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ABSTRACT

In this paper, we conduct a comprehensive study of In-Context Learning (ICL)
by addressing several open questions: (a) What type of ICL estimator is learned
by large language models? (b) What is a proper performance metric for ICL and
what is the error rate? (c) How does the transformer architecture enable ICL?
To answer these questions, we adopt a Bayesian view and formulate ICL as a
problem of predicting the response corresponding to the current covariate, given a
number of examples drawn from a latent variable model. To answer (a), we show
that, without updating the neural network parameters, ICL implicitly implements
the Bayesian model averaging algorithm, which is proven to be approximately
parameterized by the attention mechanism. For (b), we analyze the ICL perfor-
mance from an online learning perspective and establish a O(1/T ) regret bound
for perfectly pretrained ICL, where T is the number of examples in the prompt. To
answer (c), we show that, in addition to encoding Bayesian model averaging via
attention, the transformer architecture also enables a fine-grained statistical analy-
sis of pretraining under realistic assumptions. In particular, we prove that the error
of pretrained model is bounded by a sum of an approximation error and a gener-
alization error, where the former decays to zero exponentially as the depth grows,
and the latter decays to zero sublinearly with the number of tokens in the pretrain-
ing dataset. Our results provide a unified understanding of the transformer and its
ICL ability with bounds on ICL regret, approximation, and generalization, which
deepens our knowledge of these essential aspects of modern language models.

1 INTRODUCTION

With the ever-increasing sizes of model capacity and corpus, Large Language Models (LLM) have
achieved tremendous successes across a wide range of tasks, including natural language understand-
ing (Dong et al., 2019; Jiao et al., 2019), symbolic reasoning (Wei et al., 2022c; Kojima et al.,
2022), and conversations (Brown et al., 2020; Ouyang et al., 2022). Recent studies have revealed
that these LLMs possess immense potential, as their large capacity allows for a series of emergent
abilities (Wei et al., 2022b; Liu et al., 2023). One such ability is In-Context Learning (ICL), which
enables an LLM to learn from just a few examples, without changing the network parameters. That
is, after seeing a few examples in the prompt, a pretrained language model seems to comprehend the
underlying concept and is able to extrapolate the understanding to new data points.

Despite the tremendous empirical successes, theoretical understanding of ICL remains limited.
Specifically, existing works fail to explain why LLMs the ability for ICL, how the attention mech-
anism is related to the ICL ability, and how pretraining influences ICL. Although the optimality of
ICL is investigated in Xie et al. (2021) and Wies et al. (2023), these works both make unrealistic
assumptions on the pretrained models, and their results cannot demystify the particular role played
by the attention mechanism in ICL.

In this work, we focus on the scenario where a transformer is first pretrained on a large dataset and
then prompted to perform ICL. Our goal is to rigorously understand why the practice of “pretraining
+ prompting” unleashes the power of ICL. To this end, we aim to answer the following three
questions: (a) What type of ICL estimator is learned by LLMs? (b) What are suitable performance
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metrics to evaluate ICL accurately and what are the error rates? (c) What is the role played by
the transformer architecture during the pretraining and prompting stages? The first and the third
questions demand scrutinizing the transformer architecture to understand how ICL happens during
transformer prompting. The second question then requires statistically analyzing the extracted ICL
process. Moreover, the third question necessitates a holistic understanding beyond prompting — we
also need to characterize the statistical error of pretraining and how this error affects prompting.

To address these questions, we adopt a Bayesian view and assume that the examples fed into a pre-
trained LLM are sampled from a latent variable model parameterized by a hidden concept z∗ ∈ Z.
Moreover, the pretrained dataset contains sequences of examples from the same latent variable
model, but with the concept parameter z ∈ Z itself randomly distributed according to a prior distri-
bution. We mathematically formulate ICL as the problem of predicting the response of the response
corresponding to the current covariate, where the prompt contains t examples of covariate-response
pairs and the current covariate.

Under such a setting, to answer (a), we show that the perfectly pretrained LLMs perform ICL in the
form of Bayesian Model Averaging (BMA). That is, LLM first computes a posterior distribution
of z∗ ∈ Z given the first t examples, and then predicts the response of the (t + 1)-th covariate by
aggregating over the posterior (Proposition 4.1).

In addition, to answer (b), we adopt the online learning framework and define a notion called ICL
regret, which is the averaged prediction error of ICL on a sequence of covariate-response examples.
We prove that the ICL regret after prompting t examples is O(1/t) up to the statistical error of the
pretrained model (Theorem 6.2).

Finally, to answer (c), we elucidate the role played by the transformer architecture in prompting and
pretraining respectively. In particular, we show that a variant of attention mechanism encodes BMA
in its architecture, which enables the transformer to perform ICL via prompting. Such an attention
mechanism can be viewed as an extension of linear attention and coincides with the standard softmax
attention (Garnelo and Czarnecki, 2023) when the length of the prompt goes to infinity. And thus we
show that softmax attention Vaswani et al. (2017) approximately encodes BMA (Proposition 4.3).
Besides, the transformer architecture enables a fine-grained analysis of the statistical error incurred
by pretraining. In particular, applying the PAC-Bayes framework, we prove that the error of the
pretrained language model, measured via total variation, is bounded by a sum of approximation
error and generalization error (Theorem 5.3). The approximation error decays to zero exponentially
fast as the depth of the transformer increases (Proposition 5.4), while the generalization error decays
to zero sublinearly with the number of tokens in the pretraining dataset. This features the first
pretraining analysis of transformers in total variation distance, which also takes the approximation
error into account. Furthermore, as an interesting extension, we also study the misspecified case
where the response variables of the examples fed into the LLM are perturbed. We provide sufficient
conditions for ICL to be robust to the perturbations and establish the finite-sample statistical error
(Proposition H.4).

In sum, by addressing questions (a)–(c), we provide a unified understanding of the ICL ability of
LLMs and the particular role played by the attention mechanism. Our theory provides a holistic
theoretical understanding of the regret, approximation, and generalization errors of ICL.

2 RELATED WORK

In-Context Learning. After Brown et al. (2020) showcased the in-context learning (ICL) capacity
of GPT-3, there has been a notable surge in interest towards enhancing and comprehending this par-
ticular ability (Dong et al., 2022). The ICL ability has seen enhancements through the incorporation
of extra training stages (Min et al., 2021; Wei et al., 2021; Iyer et al., 2022), carefully selecting and
arranging informative demonstrations (Liu et al., 2021; Kim et al., 2022; Rubin et al., 2021; Lu et al.,
2021), giving explicit instructions (Honovich et al., 2022; Zhou et al., 2022b; Wang et al., 2022),
and prompting a chain of thoughts (Wei et al., 2022c; Zhang et al., 2022b; Zhou et al., 2022a). In
efforts to comprehend the mechanisms of ICL ability, researchers have also conducted extensive
work. Empirically, Chan et al. (2022) demonstrated that the distributional properties, including the
long-tailedness, are important for ICL. Garg et al. (2022) investigated the function class that ICL
can approximate. Min et al. (2022) showed that providing wrong mappings between the input-output
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pairs in examples does not degrade the ICL. Theoretically, Akyürek et al. (2022), von Oswald et al.
(2022), Bai et al. (2023), and Dai et al. (2022) indicated that ICL implicitly implements the gradient
descent or least-square algorithms from the function approximation perspective. However, the first
three works only showed that transformers are able to approximate these two algorithms, which may
not align with the pretrained model. The last work ignored the softmax module, which turns out to
be important in practical implementation. Feng et al. (2023) derived the impossibility results of
ICL and the advantage of chain-of-thought for the function approximation. Li et al. (2023) viewed
ICL from the multi-task learning perspective and derived the generalization bound. Hahn and Goyal
(2023) built the linguistic model for sentences and used the description length to bound the ICL
error with this model. Xie et al. (2021) analyzed ICL within the Bayesian framework, assuming the
access to the nominal language distribution and that the tokens are generated from Hiddn Markov
Model (HMM)s. However, the first assumption hides the relationship between pretraining and ICL,
and the second assumption is restrictive. Following this thread, Wies et al. (2023) relaxed the HMM
assumption and assumed access to a pretrained model that is close to the nominal distribution con-
ditioned on any token sequence, which is also unrealistic. Two recent works Wang et al. (2023), and
Jiang (2023) also provide the Bayesian analysis of ICL. Unfortunately, these Bayesian works cannot
explain the importance of the attention mechanism for ICL and clarify how pretraining is related to
ICL. In contrast, we prove that the attention mechanism enables BMA by encoding it in the network
architecture and we relate the pretraining error of transformers to the ICL regret.

3 PRELIMINARY

Notation. We denote {1, · · · , N} as [N ]. For a Polish space S, we denote the collection of all
the probability measures on it as ∆(S). The total variation distance between two distributions
P,Q ∈ ∆(S) is TV(P,Q) = supA⊆S |P (A) −Q(A)|. The ith entry of a vector x is denoted as xi

or [x]i. For a matrix X ∈ RT×d, we index its ith row and column as Xi,: and X:,i respectively. The
ℓp,q norm of X is defined as ∥X∥p,q = (

∑d
i=1 ∥X:,i∥qp)1/q , and the Frobenius norm of it is defined

as ∥X∥F = ∥X∥2,2.
Attention and Transformers. Attention mechanism has been the most powerful and popular neural
network module in both Computer Vision (CV) and Natural Language Processing (NLP) communi-
ties, and it is the backbone of the LLMs (Devlin et al., 2018; Brown et al., 2020). Assume that we
have a query vector q ∈ Rdk . With T key vectors in K ∈ RT×dk and T value vectors in V ∈ RT×dv ,
the attention mechanism maps the query vector q to attn(q,K, V ) = V ⊤softmax(Kq), where
softmax normalizes a vector via the exponential function, i.e., for x ∈ Rd, [softmax(x)]i =

exp(xi)/
∑d

j=1 exp(xj) for i ∈ [d]. The output is a weighted sum of V , and the weights re-
flect the closeness between W and q. For t query vectors, we stack them into Q ∈ Rt×dk . At-
tention maps these queries using the function attn(Q,K, V ) = softmax(QK⊤)V ∈ Rt×dv ,
where softmax is applied row-wisely. In the practical design of transformers, practitioners usu-
ally use Multi-Head Attention (MHA) instead of single attention to express sophisticated functions,
which forwards the inputs through h attention modules in parallel and outputs the sum of these
sub-modules. Here h ∈ N is a hyperparameter. Taking X ∈ RT×d as the input, MHA outputs
mha(X,W ) =

∑h
i=1 attn(XWQ

i , XWK
i , XWV

i ), where W = (WQ
i ,WK

i ,WV
i )hi=1 is the pa-

rameters set of h attention modules, WQ
i ∈ Rd×dh , WK

i ∈ Rd×dh , and WV
i ∈ Rd×d for i ∈ [h] are

weight matrices for queries, keys, and values, and dh is usually set to be d/h (Michel et al., 2019).
The transformer is the concatenation of the attention modules and the fully-connected layers, which
is widely adopted in LLMs (Devlin et al., 2018; Brown et al., 2020).
Large Language Models and In-Context Learning. Many LLMs are autoregressive, such as GPT
(Brown et al., 2020). It means that the model continuously predicts future tokens based on its own
previous values. For example, starting from a token x1 ∈ X, where X is the alphabet of tokens, a
LLM Pθ with parameter θ ∈ Θ continuously predicts the next token according to xt+1 ∼ Pθ(· |St)
based on the past St = (x1, · · · , xt) for t ∈ N. Here, each token represents a word and the position
of the word (Ke et al., 2020), and the token sequences St for t ∈ N live in the sequences space
X∗. LLMs are first pretrained on a huge body of corpus, making the prediction xt+1 ∼ Pθ(· |St)
accurate, and then prompted to perform downstream tasks. During the pretraining phase, we aim to
maximize the conditional probability Pθ(x |S) over the nominal next token x (Brown et al., 2020).

After pretraining, LLMs are prompted to perform downstream tasks without tuning parameters. Dif-
ferent from the finetuned models that learn the task explicitly (Liu et al., 2023), LLMs can implicitly
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learn from the examples in the prompt, which is known as ICL (Brown et al., 2020). Concretely,
pretrained LLMs are provided with a prompt promptt = (c̃1, r1, . . . , c̃t, rt, c̃t+1) with t examples
and a query as inputs, where each pair (c̃i, ri) ∈ X∗ × X is an example of the task, and c̃t+1 is
the query, as shown in Figure 8 in Appendix E. For example, the promptt with t = 2 can be
“Cats are animals, pineapples are plants, mushrooms are”. Here c̃1 ∈ X∗ is a token sequence “Cats
are”, while r1 is the response “animals”. The query c̃t+1 is “mushrooms are”, and the desired
response is “fungi”. The prompts are generated from a hidden concept z∗ ∈ Z, e.g., z∗ can be
the classification of biological categories, where Z is the concept space. The generation process
is c̃i ∼ P(· | c̃1, r1, · · · , c̃i−1, ri−1, z∗) and ri ∼ P(· | prompti−1, z∗) for the nominal distribution
P and i ∈ [t]. Thus, when performing ICL, LLMs aim to estimate the conditional distribution
P(rt+1|promptt, z∗). It is widely conjectured and experimentally found that the pretrained LLMs
can implicitly identify the hidden concept z∗ ∈ Z from the examples, and then perform ICL by
outputting from P(rt+1|promptt, z∗). In the following, we will provide theoretical justifications for
this claim. We note that delimiters are omitted in our work, and our results can be generalized to
handle this case. Since LLMs are autoregressive, the definition of the notation P(· |S) with S ∈ X∗

may be ambiguous because the length of the subsequent tokens is not specified. Unless explicitly
specified, we let P(· |S) denote the distribution of the next single token conditioned on S.

4 IN-CONTEXT LEARNING VIA BAYESIAN MODEL AVERAGING

In this section, we show that LLMs perform ICL implicitly via BMA. Given a sequence S =
{(c̃t, rt)}Tt=1 with T examples generated from a hidden concept z∗ ∈ Z, we use St = {(c̃i, ri)}ti=1
to represent the first t ICL examples in the sequence. Here c̃t and rt respectively denote the ICL
covariate and response. During the ICL phase, a LLM is sequentially prompted with promptt =
(St, c̃t+1) for t ∈ [T − 1], i.e., the first t examples and the (t + 1)-th covariate. The prompted
LLM aims to predict the response rt+1 based on promptt = (St, c̃t+1) whose true distribution is
rt+1 ∼ P(· | promptt, z∗). For the analysis of ICL, we focus on the following latent variable model

rt = f(c̃t, ht, ξt), ∀t ∈ [T ], (4.1)
where the hidden variable ht ∈ H determines the relation between ct and rt, ξt ∈ Ξ for t ∈ [T ]
are i.i.d. random noises, and f : X × H × Ξ → X is a function that relates response rt to c̃t, ht,
and ξt. In the data generation process, a hidden concept z∗ ∈ Z is first generated from P(z).
The hidden variables {ht}Tt=1 are then a stochastic process whose distribution is determined by the
hidden concept z∗, that is

P(ht = · | c̃t, {rℓ, hℓ, c̃ℓ}ℓ<t) = gz∗(h1, . . . , ht−1, ζt)

for some function gz∗ parameterized by z∗, where {ζt}Tt=1 are exogenous noises. The response rt
is then generated according to (4.1). The model in (4.1) essentially assumes that the hidden concept
z∗ implicitly determines the transition of the conditional distribution P(rt = · | c̃t) by affecting the
evolution of the latent variables {ht}t∈[T ], and it does not impose any assumption on the distribution
of c̃t. This model is quite general, and it subsumes the models in previous works. When f is the
emission function in HMM and ht = h for t ∈ [T ] is the values of hidden states that depend on
z, model in (4.1) recovers the HMM assumption in Xie et al. (2021). When ht = z for t ∈ [T ]
degenerate to the hidden concept, this recovers the casual graph model in Wang et al. (2023) and the
ICL model in Jiang (2023).

Assuming that the tokens follow the statistical model given in (4.1), during pretraining, we col-
lect Np independent trajectories by sampling from (4.1) with concept z randomly sampled from
P(z). Intuitively, during pretraining, by training in an autoregressive manner, the LLM approxi-
mates the conditional distribution P(rt+1 | promptt) = Ez∼P(z)[P(rt+1 | promptt, z)], which is the
conditional distribution of rt+1 given promptt, aggregated over the randomness of the concept z∗.

Under the model in (4.1), we will show that pretrained LLMs are able to perform ICL because they
secretly implement BMA (Wasserman, 2000) during prompting. For ease of presentation, we first
consider the setting where the LLM is perfectly pretrained, i.e., the conditional distribution induced
by the LLM is given by P(rt+1 | promptt). We relax this condition by analyzing the pretraining
error in Section 5.
Proposition 4.1 (LLMs Perform BMA). Under the model in (4.1), it holds that

P(rt+1 = · | promptt) =
∫

P(rt+1 = · | c̃t+1, St, z)P(z |St)dz. (4.2)
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We note that the left-hand side of (4.2) is the prediction of the pretrained LLM given a prompt
promptt. Meanwhile, the right-hand side is exactly the prediction given by the BMA algorithm
that infers the posterior belief of the concept z∗ based on St and predicts rt+1 by aggregating the
likelihood in (4.1) with respect to the posterior P(z∗ = · |St). Thus, this proposition shows that per-
fectly pretrained LLMs are able to perform ICL because they implement BMA during prompting.
As mentioned, Proposition 4.1 is proved under a more general model than the previous works and
thus serves as a generalized result of some claims in the previous works. We note that the claim of
Proposition 4.1 is independent of the network structure. This partially explains why LSTMs demon-
strate ICL ability in Xie et al. (2021). In the next section, we will demonstrate how the attention
mechanism helps to implement BMA. The proof of Proposition 4.1 is in Appendix F.2.

Next, we study the performance of ICL from an online learning perspective. Recall that LLMs are
continuously prompted with St and aim to predict the (t + 1)-th covariate rt+1 for t ∈ [T − 1].
This can be viewed as an online learning problem. For any algorithm that generates a sequence of
density estimators {P̂(rt)}Tt=1 for predicting {rt}t∈[T ], we consider the following ICL regret as its
performance metric:

regrett = t−1 sup
z

t∑
i=1

logP(ri | prompti−1, z)− t−1
t∑

i=1

log P̂(ri). (4.3)

This ICL regret measures the performance of the estimator P̂ compared with the best hidden concept
in hindsight. For the perfectly trained LLMs, the estimator is exactly P̂(rt) = P(rt+1 | promptt).
By building the equivalence of pretrained LLM and BMA, we have the following corollary, which
shows that predicting {rt}t∈[T ] by iteratively prompting the LLM incurs a O(1/T ) regret.

Corollary 4.2 (ICL Regret of Perfectly Pretrained Model). Under the model in (4.1), we have for
any t ∈ [T ] that

t−1
t∑

i=1

logP(ri | prompti−1) ≥ sup
z∈Z

(
t−1

t∑
i=1

logP(ri | prompti−1, z) + t−1 logPZ(z)
)
.

Here PZ is the prior of the hidden concept z ∈ Z . When the hidden concept space Z is finite
and the prior PZ(z) is the uniform distribution on Z, we have that regrett ≤ log |Z|/t. When the
nominal concept z∗ satisfies that supz

∑t
i=1 P(ri | z, prompti−1) =

∑t
i=1 P(ri | z∗, prompti−1)

for any t ∈ [T ], the regret is bounded as regrett ≤ log(1/PZ(z∗))/t.

This theorem states that the ICL regret of the perfectly pretrained model is bounded by
log(1/PZ(z∗))/t. This is intuitive since the regret is relatively large if the concept z∗ rarely ap-
pears according to the prior distribution. This corollary shows that, when given sufficiently many
examples, predicting {rt}t∈[T ] via ICL is almost as good as the oracle method which knows true
concept z∗ and the likelihood function P(ri | prompti−1, z∗). The practical relevance of this result
is discussed in Appendix C. The proof of Corollary 4.2 is in Appendix F.3. In Section 5, we charac-
terize the deviation between the learned model and the underlying true model. Next, we show how
transformers parameterize BMA.

4.1 ATTENTION PARAMETERIZES BAYESIAN MODEL AVERAGING

In the following, we explore the role played by the attention mechanism in ICL. To simplify the
presentation, we consider the case where the covariate c̃t ∈ X∗ is a single token ct ∈ X in this
subsection. During the ICL phase, pretrained LLMs are prompted with promptt = (St, ct+1)
and tasked with predicting the (t + 1)-th response rt+1. The transformers first separately map the
covariates c̃i and responses ri for i ∈ [t] to the corresponding feature spaces, which are usually
realized by the fully connected layers. We denote these two learnable mappings as k : Rd → Rdk

and v : Rd → Rdv . Their nominal values are denoted as k∗ and v∗, respectively. The pretraining
of the transformer essentially learns the nominal mappings v∗ and k∗ with sufficiently many data
points. After these transformations, the attention module will take vi = v∗(ri) and ki = k∗(ci) for
i ∈ [t] as the value and key vectors to predict the result for the query qt+1 = kt+1 = k∗(ct+1). To
elucidate the role played by attention, we consider a Gaussian linear simplification of (4.1)

vt = z∗ϕ(kt) + ξt, ∀t ∈ [T ], (4.4)
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where ϕ : Rdk → Rdϕ refers to the feature mapping in some Reproducing Kernel Hilbert Space
(RKHS), z∗ ∈ Rdv×dϕ corresponds to the hidden concept, and ξt ∼ N(0, σ2I), t ∈ [T ] are i.i.d.
Gaussian noises with covariance σ2I . Besides, we assume the prior of z∗ is P(z) is a Gaussian
distribution N(0, λI). Note that (4.4) can be written as

rt = v−1
∗

(
z∗ϕ

(
k∗(ct)

)
+ ξt

)
, (4.5)

which is a realization of (4.1) with ht = z, ξt = ϵt, and f(c, h, ξ) = v−1
∗ (hϕ(k∗(c)) + ξ). In other

words, (4.4), or equivalently (4.5), specifies a specialization of (4.1) where in the feature space, the
hidden concept z∗ represents a transformation between the value v and the key k. Here, we simply
take this as the transformation by a matrix, which can be easily generalized by building a bijection
between concepts z and complex transformations. In the following, to simplify the notation, let
K : Rdk × Rdk → R. denote the kernel function of the RKHS induced by ϕ. The stacks of the
values and keys are denoted as Kt = (k1, . . . , kt)

⊤ ∈ Rt×dk and Vt = (v1, . . . , vt)
⊤ ∈ Rt×dv ,

respectively. Consequently, the model in (4.4) implies that

P(vt+1 | promptt)=
∫

P(vt+1 | z, qt+1)P(z |St)dz ∝ exp
(
−
∥∥vt+1 − z̄tϕ(qt+1)

∥∥2
Σ−1

t

/
2
)
, (4.6)

where we denote by Σt the covariance of vt+1 ∼ P(· |St, qt+1), and the mean concept z̄t is

z̄t = Vt

(
ϕ(Kt)ϕ(Kt)

⊤ + λI
)−1

ϕ(Kt) = Vt

(
K(Kt,Kt) + λI

)−1
ϕ(Kt). (4.7)

Combining (4.6) and (4.7), we can see that z̄tϕ(qt+1) essentially measures the similarity between
the query and keys, which is quite similar to the attention mechanism defined in Section 3. However,
here the similarity is normalization according to (4.7), not by softmax. This motivates us to define a
new structure of attention and explore the relationship between the newly defined attention and the
original one. For any q ∈ Rdk , K ∈ Rt×dk , and V ∈ Rt×dv , we define a variant of the attention
mechanism as follows,

attn†(q,K, V ) = V ⊤(K(K,K) + λI
)−1

K(K, q). (4.8)

From (4.6), (4.7), and (4.8), it holds that the response vt+1 for (t + 1)-th query is distributed as
vt+1 ∼ N(attn†(qt+1,Kt, Vt),Σt). We note that attn† bakes the BMA algorithm for the Gaus-
sian linear model in its architecture, by first estimating z̄t via (4.7) and deriving the final estimate
from the inner product between z̄t and qt+1. Here attn†(·) is an instance of the intention mechanism
studied in Garnelo and Czarnecki (2023) and can be viewed as a generalization of linear attention.
Recall that we define the softmax attention (Vaswani et al., 2017) for any q ∈ Rdk , K ∈ Rt×dk , and
V ∈ Rt×dv as attn(q,K, V ) = V ⊤softmax(Kq). In the following proposition, we show that the
attention in (4.8) coincides with the softmax attention as the sequence length goes to infinity.
Proposition 4.3. We assume that the key-value pairs {(kt, vt)}Tt=1 are independent and identi-
cally distributed, and we adopt Gaussian RBF kernel KRBF. In addition, we assume that ∥kt∥2 =
∥vt∥ = 1. Then, it holds for an absolute constant C > 0 and any q ∈ Rdk with ∥q∥ = 1 that
limT→∞ attn†(q,KT , VT ) = C · limT→∞ attn(q,KT , VT ).

The proof is in Appendix F.4. Combined with the conditional probability of vt+1 in (4.6),
this proposition shows that softmax attention approximately encodes BMA in long token se-
quences (Wasserman, 2000), and thus is able to perform ICL when prompted after pretraining.

5 THEORETICAL ANALYSIS OF PRETRAINING

5.1 PRETRAINING ALGORITHM

In this section, we describe the pretraining setting. We largely follow the transformer structures in
Brown et al. (2020). The whole network is a composition of D sub-modules, and each sub-module
consists of a MHA and a Feed-Forward (FF) fully connected layer. Here, D > 0 is the depth of the
network. The whole network takes X(0) = X ∈ RL×d as its input. In the t-th layer for t ∈ [D], it
first takes the output X(t−1) of the (t − 1)-th layer as the input and forwards it through MHA with
a residual link and a layer normalization Πnorm(·) to output Y (t), which projects each row of the
input into the unit ℓ2-ball. Here we take dh = d in MHA, and the generalization of our result to
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general cases is trivial. Then the intermediate output Y (t) is forwarded to the FF module. It maps
each row of the input Y (t) ∈ RL×d through the same single-hidden layer neural network with dF
neurons, that is ffn(Y (t), A(t)) = ReLU(Y (t)A

(t)
1 )A

(t)
2 , where A

(t)
1 ∈ Rd×dF , and A

(t)
2 ∈ RdF×d

are the weight matrices. Combined with a residual link and layer normalization, it outputs the output
of layer t as X(t), that is

Y (t)=Πnorm

[
mha(X(t−1),W (t)) +γ

(t)
1 X(t−1)

]
, X(t)=Πnorm

[
ffn(Y (t),A(t)) +γ

(t)
2 Y (t)

]
. (5.1)

Here we allocate weights γ
(t)
1 and γ

(t)
2 to residual links only for the convenience of theoretical

analysis. In the last layer, the network outputs the probability of the next token via a softmax module,
that is Y (D+1) = softmax(I⊤LX(D)A(D+1)/(Lτ)) ∈ Rdy , where IL ∈ RL is the vector with all
ones, A(D+1) ∈ Rd×dy is the weight matrix, τ ∈ (0, 1] is the fixed temperature parameter, and dy is
the output dimension. The parameters of each layer are denoted as θ(t) = (γ

(t)
1 , γ

(t)
2 ,W (t), A(t)) for

t ∈ [D] and θ(D+1) = A(D+1), and the parameter of the whole network is the concatenation of these
parameters, i.e., θ = (θ(1), · · · , θ(D+1)). We consider the transformers with bounded parameters.
The set of parameters is

Θ =
{
θ |

∥∥A(D+1),⊤∥∥
1,2

≤ BA,max
{∣∣γ(t)

1

∣∣, ∣∣γ(t)
2

∣∣} ≤ 1,
∥∥A(t)

1

∥∥
F
≤ BA,1,

∥∥A(t)
2

∥∥
F
≤ BA,2,∥∥WQ,(t)

i

∥∥
F
≤ BQ,

∥∥WK,(t)
i

∥∥
F
≤ BK ,

∥∥WV,(t)
i

∥∥
F
≤ BV for all t ∈ [D], i ∈ [h]

}
,

where BA, BA,1, BA,2, BQ, BK , and BV are the bounds of parameter. Here we only consider the
non-trivial case where these bounds are larger than 1, otherwise, the magnitude of the output in Dth

layer decreases exponentially with growing depth. The probability induced by the transformer with
parameter θ is denoted as Pθ.

The pretraining dataset consists of Np independent trajectories. For the n-th trajectory with
n ∈ [Np], a hidden concept zn ∼ PZ(z) ∈ ∆(Z) is first sampled, which is the hidden vari-
ables of the token sequence to generate, e.g., the theme, the sentiment, and the style. Then the
tokens are sequentially sampled from the Markov chain induced by zn as xn

t+1 ∼ P(· |Sn
t , z

n) and
Sn
t+1 = (Sn

t , x
n
t+1), where xn

t+1 ∈ X, and Sn
t , S

n
t+1 ∈ X∗. Here the Markov chain is defined with

respect to the state Sn
t , which obviously satisfies the Markov property since Sn

i for i ∈ [t − 1] are
contained in Sn

t . The pretraining dataset is DNp,Tp
= {(Sn

t , x
n
t+1)}

Np,Tp

n,t=1 where the concepts zn is
hidden from the context and thus unobserved. Here each token sequence is divided into Tp pieces
{(Sn

t , x
n
t+1)}

Tp

t=1. We highlight that this pretraining dataset collecting process subsumes those for
GPT, and Masked AutoEncoders (MAE) (Radford et al., 2021). For GPT, each trajectory corre-
sponds to a paragraph or an article in the pretraining dataset, and zn ∼ PZ(z) is realized by the
selection process of these contexts from the Internet. For MAE, we take Tp = 1, and Sn

1 and xn
2

respectively correspond to the image and the masked token.

To pretrain the transformer, we adopt the cross-entropy as the loss function, which is widely used in
the training of BERT and GPT. The corresponding pretraining algorithm is

θ̂ = argmin
θ∈Θ

− 1

NpTp

Np∑
n=1

Tp∑
t=1

logPθ(x
n
t+1 |Sn

t ). (5.2)

We first analyze the population version of (5.2). In the training set, the conditional distribution
of xn

t+1 conditioned on Sn
t is P(xn

t+1 |Sn
t ) =

∫
Z
P(xn

t+1 |Sn
t , z)PZ(z |Sn

t )dz, where the unob-
served hidden concept is weighed via its posterior distribution. Thus, the population risk of (5.2)
is Et[ESt

[KL(P(· |St)∥Pθ(· |St)) + H(P(· |St))]], where t ∼ Unif([Tp]), H(p) = −⟨p, log p⟩ is
the entropy, and St is distributed as the pertaining distribution. Thus, we expect that Pθ will con-
verge to P. For MAE, the network training adopts ℓ2-loss, and we defer the analysis of this case to
Appendix G.4.

5.2 PERFORMANCE GUARANTEE FOR PRETRAINING

We first state the assumptions for the pretraining setting.
Assumption 5.1. There exists a constant R > 0 such that for any z ∈ Z and St ∼ P(· | z), we have
∥S⊤

t ∥2,∞ ≤ R almost surely.
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This assumption states that the ℓ2-norm of the magnitude of each token in the token sequence is
upper bounded by R > 0. This assumption holds in most machine learning settings. For BERT
and GPT, each token consists of word embedding and positional embedding. For MAE, each token
consists of a patch of pixels. The ℓ2-norm of each token is bounded in these cases.

Assumption 5.2. There exists a constant c0 > 0 such that for any z ∈ Z, x ∈ X and S ∈ X∗, we
have P(x |S, z) ≥ c0.

This assumption states that the conditional probability of x conditioned on S and z is lower bounded.
This comes from the ambiguity of language, that is, a sentence can take lots of words as its next word.
Similar regularity assumptions are also widely adopted in ICL literature (Xie et al., 2021; Wies et al.,
2023). To state our result, we respectively use ES∼D and PD to denote the expectation and the
distribution of the average distribution of Sn

t in DNp,Tp , i.e., ES∼D[f(S)] =
∑Tp

t=1 ESt [f(St)]/Tp

for any function f : X∗ → R.

Theorem 5.3. Let B̄ = τ−1RhBABA,1BA,2BQBKBV and D̄ = D2d(dF + dh + d) + d · dy .
Under Assumptions 5.1 and 5.2, the pretrained model Pθ̂ by the algorithm in (5.2) satisfies

ES∼D

[
TV

(
P(· |S),Pθ̂(· |S)

)]
=O

(
inf

θ∗∈Θ

√
ES∼DKL

(
P(·|S)∥Pθ∗(·|S)

)
+
t
1/4
mix log 1/δ

(NpTp)1/4︸ ︷︷ ︸
approximation error

+

√
tmix√
NpTp

(
D̄ log(1+NpTpB̄)+log

1

δ︸ ︷︷ ︸
generalization error

))

with probability at least 1 − δ, where tmix is the mixing time of the Markov chains induced by P,
formally defined in Appendix G.1.

We define the right-hand side of the equation as ∆pre(Np, Tp, δ). The first and the second terms in
the bound are the approximation error. It measures the distance between the nominal distribution
P and the distributions induced by transformers with respect to KL divergence. If the nominal model
P can be represented by transformers exactly, i.e., the realizable case, these two terms will vanish.
The third term is the generalization error, and it does not increase with the growing sequence
length Tp. This is proved via the PAC-Bayes framework.

This pretraining analysis is missing in most existing theoretical works about ICL. Xie et al. (2021),
Wies et al. (2023), and Jiang (2023) all assume access to an arbitrarily precise pretraining model. Al-
though the generalization bound in Li et al. (2023) can be adapted to the pretraining analysis, the risk
definition therein can not capture the approximation error in our result. Furthermore, their analysis
cannot fit the maximum likelihood algorithm in (5.2). Concretely, their result can only show that the
convergence rate of KL divergence is O((NpTp)

−1/2) with a realizable function class. Combined
with Pinsker’s inequality, this gives the convergence rate for total variation as O((NpTp)

−1/4) even
in the realizable case.

The deep neural networks are shown to be universal approximators for many function classes (Cy-
benko, 1989; Hornik, 1991; Yarotsky, 2017). Thus, the approximation error in Theorem 5.3 should
vanish with the increasing size of the transformer. To achieve this, we slightly change the structure
of the transformer by admitting a bias term in feed-forward modules, taking A

(t)
2 ∈ RdF×dF , and

admitting dF to vary across layers. This mildly affects the generalization error by replacing D · dF
by the sum of dF of all the layers in Theorem 5.3. We derive the approximation error bound when
the dimension of each word is equal to one, i.e., X ⊆ R. Our method can carry over the case d > 1.

Proposition 5.4 (Informal). Under certain smoothness conditions, if dF ≥ 16dy , BA,1 ≥ 16Rdy ,
BA,2 ≥ dF BA ≥

√
dy , and BV ≥

√
d, then for some constant C > 0, we have

inf
θ∗∈Θ

max
∥S⊤∥2,∞≤R

KL
(
P(· |S) ∥Pθ∗(· |S)

)
= O

(
dy exp

(
− C ·D1/4√

logBA,1

))
.

The formal statement and proof are deferred to Appendix G.3. This proposition states that the
approximation error decays exponentially with the increasing depth. Combined with this result,
Theorem 5.3 provides the full description of the pretraining performance.
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6 ICL REGRET UNDER PRACTICAL SETTINGS

6.1 ICL REGRET WITH AN IMPERFECTLY PRETRAINED MODEL

xIn Section 4, we study the ICL regret with a perfect pretrained model. In what follows, we charac-
terize the ICL regret when the pretrained model has an error. Note that the distribution DICL of the
prompts of ICL tasks can be different from that of pretraining. We impose the following assumption
on their relation.
Assumption 6.1. We assume that there exists an absolute constant κ > 0 such that for any ICL
prompt, it holds that PDICL

(prompt) ≤ κ · PD(prompt).

This assumption states that the prompt distribution is covered by the pretraining distribution. Intu-
itively, the pretrained model cannot precisely inference on the datapoint that is outside the support of
the pretraining distribution. For example, if the pretraining data does not contain any mathematical
symbols and numbers, it is difficult for the pretrained model to calculate 2× 3 in ICL precisely. We
then have the following theorem characterizing the ICL regret of the pretrained model.
Theorem 6.2 (ICL Regret of Pretrained Model). We assume that the underlying hidden concept
z∗ maximizes

∑t
i=1 logP(ri | prompti−1, z) for any t ∈ [T ] and there exists an absolute constant

β > 0 such that log(1/p0(z∗)) ≤ β. Under Assumptions 5.1, 5.2, and 6.1, we have with probability
at least 1− δ that

Eprompt∼DICL

[
T−1 ·

T∑
t=1

logP(rt | z∗, promptt−1)− T−1 ·
T∑

t=1

logPθ̂(rt | promptt−1)
]

≤ O
(
β/T + κ · b∗ ·∆pre(Np, Tp, δ)

)
.

Here we denote by ∆pre(Np, Tp, δ) the pretraining error in Theorem 5.3.

Theorem 6.2 shows that the expected ICL regret for the pretrained model is upper bounded by the
sum of two terms: (a) the ICL regret for the underlying true model and (b) the pretraining
error. These two terms are separately bounded in Sections 4 and 5.

6.2 PROMPTING WITH WRONG INPUT-OUTPUT MAPPINGS

In the real-world implementations of ICL, the provided input-output examples may not conform to
the nominal distribution induced by z∗, and the outputs in examples can be perturbed. We tem-
porarily take concept space Z as a finite space, and our results can be generalized with a cover-
ing number argument. We denote the prompt considered in Section 4 as promptt = (St, c̃t+1),
St = (c̃1, r1, · · · , c̃t, rt) ∈ X∗, and (c̃i+1, ri+1) ∼ P(· |Si, z∗) for i ∈ [t − 1]. Here, each input
c̃i ∈ Xl is a l-length token sequence, and each output ri ∈ X is a single token. The perturbed prompt
is then denoted as prompt′ = (S′

t, c̃t+1), where S′
t = (c̃1, r

′
1, · · · , c̃t, r′t) ∈ X∗, and r′i for i ∈ [t]

is the modified output. We denote the perturbed prompt distribution as P′. Then the performance of
ICL with wrong input-output mappings can be stated as follows.
Proposition 6.3 (Informal). Under certain assumptions, including the distinguishability assumption
(minz ̸=z∗ KLpair

(
P(· | z∗) ∥P(· | z)

)
> 2 log 1/c0), the pretrained model Pθ̂ in (5.2) predicts the

outputs with the prompt containing wrong mappings as

Eprompt′

[
KL

(
P(· | c̃t+1, z∗)∥Pθ̂(· |S

′
t, c̃t+1)

)]
=O

(
∆pre(Np, Tp, δ)+exp

(
−

√
t

2(1 + l) log 1/c0

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0

)))
with probability at least 1− δ.

The first term is the pretraining error in Theorem 5.3, which is related to the size of the pretraining
set and the capacity of the neural networks. The second term is the ICL error. Intuitively, this term
represents the concept identification error. If the considered task z∗ is distinguishable, i.e., satisfying
Assumption H.3, this term decays to 0 exponentially in

√
t. The required assumptions and formal

statement are in Appendix H.2.
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