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Abstract

Developing a parser as reliable as a human be-
ing is a key to map natural language (utterance)
to a comprehensive logic form. In this paper,
we introduce the Enterprise-Participant (EP)
data model and propose a semantic parser that
maps utterance to an EP database. Because EP,
a recursive language, is semantically equiva-
lent to Turing machine, i.e., an EP database
is mathematically capable of inventorying all
the properties of a partial recursive function
with the hypothesis of infinite space and time,
we assume and expect the meaning of natural
language can be adequately fit (or precisely
approximated) into an EP database having fi-
nite objects with infinite properties including
self-applicable functions. Instead of using a
formal grammar, we accumulate parsing rules
from sample sentences, i.e., given a randomly
selected sentence, we add the corresponding
syntactical structure and meaning into an EP
database. Because an EP database is PAC
learnable, the accumulation process converges,
when sample sentences amount to a foreseeable
size, to the ultimate machine readable form of
the entire natural language. As a side effect, the
collection of the parsing rules will be converged
to map arbitrary utterance to their syntactical
structures as part of the ultimate machine read-
able form in an EP database.

1 Introduction

If a parser can break down all possible natural lan-
guage (utterance) into a machine readable form,
either for syntax (grammatical structure) or for se-
mantics (meanings), as accurate as human being
does, a computer will be able to be instructed in
natural language, as if in programs coded by hu-
man beings, to perform many intelligent tasks that
human being does, including reasoning, decision
making, and running machine operations, utterance
generation, language translation, and certainly in-
formation management as well.

Formal grammars are aimed to map the syn-
tactical structure of all possible sentences (utter-
ance) into a machine readable form. However, no
known grammar has been developed yet to closely
represent a natural language (Barton et al., 1987;
Shieber, 1985; Gazdar et al., 1985). Contempo-
rary semantic parsers map the meanings of natural
language (utterance) to a logic (machine readable)
form. Such a logic form is in expressiveness either
limited such as SQL (Jiang and Cai, 2024) or too
powerful to halt in computation such as the lambda
calculus (Poon, 2013). Although statistical ma-
chine learning has advanced parsing technologies
that led popular applications in our daily life, such
as language translation, question answering, and
code generation, it is still a challenge to produce a
parser that would be as reliable as a human being.
Missing the realizability assumption of the Possi-
bly Approximately Correctly (PAC) learnability is
one of the causes, i.e., some sample data cannot be
correctly labeled, causing a constructed hypothesis
may not converge to its target program.

The Enterprise-Particpant (EP) data model is a
type and variable free language system and equiva-
lently a data structure with which an EP database
can be constructed. An EP database can be syntac-
tically converted from a finite approximation to the
lambda calculus and is interpreted as a bounded
function, i.e., recursive with infinite domain while
guaranteed with a finite co-domain (Xu, 2017). As
a result, the union of all (infinite) EP databases
and equivalently the class of all bounded functions
are semantically equivalent to the lambda calcu-
lus. In other words, we can use EP to accumulate
information, formally the properties of partially re-
cursive functions, as much as the time and space
were allowed. EP is more expressive than the con-
temporary data structures, including relational data
(vectors), tree structures, and network structures
(graphs) because all of them can be expressed in EP.
For example, a directed cyclic graph with edges: v,



to vy , vy to v1, and vy to v3 is constructed with a
database: D = {v] vy := v9;v2 V1 1= v1; U U3 i=
vs }. EP with the constructed database supports the
following queries simulating one’s walks along the
cyclic graph, i.e., reduces the left expressions to the
right expressions: vy v v3 —p v3,V1 U2 U1 —D
V1, V2 U1 V2 ... V1 =D V1, .... (Note that a sequence
of nodes that do not form a path would be reduced
to a special value null, e.g., v3 v —p null.)

Further, EP has a built-in transitive relational op-
erator (= + to express if two nodes in a graph has
a path or a cycle. For example: v3 (= + v1 —p
true, i.e., a path from vy to vs; v1 (= + v3 —p
false, i.e., from v3 to vy is not a path; and vy (=
+ v1 and v; (= + va —p true, i.e., a cycle be-
tween v and vs.

Another unique feature of EP is that EP
databases are (PAC) learnable, i.e., a class of
bounded functions represented in a class of EP
databases is PAC learnable (Xu, 2025). Taking a
class of graphs as a proper subset of the bounded
functions expressible in EP, for example, there is an
algorithm that can construct the example database
D described earlier by taking following paths as
positive samples: ve v1 and v vg vs.

Because a bounded function represents a arbi-
trary proper subset of the properties of partial re-
cursive functions, such a learnability, i.e., gaining
an arbitrary number of meaningful expressions by
databasing a finite set of sample expressions with-
out explicit programming, gives us an opportunity
to represent the world knowledge to EP expres-
sions in an EP database, and further map natural
language utterance to the machine readable form
of knowledge in the EP database. We assume there
is a partial recursive function that precisely repre-
sents and computes the knowledge. We know that
it is impossible (because knowledge is constantly
changing) and practically unnecessary to construct
a program that precisely represents such a func-
tion because knowledge is a collection of syntacti-
cal and semantic phenomena including intertwined
text, (para)phrases, coreferences, sentences, ob-
jects and the relationships among the objects in the
real-world knowledge. But we can further assume
that knowledge can be reasonably represented as a
bounded function because human beings roughly
view the world with a finite number of entities (in
a correspondence to a finite co-domain in EP) but
communicate with each other with infinitely pos-
sible utterance (in a correspondence to an infinite
domain in EP). Given this assumption, as is all a

computer can do, we say that we can accumulate
knowledge into an EP database which will even-
tually converge to the ultimate bounded function
representing the knowledge.

We further argue that learning and collecting
knowledge in a machine representable form is a
paraphrase of learning natural language (NL) and
mapping NL to a machine representable form. If
we know how to do the latter, we can collect knowl-
edge in NL. If we know how to do the former, since
NL is part of knowledge, we become capable of do-
ing the latter by default. This assumption actually
has become evident from the practice of statistical
machine learning on NLP.

In this paper, we present a symbolic learning
approach in EP, assisted by Froglingo - a Turing
complete language extended with variables and
types on the top of EP, to tackle knowledge rep-
resentation and a mapping from utterance to EP
expressions representing knowledge. It is done
through a collection of sample sentences. For each
randomly selected sentence, we give Froglingo ex-
pressions as the corresponding parsing rule that
maps the sentence (and possibly others) to EP ex-
pressions as its syntactical structure. We further
enhance the Froglingo expressions defined earlier
to have a mapping rule that maps the syntactical
structure of the sentence (and probably others) to
another set of EP expressions as the meaning of the
sentence (and probably others). For each parsing
decision, i.e., on which parsing rule to choose or if
a new rule is needed for a coming sentence, the sys-
tem references the database to confirm a sentence
makes sense to the up-to-date knowledge stored in
the database. Therefore, even if a sentence has a
perfect grammatical structure, the system may not
recognize (read) it, as if a child didn’t understand
what an adult was talking about. This process is
critical to maintain the realizability assumption of
the PAC learnability and ensure that the database
for knowledge will eventually converge.

A contemporary programming language is a top-
down approach in the sense that we know exactly
what a function we need to construct and we con-
struct exactly the same function, e.g., f(z) = z+1.
EP is a bottom-up approach in the sense that we
don’t know what the ultimate function in construc-
tion would be ended up with but we add one piece
of its properties at a time, e.g., D = {f 0 :=
1;f 1 := 2;...; £ 100000 := 100001}. This dif-
ference gives an intuitive view on why the parsing
approach in EP is different from the contemporary



symbolic solutions.

In Section 2, 3, and 4, we review the notions of
EP database, reduction , and transitive relations. In
Section 5, we introduce Froglingo and additional
transitive relations. By examples, in Section 6, we
demonstrate how the learnability is applied to nat-
ural language processing (NLP). Through the dis-
cussion, we observe that Froglingo serves as a tool
to construct parsing and mapping rules as part of a
learning algorithm in processing NL. In Section 7,
we show that the collection of parsing rules from
sample text converges to a target parser needed to
parse arbitrary utterance provided the utterance is
representable, precisely can be approximated, in
EP.

2 EP databases

The Enterprise-Participant (EP) data model is a
language system and equivalently a data structure
with which an EP database can be constructed.
The idea behind EP is that we treat all objects
to be represented as functions. Given a function
f that produces a value m when it is applied to
an argument n, denoted as f (n) = m, let’s
think of an exercise in which we inventory the
properties of f in a database. We can rewrite
f(n) = mas fn := m, reading it as: ap-
plying f to n is assigned a value m. The set
{f n := m}, called a database, is an approxi-
mation of f. When we apply f to an additional
argument n/, we would obtain a better approxima-
tion {f n :=m, f n' := m'} where f (n') =m’.
In addition, m could be another function such that
m (p) = q for a given input p. So we can exhibit
more properties of f with the accumulated approx-
imation {f n := m, fn' ;= m/,mp := ¢} or
equivalently {f n p := q, f n' := m'}. From the
database {f n :=m, f n' :=m/;m p := ¢}, we
can derive: (f (n)) (p) = q.

Definition 2.1 The EP data model is described
as a language system (F, -, (,), E, :=, D) where

1. F is a set of identifiers (function names)

2. - is a binary operation that produces a set E
such that
meF —= mekE
mneE = (m-n)eE
Here we simply write (m-n) as (m n) and fur-
ther m n when (m - n) is implied !, where m,
n, and m n are called a function, an argument,

'When a combination of two terms m n is given without

and the corresponding application. For a
x € E, we call x a term. Given an application
term m n, m and n are called proper subterms
of m n, and m n is also called a subterm of
itself.

3. :=1is the Cartesian product E x E, i.e., := =
E x E. When a pair (p, q) € :=, we denote
it as p := ¢, which is called an assignment,
where p and ¢ are the assignee and assigner
respectively.

4. D, called a database, is a finite set of terms
and a finite set of assignments, i.e., D C
(E U :=), such that for each assignment
p = q € D, where p,q € E, the following
constraints are met:

(a) p has only one assigner, i.e., p =
gandp:=q¢ €D — q=¢

(b) A proper subterm of p cannot be an as-
signee, ie.,p:=q € D = Vzx €
SUB™(p) [Ym € E [z :=m & D]]

(c) g can not be an assignee, i.e., p := q €
D = YacE[g:=a¢ D]

Identifiers are the most basic building blocks in
EP. Like in programming languages, we can choose
alphanumeric tokens as identifiers, such as abc123,
_abc, and more commonly we take words from a
natural language vocabulary as identifiers, such as
hello, John, sport, law, and person.

A term is either an identifier x € F or an ap-
plication z y € E where x € E,y € E, such as
zx,(abc)(dea(dta)) are legitimate terms
where x,a,b,c,d,e,t € F.

Given a term, e.g., mg my...m; foran¢ € N,
we call all the leftmost subterms of the term, i.e.,
mo, Mo M1, ..., Mg Mi...m; aleftmost subterm,
denoted as Ims. Given a term t, we use |t| to de-
note the size of the term, e.g., |mg my ... my|
=1+ 1, and LM S(t) to denote the set of all
Imss in t. (Then we have t € LMS(t). If
m n € LMS(t), so is m.) We further use
LM S (t) to denotes all the proper Imss in t, i.e.,
LMS*(t) = LM S(t)\t. We further use SU B(p)
to denote all the subterms of a term p, i.e., given
p = mn, thenm,n,m n € SUB(p). We use

surrounding parentheses, we consider the term is parsed by the
preference of left association and therefore (m n) is implied.
For example, a b ¢ always implies ((a b) ¢). If one needs
to express (a (b ¢)), then it has to be written explicitly like
a (bc).



SUB™ (p) to denote all the proper subterms of p,
ie., SUB™(p) = SUB(p)\{p}.

In addition to the example database discussed
in Section 1, we list a few more sample databases
here:

* {x x := x}, for a graph with a single vertex x,
counting a vertex having a directed loopback
edge

e {abc:=d;d (e f) :== ab;}, for a random
database.

* {college John major := college math;

college math math100 (college John) grade

:= A}, for a college administration database.

3 EP database reductions and bounded
functions

We are ready to introduce a reduction system over
E. First, we identify a special identifier null € F
that has the default reduction rule: null m —p
null for any m € E. Because we explicitly single
out the special identifier null from F, we further
restrict that a Ims of an assignee cannot be null
in a database. Before providing the full set of re-
ductions rules, let’s first define the notation of EP
normal form.

Definition 3.1 Given a database D, aterm n €
E is an EP normal form (or normal form in brief)
if and only if

1. nisnull, i.e, n = null; or

2. n is a term in D and not an assignee, i.e.,
ne€DandVbe E [n:=b¢ D].

We use N F (D) to denote the set of all the normal
forms under a database D.

Most terms in E are not normal forms given a
database D, For example, z  and = x = are not
normal forms in the sample database {z = := z}.
We now define a set of rules to reduce an arbitrary
term to a normal form.

Definition 3.2 Given a database D, we have one-
step reduction rules, denoted as =:

1. An assignee is reduced to the assigner, i.e.,
a:=beD = a=1D

2. An identifier not in the database is reduced to
null,ie,a € F,a ¢ D = a = null

3. If a and b are normal forms and a b &€ D,
then a b is reduced to null, ie., a,b €
NF(D),ab¢ D = ab= null

4. a=d b=V = ab=d ¥V

Definition 3.3 Let a = ag, ag =
aly...,0p—1 = ap for a number n € N.
We say that a is effectively, i.e., in finite steps,
reduced to a,,, denoted as a —p a,, and further
we say that a and a, are equal, denoted as
a == ap. S

Definition 3.4 A term a has a normal form b if b
is in normal form and a —p b.

Here are a few sample reductions to their normal
forms under the example databases provided at the
end of Section2: zz ... + —p x,abc —p
d,abc (e f) »p ab,d(e f)c —p d, and
college John major math100 (college John)
grade —p A.

Any term m € E has one and only one normal
form and the reduction system is strongly normal-
izing, i.e., there is another term n € N F'(D) such
that m —p n (Theorem 4.5 in (Xu, 2017)).

The set of all the normal forms N F'(D) is finite,
ie, |[INF(D)| < s for agiven s € N, e.g., s
could be the number of partial computation steps
from which D is transformed (Lemma 4.6 in (Xu,
2017)).

There exists a function Y (D) : E —-p NF(D),
where Y (D) = {(m,n) | m € En €
NF(D), andm —p n}, and Y (D) is bounded
because it has an potentially infinite number of
terms m and a finite numbrer of terms n, where
n # null, such that m —p n. (Such a func-
tion is said to have an potentially infinite domain
while only having a finite co-domain (Theorem
4.7 and Theorem 4.8 in (Xu, 2017)).) A function
f + X — Y has a finite support if and only if X is
an arbitrary set of objects and Y is a finite set of
objects, and there exists a finite set A C X and a
unique member a € Y such that

f(x) =0, whereb € Y and b # a,

=a

ifre A
ifx e X\A

A function f : X — Y is bounded if and only if
X 1is an arbitrary set of objects and Y is a finite
set of objects. (Such a bounded function is always
recursive, i.e., the computation on f(z) terminates
and f(z) € Y for any z € X.) In this article, we
simply call a function finite if it has a finite sup-
port. A finite function is bounded, but a bounded
function may not be finite.

By saying a function being bounded, we mean
that under a given database D, an infinite number
of terms m € E are meaningful, i.e., reducible to a




finite set of normal forms N F'(D). The ability of
mapping infinite objects to finite objects is both the
symptom and the pre-condition of the learnability,
i.e., one object in the co-domain is represented by
multiple objects in the domain, or saying differ-
ently one object in the co-domain is derivable from
others in the domain.

Even if Y/ (D) is finite for a given D, Y (D) may
provide derivable information beyond what are de-
fined in D, i.e., we say it PAC learnable. For exam-
ple, the database D = {a b := ¢;c d := e} allows
the reduction (derivation): a b d —p e, which is
not defined in D. Lastly, an EP database may not
have any derivable information, e.g., D = {a b :=
c;e e := f}. Such databases without derivable
information have nothing to do with learnability.

4 Transitive relations in EP

The transitive relations and the corresponding built-
in operators come from the structure available
among identifiers, terms, and assignments, as well
as from the reduction rules. They play important
rules in defining syntactical parsing rules and se-
mantic mapping rules. In this section, we quickly
review the material presented in (Xu et al., 2010).

4.1 Tree-structured relations

A term alone without an assignment is allowed to
be in a database. When a term is in a database,
its subterms are considered in the database as
well. In terms, we can represent containment re-
lationships. For example, the hierarchical struc-
ture of a geographical location can be expressed
as: Massachusetts Boston Somuverville,
where we can infer Somerville is part of
Massachusetts because Somuverville is part of
Boston and Boston is part of M assachusetts.
The containment relationships among sub-
terms of a given term are true-structured,
denoted as {+, by taking a most left subterm
of the given term as the root of a tree, e.g.,
Massachusetts Boston {+ M assachusetts.
When we take a right most subterm of
a term as a root, we have another tree-
structured relation, denoted as {—, e.g.,
Massachusetts Boston {— Boston. The
tree-structured relations can be extended to
transitive relations, denoted as {= + and {= —,
e.g., Massachusetts Boston someruville
{= 4+ Massachusetts and
Massachusetts Boston somerville

{= — Someruille respectively.

These tree-structured and transitive relations and
the corresponding operators are summarized as
following:

 Given an application m n in a database D, the
operators {+ and {— in the following expres-
sions are defined such that the expressions are
evaluated to be true: mn {+m, mn {—n

e Given a term m in a database D, let [, s, r are
a left-most subterm, a subterm, and a right-
most subterm accordingly, then the operators
{=+, {= —, and {= in the following expres-
sions are defined such that the expressions are
evaluated to be true: m {= + 1, m {= —r,
and m {= s.

4.2 Pre-ordering relations

The normal form, resulting from an application,
doesn’t have to depend on the function and the
argument of the application because it exists inde-
pendently. However, the normal form is derivable
from the application; and therefore it is derivable
from the function, from the argument, and from
the sub-terms of the function and the argument.
This leads to the development of the pre-ordering
relations.

e Let m, n, ¢ € E and D a database, if
mn == g, then the operators (+ and (—
in the following expressions are defined such
that the expressions are evaluated to be true:
q (+mandq (—n.

* Letm,q,l,s r € E, Dadatabase, m == g,
[ is a left-most subterm of m, s is a subterm
of m, and r is a right-most subterm of m.
Then the operators (= +, (= —, and (= in
the following expressions are defined such
that the expressions are evaluated to be true:
g(=+1l,q(=—r,andq (= s.

The operator (= + defined above is used to
express paths and cycles in a graph as demonstrated
in Section 1.

5 Froglingo and more equivalent relations

In Section 3, we have introduced the equivalence
relation ==, which is a transitive relation and can
be used to express paraphrases in natural language,
suchas New York City := NY C. In this section,
we introduce types and variables in Froglingo that



raise different forms of assignments (called rules or
templates) and consequently additional equivalence
relations.

Like in other programming languages, Froglingo
has built-in types integer, real, string, date, and
etc. as well as variables, that makes Froglingo
a Turing-equivalent language. For example, the
factorial function can be expressed as fac $n
[$n isA integer] = ($n X (fac ($n — 1))),
where n, an identifier, preceded with §$, is a vari-
able, and isA is a built-in operator for the transi-
tive relation: if @ isA b and b isA c, then a isA c.
(Note that the operator isA is different from the
tree-structure relation operator {4, can only be
supported by Froglingo because EP is type free.)

We are more interested in user-defined types
because we can infer among types along with
the operator isA. a type is a term as well, for
example car,vehicle, and person. A type and
an object instance are differentiated by different
built-in commands: schema and create respec-
tively. For example, we can have schema vehicle
and schema person to declare types vehicle and
person, and create joe to declare an object in-
stance joe. We can further use isA to associate
a type with another type, or a type with an in-
stance. For example: schema car isA vehicle
and create joe isA person. This definition in
a database would allow us to infer that car and
vehicle are paraphrases in the text: “John just
bought a new car. The vehicle is powerful”.

Inferences among sentences are also supported
in Froglingo. For example, we can specify two
rules (templates) when action had been declared
as a type: improvement isA action, and
person (verB paint) house isA improvement.
When we have an instance:
joe (verB painted) ((coreF his) house),
where the built-in coreF’ abbreviates "coref-
erence", we can infer the equivalence while
paint and improvement are not paraphrases:
joe (ver B improved) ((coreF his) house).

Many inferences in the real world are not based
on rules from common knowledge but rather on in-
dividual instances. Froglingo supports a sequence
of terms as an assigner. Froglingo uses assignments
with a sequence of terms as an assigner to support
such inferences. For example:

John (verB took) (delimiT a) vacation =

John (ver B visited) Jen,

John (verB spent) ((delimiT a) day)

((preP on) beach);

John (ver B visited) Jen :=
John (verB gave) Jen ((delimiT a) gift),

John (ver B had) dinner ((preP (together with)) Jen):

An assignee above is an abstraction and the cor-
responding assigner is a sequence of sub actions
that give the details of the abstraction. When an
abstraction is equivalent to its sub actions, we can
infer from the abstraction to a specific action, for
example, from the assignments above, one can in-
fer “John visited Jen” from “John took a vacation”,
and inversely we can speculate: “John took a va-
cation” when one hears “A gentleman gave Jen a
gift”. These inferences occur only for the specific
circumstances.

6 Fresh information from sample text

The instance space of the EP-driven learnability
presented in (Xu, 2025) is the EP terms E. This
doesn’t help us practically because there are not
pre-existing EP expressions. However, we can map
text to EP terms (expressions) first and then ap-
ply the converted EP terms to the learnability. In
this section, we give a few examples in natural lan-
guage to demonstrate this idea that the EP-driven
learnability can actually be applied to the instance
space of natural language.

A primary task of learning from text using
Froglingo is to implement a parser that can map
text to Froglingo expressions that represent the syn-
tactical structure of the given text. Instead of a for-
mal grammar, we use Froglingo expressions, called
rules or templates, serving as a semantic parser for
both text parsing and semantic mapping. For the
geographical containment relationships described
in Section 2, for example, we can have the follow-
ing template: location (bE be) part (preP of)
$z : [$z isA location] := there_is
$y : [Sy isA location]
where $y {= + $x and $y {— location ;
where location is a type for a geographi-
cal location, such as Florida, Miami, and
Florida Miami, $x and $y are variables
typed as location.  When a sentence like:
"Somerville is part of Boston" is to be parsed,
the template above would guide the parser
to break the text into the EP expression:
Somerville (bE is) part (preP of) Boston.

The template above guides the syntactical struc-
ture Somerville (bE is) part (preP of) Boston
to be reduced (mapped) to:
there_is $y : [$y isA location]



where $y {= + Boston and $y {— Somerville;
where there_is is a built-in operator 2 to find out if
there is a location $y that meets the where clause.

Froglingo works in at least two modes: a
learning (L) model and an operation (O) mode.
When it is in L mode, it creates new data
that would meet the where clause, i.e., add
Boston Someruville isA location as a new fact
into the database, where Boston Somerville {=
+ Boston >.

With the same template, the same construction
process would be able to receive additional text
such as "Boston is part of Massachusetts", which
causes the database to be updated to have the term

M assachusetts Boston Someruville isA location.

Now the database supports "Somerville is part
of Massachusetts", which is a new piece of
information. Reconstructing the database from
the two separate sentences is a learning process
enhanced from the learning algorithm on the
instance space of EP terms (Xu, 2025).

We also allow text to be part of an assigner. For
example: person (verB drive) home :=
Botran (person ”come home by car”). This
assignment defines a rule that “a person
drives home” is equivalent to “a person comes
home by car”, where we assume a template
person (verB come) home (preP by) car
has already being constructed in the database.
The identifier Botran is a built-in term (op-
erator), introduced in (Xu, 2022), that obtains
an instance of type person, e.g., Jessie, that
is passed from the assignee at the left hand
side, concatenates and adjusts the assigner to
a text, e.g., “Jessie comes home by car”, and
parses the text back to a term in Froglingo, e.g.,
Jessie (ver B comes) home ((preP by) car). As
aresult, the following conversation would be newly
meaningful to the NLP process: “Did Jessie come
home by car?”, “Yes, Jessie drove home”. Given
the text "Jessie came home by car” is a sample the
NLP process learns, the text "Jessie drove home"
is a prediction of the NLP process.

Learning through text can also be applied to
types. When we have already defined thing as

This operator is similar to the select operation in the
SQL language for the relational data model and is applicable
to all binary operators including arithmetical, boolean, and
transitive ones introduced in Section 4 and 5. See more in (Xu
et al., 2010)

3When Froglingo is in O mode, it would try to retrieve
data $y from database to see if it meets the condition: $y {=
+ Boston and $y {— Somerville.

a type and word as the type for an identifier from
E, regardless of already in the database or not,
we can further define: word (bE be) thing :=
word isA thing. The template above allows the
prediction: "Tiger is an animal" after learning "An-
imal is a thing", "Cat is an animal", and "Tiger is a
cat".

Breaking complex sentences into simple sen-
tences is another symptom of learning, reflect-
ing the Step 2 and 3 of the learning algo-
rithm given in Section 6.1. For example, the
database has templates: person (ver B wear) hat
and person (verB walk) ((preP on) street).
When the texts "Joe wears a hat" and "Joe
walks on a street" have already be learned
and constructed with the facts in the database
with Joe (verB wore) $x [$z isA hat]
and Joe (verB walked) ((preP on) ($z
[$z isA street]), the text "Joe with a hat walked
on a street" will be parsed and mapped to the two
templates above when an additional template for
the prepositional phrase "with a hat" that modifies
a person. Recognizing the last text is a prediction.

7 The parser

The difference between EP’s bottom-up approach
and programming language’s top-down approach
is similarly applied between a formal grammar and
a collection of parsing rules in Froglingo expres-
sions discussed in Section 6. A formal grammar
always starts with a root non-terminal, serving as
a variable in programming language, that is aimed
to represent all possible sentences in a language,
e.g., the root symbol s in S — NP V P, where
s depends on NP and V P to further break down
each sentence to a machine readable form. How-
ever, this top-down approach is difficult and has
not yet produced a grammar to closely represent
the grammatical phenomena of natural language
(Barton et al., 1987).

Collecting parsing rules from sample text is a
button-up approach. A parsing rule can include
variables for phrases acting as nouns, such as the
types location and person. Additionally there
are needs to have built-in operators introducing
various clauses including infinitive and gerund
phrases as well as noun clauses (Xu, 2022). A rule
may include individual verbs, such as ver B walk,
verB drive, and DE is. However, a rule doesn’t
include a variable or a type representing a category
of verbs and there is not a single rule (variable) to



represent all possible sentences.

Even with the flexibility of the bottom-up ap-
proach, can we still end up with a difficulty not
being able to represent certain grammatical struc-
tures by collecting parsing rules from sample text?
The answer is no. First, let’s mathematically re-
place all variables and types with their instances
in a parsing rule, e.g., replace person with Jessie,
Joe, ..., Zack in person (verB drive) home
and we end up with multiple parsing rules
Jessie (ver B drive) home,

Joe (verB drive) home, ...,

Zack (ver B drive) home. Assuming only a finite
number of objects is our concern in representing
the world knowledge, we still end up with a finite
number of parsing rules if we replace the variables
and the types with their instances in all collected
parsing rules. Therefore, the rules without types
and variables would be still effective and most criti-
cally precise in parsing text. We say such a parsing
is precise because for each sentence: 1) if it is
unique in meaning regardless of its context, we
give its unique grammatical structure as it is; 2)
if it is ambiguous in syntax, such as "Joe saw the
girl with a binoculars", we can give its syntacti-
cal structure based on what the speaker intended,
i.e., referencing the Froglingo database for its true
meaning before deciding its syntactical structure;
3) if it is ambiguous in semantics, such as "Joe got
what he wanted" that is unique in syntax but could
mean many things in meaning, we can still search
the database for the context: who "Joe" is, What
object Joe wanted and got, and if "got" is a "took",
"received”, or "purchased"; and 4) if it is ambigu-
ous in pragmatics, such as "put the coffee on the
table" while there are two tables next to each other
as people often purposely or unconsciously say,
we have to raise a question for clarification after a
search on the database concludes the ambiguity.

Can we express the utterance that are not context
free such as cross-serial dependencies in Swiss Ger-
man (Shieber, 1985)? We don’t attempt to develop
a parsing rule in Froglingo to represent arbitrary
layers of the cross-serial dependencies, in a contrast
to a context sensitive grammar. But we can develop
a finite number of layers of the dependencies, e.g.,
the 3rd or 4th, which is an approximation to the
context sensitive grammar but should be practically
sufficient.

Now, let’s come back to the reality: we still
need variables and types in parsing rules. Can we
adequately manage those variables and types to

precisely parse utterance? The answer is yes. If a
variable or type originally defined in a rule has un-
expected instances, e.g., person (ver B wear) hat
where we like hat to be red only, we can redefine it
as person (ver B wear) $h : [($h isA hat) and
($h color == adJ red)|. If there are some ex-
tremely difficult utterance to be syntactically bro-
ken down, we can always roll back individual in-
stances instead of variables and types, although the
effort appears to be tedious.

8 Related work

Data mining technologies acquire machine read-
able knowledge from text. Statistical based NLPs
acquire vector-based (machine readable) knowl-
edge from text, which is not human-readable and
may not be quite accurate. In this paper, we pro-
pose a symbolic learning approach in Froglingo to
more accurately acquire knowledge from text and
represent it in both machine- and human-readable
Froglingo expressions.

Statistical based NLPs learn from various text
indiscriminately available in the society including
harmful materials. Therefore, it is hard to control to
not generate unpredictable and harmful materials.
A symbolic approach, on the other hand, has a full
control on what should be generated.

9 Conclusion

The main contribution of this paper is: the bottom-
up approach of finitely collecting parsing rules
through sample text converges to a parser that can
be as reliable as a human being.

There is an open question: Is a collection of pars-
ing rules, with variable and types, PAC learnable
while we only concluded that the parser will work
correctly in parsing utterance? So far, we know
that an EP data model is PAC learnable and the
bottom-up parsing rules correctly map utterance
to EP terms. When a finite set of sample utter-
ance make an effect of more meaningful new ut-
terances through learning, does the corresponding
finite set of parsing rules make an effect of more
meaningful new parsing rules? The answer should
be yes because the new meaningful utterances must
be parsed by the given finite parsing rules. This
conclusion is consistent with the notation "undeter-
mined", denoted as the symbol "*" designated as a
variable, as part of boolean functions that were con-
cluded PAC learnable in (Valiant, 1984). A more
thorough work is needed to confirm the conclusion.



10 Limitations

Unlike a statistical machine learning approach, the
symbolic approach to the bottom-up parsing rules
needs manual development, at least supervising if a
statistical machine learning can help automatically
collect parsing rules.

The symbolic approach to the bottom-up parsing
rules cannot directly be applied to the statistical
machine learning technologies, though a mapping
between the two may be developed. The latter
uses similarities on geometric measures such as
distance or cosine function among objects that are
embedded to a Euclidean space to represent their
relationships. The former uses transitive relations
among the symbolic objects to calculate their rela-
tionships.
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A Supplementary data

A separate file is attached in the Data Section,
where additional examples are given to demonstrate
a user interface that accepts both Froglingo expres-
sions and natural language utterance. We focus
on L mode using 4 sentences, including the first 3
from the famous folktale "Jack and Bean Stalk", to
demonstrate how developers (users) interact with
the Froglingo-based NLP system using both NL
and Froglingo expressions to construct a database
representing knowledge. The fourth example gives
the processing of constructing the factorial function
using NL as an instruction. While natural language
understanding and code generation are not new,
presenting a symbolic approach here is aimed to
demonstrate a sense of feasibility in implementing
such a system with a precision we expect.

The file contains a table capturing the discussion.
It is in PDF format wrapped in ZIP in order to be
able to upload.
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