cannot perfectly represent its zero-shot
coordination performance.

To deal with this problem, we first give an intuitive explanation for why cross-play scores vary: If the
testing partner is similar to an agent’s training partner, the agent might cooperate with this unseen
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partner well. Since the similarity between agents varies widely, so does the cross-play score. To
measure the similarity, we define Conditional Policy Similarity between an agent’s Training partner
and Testing partner (CPSTT), which is the expected probability of an agent’s training partner and
testing partner taking the same action when coordinating with the agent. To explore the relationship
between it and cross-play scores, we conduct numerous experiments in a cooperative card game
Hanabi (Bard et al., 2020). In specific, we train 40 agents of four types in two-agent settings and
get 40x40=1600 different combinations of agents. Their cross-play results reveal a strong linear
correlation between CPSTT and scores: the Pearson correlation coefficient rp between them can
reach up to 0.941. That is to say, cross-play scores increase almost linearly with CPSTT.

Given this linear correlation, it seems inadequate to only rely on cross-play scores to measure zero-
shot coordination performance. For example, if type-A models have high cross-play scores with
type-C models while type-B models have low cross-play scores with type-C models, it does not
necessarily mean that the zero-shot coordination performance of type-B models is worse compared
to type-A models. The reason may be that CPSTT between type-A models and type-C models is
higher. Therefore, we propose a new criterion to evaluate zero-shot coordination, that is if one model
achieves higher cross-play scores than another one given an arbitrary CPSTT, then it is considered
better. Note that given enough cross-play results, the relationship between cross-play scores and
CPSTT can be approximated by a linear fit function, whose parameters can help reflect the proposed
criterion: If the linear fit function of type-A models is above that of type-B models, type-A models
have better zero-shot coordination performance.

Furthermore, based on CPSTT, we propose a light-weighted scheme, Similarity-Based Robust
Training (SBRT), to improve the zero-shot coordination performance of agents trained with self-
play. It randomly disturbs the training partners’ policies during training according to a pre-defined
CPSTT value, in this way the overfitting of the agent to specific training partners is alleviated. We
apply SBRT to four multi-agent reinforcement learning frameworks, IQL (Tan, 1993), VDN (Sune-
hag et al., 2018), AUX and SAD (Hu & Foerster, 2019), and experiments confirm that their zero-shot
coordination performance is improved whether measured by traditional methods or ours.

Our contributions are summarized below:

(1) We define CPSTT and conduct extensive experiments to reveal its strong linear correlation with
cross-play scores: Cross-play scores increase almost linearly with it. This finding can provide a new
perspective on zero-shot coordination.

(2) We notice that the traditional criterion to evaluate zero-shot coordination performance (eval-
uating only with the average cross-play scores) is not reliable enough since cross-play scores of
different combinations of models vary a lot. Based on CPSTT, we propose a new criterion to help
evaluate and analyze zero-shot coordination performance more comprehensively, that is if one model
achieves higher cross-play scores than another one given an arbitrary CPSTT, then it is considered
better. This criterion can better tell whether the agent can zero-shot coordinate well with an unseen
partner.

(3) To improve the zero-shot coordination performance of agents trained with self-play, we pro-
pose a light-weighted scheme SBRT and conduct extensive experiments to confirm its effectiveness.
This successful attempt holds promise for combining robust reinforcement learning with zero-shot
coordination.

2 RELATED WORK

In recent years, multi-agent reinforcement learning has been widely used in multi-agent tasks and
achieved good results (Mahajan et al., 2019; Kuba et al., 2021). Unlike single-agent reinforcement
learning, where the agent only needs to interact with a stationary environment, multi-agent set-
ting brings instability caused by agents’ continuous updating of their policies (Lowe et al., 2017).
To solve this problem, researchers let a fixed set of agents train and test together, which is called
self-play (Tesauro, 1994). Several techniques, such as centralized training and decentralized exe-
cution (Lowe et al., 2017; Wang et al., 2020) as well as value decomposition (Rashid et al., 2018;

1We give the definition of rp in the Appendix. For reference, rp = 1 represents an unrealistically perfect
correlation.
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Son et al., 2019), are employed to enhance understanding and cooperation between agents, but un-
expectedly makes the agents overfit their training partners: Experiments in a cooperative card game
Hanabi (Bard et al., 2020) show that self-play agents can achieve super-human performance, but
their cooperation performance drops severely when paired with unfamiliar partners.

To study this problem in depth, Hu et al. (2020) define zero-shot coordination, which requires agents
to coordinate with unseen partners. Some researchers conduct extensive experiments (Leibo et al.,
2021) and find some intriguing phenomena, such as rule-based AI teammates cooperating better
with humans than learning-based AI teammates (Siu et al., 2021). However, none of them point out
the importance of CPSTT in zero-shot coordination.

Researchers have made several attempts to improve zero-shot coordination performance. Hu et al.
(2020) propose “other-play” (OP) to break symmetries in self-play, which is further augmented with
tie-breaking (Treutlein et al., 2021). Following the idea of avoiding specific conventions among
self-play agents, new methods have been proposed in recent years (Cui et al., 2021; Hu et al., 2021),
which tend to get high intra-algorithm cross-play scores, but performance on inter-algorithm cross-
play is not guranteed (Lucas & Allen, 2022). Another kind of solution is to let agents learn more
knowledge about the task rather than the consensus with specific partners. For example, Shih et al.
(2021) propose a learning framework that forces the agents to learn rule-dependent representation
and convention-dependent representation separately. Some others adopt population-based training
and try to make agents work well with a diverse group of agents (Lupu et al., 2021; Strouse et al.,
2021; Zhao et al., 2021). Our SBRT scheme is different from the above.

We note that zero-shot coordination is similar to robust reinforcement learning in some ways. A
typical setting is model misspecification (Mankowitz et al., 2019; Tessler et al., 2019), where the
environment dynamics during training are different from those during testing. If partners are treated
as a part of the environment (Peysakhovich & Lerer, 2018), zero-shot coordination can be considered
as a special model misspecification. One way to approach this problem is to actively perturb the
environment dynamics while training (Mankowitz et al., 2019), inspired by which we propose SBRT.

3 PRELIMINARIES

3.1 ZERO-SHOT COORDINATION AND CROSS-PLAY

Following Hu et al. (2020), our scheme is based on a Dec-POMDP (Nair et al., 2003). The environ-
ment is partially observable with N agents in it. At time t, with the global environment state being
st ∈ S, agent i gets its observation oit ∼ O(o|i, st) and chooses an action ait according to its action-
observation trajectory τ it = {oi0, ai0, ..., oit} as well as its policy πi: ait ∼ πi(ai|τ it ). The environment
then feeds back a shared reward rt = R(st,at) and updates the global state st+1 ∼ T (s′|st,at),
where at = [a1t , ..., a

N
t ] is the joint action. The training goal is to maximize the expected return

J(π1, ..., πN ) = Eπ1,...,πN [
∑

t γ
trt].

Following the common setting in this area (Hu et al., 2020), we formulate zero-shot coordination
in two-agent scenarios. Suppose an agent with policy π is trained along with a partner agent with
policy πp, the training goal is described as follows:

π∗, π∗
p = argmax

π,πp

J(π, πp) (1)

If π and πp continue to cooperate during testing, they are likely to get high scores. However, zero-
shot coordination requires agents to coordinate with unseen partners. To evaluate agents’ perfor-
mance in this setting, researchers commonly conduct cross-play, where individually trained agents
are put together to cooperate. Besides, the zero-shot coordination performance of a training frame-
work is measured by the average cross-play score of multiple agents trained with this framework.
Below we give a formulaic representation of this process. Suppose the policy trained by a training
framework M has a distribution PM , then in the case that the testing partner is trained by a training
framework Mo, the zero-shot coordination performance of M can be expressed as:

Z(M) = Eπ∼PM ,πo∼PMo
[J(π, πo)] (2)

It is evident that Z(M) heavily relies on Mo. Based on the different choices of Mo, cross-play can
be divided into two categories:
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(1)Intra-algorithm cross-play: Mo = M , which means the unseen partners are trained with the
same training framework but different seeds (Cui et al., 2021). This kind of test is easily accessible
and objective, but its disadvantage is also obvious: it does not indicate whether the agents can
cooperate well with agents obtained by other frameworks.

(2)Inter-algorithm cross-play: Mo = (M1 + M2 + ... + MK)/K, where M1,M2, ...,MK are
other multi-agent reinforcement learning frameworks (Lucas & Allen, 2022). This seems to be
more comprehensive, however, the K tested frameworks may not represent all feasible frameworks,
so the results may be biased.

3.2 TESTBED: HANABI

We conduct our experiments in Hanabi (Bard et al., 2020), a cooperative card game often used to
study zero-shot coordination. Each card has a color and a rank, and players are required to play
cards in a legal order to complete five stacks of cards, one for each color. There are 5 colors and
5 ranks and the maximum score is 25. Note that each player can see the cards in everyone’s hand
except its own, hence it must guess what their cards are based on others’ cues as well as provide
valuable information for others. Players act in turns, and there are three types of operations: hinting,
discarding a card, and playing a card. Hinting is costly, but it tells a partner the location of all cards
of a certain color or a certain rank in its hand. If a card is played at the wrong time, everyone loses
a life token. The game ends when the deck is emptied or three life tokens are lost.

Since this task requires agents to reason about the beliefs and intentions of partners and self-play
agents are quite familiar with their training parters, they can achieve super-human performance (Hu
& Foerster, 2019). However, they easily learn special conventions to get high self-play scores. For
example, one can hint ‘blue’ to let a partner play the first card from the left. This kind of trick helps
quickly achieve self-play goals in Eqa.1 but does not help agents cooperate well with unfamiliar
partners. As a result, zero-shot coordination is difficult in Hanabi, and a large part of the work in
this field experiments on Hanabi (Hu et al., 2020; Treutlein et al., 2021; Lucas & Allen, 2022; Hu
et al., 2021).

4 THE VARIETY OF CROSS-PLAY SCORES

Zero-shot coordination performance is commonly measured by intra-algorithm cross-play scores or
inter-algorithm cross-play scores. However, we conduct experiments and find that cross-play scores
vary a lot, and it may not be enough to make evaluation simply based on the average scores. In spe-
cific, we test four multi-agent reinforcement learning frameworks, IQL (Tan, 1993), VDN (Sunehag
et al., 2018), AUX and SAD (Hu & Foerster, 2019) 2 in two-player Hanabi. We train 10 models of
each framework with different seeds and pair these 40 models to get 1600 combinations. Detailed
cross-play scores are present in Table 1. We also present self-play scores in the table for ease of
comparison.

It can be seen that all these four models have good and close self-play scores. However, their cross-
play scores vary a lot. For example, when zero-shot coordinating with VDN models, IQL and SAD
models behave similarly (10.33±0.65 vs 10.19±0.65), however, when zero-shot coordinating with
AUX models, IQL models are better than SAD models (15.04±0.54 vs 12.75±0.49). Based on
these facts, we think only using cross-play scores to evaluate zero-shot coordination performance is
not reliable enough. Besides, we try to figure out why cross-play scores of different combinations
of agents vary a lot.

5 CONDITIONAL POLICY SIMILARITY

Why do cross-play scores of different combinations of agents vary a lot, even for the combinations of
agents trained by the same framework? We make an intuitive guess that an agent should coordinate
with an unseen partner well if this partner is similar to the agent’s training partner. In this section, we
give a formal definition of this similarity (which we name as CPSTT), propose a way to estimate it,

2Our code is modified based on the opensource codebase of Hu et al. (2021).
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Table 1: Self-play and cross-play scores of four kinds of baseline models

Self-play
Cross-play

with IQL with VDN with AUX with SAD
IQL 23.07±0.08 13.55±0.99 10.33±0.65 15.04±0.54 12.50±0.66
VDN 22.98±0.09 10.34±0.65 7.70±0.86 10.46±0.56 10.19±0.65
AUX 23.57±0.06 15.04±0.54 10.46±0.56 21.55±0.11 12.75±0.49
SAD 23.20±0.06 12.50±0.66 10.19±0.65 12.75±0.49 14.12±0.86

and present experimental results that indicate the strong linear correlation between it and cross-play
scores.

5.1 DEFINITION AND ESTIMATION OF CONDITIONAL POLICY SIMILARITY

Below we give our definition of conditional policy similarity:
Definition 1. In a two-agent game, the conditional policy similarity between π1 and π2 conditioned
on π is:

Sπ(π1, π2) = Eτ∼Pτ(π,π1)
[π1(τ) = π2(τ)] (3)

where Pτ(π,π1) denotes the distribution of action-observation trajectory generated by π and π1

playing with each other.

Conditional policy similarity measures how similar π2 is to π1 from π’s perspective, and can be esti-
mated in a Monte Carlo approach: Let π and π1 play the game several times, and assume there are to-
tal n steps. Then, π1 makes n decisions {π1(τ1), π1(τ2), ..., π1(τn)} based on n action-observation
trajectories: {τ1, τ2, ..., τn}. Let π2 acts based on these n trajectories, and then the estimate for
Sπ(π1, π2) becomes:

S̄π(π1, π2) =
1

n

n∑
i=1

1π1(τi)=π2(τi) (4)

In this paper, we focus on the conditional policy similarity between an agent’s training partner and
testing partner (i.e. CPSTT) in zero-shot coordination. Given an agent with policy π, its training
partner policy πp and testing partner policy πo, CPSTT= Sπ(πo, πp).

5.2 EXPLORE THE RELATIONSHIP BETWEEN CPSTT AND CROSS-PLAY SCORES

We conduct abundant experiments to see whether CPSTT and cross-play scores are correlated. In
specific, we experiment on the four types of models: IQL, VDN, AUX and SAD. They are typ-
ical self-play algorithms, and we apply parameter sharing to them to accelerate training, which
is a widely-used technique (Christianos et al., 2020) for self-play in homogeneous multi-agent
games. Therefore, the agent’s training partner is itself and CPSTT for these four kinds of mod-
els is Sπ(πo, π). We train 10 models of each framework with different seeds and pair these 40
models to get 1600 combinations. For each combination, we record the average scores of 10000
games and estimate Sπ(πo, π) according to Eqa.4.

To visualize how conditional policy similarity affects cross-play scores, we exhibit the detailed
cross-play results in Fig. 1. These figures show the same pattern: scores increase with similarities.
This confirms our guess that if the testing partner is similar to an agent’s training partner, the coop-
eration tends to be good. Then how strong their linear correlation is exactly? We present the Pearson
correlation coefficient (rp) beneath each figure. The lowest is 0.874 (IQL), and the highest is 0.943
(AUX). For reference, rp = 1 represents an unrealistically perfect correlation. Therefore, the linear
correlation between CPSTT and cross-play scores is strong. Based on this fact, we can make a more
comprehensive analysis of ZSC as well as propose new ways to increase cross-play scores.

5.3 EVALUATE ZERO-SHOT COORDINATION PERFORMANCE BASED ON CPSTT

Since cross-play scores vary a lot for different combinations of agents, it is not enough to simply
measure a kind of model’s zero-shot coordination performance by the average scores. It only reflects
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Figure 1: Each figure shows the detailed cross-play results of one kind of model with all kinds of
models. rp is Pearson correlation coefficient, a statistic describing the linear correlation between
two factors (rp = 1 represents a completely linear relationship). Generally speaking, the linear
correlation between CPSTT and cross-play scores is strong. We also give the expression of the
linear fit function approximating the relationship of cross-play scores (denoted as y) and CPSTT
(denoted as x).

how this kind of model cooperates with a specific group of agents (i.e. the testing partners), but does
not tell whether the agents can cooperate well with unseen agents, which heavily depends on CPSTT.
Therefore, we propose a new criterion to evaluate zero-shot coordination performance: Suppose we
need to compare the performance of two models π1, π2 given their training partners π1p, π2p and
testing partner set PMo

. We firstly calculate the cross-play score for πi (i = 1, 2) given a CPSTT
(i.e. Sπi

(πo, πip)):

Jπi
s (x) = E[J(πi, πo)|Sπi

(πo, πip) = x and πo ∈ PMo
] (5)

Then if Jπ1
s (x) > Jπ2

s (x) ∀x ∈ [0, 1], π1 is considered better.

Table 2: Coefficients of variation of es-
timated values

Cross-Play Scores : Std/Mean

IQL-2 VDN-2 AUX-2
IQL-1 0.004 0.015 0.005
VDN-1 0.009 0.009 0.018
AUX-1 0.002 0.030 0.002

Estimates of CPSTT : Std/Mean

IQL-1 0.001 0.003 0.002
VDN-1 0.001 0.002 0.002
AUX-1 0.002 0.005 0.002

In experiments, PMo
contains finite models and it is in-

feasible to calculate Jπi
s (x) for an arbitrary x. However,

given enough cross-play results, it can be approximated
by a linear fit function, which can be obtained using or-
dinary least squares. For example, we present the linear
fit function of each model in Fig. 1, and clearly AUX has
the best zero-shot coordination performance.

Since cross-play scores are highly correlated with CP-
STT and our criterion focus on the cross-play score of an
agent given an arbitrary CPSTT, we believe this criterion
can more comprehensively reflects zero-shot coordination
performance.

5.4 INVESTIGATIVE EXPERIMENTS

5.4.1 IS OUR ESTIMATION OF CONDITIONAL
POLICY SIMILARITIES ACCURATE ENOUGH?

In our experiments, for a combination of agents, the cross-play scores are obtained by averaging the
results of 10000 games, and CPSTT is estimated with Eqa. 4 and data provided by 10000 games. To
figure out whether our estimation is precise enough, we test 9 different combinations of 6 models
(IQL-1,IQL-2,VDN-1,VDN-2,AUX-1,AUX-2). For each combination, we run the test 100 times
(each test representing 10000 games) and get 100 sets of estimated values. Then we calculate the
Std/Mean (i.e. coefficients of variation) of the estimated values to see if our estimation is accurate
enough (Mean can be treated as the true value and Std can be treated as MSE of the estimation) and
present them in Table 2. It can be seen that the standard deviation is quite small compared to the
mean both for cross-play scores and CPSTT , which confirms the accuracy of our estimation.

5.4.2 WHAT IF PARAMETER SHARING IS NOT USED?

In the above experiments, parameter sharing is enabled for self-play models to accelerate training,
which is a practical and general technique. In this case, CPSTT is exactly the conditional policy
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similarity between itself and the zero-shot coordination partner. What if parameter sharing is not
used? Will the strong correlation between cross-play scores and conditional policy similarity still
exist? To answer this question, we train 10 IQL agents without parameter sharing, make them
cross-play with three kinds of models, (IQL, VDN and AUX) and exhibit the results in Fig. 2.
Besides, cross-play results of IQL agents trained with parameter sharing are exhibited together for
comparison. The results confirm the fact that cross-play scores are still strongly correlated with
conditional policy similarity when the models are trained without parameter sharing. It is also worth
noticing that agents trained without parameter sharing tend to have better zero-shot coordination
performance. This may be because parameter sharing facilitates the formation of special conventions
among training partners, exacerbating overfitting.

6 IMPROVE CROSS-PLAY SCORES BASED ON CONDITIONAL POLICY
SIMILARITY
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Figure 2: Cross-play results of IQL
models (trained with and without pa-
rameter sharing) with three kinds of
base models. It can be seen that the
linear correlation between CPSTT and
cross-play scores is still strong in non-
parameter-sharing settings.

Our experiments in the above section show that cross-play
scores increase almost linearly with CPSTT. Therefore,
cross-play scores can be increased in two ways based on
this correlation. The first is to increase CPSTT. How-
ever, zero-shot coordination means cooperating with un-
seen partners, and it is almost impossible to increase the
policy similarity between training partners and unknown
agents. The second is more feasible, that is to improve
cross-play scores while CPSTT is fixed, based on which
we propose our scheme.

6.1 SIMILARITY-BASED ROBUST TRAINING

Inspired by robust reinforcement learning, we put for-
ward a robust training scheme SBRT that can be applied
to common self-play multi-agent reinforcement learning
frameworks. The training objective of it is

π∗, π∗
p = argmax

π,πp

J(π, πa) s.t.CPSTTπ(πp, πa) = α

(6)
In the first phase of training, we set α = 1, which means
the training is the same as self-play, allowing the agents
to quickly optimize their policies. After training for Nst

epochs, when the training is close to convergence, we
set α = αr and perform robust training for Nrt epochs.
αr, Nst and Nrt are training hyperparameters. We imple-
ment πa by disturbing the partner’s chosen action when
it interacts with the environment. To be specific, given an action-observation trajectory τ and the
action generated by πp: ap = πp(τ),

πa(τ) =

{
ap, with probability α

aalt ̸= ap, with probability 1− α
(7)

We test three ways of choosing aalt:

Worst alternative action: This choice requires πa to satisfy

πa = argmin
πa

J(π, πa), s.t.CPSTTπ(πp, πa) = α (8)

This method follows the idea of adversarial training (Pan et al., 2019), where an adversary tries to
minimize the main agent’s performance. Under a DQN-based framework with a Q-function Q(τ, a),
aalt = argmina Q(τ, a).

Best alternative action: This choice requires πa to satisfy

πa = argmax
πa

J(π, πa), s.t.CPSTTπ(πp, πa) = α (9)
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Table 3: Averaged Cross-Play Scores of OP and SBRT Models

Model Type Intra-Alg Inter-Alg Model Type Intra-Alg Inter-Alg
IQL 13.55±0.99 12.39±0.21 AUX 21.55±0.11 13.05±0.19
IQL+OP 11.93±1.10 11.35±0.22 AUX+OP 21.52±0.15 13.27±0.20
IQL+SBRT 15.72±0.70 13.25±0.20 AUX+SBRT 21.05±0.10 12.14±0.18
VDN 7.70±0.86 9.97±0.20 SAD 14.12±0.86 11.32±0.20
VDN+OP 6.11±0.81 8.65±0.22 SAD+OP 11.35±0.93 9.25±0.19
VDN+SBRT 11.38±0.92 12.14±0.20 SAD+SBRT 14.70±0.77 13.19±0.19

The reason for this choice is that the policies of zero-shot coordination partners are usually not bad,
hence this restriction might make πa more like them. Under a DQN-based framework with a q
function Q(τ, a), ap = argmaxa Q(τ, a) and aalt = argmaxa ̸=ap

Q(τ, a).

Random alternative action: This solution simply picks a random feasible action as aalt. It maxi-
mizes the exploration of possible unseen partner policies instead. Experiments show that this solu-
tion has the best overall performance (see Appendix. B for experiment details).

6.2 EVALUATION OF SBRT

In this subsection, we combine our scheme with IQL, VDN, AUX and SAD to see whether SBRT
improves the zero-shot coordination performance of common self-play agents. We also include
OP (Hu et al., 2020) in the comparison, which breaks symmetries to increase cross-play scores.
We choose random alternative action as aalt for SBRT and set αr = 0.8. Besides, we set Nst =
400, Nrt = 100 to make the total training epochs of SBRT models equal to that of baseline and OP
models.

We test the cross-play performance of them paired with all models to get a more comprehensive
analysis and visualize detailed results in Fig. 3. The linear fit functions of SBRT models are higher
than that of OP models and baseline models, especially for VDN and SAD, so the zero-shot coor-
dination performance of SBRT models is better from the view of our proposed criterion. To further
prove the effectiveness of our proposed scheme, we use traditional ways to evaluate the models,
presenting average intra-algorithm and inter-algorithm cross-play scores in Table 3. It can be seen
that SBRT effectively increases the cross-play scores of IQL, VDN and SAD. However, it slightly
reduces the cross-play scores of AUX, which is caused by SBRT lowering CPSTT of AUX models.
In general, our scheme improves zero-shot coordination performances of self-play models whether
measured by the traditional criterion or ours.
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Figure 3: Detailed cross-play results of baseline models as well as OP and SBRT models. Judg-
ing from the linear fit function that approximating the relationship between cross-play scores and
CPSTT, SBRT models have the best zero-shot coordination performance.

6.3 HOW αr AFFECTS THE PERFORMANCE OF SBRT?

In our experiments, we set αr = 0.8 for SBRT, whose value represents the strength of policy
disturbance while training. Note that αr = 1 means no disturbance at all, thus when αr > 0.8,
SBRT will have less impact. What if we set it to a smaller value, i.e αr = 0.6? We visualize how
αr affects the performance of IQL+SBRT, VDN+SBRT and SAD+SBRT in Fig. 4. It can be seen
that SBRT models with αr = 0.6 have lower cross-play scores as well as lower conditional policy
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Figure 4: Detailed cross-play results of SBRT models trained with different αr. Note that αr = 1
indicates baseline models.

similarities, which is because small αr indicates strong disturbance on training agents’ policies, and
too strong disturbance makes training difficult.

7 CONCLUSION AND FUTURE WORK

In this paper, we focus on zero-shot coordination, where agents are required to cooperate with unseen
partners.Researchers commonly rely on average cross-play scores with a group of testing partners to
evaluate agents’ performance in this setting, however, we notice that cross-play scores of different
combinations of agents vary a lot. As a consequence, the average cross-play scores heavily depend
on the choice of testing partners, making the criterion not reliable enough. To handle this problem,
we firstly define conditional policy similarity and find it important in zero-shot coordination: Cross-
play scores are strongly correlated with CPSTT, and the Person correlation coefficient between
them can be as high as 0.943. Based on this correlation, we propose a new criterion to evaluate zero-
shot coordination, that is if one model achieves higher cross-play scores than another one given an
arbitrary CPSTT, then it is considered better. Furthermore, the role of conditional policy similarity
goes beyond assisting in the assessment. Its strong correlation with cross-play scores also indicates
new ways to improve the scores. We propose a light-weighted scheme SBRT, that aims to improve
the zero-shot coordination performance of agents, whose effectiveness is confirmed by adequate
experiments.

Current work on zero-shot coordination mainly focuses on making agents learn intrinsic rules of
cooperative games or avoiding special conventions between training partners. We hope the discov-
ery of the strong correlation between cross-play scores and CPSTT along with our SBRT scheme
inspired by robust reinforcement learning provide a new perspective for research in this area.

Our work can be extended in several ways. Firstly, we define conditional policy similarity in scenar-
ios with discrete actions, and the definition may be extended to scenarios with continuous actions.
Secondly, the definition of CPSTT can be extended to population-based training, where each agent
has several training partners. Thirdly, SBRT can be further improved by wisely disturbing certain
actions as some robust reinforcement learning frameworks do.
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A PEARSON CORRELATION COEFFICIENT AND LINEAR FIT FUNCTION

The linear correlation between two factors is commonly measured by the Pearson correlation co-
efficient (rp), which is the covariance of the two factors divided by the product of their standard
deviations. Given a set of values of two factors X and Y: {(x1, y1), (x2, y2), ..., (xn, yn)}, rp can be
calculated as:

rp =
n
∑

xiyi −
∑

xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2i − (
∑

yi)2
(10)

rp ranges between [−1, 1], and the closer its absolute value is to 1, the stronger the linear correlation
between the two factors is. In this case, the relationship between X and Y can be approximated with
a linear fit function y = kx+ b, whose parameters are calculated using ordinary least squares:

k, b = argmin
k,b

n∑
i=1

(yi − kxi − b)2 (11)
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B DETAILS: HOW DIFFERENT aalt CHOICES AFFECT SBRT?

We try three variants of SBRT, where SBRT(A) means best alternative action, SBRT(B) means worst
alternative action and SBRT(C) means random alternative action. We apply them to IQL, VDN and
AUX and execute cross-play. Results are detailed in Fig. 5. In general, SBRT(C) can improve
the zero-shot coordination performance of self-play agents the most. Sometimes solution A and B
improve cross-play scores more when CPSTT is high but is not so good when CPSTT is low. We
speculate that solution C maximizes the diversity of πa so that the main agent can better zero-shot
coordinate with more agents.
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Figure 5: Detailed cross-play results of different types of SBRT models.
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