
Coarse and Fine-grained Confidence Calibration of LLM-based
Text-to-SQL Generation

Anonymous ACL submission

Abstract

Calibration plays a crucial role as LLMs are in-001
creasingly deployed to convert natural language002
questions into SQL over commercial databases.003
In this work, we study the calibration of the004
confidence attached to both the whole query,005
and for the first time, to sub-parts of the query.006
For whole queries, we demonstrate that the sim-007
ple baseline of deriving confidence from model008
assigned whole sequence probability yields the009
best calibration surpassing recent self-check010
and verbalization methods. For fine-grained011
calibration, we propose a novel method of as-012
signing confidence to nodes of a logical rela-013
tional algebra tree representation of the SQL014
string. We present an extensive comparison015
spanning two popular Text-to-SQL benchmarks016
on multiple LLMs, and draw interesting in-017
sights about various calibration methods.018

1 Introduction019

As enterprises attempt to harness LLMs for convert-020

ing natural language queries over their databases021

into SQL programs, it is critical for them to obtain022

well-calibrated probabilities (Steyvers et al., 2024;023

Baan et al., 2023) for when the generated SQL024

is incorrect. Recently, several techniques (Xiong025

et al., 2024; Tian et al., 2023) have been evalu-026

ated for calibrating LLMs, including pooling token027

probabilities (Stengel-Eskin and Van Durme, 2023),028

prompting LLM to verbally express confidence,029

self-reflection using True/False questions (Kada-030

vath et al., 2022) and entropy over multiple gener-031

ated responses (Kuhn et al., 2023). Most of these032

have been studied over tasks where the response033

is either a single label or a short string. For the034

Text-to-SQL task, the generated response is long035

and structured, and it is unclear if the conclusions036

of existing studies carry over to this task.037

We evaluate several techniques for obtaining038

well-calibrated confidence for the correctness of039

the whole SQL. We evaluate on two prevalent Text-040

to-SQL benchmarks Spider and BIRD over pre- 041

dicted SQLs obtained using two models GPT-4, 042

a proprietary model and CodeS, an open source 043

state of the art model finetuned for the Text-to-SQL 044

task. Our study brings out two conclusions differ- 045

ent from prior calibration studies: (1) We show that 046

the simple baseline of deriving confidence from the 047

model assigned whole sequence probability yields 048

the best calibration. In earlier work on calibration 049

of QA tasks (Tian et al., 2023) verbalized scores 050

from follow-up questions was shown to provide 051

up to 50% better calibration. One reason could be 052

that the SQL output is significantly more compli- 053

cated than short answers in QA and classification 054

tasks, and the model struggled to reason on cor- 055

rectness of a whole SQL. These conclusions are 056

in alignment with the paradox highlighted in re- 057

cent work on the gap between the generative and 058

evaluation capacity of modern LLMs (West et al., 059

2024; Oh et al., 2024). Prior calibration studies on 060

simpler tasks seemed to have not hit that boundary. 061

Second, unlike previous work (Stengel-Eskin and 062

Van Durme, 2023) which proposed the minimum of 063

token probabilities for whole-sequence calibration, 064

we found the product of probabilities, which is also 065

the model assigned whole sequence probability, to 066

perform significantly better. 067

For long responses, a user may find it useful to 068

obtain fine-grained confidences over various parts 069

of the generated outputs, instead of a single confi- 070

dence score over the entire output. In Table 1 we 071

show an example to motivate the usefulness of fine- 072

grained calibration of an SQL. For fine-grained 073

calibration of logical outputs like SQL, one impor- 074

tant design decision is choosing the unit at which 075

confidence is measured. Token-level confidence 076

is not meaningful for SQL, even though the LLM 077

generates the SQL as a string token-by-token. One 078

reason is that there are many different equivalent 079

ways of expressing the same logic as an SQL string. 080

We propose an alternative design where we convert 081

1

Natural language question:
Which gas station has the highest amount of revenue?
Gold SQL:
select transactions_1k.gasstationid from transac-
tions_1k group by transactions_1k.gasstationid order by
sum(transactions_1k.price) desc limit 1
Predicted SQL:
select transactions_1k.gasstationid from transac-
tions_1k group by transactions_1k.gasstationid order by
sum(transactions_1k.amount) desc limit 1

Table 1: An example query where the predicted SQL
is wrong only in one column (marked in red). A cali-
bration method that could assign low confidence to this
wrong output could be more useful than assigning low
confidence to the entire predicted SQL (Schema not
shown).

the SQL into the implied relational algebra tree082

(RAT). We then measure confidence in units of a083

subtree of the RAT. We train a separate Confidence084

model that assigns to each node a probability of085

the subtree below it being correct. For training086

the model we collect predicted SQLs from diverse087

LLMs and also generate perturbations of the gold088

SQL to introduce synthetic errors. Our evaluation089

on the test set shows that the error model that we090

trained is significantly better calibrated than the091

calibration of whole SQL. Further, not surprisingly,092

node level calibration provides much better agree-093

ment with ground truth label compared to token094

level calibration.095

Our main contributions are as follows: (1) We096

compare calibration of several methods of attaching097

confidence to SQL generated from state-of-the-art098

LLMs. (2) We introduce the problem of fine099

grained calibration for the Text-to-SQL task and100

propose a novel method of attaching fine grained101

confidence course in units of subtrees in the re-102

lational algebra tree (RAT) corresponding to the103

predicted SQL. (3) We design a Confidence model104

to attach fine-grained confidence scores to nodes of105

the RAT. (4) We present extensive comparison of106

both existing methods and our proposed methods107

for both whole SQL and fine-grained confidence on108

two popular benchmarks for Text-to-SQL genera-109

tion and over predictions from two different LLMs.110

2 Related Work111

Calibration of classification models is a classical112

ML topic (Niculescu-Mizil and Caruana, 2005;113

Guo et al., 2017a), with much work in pre-LLM114

NLP literature (Kumar and Sarawagi, 2019; Desai115

and Durrett, 2020). We focus on recent work on116

calibration of tasks on LLMs . 117

Calibration of LLMs for short response gener- 118

ation Kadavath et al. (2022) study LLMs on a 119

variety of tasks and propose to extract confidence 120

by a self-probe using a follow up True/False ques- 121

tion to the LLM on whether the generated response 122

was correct. Probability of True in the follow up 123

question is measured as confidence. Tian et al. 124

(2023) further expand the set of prompts asking to 125

verbalize confidence and show that a better strategy 126

for calibration is getting the LLM to generate top- 127

K responses with probabilities. Ren et al. (2023) 128

also show that self-evaluation improves calibration. 129

Zhou et al. (2023) study if language markers like: 130

"I believe", "I am sure.."etc reflect confidence, and 131

show that these language markers do not faithfully 132

reflect uncertainty. Kuhn et al. (2023) proposes 133

to generate multiple answers with LLM assigned 134

confidence for each, cluster them based on seman- 135

tic similarity, measures entropy over the total con- 136

fidence across the clusters. Xiong et al. (2024) 137

also studies these techniques and additionally in- 138

troduces PairRank that scores based on the ranking 139

of responses across multiple Top-K sets. 140

Uncertainty for Semantic Parsing and SQL. 141

Stengel-Eskin and Van Durme (2023) reports lack 142

of calibration of Text-to-SQL systems and mea- 143

sure confidence as the minimum token probability 144

over tokens in the entire predicted SQL sequence. 145

Another related topics is measuring how well se- 146

mantic parsing models represent ambiguity in the 147

input by, for example, outputting both ambiguous 148

logical forms in the top-k output (Stengel-Eskin 149

et al., 2024) and (Bhaskar et al., 2023). 150

Fine-grained Quality Estimation. In the pre- 151

LLM era, one area of focus in the machine trans- 152

lation community was assigning word-level qual- 153

ity metrics (Lommel et al., 2014) to translations. 154

The techniques deployed range from training spe- 155

cial models to score words by synthetically insert- 156

ing errors in a gold parallel dataset (Zhou et al., 157

2021; Tuan et al., 2021) and reasoning on likeli- 158

hood obtained from the original model on various 159

perturbations of the source or target based on the 160

error type Vamvas and Sennrich (2022); Jain et al. 161

(2022). They focus on insertion and omission er- 162

rors of words in the source and target sentences, 163

whereas for semantic parsing we propose a more 164

logical definition of error in terms of mismatch of 165

operators. Huang et al. (2024) extends above for 166

2

long form generation, example as in summariza-167

tion. They do not assign fine-grained confidence,168

and their main focus is obtaining a distribution over169

confidence over the entire long form generation.170

3 Whole Query Calibration171

Let xi be an input natural language question on a172

database schema s for which a Text-to-SQL model173

M predicted an output SQL ŷi. We explore a174

number of methods of attaching a score r(ŷ) that175

indicates if ŷi is a correct SQL for x. The LLM176

prompts used for each of these methods appear in177

Tables 6,7 and 8 of the Appendix.178

Pooled Token-level Probabilities. The genera-179

tive model M assigns a probability P (ŷ|x) com-180

posed out of auto-regressive token probabilities181

Pr(ŷt|x, ŷ<t). A natural method is to use these182

token probabilities for calibration. Let n denote183

the number of tokens in ŷ. These can be converted184

into a confidence score r for the whole query ŷ by185

pooling the token probabilities in various ways:186

1. product of probability
∏n

t Pr(ŷt|x, ŷ<t) [prod]187

2. geometric mean n
√∏n

t Pr(ŷt|x, ŷ<t) [geo]188

3. minimum mint∈[n] Pr(ŷt|x, ŷ<t) [min]189

4. arithmetic mean 1
n

∑n
t=1 Pr(ŷt|x, ŷ<t) [avg]190

LLM Self-checks generated SQL. Another191

emerging trend is asking the LLM to self-reflect on192

the correctness of the generated SQL. This can be193

in the form of a True/False answer [Bool], where194

confidence is measured as r(ŷ) = P (True|ŷ,x)195

(Kadavath et al., 2022) or where the LLM is asked196

to directly output the probability of the SQL being197

correct [Probs], measuring confidence as r(ŷ) =198

M(ŷ,x) (Tian et al., 2023).199

Relative score with Variant output SQLs. Given200

the huge difference in the level of difficulty of SQL201

generation across different questions and schema,202

it may be difficult to obtain comparable scores203

across different instances. Relative scores across204

alternative SQLs may be more meaningful. Ac-205

cordingly, we designed this method: First prompt206

the model M to generate multiple structurally di-207

verse SQLs. Denote alternative plausible SQLs208

Yx for x. Out of these we eliminate those SQLs209

that are semantically equivalent to ŷ based on210

whether Acc(ŷ,y′) is the same for each y′ ∈ Yx.211

Then measure the difference in score of the pre-212

dicted SQL and the best alternative SQL, that213

is rALT = r(ŷ) − max(ŷ′)∈Yx:Acc(ŷ,ŷ′)=0 r(ŷ
′).214

Other measures could be entropy in scores of the215

alternatives as proposed here (Kuhn et al., 2023). 216

4 Fine-grained Confidence 217

Whole query calibration does not allow for fine- 218

grained error-identification. A single score for a 219

whole SQL is not useful to identify what part is 220

likely incorrect. A fine-grained confidence calibra- 221

tor could be useful to draw a user’s attention to 222

specific parts of the generated SQL (see example 223

in Table 1) that the model is uncertain about. 224

4.1 Baseline Token-level method 225

A baseline for fine-grained calibration is to just 226

assign token-level confidence derived from the for- 227

ward probability assigned by the LLM during auto- 228

regressive generation. We list the limitations of 229

token-level confidence for the Text-to-SQL task, 230

and then present our approach. 231

Limitation of Token-level confidence. SQL is 232

a structured language, and token-level confidence 233

may provide inconsistent scores. For example, if 234

a generated SQL has chosen a wrong table, the 235

LLM may assign arbitrarily different confidence 236

values to different tokens of the table name. Further, 237

the SQL language is declarative and the order in 238

which token probabilities are assigned during auto- 239

regressive generation, could fail to capture consis- 240

tency errors across different parts of the SQL. For 241

example, one common source of hallucination is 242

using column names in the select clause that are 243

not part of the tables mentioned in the from clause. 244

A model with bidirectional attention has a better 245

chance at reasoning about such inconsistencies. An- 246

other challenge with token-level calibration is that 247

there are different ways of expressing the same un- 248

derlying computation logic as an SQL string. For 249

example, these two SQLs are equivalent. 250

SELECT T1.c1 AS col1 FROM tab1 T1 WHERE T1.c2 > 10 251
SELECT c1 FROM tab1 WHERE tab1.c2 > 10 252

In general, identifying isomorphisms of two 253

SQLs is undecidable (Abiteboul et al., 1995). 254

While heuristics exist for whole query equiva- 255

lence (Zhao et al., 2024), fine-grained calibration 256

entails a much harder task of assigning correctness 257

labels to individual tokens. 258

4.2 Proposed: Confidence to Nodes of 259

Relational Algebra Tree 260

We propose to reason about fine-grained calibration 261

in terms of a logical Relational Algebra Tree (RAT) 262

representation of the SQL, rather than the SQL 263

3

Figure 1: Relational algebra tree of Gold (y) and
Predicted SQL (ŷ). With each node of ŷ are attached:
(1) the predicted confidence and (2) the 0/1 correct-
ness label of if the subtree underneath appears in
Gold y. The Green and Red denotes if confidence
scores are accurate or not. Postorder traversal of ŷ is
((1)((player.heaviness)((player.player_api_id)(player)
Project)Orderby_desc)Limit).

Figure 2: Architecture of the Confidence model for fine-
grained calibration.

string. Figure 1 presents an example of a RAT for264

an SQL string. Each node is a either a full schema265

name or an relational operator or a string literal266

clearly marked as such in the tree. Our goal is to267

assign a score to each node of the RAT to denote268

the correctness of the subtree rooted at that node.269

SQL to RAT. We pre-process the SQL string to270

standardize column names, convert SQL keywords271

and schema items except literals to lowercase, re-272

moving extra white spaces etc We then convert273

the canonicalized SQL to RAT using a relational274

algebra grammar as in (Rubin and Berant, 2021).275

Node-level Confidence Model. We train a276

transformer-based confidence model E for fine277

grained calibration. The input to the confidence278

model E is a concatenation of the Schema s, Ques- 279

tion x, and the predicted SQL ŷ converted into 280

its RAT t̂. The RAT is converted into a token- 281

sequence using a post-order traversal. An example 282

of a post-order serialized RAT is shown in caption 283

of Figure 1. We tokenize and encode the schema, 284

question, and RAT with a pre-trained LLM like 285

CodeLlama that employs causal attention. Since 286

we traverse the RAT nodes in a post-order manner, 287

each node gets contextualized with respect to all 288

nodes under it in the subtree, along with the ques- 289

tion x and schema s. To these we add positional 290

encodings, which are also learnable parameters. 291

Then we apply multiple bidirectional attention lay- 292

ers on the encoded input. Finally, a linear layer is 293

used at the last token of each RAT node n to get 294

the output confidence r(n, t̂) that the sub-tree at 295

the node is correct. Figure 2 presents an overview 296

of our architecture. 297

Training of Confidence model. We train the 298

model using SQL predicted from multiple LLMs. 299

We also create perturbations of training data by 300

replacing schema items with other schema items 301

from the same database based on Cosine similarity 302

of embeddings of schema items. To train the model 303

to output correct confidence r(n, t̂) of a node n in 304

a predicted RAT t̂ we use a cross-entropy loss on 305

gold 0/1 correctness label a(n, t̂). We determine 306

a(n, t̂) label based on whether subtree rooted at n 307

appears in the gold RAT. The node matches have to 308

be defined carefully because the same logical oper- 309

ation can be expressed in several isomorphic forms. 310

First of, whenever a predicted SQL execution re- 311

sult matches those of the gold SQL, all nodes of 312

the predicted RAT are labeled correct. Otherwise, 313

we assign node-wise matching based scores as fol- 314

lows: Nodes are matched using hashing. Hashes 315

are calculated for each node in a recursive man- 316

ner where hash of a node is calculated based on 317

hash of its children. For commutative operators 318

children of a node are sorted before hashing . To 319

handle permutation-invariance of table names in 320

multi-way joins we perform the sorting across mul- 321

tiple levels of nodes in corresponding join nodes. 322

In general a node should be labeled correct even if 323

its parents are incorrect. For example consider sub- 324

trees c > 10 and c = 10 , here c and 10 should be 325

marked as correct even if operator is wrong. But, to 326

prevent incidental misaligned matches, we include 327

certain parents e.g. Project, Order-by as part of 328

the hash. We present an example of gold and pre- 329

4

dicted RAT along with assigned node correctness330

labels in Figure 1.331

5 Experiments332

We compare the whole query and fine-grained cal-333

ibration methods discussed so far across different334

datasets and LLMs.335

5.1 Datasets336

We evaluate on 31 database schemas spanning two337

popular Text-to-SQL benchmarks Spider (Yu et al.,338

2019) and BIRD (Li et al., 2023) for natural lan-339

guage utterances x and their gold SQL y. For each340

of these, we measure calibration of predictions ob-341

tained from two different LLMs GPT-4 (OpenAI342

et al., 2024)(‘gpt-3.5-turbo-16k’) and CodeS (Li343

et al., 2024). The prompts used for SQL generation344

is provided in Table 6. Although these models do345

not guarantee syntactically valid SQL generation,346

we assume that a DB engine can be easily called347

to check for grammatical validity and eliminate348

invalid generations. For fine-grained experiments,349

we also filter away queries for which the library350

we used for generating relational algebra tree fails.351

The final statistics of our test data appear in Table 2.352

Spider BIRD
GPT4 CodeS GPT4 CodeS

Total Queries 1034 1534
databases 20 11
% Correct 77.6 % 59.1 % 43.1 % 19.6 %

Table 2: Summary of datasets used for calibration.

353

5.2 Metrics354

Each data sample is comprised of five parts:355

(xi,yi, ŷi, ai, ri) where xi is natural language356

question, yi is gold SQL, ŷi is predicted SQL, ai =357

Acc(yi, ŷi) is the 0/1 label indicating whether the358

predicted SQL ŷ produces identical execution re-359

sults as the gold SQL y, disregarding the order360

of columns or rows in the result set, and ri is the361

confidence value returned by a method evaluated.362

The raw confidence scores returned by most meth-363

ods often need to be monotonically transformed364

for recalibration. Many methods have proposed365

to use a small validation dataset to calibrate the366

raw scores (Niculescu-Mizil and Caruana, 2005;367

Guo et al., 2017a). We consider two options (1)368

Platt scaling (P) (Platt, 2000), where ri is sigmoid369

scaled with two parameters temperate t and bias370

b, to maximize the likelihood of given ai under 371

a model σ(tri + b) where σ(z) = 1
1+e−z , and 372

(2) Isotonic regression (I) (Zadrozny and Elkan, 373

2002) which adjusts ri so that
∑

i(ai − T (ri)) is 374

minimized, where T is a step-wise constant iso- 375

tonic (non-decreasing) function. We denote the 376

calibrated confidence score as rTi . The metrics 377

are calculated using five-fold cross validation. For 378

whole query experiments, we divide the dataset 379

into five schema-disjoint splits. In each fold, one 380

split is used for tuning parameters of calibration 381

while the remaining 4 splits are used for evaluating 382

the metrics. 383

We compare the different methods using their 384

reliability plots and several calibration measures, 385

as detailed below. 386

Reliability plots. The data samples are grouped 387

into several bins based on their confidence scores. 388

For each bin, the average confidence is plotted 389

against the observed accuracy, which is the propor- 390

tion of samples in the bin with ai = 1. Generally, 391

all bins have a fixed size (Uniform Binning). We 392

also try the Constrained Pool Adjacent Violators 393

Algorithm (Matsubara et al., 2023) (Monotonic 394

Binning) which decides the binning such that the 395

average difference between the average observed 396

accuracy and confidence, weighted by the number 397

of samples in each bin is minimized. 398

Calibration measures. We measure the Brier 399

score (Brier, 1950) (BS-P/BS-I), which is the 400

mean square difference between calibrated con- 401

fidence and correctness: 1
n

∑n
i (ai − rTi)

2. We 402

also assess the discriminative power of the meth- 403

ods using AUC (Geifman and El-Yaniv, 2017). 404

Finally, we measure the expected calibration er- 405

ror (Guo et al., 2017b) for both raw (ECE) 406

and calibrated (ECE-P/ECE-I) confidence scores. 407

ECE is the mean absolute difference between 408

the average observed accuracy and confidence, 409

weighted by the number of samples in each bin: 410∑B
j=1

|Bj |
n

∣∣∣ 1
|Bj |

∑
i∈Bj

(ai − ci)
∣∣∣, where ci is ei- 411

ther ri or rTi and the bins B are determined ei- 412

ther using uniform binning or monotonic binning 413

method. However, we find that ECE can be unreli- 414

able, as it may assign a better score to a classifier 415

that always predicts a 50 % confidence level on a 416

dataset where the labels evenly distributed. 417

5.3 Whole query methods 418

We present comparison of all the methods in Sec- 419

tion 3 of obtaining whole query confidence. 420

5

Method Spider BIRD
BS-P↓ AUC↑ ECE↓ ECE-P↓ BS-P↓ AUC↑ ECE↓ ECE-P↓

Pooled
token-level
(CodeS)


min 0.221 0.636 0.669 0.120 0.205 0.651 0.293 0.070
avg 0.233 0.541 0.097 0.135 0.213 0.618 0.465 0.065
prod 0.194 0.746 0.685 0.112 0.193 0.730 0.314 0.082
geo 0.234 0.539 0.216 0.130 0.213 0.631 0.226 0.069

Pooled
token-level
(Codestral)


min 0.215 0.663 0.662 0.114 0.202 0.670 0.266 0.076
avg 0.223 0.606 0.133 0.126 0.198 0.705 0.526 0.067
prod 0.172 0.788 0.678 0.098 0.188 0.757 0.305 0.075
geo 0.228 0.598 0.228 0.133 0.202 0.694 0.253 0.079

Self-check Bool (GPT-4) 0.208 0.701 0.207 0.120 0.203 0.707 0.538 0.071

Self-check Bool (CodeLlama) 0.229 0.600 0.076 0.132 0.217 0.621 0.491 0.090

Self-check Probs (GPT-4) 0.223 0.598 0.269 0.130 0.216 0.584 0.627 0.063

Variant SQLs (Prod) (CodeS) 0.200 0.747 0.684 0.110 0.207 0.701 0.314 0.094

Table 3: The table presents evaluation metrics for different whole query methods on the Spider and BIRD datasets.
The metrics include Platt-scaled Brier score (BS-P), area under the ROC curve (AUC), expected calibration error
(ECE) and Platt-scaled ECE (ECE-P). Uniform binning is used to calculate ECE and ECE-P. Highlighted numbers
in green and yellow denote the best and second best methods, respectively.

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0

O
b

se
rv

ed
A

cc
u

ra
cy Spider

Min of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Prod of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Self-check
Bool
GPT-4

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Variant SQLs
CodeS (Prod) 250

500

750

1000

N
u

m
b

er
o

f
sa

m
p

le
s

p
er

b
in

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0

O
b

se
rv

ed
A

cc
u

ra
cy BIRD

Min of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Prod of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Self-check
Bool
GPT-4

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Variant SQLs
CodeS (Prod) 400

800

1200

1600

N
u

m
b

er
o

f
sa

m
p

le
s

p
er

b
in

Figure 3: The reliability plots illustrate the calibration comparison between the different whole query methods. The
four plots on top have been generated with predictions corresponding to the Spider dataset and four plots below,
with the BIRD dataset. A well-calibrated plot aligns closely with the x=y line. Each point is color-coded based on
the number of samples in the bin, as indicated by the colorbar on the right.

Evaluation Protocol. We choose two open-source421

models, CodeS and Codestral1 for pooled token-422

level experiments since we need access to the to-423

ken probabilities. CodeS is specifically trained424

for Text-to-SQL generation tasks, while Codestral425

has demonstrated superior performance in Text-426

to-SQL tasks compared to popular open-source427

models such as Llama-32 and CodeLlama (Rozière428

et al., 2024). Given the context and predicted SQL,429

we collect the probabilities assigned by the models430

to each token of the predicted SQL.431

We utilize GPT-4 and CodeLlama for our self-432

1https://mistral.ai/news/codestral/
2https://ai.meta.com/blog/meta-llama-3/

check experiments due to their reasoning capabil- 433

ities and ability in understanding self-check ques- 434

tions. For the self-check Bool method, given the 435

context, the predicted SQL and two options (A: 436

SQL is correct, B: SQL is incorrect), we collect 437

and normalize the probabilities assigned to tokens 438

’A’ and ’B’. The normalized probability of token ’A’ 439

is used for calibration. Tian et al. (2023) demon- 440

strated that verbalizing confidences provides better 441

calibration than the model’s conditional probabil- 442

ities in question answering tasks. To test if this 443

holds in SQL generation, we conduct the self-check 444

Probs experiment. Here, given the context and the 445

predicted SQL, the model is asked to estimate the 446

probability that the SQL is correct. This verbalized 447

6

https://mistral.ai/news/codestral/
https://ai.meta.com/blog/meta-llama-3/

probability is used for calibration.448

To generate variant output SQLs, we prompt449

GPT-4 to produce 10 diverse SQLs given the con-450

text. For each generated SQL, we calculate the prod451

pooled token-level confidence score using CodeS.452

The prompts used for the experiments are pre-453

sented in Table 6, 7 and 8. Specific inference details454

are deferred to the Appendix.455

Results. Table 3 shows the results for the whole456

query methods. Among pooled token-level ap-457

proaches, we obtain the best calibration with the458

prod aggregation method in terms of the AUC and459

Brier scores, followed by min, with avg and geo460

providing poor calibration. These findings corrobo-461

rate early findings (Stengel-Eskin and Van Durme,462

2023) favoring min aggregation over mean, with463

our experiments highlighting prod as a signifi-464

cantly better alternative than min. Also note that465

prod is theoretically the most natural choice since466

it denotes the probability of generating the whole467

sequence in an auto-regressive model, and it is sur-468

prising that Stengel-Eskin and Van Durme (2023)469

only considered min and avg.470

Another interesting conclusion is that self-check471

methods are not better than model’s own sequence472

probability (prod). This aligns with recent re-473

search (West et al., 2024) highlighting of the gap474

between the generative and reasoning capabilities475

in large language models. The product of token476

probabilities, which is the likelihood of the whole-477

sequence, serves as a measure of its generative478

capability, contrasting with self-check which is an479

assessment of the model’s understanding. How-480

ever, recent calibration studies (Tian et al., 2023)481

have found self-check methods to be better, and482

that could be because they deal with short answers.483

Further, we observe that the calibration of Self-484

check-Prob approach is weaker than Self-check-485

Bool. These results are are contrary to those of486

Tian et al. (2023) evaluated on QA tasks.487

The self-check Bool calibration of the propri-488

etary model GPT-4 is stronger than the open source489

model CodeLlama. CodeS, a smaller 7 Billion490

parameter model but which is specifically trained491

for SQL generation has a weaker calibration than492

Codestral, a larger 220 billion parameter trained493

for generalized code completion. The calibration494

of variant SQLs approach falls between the pooled495

token-level and self-check approaches.496

The reliability plots in Figure 3 illustrate the497

calibration comparison between the different meth-498

ods of whole query evaluation. A well-calibrated 499

plot aligns closely with the x=y line. Here again 500

we observe that Prod of token probabilities is the 501

best calibrated method with well-spread out con- 502

fidence values. Reliability plots for experiments 503

using other models and comparisons with isotonic 504

regression and monotonic binning have been de- 505

ferred to the Appendix E.1. 506

5.4 Fine-grained calibration 507

We compare our method of fine-grained calibra- 508

tion in units of nodes of the relational algebra tree 509

(RAT) described in Section 4.2 with the baseline 510

method where calibration is in units of tokens. For 511

the baseline, we assigned gold 0/1 labels to to- 512

kens of predicted SQL as follows: We use Needle- 513

man–Wunsch algorithm, a global alignment tech- 514

nique between the Gold and predicted SQL after 515

standardizing them both. The unit of comparison 516

considered for alignment is tokens as obtained from 517

the same LLM that we use to obtain token level 518

probabilities for calibration. Post alignment at each 519

position we check whether gold and predicted SQL 520

token match or not to assign 0/1 labels. We use 521

CodeS and Codestral to obtain token level prob- 522

ability of tokens in predicted SQL as used in the 523

Whole query calibration model. 524

Details of Node-level Confidence Model. We 525

implement the fine-grained Confidence model (Fig- 526

ure 2 as follows: We use CodeLlama to get the first 527

layer token embeddings. These are input to the 528

trainable bi-directional Transformer comprising of 529

four encoder layers and eight attention heads. Out- 530

put from this layer is passed through a linear layer 531

and Sigmoid to get predicted confidence. Maxi- 532

mum sequence length is 2048 tokens. If an input 533

goes beyond this, we prune the database schema 534

schema to retain only items in the predicted SQL 535

along with some random tables and columns. We 536

train the model using predictions on the training 537

split of the Spider and BIRD database using GPT-4 538

and CodeS-7B. The total number of training in- 539

stances is 13,079. We augment t by perturbing the 540

gold SQLs by replacing schema items with other 541

schema items from the same database based on 542

Cosine similarity of embeddings of schema items 543

obtained from SentenceTransformer all-MiniLM- 544

L6-v2. 545

Results. Table 4 shows the results. We find that 546

though the baseline report comparable Platt-scaled 547

Brier and ECE score, our method provides much 548

7

Model Spider BIRD
BS-P↓ AUC↑ ECE↓ ECE-P↓ BS-P↓ AUC↑ ECE↓ ECE-P↓

Baseline(CodeS) 0.14 0.59 0.17 0.03 0.18 0.56 0.21 0.04

Baseline(Codestral) 0.12 0.56 0.19 0.02 0.17 0.55 0.24 0.04

RAT Confidence 0.15 0.76 0.25 0.05 0.20 0.76 0.28 0.10

Table 4: Fine-grained calibration metrics for our RAT node-level Confidence model along with token-level baselines
on the Spider and BIRD datasets. The metrics include Platt-scaled Brier score (BS-P), area under the ROC curve
(AUC), expected calibration error (ECE) and Platt-scaled ECE (ECE-P). Uniform binning is used to calculate ECE
and ECE-P. Highlighted numbers in green and yellow denote the best and second best methods, respectively.

Figure 4: The reliability plots illustrate the fine-grained calibration comparison between the baseline and our
Confidence model. Plots 1 and 3 correspond to baseline obtained on Spider and BIRD using CodeS and Codestral
models respectively before alignment. Plots 2 and 4 demonstrate the confidence model’s performance on Spider and
BIRD data. Note the significantly better calibration of our RAT node based calibration than baseline token-level
calibration. A well-calibrated plot aligns closely with the x=y line.

better AUC scores. Also, by taking into account the549

calibration plot as observed in Figure 4, both plots550

1 and 3, show very poor calibration with irregular551

distribution of data points across bins compared552

to our method. Some anecdotes of fine-grained553

calibration from our model can be found in Ta-554

ble tab:example of the Appendix. We present abla-555

tions on our Confidence model in the Appendix.556

6 Conclusion557

We study calibration of whole SQL and parts of a558

generated SQL for LLM based Text-to-SQL gen-559

eration. For Whole SQL, we compare with several560

recent calibration methods and draw interesting in-561

sights. We find that models show strong calibration562

when assigning probabilities to whole queries, out-563

performing verbalization methods. This confirms564

recent research highlighting differences in gener-565

ative and reasoning capabilities of LLMs Addi-566

tionally, using product aggregation for calibration-567

model assigned probability to the whole query-568

provides stronger calibration compared to other569

methods including minimum aggregation, which570

was proposed as better by earlier works. When571

verbalizing probabilities, prompting the model to 572

output True/False is better than directly outputting 573

the probability of the SQL correctness. This differs 574

from previous findings in QA tasks. 575

To the best of our knowledge, no prior work has 576

studied fine-grained calibration of generated SQLs. 577

We propose a formulation where calibration is in 578

units of nodes of a relational algebra tree rendition 579

of the predicted tree. We present the design of a 580

custom model for node-level confidence prediction. 581

This study’s insights into model calibration for 582

Text-to-SQL generation can be extended to broader 583

applications such as Python or C++ code gener- 584

ation completion tasks. The study’s analysis of 585

the generative and reasoning capability of LLMs is 586

also crucial for the design of better LLMs. Assign- 587

ing confidence to text or code completions is an 588

important and exciting area of research with poten- 589

tial to fasten the adaptation of LLMs and improve 590

efficiency in various domains. 591

7 Limitations 592

Our results are based on the specific models em- 593

ployed in our experiments. Although, we have 594

8

attempted to ensure the validity of our findings595

by utilizing different models for each method, we596

cannot guarantee these results will generalize to597

other models. This limitation is due to the lack598

of detailed technical information such as training599

methodologies for many of the models used.600

Additionally, this limitation restricts our abil-601

ity to fully explain why the calibration of self-602

check Bool method is weaker compared to the prod603

pooled token-level method. Furthermore, our study604

is restricted to identifying the best calibration meth-605

ods for generated SQLs, particularly those whose606

complexity is similar to the SQLs found in the Spi-607

der and BIRD datasets.608

For error model, we are constrained by the hash-609

ing mechanism and as such currently cannot han-610

dle isomorphic queries where related schema items611

may not be in close proximity. For example, a SQL612

with join across 5 tables should ideally match with613

any permutation of subtree with these 5 tables un-614

der join operation. Also, in subtree level calibration615

as we move to upper layers, hashes due to incorrect616

node in lower layers lead to poor calibration for617

nodes close to root.618

One potential risk associated with our research619

is the imperfection of the calibration process. Due620

to this, the model cannot be applied directly in real621

world applications with absolute accuracy. The622

confidence scores predicted by the model should be623

taken as preliminary assessments. Hence, human624

evaluation is necessary after the models flag certain625

instances, ensuring a more reliable decision.626

References627

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995.628
Foundations of databases. ddison-Wesley Reading.629

Joris Baan, Nico Daheim, Evgenia Ilia, Dennis Ulmer,630
Haau-Sing Li, R. Fernández, Barbara Plank, Rico631
Sennrich, Chrysoula Zerva, and Wilker Aziz. 2023.632
Uncertainty in natural language generation: From633
theory to applications. ArXiv, abs/2307.15703.634

Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and635
Sunita Sarawagi. 2023. Benchmarking and improv-636
ing text-to-SQL generation under ambiguity. In The637
2023 Conference on Empirical Methods in Natural638
Language Processing.639

Glenn W. Brier. 1950. Verification of Forecasts Ex-640
pressed in Terms of Probability. Monthly Weather641
Review, 78(1):1.642

Shrey Desai and Greg Durrett. 2020. Calibration of643
pre-trained transformers. In Proceedings of the 2020644

Conference on Empirical Methods in Natural Lan- 645
guage Processing (EMNLP), pages 295–302, Online. 646
Association for Computational Linguistics. 647

Yonatan Geifman and Ran El-Yaniv. 2017. Selective 648
classification for deep neural networks. 649

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein- 650
berger. 2017a. On calibration of modern neural net- 651
works. In Proceedings of the 34th International Con- 652
ference on Machine Learning, ICML 2017, Sydney, 653
NSW, Australia, 6-11 August 2017, pages 1321–1330. 654

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein- 655
berger. 2017b. On calibration of modern neural net- 656
works. In Proceedings of the 34th International Con- 657
ference on Machine Learning, volume 70 of Pro- 658
ceedings of Machine Learning Research, pages 1321– 659
1330. PMLR. 660

Yukun Huang, Yixin Liu, Raghuveer Thirukovalluru, 661
Arman Cohan, and Bhuwan Dhingra. 2024. Cali- 662
brating long-form generations from large language 663
models. ArXiv, abs/2402.06544. 664

Priyesh Jain, Sunita Sarawagi, and Tushar Tomar. 2022. 665
Quality scoring of source words in neural translation 666
models. In Proceedings of the 2022 Conference on 667
Empirical Methods in Natural Language Processing, 668
pages 10683–10691, Abu Dhabi, United Arab Emi- 669
rates. Association for Computational Linguistics. 670

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom 671
Henighan, Dawn Drain, Ethan Perez, Nicholas 672
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli 673
Tran-Johnson, Scott Johnston, Sheer El-Showk, 674
Andy Jones, Nelson Elhage, Tristan Hume, Anna 675
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, 676
Deep Ganguli, Danny Hernandez, Josh Jacobson, 677
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka- 678
mal Ndousse, Catherine Olsson, Sam Ringer, Dario 679
Amodei, Tom Brown, Jack Clark, Nicholas Joseph, 680
Ben Mann, Sam McCandlish, Chris Olah, and Jared 681
Kaplan. 2022. Language models (mostly) know what 682
they know. 683

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023. 684
Semantic uncertainty: Linguistic invariances for un- 685
certainty estimation in natural language generation. 686
In The Eleventh International Conference on Learn- 687
ing Representations. 688

Aviral Kumar and Sunita Sarawagi. 2019. Calibration 689
of encoder decoder models for neural machine trans- 690
lation. 691

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi- 692
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan, 693
Cuiping Li, and Hong Chen. 2024. Codes: Towards 694
building open-source language models for text-to-sql. 695

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, 696
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao, 697
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, 698
Guoliang Li, Kevin C. C. Chang, Fei Huang, Reynold 699
Cheng, and Yongbin Li. 2023. Can llm already serve 700

9

https://api.semanticscholar.org/CorpusID:260316110
https://api.semanticscholar.org/CorpusID:260316110
https://api.semanticscholar.org/CorpusID:260316110
https://openreview.net/forum?id=a0yFO9gKc5
https://openreview.net/forum?id=a0yFO9gKc5
https://openreview.net/forum?id=a0yFO9gKc5
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
http://arxiv.org/abs/1705.08500
http://arxiv.org/abs/1705.08500
http://arxiv.org/abs/1705.08500
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
https://api.semanticscholar.org/CorpusID:267617073
https://api.semanticscholar.org/CorpusID:267617073
https://api.semanticscholar.org/CorpusID:267617073
https://api.semanticscholar.org/CorpusID:267617073
https://api.semanticscholar.org/CorpusID:267617073
https://doi.org/10.18653/v1/2022.emnlp-main.732
https://doi.org/10.18653/v1/2022.emnlp-main.732
https://doi.org/10.18653/v1/2022.emnlp-main.732
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
http://arxiv.org/abs/1903.00802
http://arxiv.org/abs/1903.00802
http://arxiv.org/abs/1903.00802
http://arxiv.org/abs/1903.00802
http://arxiv.org/abs/1903.00802
http://arxiv.org/abs/2402.16347
http://arxiv.org/abs/2402.16347
http://arxiv.org/abs/2402.16347
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111

as a database interface? a big bench for large-scale701
database grounded text-to-sqls.702

Arle Lommel, Aljoscha Burchardt, and Hans Uszkor-703
eit. 2014. Multidimensional quality metrics (mqm):704
A framework for declaring and describing transla-705
tion quality metrics. Tradumàtica: tecnologies de la706
traducció, 0:455–463.707

Takuo Matsubara, Niek Tax, Richard Mudd, and Ido708
Guy. 2023. Tce: A test-based approach to measuring709
calibration error.710

Alexandru Niculescu-Mizil and Rich Caruana. 2005.711
Predicting good probabilities with supervised learn-712
ing. In ICML.713

Juhyun Oh, Eunsu Kim, Inha Cha, and Alice Oh. 2024.714
The generative ai paradox on evaluation: What it can715
solve, it may not evaluate.716

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,717
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-718
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-719
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,720
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-721
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-722
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,723
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,724
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-725
man, Tim Brooks, Miles Brundage, Kevin Button,726
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany727
Carey, Chelsea Carlson, Rory Carmichael, Brooke728
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully729
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben730
Chess, Chester Cho, Casey Chu, Hyung Won Chung,731
Dave Cummings, Jeremiah Currier, Yunxing Dai,732
Cory Decareaux, Thomas Degry, Noah Deutsch,733
Damien Deville, Arka Dhar, David Dohan, Steve734
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,735
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,736
Simón Posada Fishman, Juston Forte, Isabella Ful-737
ford, Leo Gao, Elie Georges, Christian Gibson, Vik738
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-739
Lopes, Jonathan Gordon, Morgan Grafstein, Scott740
Gray, Ryan Greene, Joshua Gross, Shixiang Shane741
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,742
Yuchen He, Mike Heaton, Johannes Heidecke, Chris743
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,744
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin745
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,746
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun747
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-748
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-749
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,750
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,751
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-752
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,753
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-754
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal755
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan756
Leike, Jade Leung, Daniel Levy, Chak Ming Li,757
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz758
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,759
Anna Makanju, Kim Malfacini, Sam Manning, Todor760

Markov, Yaniv Markovski, Bianca Martin, Katie 761
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 762
McKinney, Christine McLeavey, Paul McMillan, 763
Jake McNeil, David Medina, Aalok Mehta, Jacob 764
Menick, Luke Metz, Andrey Mishchenko, Pamela 765
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel 766
Mossing, Tong Mu, Mira Murati, Oleg Murk, David 767
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, 768
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, 769
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex 770
Paino, Joe Palermo, Ashley Pantuliano, Giambat- 771
tista Parascandolo, Joel Parish, Emy Parparita, Alex 772
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel- 773
man, Filipe de Avila Belbute Peres, Michael Petrov, 774
Henrique Ponde de Oliveira Pinto, Michael, Poko- 775
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow- 776
ell, Alethea Power, Boris Power, Elizabeth Proehl, 777
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, 778
Cameron Raymond, Francis Real, Kendra Rimbach, 779
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry- 780
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar, 781
Girish Sastry, Heather Schmidt, David Schnurr, John 782
Schulman, Daniel Selsam, Kyla Sheppard, Toki 783
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav 784
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, 785
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin 786
Sokolowsky, Yang Song, Natalie Staudacher, Fe- 787
lipe Petroski Such, Natalie Summers, Ilya Sutskever, 788
Jie Tang, Nikolas Tezak, Madeleine B. Thompson, 789
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, 790
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe- 791
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, 792
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, 793
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, 794
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji- 795
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, 796
Clemens Winter, Samuel Wolrich, Hannah Wong, 797
Lauren Workman, Sherwin Wu, Jeff Wu, Michael 798
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim- 799
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong 800
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao 801
Zheng, Juntang Zhuang, William Zhuk, and Barret 802
Zoph. 2024. Gpt-4 technical report. 803

John Platt. 2000. Probabilistic outputs for support vec- 804
tor machines and comparisons to regularized likeli- 805
hood methods. Adv. Large Margin Classif., 10. 806

Jie Ren, Yao Zhao, Tu Vu, Peter J. Liu, and Balaji 807
Lakshminarayanan. 2023. Self-evaluation improves 808
selective generation in large language models. 809

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 810
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 811
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy 812
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna 813
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron 814
Grattafiori, Wenhan Xiong, Alexandre Défossez, 815
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar- 816
tin, Nicolas Usunier, Thomas Scialom, and Gabriel 817
Synnaeve. 2024. Code llama: Open foundation mod- 818
els for code. 819

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi- 820
autoregressive bottom-up semantic parsing. In Pro- 821

10

http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
https://doi.org/10.5565/rev/tradumatica.77
https://doi.org/10.5565/rev/tradumatica.77
https://doi.org/10.5565/rev/tradumatica.77
https://doi.org/10.5565/rev/tradumatica.77
https://doi.org/10.5565/rev/tradumatica.77
http://arxiv.org/abs/2306.14343
http://arxiv.org/abs/2306.14343
http://arxiv.org/abs/2306.14343
http://arxiv.org/abs/2402.06204
http://arxiv.org/abs/2402.06204
http://arxiv.org/abs/2402.06204
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2312.09300
http://arxiv.org/abs/2312.09300
http://arxiv.org/abs/2312.09300
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29

ceedings of the 2021 Conference of the North Amer-822
ican Chapter of the Association for Computational823
Linguistics: Human Language Technologies, pages824
311–324, Online. Association for Computational Lin-825
guistics.826

Elias Stengel-Eskin, Kyle Rawlins, and Benjamin Van827
Durme. 2024. Zero and few-shot semantic parsing828
with ambiguous inputs. In The Twelfth International829
Conference on Learning Representations.830

Elias Stengel-Eskin and Benjamin Van Durme. 2023.831
Calibrated interpretation: Confidence estimation in832
semantic parsing. Transactions of the Association for833
Computational Linguistics, 11.834

Mark Steyvers, Heliodoro Tejeda Lemus, Aakriti Ku-835
mar, Catarina Belem, Sheer Karny, Xinyue Hu, Lukas836
Mayer, and Padhraic Smyth. 2024. The calibration837
gap between model and human confidence in large838
language models. ArXiv, abs/2401.13835.839

Katherine Tian, Eric Mitchell, Allan Zhou, Archit840
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,841
and Christopher Manning. 2023. Just ask for cali-842
bration: Strategies for eliciting calibrated confidence843
scores from language models fine-tuned with human844
feedback. In Proceedings of the 2023 Conference on845
Empirical Methods in Natural Language Processing.846

Yi-Lin Tuan, Ahmed El-Kishky, Adithya Renduchintala,847
Vishrav Chaudhary, Francisco Guzmán, and Lucia848
Specia. 2021. Quality estimation without human-849
labeled data. In Proceedings of the 16th Conference850
of the European Chapter of the Association for Com-851
putational Linguistics: Main Volume, pages 619–625,852
Online. Association for Computational Linguistics.853

Jannis Vamvas and Rico Sennrich. 2022. As little as854
possible, as much as necessary: Detecting over- and855
undertranslations with contrastive conditioning. In856
Proceedings of the 60th Annual Meeting of the As-857
sociation for Computational Linguistics (Volume 2:858
Short Papers), pages 490–500, Dublin, Ireland. As-859
sociation for Computational Linguistics.860

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-861
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,862
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A863
multi-agent collaborative framework for text-to-sql.864

Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman,865
Linjie Li, Jena D. Hwang, Liwei Jiang, Jillian Fisher,866
Abhilasha Ravichander, Khyathi Chandu, Benjamin867
Newman, Pang Wei Koh, Allyson Ettinger, and Yejin868
Choi. 2024. The generative AI paradox: “what it can869
create, it may not understand”. In The Twelfth Inter-870
national Conference on Learning Representations.871

Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie872
Fu, Junxian He, and Bryan Hooi. 2024. Can LLMs873
express their uncertainty? an empirical evaluation of874
confidence elicitation in LLMs. In The Twelfth Inter-875
national Conference on Learning Representations.876

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 877
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 878
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir 879
Radev. 2019. Spider: A large-scale human-labeled 880
dataset for complex and cross-domain semantic pars- 881
ing and text-to-sql task. 882

Bianca Zadrozny and Charles Elkan. 2002. Transform- 883
ing classifier scores into accurate multiclass proba- 884
bility estimates. Proceedings of the ACM SIGKDD 885
International Conference on Knowledge Discovery 886
and Data Mining. 887

Fuheng Zhao, Lawrence Lim, Ishtiyaque Ahmad, Di- 888
vyakant Agrawal, and Amr El Abbadi. 2024. Llm- 889
sql-solver: Can llms determine sql equivalence? 890

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab, 891
Francisco Guzmán, Luke Zettlemoyer, and Marjan 892
Ghazvininejad. 2021. Detecting hallucinated content 893
in conditional neural sequence generation. In Find- 894
ings of the Association for Computational Linguis- 895
tics: ACL-IJCNLP 2021, pages 1393–1404, Online. 896
Association for Computational Linguistics. 897

Kaitlyn Zhou, Dan Jurafsky, and Tatsunori Hashimoto. 898
2023. Navigating the grey area: How expressions 899
of uncertainty and overconfidence affect language 900
models. In Conference on Empirical Methods in 901
Natural Language Processing. 902

11

https://openreview.net/forum?id=qL9gogRepu
https://openreview.net/forum?id=qL9gogRepu
https://openreview.net/forum?id=qL9gogRepu
https://api.semanticscholar.org/CorpusID:267211649
https://api.semanticscholar.org/CorpusID:267211649
https://api.semanticscholar.org/CorpusID:267211649
https://api.semanticscholar.org/CorpusID:267211649
https://api.semanticscholar.org/CorpusID:267211649
https://doi.org/10.18653/v1/2021.eacl-main.50
https://doi.org/10.18653/v1/2021.eacl-main.50
https://doi.org/10.18653/v1/2021.eacl-main.50
https://doi.org/10.18653/v1/2022.acl-short.53
https://doi.org/10.18653/v1/2022.acl-short.53
https://doi.org/10.18653/v1/2022.acl-short.53
https://doi.org/10.18653/v1/2022.acl-short.53
https://doi.org/10.18653/v1/2022.acl-short.53
http://arxiv.org/abs/2312.11242
http://arxiv.org/abs/2312.11242
http://arxiv.org/abs/2312.11242
https://openreview.net/forum?id=CF8H8MS5P8
https://openreview.net/forum?id=CF8H8MS5P8
https://openreview.net/forum?id=CF8H8MS5P8
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
https://doi.org/10.1145/775047.775151
https://doi.org/10.1145/775047.775151
https://doi.org/10.1145/775047.775151
https://doi.org/10.1145/775047.775151
https://doi.org/10.1145/775047.775151
http://arxiv.org/abs/2312.10321
http://arxiv.org/abs/2312.10321
http://arxiv.org/abs/2312.10321
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120
https://api.semanticscholar.org/CorpusID:265150666
https://api.semanticscholar.org/CorpusID:265150666
https://api.semanticscholar.org/CorpusID:265150666
https://api.semanticscholar.org/CorpusID:265150666
https://api.semanticscholar.org/CorpusID:265150666

A License903

The Spider and BIRD datasets are distributed un-904

der the Creative Commons Attribution-ShareAlike905

4.0 International (CC BY-SA 4.0) license. We906

used code from the codes Github repository3 re-907

leased by (Li et al., 2024), which is distributed908

under the Apache-2.0 license. Additionally, we909

referred to the prompts and execution evaluation910

scripts from the MAC-SQL Github repository4 re-911

leased by (Wang et al., 2024); however it’s license912

could not be found. The CodeS models are also dis-913

tributed under the Apache-2.0 license. We used the914

CodeLlama model in accordance with the Llama915

2 community license agreement5. The Codestral916

model was used in compliance with the Mistral917

AI Non-Production License6. For inference with918

GPT-4, we use the paid OpenAI API.919

B Software and Hardware920

All experiments were run with Python 3.11.5 and921

PyTorch 2.0.1. The whole query experiments did922

not require any training, but needed GPUs for in-923

ference. We used Nvidia A100 (80 GB) GPUs for924

this purpose. Each inference run took around 2-3925

hours with a batch size of 4-6 depending on the926

model used in the experiment. For fine grained927

experiments we trained Error Model using Nvidia928

A100 (80 GB) GPUs. Models were trained for 5-10929

epochs with a batch size 4 and took 2-3 hours per930

epoch. Our model has 813M learnable parameters931

along with frozen pre-trained embedding model932

like CodeLlama. We release the code for our ex-933

periments under Apache-2.0 license.934

C Experiment Details935

For whole query experiments involving Codestral,936

the model was used in 8-bit mode due to hardware937

constraints. The version of CodeLlama used are938

the 7b-instruct for whole query experiments and 7b939

(base) for fine grained experiments. The models-940

CodeS, Codestral and CodeLlama-were sourced941

from Hugging Face repositories. Specifically, the942

models were obtained from the following URLs:943

• CodeS: https://huggingface.co/944

seeklhy/codes-7b945

3https://github.com/RUCKBReasoning/codes
4https://github.com/wbbeyourself/MAC-SQL/
5https://github.com/meta-llama/llama/blob/

main/LICENSE
6https://mistral.ai/news/

mistral-ai-non-production-license-mnpl/

Model Parameters (in Billions)

CodeS 7
Codestral 22

CodeLlama 7
GPT-4 -

Table 5: Parameters in models used for experiments.

• Codestral: https://huggingface.co/ 946

bullerwins/Codestral-22B-v0.1-hf 947

• CodeLlama: https://huggingface.co/ 948

codellama/CodeLlama-7b-Instruct-hf 949

https://huggingface.co/codellama/ 950

CodeLlama-7b-hf 951

Parameter count for each of the models are pre- 952

sented in table 5. Perturbations data is grouped 953

by question id for batch training with batch size 4. 954

First off, all queries are grouped in batches of size 955

4 then followed by leftover queries. 956

D Prompts 957

We use the prompts from (Li et al., 2024), (Wang 958

et al., 2024) and (Tian et al., 2023) as inspirations 959

for prompts for pooled token-level, for self-check 960

Bool and for self-check Probs experiments respec- 961

tively. We present the prompts used in experiments 962

in tables 6, 7 and 8. The prompts used to generated 963

predictions are presented in 9. 964

E Additional Results 965

E.1 Whole query experiments 966

In table 10, we report the evaluation metrics along 967

with standard deviation for all the whole query ex- 968

periments. We note that the ECE and platt-scaled 969

ECE are not very reliable metrics. A binary classi- 970

fier can get a perfect ECE by guessing either label 971

with 50% confidence on a data with equal distri- 972

bution of labels. Aggregation using prod provides 973

the best calibration among pooled token-level meth- 974

ods in terms of AUC and Brier-P. This is followed 975

by the variant SQLs method which uses the prod 976

pooled token-level confidence scores and then self- 977

check Bool method. 978

Comparison with Isotonic scaling Table 11 and 979

figure 6 shows the variation of the evaluation met- 980

rics, brier score and expected calibration error, with 981

the two calibration methods, platt scaling and iso- 982

tonic regression. Note that the AUC and ECE of 983

12

https://huggingface.co/seeklhy/codes-7b
https://huggingface.co/seeklhy/codes-7b
https://huggingface.co/seeklhy/codes-7b
https://github.com/RUCKBReasoning/codes
https://github.com/wbbeyourself/MAC-SQL/
https://github.com/meta-llama/llama/blob/main/LICENSE
https://github.com/meta-llama/llama/blob/main/LICENSE
https://mistral.ai/news/mistral-ai-non-production-license-mnpl/
https://mistral.ai/news/mistral-ai-non-production-license-mnpl/
https://huggingface.co/bullerwins/Codestral-22B-v0.1-hf
https://huggingface.co/bullerwins/Codestral-22B-v0.1-hf
https://huggingface.co/bullerwins/Codestral-22B-v0.1-hf
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/codellama/CodeLlama-7b-hf

the raw confidence scores, which are also reported984

in table 3 are indifferent to calibration.985

Comparison with Monotonic binning Table 12986

and figure 7 shows the variation of the evaluation987

metrics, expected calibration error of the raw and988

calibrated confidence scores, with the two differ-989

ent methods of binning, uniform and monotonic.990

Note that the AUC and Brier score, which are also991

reported in table 3 are indifferent to the binning992

method.993

E.2 Fine grained experiments994

We have identified several nodes which when995

considered during hash calculation of their chil-996

dren prevent incidental match in RAT. These997

nodes include: Val_list , Orderby_desc,998

Orderby_asc, Project, Limit, Groupby999

We also consider sorting children nodes for hash1000

calculation of some nodes since these operations1001

are commutative and as such order of children for1002

these nodes can be permuted and still provide cor-1003

rect SQL. These include eq, add, neq, And, Or,1004

union, intersect, Product, Val_list1005

F Ablations on Confidence Model 1006

In table 14 we train our model on different con- 1007

figurations of training data and positive weights to 1008

handle class imbalance in data. Also, while training 1009

for subtree level calibration model, we employed 1010

different techniques to handle node misalignment 1011

scenarios as discussed earlier and found that we get 1012

best results when we train model on predictions ob- 1013

tained from CodeS and Codestral and their column 1014

perturbations obtained using SentenceTransformer. 1015

We sampled our perturbations set such that our fi- 1016

nal training data had equal number of samples from 1017

both prediction set and perturbation set batched by 1018

question id to ensure model is trained on different 1019

variants of similarly structured trees in a batch. In 1020

table 4 we compare our model with baseline es- 1021

tablished using token level probabilities obtained 1022

from CodeS and Codestral and a global alignment 1023

algorithm to calculate ground truth. 1024

We also compare our model with other variants 1025

trained with same perturbed dataset but without op- 1026

timal weights to handle class imbalance or a variant 1027

trained only on prediction set without any pertur- 1028

bations both with and without handling for class 1029

imbalance. Choice of optimal weight is as provide 1030

in pytorch documentation. pos_weight parameter 1031

is a scalar that represents weight for positive class. 1032

Optimal choice of this parameter is defined as ra- 1033

tio of number of negative samples to number of 1034

positive samples. It is used to handle imbalanced 1035

class distribution during loss computation. Platt- 1036

scaled Brier score, AUC and other metrics are used 1037

to compare different training configurations along 1038

with calibration plots and we found that all configu- 1039

rations provide similar Platt-scaled Brier and ECE 1040

score but model trained on prediction set without 1041

perturbations without scaling for class imbalance 1042

reports best scores. But when we consider the cali- 1043

bration plots we find that out of all configurations 1044

the one trained with perturbations and handling 1045

for class imbalance achieves a well calibrated plot 1046

across both datasets as seen in Figure 4 in plots 1047

2 and 4. Also, with this configuration we achieve 1048

minimum loss on dev set within 2 epochs whereas 1049

other variants did not report similar performance. 1050

13

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0

O
b

se
rv

ed
A

cc
u

ra
cy Spider

Min of
token probs

Codes

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Prod of
token probs

Codes

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Self-check
Bool

CodeLlama

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Self-check
Probs
GPT-4

300

600

900

1200

N
u

m
b

er
o

f
sa

m
p

le
s

p
er

b
in

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0

O
b

se
rv

ed
A

cc
u

ra
cy BIRD

Min of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Prod of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Self-check
Bool

CodeLlama

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Self-check
Probs
GPT-4 500

1000

1500

2000

N
u

m
b

er
o

f
sa

m
p

le
s

p
er

b
in

Figure 5: The reliability plots continued from 3 to illustrate the calibration comparison between the different whole
query methods. The four plots on top have been generated with predictions corresponding to the Spider dataset
and four plots below, with the BIRD dataset. A well-calibrated plot aligns closely with the x=y line. Each point is
color-coded based on the number of samples in the bin, as indicated by the colorbar on the right.

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0

O
b

se
rv

ed
A

cc
u

ra
cy Spider

Min of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Prod of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Self-check
Bool
GPT-4

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Variant SQLs
CodeS (Prod) 200

400

600

800

N
u

m
b

er
o

f
sa

m
p

le
s

p
er

b
in

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0

O
b

se
rv

ed
A

cc
u

ra
cy BIRD

Min of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Prod of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Self-check
Bool
GPT-4

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Variant SQLs
CodeS (Prod) 250

500

750

1000

N
u

m
b

er
o

f
sa

m
p

le
s

p
er

b
in

Figure 6: The plots have been generated using isotonic scaling in place of platt scaling used in 3. The four plots on
top have been generated with predictions corresponding to the Spider dataset and four plots below, with the BIRD
dataset. A well-calibrated plot aligns closely with the x=y line. Each point is color-coded based on the number of
samples in the bin, as indicated by the colorbar on the right.

14

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0

O
b

se
rv

ed
A

cc
u

ra
cy Spider

Min of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Prod of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Self-check
Bool
GPT-4

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 Spider

Variant SQLs
CodeS (Prod)

100

150

200

250

N
u

m
b

er
o

f
sa

m
p

le
s

p
er

b
in

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0

O
b

se
rv

ed
A

cc
u

ra
cy BIRD

Min of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Prod of
token probs

Codestral

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Self-check
Bool
GPT-4

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.2

0.4

0.6

0.8

1.0 BIRD

Variant SQLs
CodeS (Prod)

160

240

320

400

N
u

m
b

er
o

f
sa

m
p

le
s

p
er

b
in

Figure 7: The plots have been generated using Monotonic binning in place of Uniform binning used in 3. The four
plots on top have been generated with predictions corresponding to the Spider dataset and four plots below, with
the BIRD dataset. A well-calibrated plot aligns closely with the x=y line. Each point is color-coded based on the
number of samples in the bin, as indicated by the colorbar on the right.

15

Method Prompt Template

Pooled
token-
level

You are provided with a sqlite database schema and a user question. Your task
is to generate a sqlite query which can be executed on the sqlite database.
database schema :
table {table name}, columns = [{table name.column_name} ({data type} |
{is primary key?} | values: {sample values}), ...]
..
foreign keys :
{foreign keys}
matched contents : None
{question}
{SQL}

Self
check
Bool

[Instruction]
Complete SQL query only and with no explanation.
[Constraints]
- In ‘SELECT <column>‘, just select needed columns in the [Question]
without any unnecessary column or value

- In ‘FROM <table>‘ or ‘JOIN <table>‘, do not include unnecessary table

- If use max or min func, ‘JOIN <table>‘ FIRST, THEN use
‘SELECT MAX(<column>)‘ or ‘SELECT MIN(<column>)‘

- If [Value examples] of <column> has ’None’ or None, use
‘JOIN <table>‘ or ‘WHERE <column> is NOT NULL‘ is better

- If using ‘ORDER BY <column> ASC|DESC‘, add ‘GROUP BY <column>‘
before to select distinct values
[Query]
– {question}
[Evidence]
{evidence}
[Database info]
Table: {table name}
[
({column name}, {description of column}. Value examples: [{sample values}].),
..
[Foreign keys]
{foreign keys}
The proposed SQL for the query is:
[SQL]
“‘sql
{sql}
“‘

Table 6: Prompt templates for the different whole query methods.

16

Method Prompt Template

Self
check
Probs

[Instruction]
Complete SQL query only and with no explanation.
[Constraints]
- In ‘SELECT <column>‘, just select needed columns in the [Question]
without any unnecessary column or value

- In ‘FROM <table>‘ or ‘JOIN <table>‘, do not include unnecessary table

- If use max or min func, ‘JOIN <table>‘ FIRST, THEN use
‘SELECT MAX(<column>)‘ or ‘SELECT MIN(<column>)‘

- If [Value examples] of <column> has ’None’ or None, use
‘JOIN <table>‘ or ‘WHERE <column> is NOT NULL‘ is better

- If using ‘ORDER BY <column> ASC|DESC‘, add ‘GROUP BY <column>‘
before to select distinct values
[Query]
– {question}
[Evidence]
{evidence}
[Database info]
Table: {table name}
[
({column name}, {description of column}. Value examples: [{sample values}].),
..
[Foreign keys]
{foreign keys}
The proposed SQL for the query is:
[SQL]
“‘sql
{sql}
“‘
Provide your best guess and the probability that it is correct (0.0 to 1.0).
Give ONLY the probability, no other words or explanation.
For example:
Probability: <the probability between 0.0 and 1.0 that your guess is correct,
without any extra commentary whatsoever; just the probability!>

Table 7: Prompt templates for the different whole query methods.

17

Method Prompt Template

Generation
of variant
SQLs

When executing SQL below, some errors occurred, please fix up SQL based on
query and database info.
Solve the task step by step if you need to.
Use SQL format in the code block, and indicate script type in the code block.
When you find an answer, verify the answer carefully. Include
verifiable evidence in your response if possible.
[Constraints]
- In ‘SELECT <column>‘, just select needed columns in the [Question]
without any unnecessary column or value

- In ‘FROM <table>‘ or ‘JOIN <table>‘, do not include unnecessary table

- If use max or min func, ‘JOIN <table>‘ FIRST, THEN use
‘SELECT MAX(<column>)‘ or ‘SELECT MIN(<column>)‘

- If [Value examples] of <column> has ’None’ or None, use
‘JOIN <table>‘ or ‘WHERE <column> is NOT NULL‘ is better

- If using ‘ORDER BY <column> ASC|DESC‘, add ‘GROUP BY <column>‘
before to select distinct values
[Query]
– {question}
[Evidence]
{evidence}
[Database info]
Table: {table name}
[
({column name}, {description of column}. Value examples: [{sample values}].),
..
[Foreign keys]
{foreign keys}
Generate ten structurally diverse SQLs for the above query

Table 8: Prompt templates for the different whole query methods.

18

LLM Dataset Prompt Template

CodeS BIRD

You are provided with a sqlite database schema and a user question along with a hint to help
create an SQL query.
Your task is to generate a sqlite query which can be executed on the sqlite database.
Input:
Schema:
{schema}
CREATE TABLE table_name (
column1 datatype CONSTRAINT constraint_name1,
...
CONSTRAINT constraint_name3 PRIMARY KEY
(column_name),
CONSTRAINT constraint_name6 FOREIGN KEY (column_name)
REFERENCES other_table
...
...
);
Question:
{question}
Hint: {evidence}
Output:
SQL:

CodeS Spider

You are provided with a sqlite database schema and a user question to help create an SQL query.
Your task is to generate a sqlite query which can be executed on the sqlite database.
Input:
Schema:
{schema}
CREATE TABLE table_name (
column1 datatype CONSTRAINT constraint_name1,
column2 datatype CONSTRAINT constraint_name2,
...
CONSTRAINT constraint_name3 PRIMARY KEY
(column_name),
...
);
Question:
{question}
Output:
SQL:

GPT-4 Spider

Complete sqlite SQL query only and with no explanation
Sqlite SQL tables, with their properties:
#
{table name}({column names})
..
#
{question}
SELECT

GPT-4 BIRD

Complete sqlite SQL query only and with no explanation
Sqlite SQL tables, with their properties:
#
{table name}({column names})
..
#
Evidence: {evidence} ### {question}
SELECT

Table 9: Prompt templates for the generating SQL predictions for Spider and BIRD data using CodeS and GPT4.

19

Method
Spider

BS-P↓ AUC↑ ECE↓ ECE-P↓

Pooled
token-level
(CodeS)


min 0.221 ± 0.0128 0.636 ± 0.0126 0.669 ± 0.0244 0.120 ± 0.0308
avg 0.233 ± 0.0163 0.541 ± 0.0026 0.097 ± 0.0153 0.135 ± 0.0400
prod 0.194 ± 0.0128 0.746 ± 0.0066 0.685 ± 0.0247 0.112 ± 0.0358
geo 0.234 ± 0.0166 0.539 ± 0.0076 0.216 ± 0.0277 0.130 ± 0.0379

Pooled
token-level
(Codestral)


min 0.215 ± 0.0137 0.663 ± 0.0145 0.662 ± 0.0239 0.114 ± 0.0349
avg 0.223 ± 0.0147 0.606 ± 0.0065 0.133 ± 0.0250 0.126 ± 0.0355
prod 0.172 ± 0.0104 0.788 ± 0.0087 0.678 ± 0.0244 0.098 ± 0.0318
geo 0.228 ± 0.0157 0.598 ± 0.0104 0.228 ± 0.0251 0.133 ± 0.0341

Self-check Bool
(GPT-4) 0.208 ± 0.0131 0.701 ± 0.0040 0.207 ± 0.0216 0.120 ± 0.0231

Self-check Bool
(CodeLlama) 0.229 ± 0.0131 0.600 ± 0.0071 0.076 ± 0.0246 0.132 ± 0.0388

Self-check Probs
(GPT-4) 0.223 ± 0.0162 0.598 ± 0.0034 0.269 ± 0.0248 0.130 ± 0.0304

Variant SQLs (Prod)
(CodeS) 0.200 ± 0.0131 0.747 ± 0.0051 0.684 ± 0.0244 0.110 ± 0.0252

Method
BIRD

BS-P↓ AUC↑ ECE↓ ECE-P↓

Pooled
token-level
(CodeS)


min 0.205 ± 0.0052 0.651 ± 0.0072 0.293 ± 0.0129 0.070 ± 0.0065
avg 0.213 ± 0.0054 0.618 ± 0.0075 0.465 ± 0.0137 0.065 ± 0.0292
prod 0.193 ± 0.0037 0.730 ± 0.0111 0.314 ± 0.0128 0.082 ± 0.0225
geo 0.213 ± 0.0054 0.631 ± 0.0068 0.226 ± 0.0102 0.069 ± 0.0188

Pooled
token-level
(Codestral)


min 0.202 ± 0.0045 0.670 ± 0.0085 0.266 ± 0.0120 0.076 ± 0.0072
avg 0.198 ± 0.0040 0.705 ± 0.0061 0.526 ± 0.0121 0.067 ± 0.0165
prod 0.188 ± 0.0034 0.757 ± 0.0103 0.305 ± 0.0125 0.083 ± 0.0141
geo 0.202 ± 0.0043 0.694 ± 0.0079 0.254 ± 0.0113 0.075 ± 0.0084

Self-check Bool
(GPT-4) 0.203 ± 0.0069 0.707 ± 0.0125 0.538 ± 0.0169 0.071 ± 0.0306

Self-check Bool
(CodeLlama) 0.217 ± 0.0059 0.621 ± 0.0107 0.491 ± 0.0174 0.090 ± 0.0372

Self-check Probs
(GPT-4) 0.216 ± 0.0054 0.584 ± 0.0091 0.627 ± 0.0152 0.063 ± 0.0267

Variant SQLs (Prod)
(CodeS) 0.207 ± 0.0040 0.701 ± 0.0127 0.314 ± 0.0128 0.094 ± 0.0377

Table 10: Replication of Table 3 with standard deviation. The first table present the metrics for the Spider dataset,
and the second table for the BIRD dataset. The metrics include Platt-scaled Brier score (BS-P), area under the
ROC curve (AUC), expected calibration error (ECE) and Platt-scaled ECE (ECE-P). Uniform binning is used to
calculate ECE and ECE-P. Highlighted numbers in blue, green, and yellow denote the best, second best, and third
best methods, respectively.

20

Method
Spider BIRD

BS-(P/I)↓ ECE-(P/I)↓ BS-(P/I)↓ ECE-(P/I)↓

Pl
at

t



Pooled
token-level
(CodeS)


min 0.221 ± 0.0128 0.120 ± 0.0308 0.205 ± 0.0052 0.070 ± 0.0065
avg 0.233 ± 0.0163 0.135 ± 0.0400 0.213 ± 0.0054 0.065 ± 0.0292
prod 0.194 ± 0.0128 0.112 ± 0.0358 0.193 ± 0.0037 0.082 ± 0.0225
geo 0.234 ± 0.0166 0.130 ± 0.0379 0.213 ± 0.0054 0.069 ± 0.0188

Pooled
token-level
(Codestral)


min 0.215 ± 0.0137 0.114 ± 0.0349 0.202 ± 0.0045 0.076 ± 0.0072
avg 0.223 ± 0.0147 0.126 ± 0.0355 0.198 ± 0.0040 0.067 ± 0.0165
prod 0.172 ± 0.0104 0.098 ± 0.0318 0.188 ± 0.0034 0.083 ± 0.0141
geo 0.228 ± 0.0157 0.133 ± 0.0341 0.202 ± 0.0043 0.075 ± 0.0084

Self-check Bool
(GPT-4) 0.208 ± 0.0131 0.120 ± 0.0231 0.203 ± 0.0069 0.071 ± 0.0306

Self-check Bool
(CodeLlama) 0.229 ± 0.0131 0.132 ± 0.0388 0.217 ± 0.0059 0.090 ± 0.0372

Self-check Probs
(GPT-4) 0.223 ± 0.0162 0.130 ± 0.0304 0.216 ± 0.0054 0.063 ± 0.0267

Variant SQLs (Prod)
(CodeS) 0.200 ± 0.0131 0.110 ± 0.0252 0.207 ± 0.0040 0.094 ± 0.0377

Is
ot

on
ic



Pooled
token-level
(CodeS)


min 0.223 ± 0.0118 0.124 ± 0.0318 0.206 ± 0.0056 0.066 ± 0.0194
avg 0.235 ± 0.0161 0.142 ± 0.0362 0.215 ± 0.0027 0.072 ± 0.0253
prod 0.196 ± 0.0106 0.112 ± 0.0402 0.193 ± 0.0040 0.080 ± 0.0230
geo 0.235 ± 0.0189 0.140 ± 0.0304 0.212 ± 0.0053 0.063 ± 0.0289

Pooled
token-level
(Codestral)


min 0.221 ± 0.0140 0.132 ± 0.0327 0.200 ± 0.0045 0.064 ± 0.0229
avg 0.224 ± 0.0144 0.131 ± 0.0306 0.199 ± 0.0029 0.062 ± 0.0238
prod 0.174 ± 0.0109 0.096 ± 0.0360 0.184 ± 0.0042 0.077 ± 0.0241
geo 0.225 ± 0.0157 0.134 ± 0.0324 0.202 ± 0.0030 0.069 ± 0.0148

Self-check Bool
(GPT-4) 0.206 ± 0.0096 0.119 ± 0.0232 0.197 ± 0.0061 0.062 ± 0.0288

Self-check Bool
(CodeLlama) 0.238 ± 0.0174 0.148 ± 0.0497 0.221 ± 0.0068 0.101 ± 0.0357

Self-check Probs
(GPT-4) 0.220 ± 0.0163 0.130 ± 0.0301 0.214 ± 0.0050 0.065 ± 0.0332

Variant SQLs (Prod)
(CodeS) 0.195 ± 0.0102 0.111 ± 0.0250 0.194 ± 0.0040 0.064 ± 0.0163

Table 11: The table compares evaluation metrics across the two calibration methods, Platt scaling and isotonic
regression, for various whole query methods on the Spider and BIRD datasets. The first six rows present Platt-scaled
Brier score (BS-P) and Platt-scaled ECE (ECE-P) and the last six rows present isotonic-regression Brier score
(BS-I) and isotonic-regression ECE (ECE-I). Uniform binning is used to calculate ECE-P and ECE-I. Highlighted
numbers in green and yellow denote the best and second best methods, respectively.

21

Method
Spider BIRD

ECE↓ ECE-P↓ ECE↓ ECE-P↓

U
ni

fo
rm

B
in

ni
ng



Pooled
token-level
(CodeS)


min 0.669 ± 0.0244 0.120 ± 0.0308 0.293 ± 0.0129 0.070 ± 0.0065
avg 0.097 ± 0.0153 0.135 ± 0.0400 0.465 ± 0.0137 0.065 ± 0.0292
prod 0.685 ± 0.0247 0.112 ± 0.0358 0.314 ± 0.0128 0.082 ± 0.0225
geo 0.216 ± 0.0277 0.130 ± 0.0379 0.226 ± 0.0102 0.069 ± 0.0188

Pooled
token-level
(Codestral)


min 0.662 ± 0.0239 0.114 ± 0.0349 0.266 ± 0.0120 0.076 ± 0.0072
avg 0.133 ± 0.0250 0.126 ± 0.0355 0.526 ± 0.0121 0.067 ± 0.0165
prod 0.678 ± 0.0244 0.098 ± 0.0318 0.305 ± 0.0125 0.083 ± 0.0141
geo 0.228 ± 0.0251 0.133 ± 0.0341 0.254 ± 0.0113 0.075 ± 0.0084

Self-check Bool
(GPT-4) 0.207 ± 0.0216 0.120 ± 0.0231 0.538 ± 0.0169 0.071 ± 0.0306

Self-check Bool
(CodeLlama) 0.076 ± 0.0246 0.132 ± 0.0388 0.491 ± 0.0174 0.090 ± 0.0372

Self-check Probs
(GPT-4) 0.269 ± 0.0248 0.130 ± 0.0304 0.627 ± 0.0152 0.063 ± 0.0267

Variant SQLs (Prod)
(CodeS) 0.684 ± 0.0244 0.110 ± 0.0252 0.314 ± 0.0128 0.094 ± 0.0377

M
on

ot
on

ic
B

in
ni

ng



Pooled
token-level
(CodeS)


min 0.669 ± 0.0244 0.120 ± 0.0318 0.293 ± 0.0129 0.069 ± 0.0075
avg 0.089 ± 0.0151 0.131 ± 0.0386 0.464 ± 0.0137 0.065 ± 0.0273
prod 0.685 ± 0.0247 0.111 ± 0.0368 0.314 ± 0.0128 0.079 ± 0.0232
geo 0.214 ± 0.0289 0.132 ± 0.0332 0.213 ± 0.0126 0.078 ± 0.0141

Pooled
token-level
(Codestral)


min 0.662 ± 0.0239 0.114 ± 0.0340 0.266 ± 0.0119 0.083 ± 0.0064
avg 0.133 ± 0.0252 0.127 ± 0.0347 0.526 ± 0.0121 0.068 ± 0.0169
prod 0.678 ± 0.0244 0.096 ± 0.0354 0.305 ± 0.0126 0.088 ± 0.0133
geo 0.228 ± 0.0254 0.132 ± 0.0339 0.253 ± 0.0117 0.079 ± 0.0114

Self-check Bool
(GPT-4) 0.204 ± 0.0232 0.128 ± 0.0209 0.538 ± 0.0169 0.089 ± 0.0212

Self-check Bool
(CodeLlama) 0.073 ± 0.0250 0.129 ± 0.0406 0.491 ± 0.0173 0.087 ± 0.0385

Self-check Probs
(GPT-4) 0.261 ± 0.0237 0.138 ± 0.0234 0.625 ± 0.0155 0.084 ± 0.0156

Variant SQLs (Prod)
(CodeS) 0.684 ± 0.0244 0.123 ± 0.0254 0.314 ± 0.0128 0.112 ± 0.0147

Table 12: The table compares evaluation metrics across the two binning method, Uniform Binning and Monotonic
Binning, for various whole query methods on the Spider and BIRD datasets. The first six rows present ECE and
Platt-scaled ECE (ECE-P) obtained using Uniform binning and the last six rows present ECE and Platt-scaled ECE
(ECE-P) obtained using Monotonic binning. Highlighted numbers in green and yellow denote the best and second
best methods, respectively.

22

Index SQL

1

Ques: Find the last name of the student who has a cat that is age 3.
Gold:
select student.lname from student join has_pet on student.stuid = has_pet.stuid join
pets on pets.petid = has_pet.petid where pets.pet_age = 3 and pets.pettype = ’cat’
Predicted:
select student.lname from has_pet join pets on has_pet.petid = pets.petid join student
on has_pet.stuid = student.stuid where pets.pettype = ’cat’ and student.age = 3

2

Ques: How many male patients have their glutamic oxaloacetic transaminase in the
normal range?
Gold:
select count(patient.id) from patient join laboratory on patient.id = laboratory.id where
laboratory.got < 60 and patient.sex = ’M’
Predicted:
select count(distinct patient.id) from patient join laboratory on patient.id = labora-
tory.id where patient.sex = ’M’ and laboratory.got < 60

3

Ques: What is the average height of a non-human superhero in Dark Horse Comics?
Gold:
select avg(superhero.height_cm) from superhero join publisher on super-
hero.publisher_id = publisher.id join race on superhero.race_id = race.id where pub-
lisher.publisher_name = ’Dark horse Comics’ and race.race <> ’Human’
Predicted:
select avg(superhero.height_cm) from superhero join race on superhero.race_id =
race.id join publisher on superhero.publisher_id = publisher.id where race.race <>
’Human’ and publisher.publisher_name = ’Dark horse Comics’

4

Ques: Show me the season page of year when the race No. 901 took place.
Gold:
select seasons.url from races join seasons on seasons.year = races.year where
races.raceid = 901
Predicted:
select seasons.url from seasons where seasons.year = (select races.year as year from
races where races.raceid = 901)

5

Ques: How many heroes have stealth power?
Gold:
select count(hero_power.hero_id) from hero_power join superpower on
hero_power.power_id = superpower.id where superpower.power_name = ’Stealth’
Predicted:
select count(distinct hero_power.hero_id) from hero_power join superpower on
hero_power.power_id = superpower.id where superpower.power_name = ’stealth’

Table 13: This table demonstrates some anecdotes for confidence score by our Error Model on predicted SQL’s.
Subtree with gold label 0 is marked in red font and confidence score provided by model highlighted by range of
score. Score in range of 0-0.2 in purple, 0.2-0.4 in orange and 0.4-0.6 in yellow. For subtree above level 2 we
highlight only root node for better readability. One can observe that higher level nodes in RAT are often marked
wrong due to accumulation of any incorrect hash in children nodes

23

Training Methodology Spider BIRD
BS-P↓ AUC↑ ECE↓ ECE-P↓ BS-P↓ AUC↑ ECE↓ ECE-P↓

Confidence Model 0.15 0.76 0.25 0.05 0.20 0.76 0.28 0.10

w/o optimal pos_weight 0.15 0.75 0.05 0.05 0.19 0.78 0.18 0.08

w/o perturbed data 0.12 0.56 0.19 0.02 0.17 0.55 0.24 0.04

w/o pos_weight 0.14 0.78 0.03 0.05 0.20 0.78 0.08 0.13

Table 14: Abalation Study of Confidence Model demonstrates the impact of including column perturbed data to
training set and use of optimal positive weights in BCEWithLogitLoss to adjust for class imbalance. Highlighted
numbers in green and yellow denote the best and second best methods, respectively

24

