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Abstract001

Developing a parser as reliable as a human be-002
ing is a key to map natural language (utterance)003
to a comprehensive logic form. In this paper,004
we introduce the Enterprise-Participant (EP)005
data model and propose a semantic parser that006
maps utterance to an EP database. Because EP,007
a recursive language, is semantically equiva-008
lent to Turing machine, i.e., an EP database009
is mathematically capable of inventorying all010
the properties of a partial recursive function011
with the hypothesis of infinite space and time,012
we assume and expect the meaning of natural013
language can be adequately fit (or precisely014
approximated) into an EP database having fi-015
nite objects with infinite properties including016
self-applicable functions. Instead of using a017
formal grammar, we accumulate parsing rules018
from sample sentences, i.e., given a randomly019
selected sentence, we add the corresponding020
syntactical structure and meaning into an EP021
database. Because an EP database is PAC022
learnable, the accumulation process converges,023
when sample sentences amount to a foreseeable024
size, to the ultimate machine readable form of025
the entire natural language. As a side effect, the026
collection of the parsing rules will be converged027
to map arbitrary utterance to their syntactical028
structures as part of the ultimate machine read-029
able form in an EP database.030

1 Introduction031

If a parser can break down all possible natural lan-032

guage (utterance) into a machine readable form,033

either for syntax (grammatical structure) or for se-034

mantics (meanings), as accurate as human being035

does, a computer will be able to be instructed in036

natural language, as if in programs coded by hu-037

man beings, to perform many intelligent tasks that038

human being does, including reasoning, decision039

making, and running machine operations, utterance040

generation, language translation, and certainly in-041

formation management as well.042

Formal grammars are aimed to map the syn- 043

tactical structure of all possible sentences (utter- 044

ance) into a machine readable form. However, no 045

known grammar has been developed yet to closely 046

represent a natural language (Barton et al., 1987; 047

Shieber, 1985; Gazdar et al., 1985). Contempo- 048

rary semantic parsers map the meanings of natural 049

language (utterance) to a logic (machine readable) 050

form. Such a logic form is in expressiveness either 051

limited such as SQL (Jiang and Cai, 2024) or too 052

powerful to halt in computation such as the lambda 053

calculus (Poon, 2013). Although statistical ma- 054

chine learning has advanced parsing technologies 055

that led popular applications in our daily life, such 056

as language translation, question answering, and 057

code generation, it is still a challenge to produce a 058

parser that would be as reliable as a human being. 059

Missing the realizability assumption of the Possi- 060

bly Approximately Correctly (PAC) learnability is 061

one of the causes, i.e., some sample data cannot be 062

correctly labeled, causing a constructed hypothesis 063

may not converge to its target program. 064

The Enterprise-Particpant (EP) data model is a 065

type and variable free language system and equiva- 066

lently a data structure with which an EP database 067

can be constructed. An EP database can be syntac- 068

tically converted from a finite approximation to the 069

lambda calculus and is interpreted as a bounded 070

function, i.e., recursive with infinite domain while 071

guaranteed with a finite co-domain (Xu, 2017). As 072

a result, the union of all (infinite) EP databases 073

and equivalently the class of all bounded functions 074

are semantically equivalent to the lambda calcu- 075

lus. In other words, we can use EP to accumulate 076

information, formally the properties of partially re- 077

cursive functions, as much as the time and space 078

were allowed. EP is more expressive than the con- 079

temporary data structures, including relational data 080

(vectors), tree structures, and network structures 081

(graphs) because all of them can be expressed in EP. 082

For example, a directed cyclic graph with edges: v1 083
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to v2 , v2 to v1, and v2 to v3 is constructed with a084

database: D = {v1 v2 := v2; v2 v1 := v1; v2 v3 :=085

v3}. EP with the constructed database supports the086

following queries simulating one’s walks along the087

cyclic graph, i.e., reduces the left expressions to the088

right expressions: v1 v2 v3 →D v3, v1 v2 v1 →D089

v1, v2 v1 v2 ... v1 →D v1, .... (Note that a sequence090

of nodes that do not form a path would be reduced091

to a special value null, e.g., v3 v2 →D null.)092

Further, EP has a built-in transitive relational op-093

erator (= + to express if two nodes in a graph has094

a path or a cycle. For example: v3 (= + v1 →D095

true, i.e., a path from v1 to v3; v1 (= + v3 →D096

false, i.e., from v3 to v1 is not a path; and v2 (=097

+ v1 and v1 (= + v2 →D true, i.e., a cycle be-098

tween v1 and v2.099

Another unique feature of EP is that EP100

databases are (PAC) learnable, i.e., a class of101

bounded functions represented in a class of EP102

databases is PAC learnable (Xu, 2025). Taking a103

class of graphs as a proper subset of the bounded104

functions expressible in EP, for example, there is an105

algorithm that can construct the example database106

D described earlier by taking following paths as107

positive samples: v2 v1 and v1 v2 v3.108

Because a bounded function represents a arbi-109

trary proper subset of the properties of partial re-110

cursive functions, such a learnability, i.e., gaining111

an arbitrary number of meaningful expressions by112

databasing a finite set of sample expressions with-113

out explicit programming, gives us an opportunity114

to represent the world knowledge to EP expres-115

sions in an EP database, and further map natural116

language utterance to the machine readable form117

of knowledge in the EP database. We assume there118

is a partial recursive function that precisely repre-119

sents and computes the knowledge. We know that120

it is impossible (because knowledge is constantly121

changing) and practically unnecessary to construct122

a program that precisely represents such a func-123

tion because knowledge is a collection of syntacti-124

cal and semantic phenomena including intertwined125

text, (para)phrases, coreferences, sentences, ob-126

jects and the relationships among the objects in the127

real-world knowledge. But we can further assume128

that knowledge can be reasonably represented as a129

bounded function because human beings roughly130

view the world with a finite number of entities (in131

a correspondence to a finite co-domain in EP) but132

communicate with each other with infinitely pos-133

sible utterance (in a correspondence to an infinite134

domain in EP). Given this assumption, as is all a135

computer can do, we say that we can accumulate 136

knowledge into an EP database which will even- 137

tually converge to the ultimate bounded function 138

representing the knowledge. 139

We further argue that learning and collecting 140

knowledge in a machine representable form is a 141

paraphrase of learning natural language (NL) and 142

mapping NL to a machine representable form. If 143

we know how to do the latter, we can collect knowl- 144

edge in NL. If we know how to do the former, since 145

NL is part of knowledge, we become capable of do- 146

ing the latter by default. This assumption actually 147

has become evident from the practice of statistical 148

machine learning on NLP. 149

In this paper, we present a symbolic learning 150

approach in EP, assisted by Froglingo - a Turing 151

complete language extended with variables and 152

types on the top of EP, to tackle knowledge rep- 153

resentation and a mapping from utterance to EP 154

expressions representing knowledge. It is done 155

through a collection of sample sentences. For each 156

randomly selected sentence, we give Froglingo ex- 157

pressions as the corresponding parsing rule that 158

maps the sentence (and possibly others) to EP ex- 159

pressions as its syntactical structure. We further 160

enhance the Froglingo expressions defined earlier 161

to have a mapping rule that maps the syntactical 162

structure of the sentence (and probably others) to 163

another set of EP expressions as the meaning of the 164

sentence (and probably others). For each parsing 165

decision, i.e., on which parsing rule to choose or if 166

a new rule is needed for a coming sentence, the sys- 167

tem references the database to confirm a sentence 168

makes sense to the up-to-date knowledge stored in 169

the database. Therefore, even if a sentence has a 170

perfect grammatical structure, the system may not 171

recognize (read) it, as if a child didn’t understand 172

what an adult was talking about. This process is 173

critical to maintain the realizability assumption of 174

the PAC learnability and ensure that the database 175

for knowledge will eventually converge. 176

A contemporary programming language is a top- 177

down approach in the sense that we know exactly 178

what a function we need to construct and we con- 179

struct exactly the same function, e.g., f(x) = x+1. 180

EP is a bottom-up approach in the sense that we 181

don’t know what the ultimate function in construc- 182

tion would be ended up with but we add one piece 183

of its properties at a time, e.g., D = {f 0 := 184

1; f 1 := 2; ...; f 100000 := 100001}. This dif- 185

ference gives an intuitive view on why the parsing 186

approach in EP is different from the contemporary 187
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symbolic solutions.188

In Section 2, 3, and 4, we review the notions of189

EP database, reduction , and transitive relations. In190

Section 5, we introduce Froglingo and additional191

transitive relations. By examples, in Section 6, we192

demonstrate how the learnability is applied to nat-193

ural language processing (NLP). Through the dis-194

cussion, we observe that Froglingo serves as a tool195

to construct parsing and mapping rules as part of a196

learning algorithm in processing NL. In Section 7,197

we show that the collection of parsing rules from198

sample text converges to a target parser needed to199

parse arbitrary utterance provided the utterance is200

representable, precisely can be approximated, in201

EP.202

2 EP databases203

The Enterprise-Participant (EP) data model is a204

language system and equivalently a data structure205

with which an EP database can be constructed.206

The idea behind EP is that we treat all objects207

to be represented as functions. Given a function208

f that produces a value m when it is applied to209

an argument n, denoted as f (n) = m, let’s210

think of an exercise in which we inventory the211

properties of f in a database. We can rewrite212

f (n) = m as f n := m, reading it as: ap-213

plying f to n is assigned a value m. The set214

{f n := m}, called a database, is an approxi-215

mation of f . When we apply f to an additional216

argument n′, we would obtain a better approxima-217

tion {f n := m, f n′ := m′} where f (n′) = m′.218

In addition, m could be another function such that219

m (p) = q for a given input p. So we can exhibit220

more properties of f with the accumulated approx-221

imation {f n := m, f n′ := m′,m p := q} or222

equivalently {f n p := q, f n′ := m′}. From the223

database {f n := m, f n′ := m′,m p := q}, we224

can derive: (f (n)) (p) = q.225

Definition 2.1 The EP data model is described226

as a language system (F, ·, (, ),E, :=, D) where227

1. F is a set of identifiers (function names)228

2. · is a binary operation that produces a set E229

such that230

m ∈ F =⇒ m ∈ E231

m,n ∈ E =⇒ (m · n) ∈ E232

Here we simply write (m·n) as (mn) and fur-233

ther m n when (m · n) is implied 1, where m,234

n, and mn are called a function, an argument,235

1When a combination of two terms m n is given without

and the corresponding application. For a 236

x ∈ E, we call x a term. Given an application 237

term mn, m and n are called proper subterms 238

of m n, and m n is also called a subterm of 239

itself. 240

3. := is the Cartesian product E×E, i.e., := ≡ 241

E × E. When a pair (p, q) ∈ :=, we denote 242

it as p := q, which is called an assignment, 243

where p and q are the assignee and assigner 244

respectively. 245

4. D, called a database, is a finite set of terms 246

and a finite set of assignments, i.e., D ⊂ 247

(E ∪ :=), such that for each assignment 248

p := q ∈ D, where p, q ∈ E, the following 249

constraints are met: 250

(a) p has only one assigner, i.e., p := 251

q and p := q′ ∈ D =⇒ q ≡ q′ 252

(b) A proper subterm of p cannot be an as- 253

signee, i.e., p := q ∈ D =⇒ ∀x ∈ 254

SUB+(p) [∀m ∈ E [x := m ̸∈ D]] 255

(c) q can not be an assignee, i.e., p := q ∈ 256

D =⇒ ∀a ∈ E [q := a ̸∈ D] 257

Identifiers are the most basic building blocks in 258

EP. Like in programming languages, we can choose 259

alphanumeric tokens as identifiers, such as abc123, 260

_abc, and more commonly we take words from a 261

natural language vocabulary as identifiers, such as 262

hello, John, sport, law, and person. 263

A term is either an identifier x ∈ F or an ap- 264

plication x y ∈ E where x ∈ E, y ∈ E, such as 265

x x, (a b c) (d e a (d t a)) are legitimate terms 266

where x, a, b, c, d, e, t ∈ F. 267

Given a term, e.g., m0 m1. . .mi for an i ∈ N , 268

we call all the leftmost subterms of the term, i.e., 269

m0,m0 m1, . . . ,m0 m1. . .mi a leftmost subterm, 270

denoted as lms. Given a term t, we use |t| to de- 271

note the size of the term, e.g., |m0 m1 . . . mi| 272

= i + 1, and LMS(t) to denote the set of all 273

lmss in t. (Then we have t ∈ LMS(t). If 274

m n ∈ LMS(t), so is m.) We further use 275

LMS+(t) to denotes all the proper lmss in t, i.e., 276

LMS+(t) = LMS(t) \ t. We further use SUB(p) 277

to denote all the subterms of a term p, i.e., given 278

p ≡ m n, then m,n,m n ∈ SUB(p). We use 279

surrounding parentheses, we consider the term is parsed by the
preference of left association and therefore (m n) is implied.
For example, a b c always implies ((a b) c). If one needs
to express (a (b c)), then it has to be written explicitly like
a (b c).
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SUB+(p) to denote all the proper subterms of p,280

i.e., SUB+(p) = SUB(p)\{p}.281

In addition to the example database discussed282

in Section 1, we list a few more sample databases283

here:284

• {x x := x}, for a graph with a single vertex x,285

counting a vertex having a directed loopback286

edge287

• {a b c := d; d (e f) := a b; }, for a random288

database.289

• {college John major := college math;290

collegemathmath100 (college John) grade291

:= A}, for a college administration database.292

3 EP database reductions and bounded293

functions294

We are ready to introduce a reduction system over295

E. First, we identify a special identifier null ∈ F296

that has the default reduction rule: null m →D297

null for any m ∈ E. Because we explicitly single298

out the special identifier null from F, we further299

restrict that a lms of an assignee cannot be null300

in a database. Before providing the full set of re-301

ductions rules, let’s first define the notation of EP302

normal form.303

Definition 3.1 Given a database D, a term n ∈304

E is an EP normal form (or normal form in brief)305

if and only if306

1. n is null, i.e, n ≡ null; or307

2. n is a term in D and not an assignee, i.e.,308

n ∈ D and ∀b ∈ E [n := b ̸∈ D].309

We use NF (D) to denote the set of all the normal310

forms under a database D.311

Most terms in E are not normal forms given a312

database D, For example, x x and x x x are not313

normal forms in the sample database {x x := x}.314

We now define a set of rules to reduce an arbitrary315

term to a normal form.316

Definition 3.2 Given a database D, we have one-317

step reduction rules, denoted as ⇒:318

1. An assignee is reduced to the assigner, i.e.,319

a := b ∈ D =⇒ a ⇒ b320

2. An identifier not in the database is reduced to321

null, i.e., a ∈ F, a ̸∈ D =⇒ a ⇒ null322

3. If a and b are normal forms and a b ̸∈ D,323

then a b is reduced to null, i.e., a, b ∈324

NF (D), a b ̸∈ D =⇒ a b ⇒ null325

4. a ⇒ a′, b ⇒ b′ =⇒ a b ⇒ a′ b′ 326

Definition 3.3 Let a ⇒ a0, a0 ⇒ 327

a1, . . . , an−1 ⇒ an for a number n ∈ N. 328

We say that a is effectively, i.e., in finite steps, 329

reduced to an, denoted as a →D an, and further 330

we say that a and an are equal, denoted as 331

a == an. 332

Definition 3.4 A term a has a normal form b if b 333

is in normal form and a →D b. 334

Here are a few sample reductions to their normal 335

forms under the example databases provided at the 336

end of Section 2: x x . . . x →D x, a b c →D 337

d, a b c (e f) →D a b, d (e f) c →D d, and 338

college John major math100 (college John) 339

grade →D A. 340

Any term m ∈ E has one and only one normal 341

form and the reduction system is strongly normal- 342

izing, i.e., there is another term n ∈ NF (D) such 343

that m →D n (Theorem 4.5 in (Xu, 2017)). 344

The set of all the normal forms NF (D) is finite, 345

i.e., |NF (D)| ≤ s for a given s ∈ N, e.g., s 346

could be the number of partial computation steps 347

from which D is transformed (Lemma 4.6 in (Xu, 348

2017)). 349

There exists a function Y (D) : E →D NF (D), 350

where Y (D) = {(m,n) | m ∈ E, n ∈ 351

NF (D), and m →D n}, and Y (D) is bounded 352

because it has an potentially infinite number of 353

terms m and a finite numbrer of terms n, where 354

n ̸= null, such that m →D n. (Such a func- 355

tion is said to have an potentially infinite domain 356

while only having a finite co-domain (Theorem 357

4.7 and Theorem 4.8 in (Xu, 2017)).) A function 358

f : X → Y has a finite support if and only if X is 359

an arbitrary set of objects and Y is a finite set of 360

objects, and there exists a finite set A ⊂ X and a 361

unique member a ∈ Y such that 362

f(x) = b, where b ∈ Y and b ̸= a, if x ∈ A

= a if x ∈ X\A
363

A function f : X → Y is bounded if and only if 364

X is an arbitrary set of objects and Y is a finite 365

set of objects. (Such a bounded function is always 366

recursive, i.e., the computation on f(x) terminates 367

and f(x) ∈ Y for any x ∈ X .) In this article, we 368

simply call a function finite if it has a finite sup- 369

port. A finite function is bounded, but a bounded 370

function may not be finite. 371

By saying a function being bounded, we mean 372

that under a given database D, an infinite number 373

of terms m ∈ E are meaningful, i.e., reducible to a 374
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finite set of normal forms NF (D). The ability of375

mapping infinite objects to finite objects is both the376

symptom and the pre-condition of the learnability,377

i.e., one object in the co-domain is represented by378

multiple objects in the domain, or saying differ-379

ently one object in the co-domain is derivable from380

others in the domain.381

Even if Y (D) is finite for a given D, Y (D) may382

provide derivable information beyond what are de-383

fined in D, i.e., we say it PAC learnable. For exam-384

ple, the database D = {a b := c; c d := e} allows385

the reduction (derivation): a b d →D e, which is386

not defined in D. Lastly, an EP database may not387

have any derivable information, e.g., D = {a b :=388

c; e e := f}. Such databases without derivable389

information have nothing to do with learnability.390

4 Transitive relations in EP391

The transitive relations and the corresponding built-392

in operators come from the structure available393

among identifiers, terms, and assignments, as well394

as from the reduction rules. They play important395

rules in defining syntactical parsing rules and se-396

mantic mapping rules. In this section, we quickly397

review the material presented in (Xu et al., 2010).398

4.1 Tree-structured relations399

A term alone without an assignment is allowed to400

be in a database. When a term is in a database,401

its subterms are considered in the database as402

well. In terms, we can represent containment re-403

lationships. For example, the hierarchical struc-404

ture of a geographical location can be expressed405

as: Massachusetts Boston Somverville,406

where we can infer Somerville is part of407

Massachusetts because Somverville is part of408

Boston and Boston is part of Massachusetts.409

The containment relationships among sub-410

terms of a given term are true-structured,411

denoted as {+, by taking a most left subterm412

of the given term as the root of a tree, e.g.,413

Massachusetts Boston {+ Massachusetts.414

When we take a right most subterm of415

a term as a root, we have another tree-416

structured relation, denoted as {−, e.g.,417

Massachusetts Boston {− Boston. The418

tree-structured relations can be extended to419

transitive relations, denoted as {= + and {= −,420

e.g., Massachusetts Boston somerville421

{= +Massachusetts and422

Massachusetts Boston somerville423

{= − Somerville respectively. 424

These tree-structured and transitive relations and 425

the corresponding operators are summarized as 426

following: 427

• Given an application m n in a database D, the 428

operators {+ and {− in the following expres- 429

sions are defined such that the expressions are 430

evaluated to be true: m n {+m, m n {− n 431

• Given a term m in a database D, let l, s, r are 432

a left-most subterm, a subterm, and a right- 433

most subterm accordingly, then the operators 434

{= +, {= −, and {= in the following expres- 435

sions are defined such that the expressions are 436

evaluated to be true: m {= + l, m {= − r, 437

and m {= s. 438

4.2 Pre-ordering relations 439

The normal form, resulting from an application, 440

doesn’t have to depend on the function and the 441

argument of the application because it exists inde- 442

pendently. However, the normal form is derivable 443

from the application; and therefore it is derivable 444

from the function, from the argument, and from 445

the sub-terms of the function and the argument. 446

This leads to the development of the pre-ordering 447

relations. 448

• Let m, n, q ∈ E and D a database, if 449

m n == q, then the operators (+ and (− 450

in the following expressions are defined such 451

that the expressions are evaluated to be true: 452

q (+m and q (− n. 453

• Let m, q, l, s, r ∈ E, D a database, m == q, 454

l is a left-most subterm of m, s is a subterm 455

of m, and r is a right-most subterm of m. 456

Then the operators (= +, (= −, and (= in 457

the following expressions are defined such 458

that the expressions are evaluated to be true: 459

q (= + l, q (= − r, and q (= s. 460

The operator (= + defined above is used to 461

express paths and cycles in a graph as demonstrated 462

in Section 1. 463

5 Froglingo and more equivalent relations 464

In Section 3, we have introduced the equivalence 465

relation ==, which is a transitive relation and can 466

be used to express paraphrases in natural language, 467

such as New Y ork City := NY C. In this section, 468

we introduce types and variables in Froglingo that 469
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raise different forms of assignments (called rules or470

templates) and consequently additional equivalence471

relations.472

Like in other programming languages, Froglingo473

has built-in types integer, real, string, date, and474

etc. as well as variables, that makes Froglingo475

a Turing-equivalent language. For example, the476

factorial function can be expressed as fac $n :477

[$n isA integer] := ($n × (fac ($n − 1))),478

where n, an identifier, preceded with $, is a vari-479

able, and isA is a built-in operator for the transi-480

tive relation: if a isA b and b isA c, then a isA c.481

(Note that the operator isA is different from the482

tree-structure relation operator {+, can only be483

supported by Froglingo because EP is type free.)484

We are more interested in user-defined types485

because we can infer among types along with486

the operator isA. a type is a term as well, for487

example car, vehicle, and person. A type and488

an object instance are differentiated by different489

built-in commands: schema and create respec-490

tively. For example, we can have schema vehicle491

and schema person to declare types vehicle and492

person, and create joe to declare an object in-493

stance joe. We can further use isA to associate494

a type with another type, or a type with an in-495

stance. For example: schema car isA vehicle496

and create joe isA person. This definition in497

a database would allow us to infer that car and498

vehicle are paraphrases in the text: “John just499

bought a new car. The vehicle is powerful”.500

Inferences among sentences are also supported501

in Froglingo. For example, we can specify two502

rules (templates) when action had been declared503

as a type: improvement isA action, and504

person (verB paint) house isA improvement.505

When we have an instance:506

joe (verB painted) ((coreF his) house),507

where the built-in coreF abbreviates "coref-508

erence", we can infer the equivalence while509

paint and improvement are not paraphrases:510

joe (verB improved) ((coreF his) house).511

Many inferences in the real world are not based512

on rules from common knowledge but rather on in-513

dividual instances. Froglingo supports a sequence514

of terms as an assigner. Froglingo uses assignments515

with a sequence of terms as an assigner to support516

such inferences. For example:517

John (verB took) (delimiT a) vacation :=518

John (verB visited) Jen,519

John (verB spent) ((delimiT a) day)520

((preP on) beach);521

John (verB visited) Jen := 522

John (verB gave) Jen ((delimiT a) gift), 523

John (verB had) dinner ((preP (together with)) Jen);524

An assignee above is an abstraction and the cor- 525

responding assigner is a sequence of sub actions 526

that give the details of the abstraction. When an 527

abstraction is equivalent to its sub actions, we can 528

infer from the abstraction to a specific action, for 529

example, from the assignments above, one can in- 530

fer “John visited Jen” from “John took a vacation”, 531

and inversely we can speculate: “John took a va- 532

cation” when one hears “A gentleman gave Jen a 533

gift”. These inferences occur only for the specific 534

circumstances. 535

6 Fresh information from sample text 536

The instance space of the EP-driven learnability 537

presented in (Xu, 2025) is the EP terms E. This 538

doesn’t help us practically because there are not 539

pre-existing EP expressions. However, we can map 540

text to EP terms (expressions) first and then ap- 541

ply the converted EP terms to the learnability. In 542

this section, we give a few examples in natural lan- 543

guage to demonstrate this idea that the EP-driven 544

learnability can actually be applied to the instance 545

space of natural language. 546

A primary task of learning from text using 547

Froglingo is to implement a parser that can map 548

text to Froglingo expressions that represent the syn- 549

tactical structure of the given text. Instead of a for- 550

mal grammar, we use Froglingo expressions, called 551

rules or templates, serving as a semantic parser for 552

both text parsing and semantic mapping. For the 553

geographical containment relationships described 554

in Section 2, for example, we can have the follow- 555

ing template: location (bE be) part (preP of) 556

$x : [$x isA location] := there_is 557

$y : [$y isA location] 558

where $y {= + $x and $y {− location ; 559

where location is a type for a geographi- 560

cal location, such as Florida, Miami, and 561

Florida Miami, $x and $y are variables 562

typed as location. When a sentence like: 563

"Somerville is part of Boston" is to be parsed, 564

the template above would guide the parser 565

to break the text into the EP expression: 566

Somerville (bE is) part (preP of) Boston. 567

The template above guides the syntactical struc- 568

ture Somerville (bE is) part (preP of)Boston 569

to be reduced (mapped) to: 570

there_is $y : [$y isA location] 571
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where $y {= + Boston and $y {− Somerville;572

where there_is is a built-in operator 2 to find out if573

there is a location $y that meets the where clause.574

Froglingo works in at least two modes: a575

learning (L) model and an operation (O) mode.576

When it is in L mode, it creates new data577

that would meet the where clause, i.e., add578

Boston Somerville isA location as a new fact579

into the database, where Boston Somerville {=580

+ Boston 3.581

With the same template, the same construction582

process would be able to receive additional text583

such as "Boston is part of Massachusetts", which584

causes the database to be updated to have the term585

Massachusetts Boston Somerville isA location.586

Now the database supports "Somerville is part587

of Massachusetts", which is a new piece of588

information. Reconstructing the database from589

the two separate sentences is a learning process590

enhanced from the learning algorithm on the591

instance space of EP terms (Xu, 2025).592

We also allow text to be part of an assigner. For593

example: person (verB drive) home :=594

Botran (person ”come home by car”). This595

assignment defines a rule that “a person596

drives home” is equivalent to “a person comes597

home by car”, where we assume a template598

person (verB come) home (preP by) car599

has already being constructed in the database.600

The identifier Botran is a built-in term (op-601

erator), introduced in (Xu, 2022), that obtains602

an instance of type person, e.g., Jessie, that603

is passed from the assignee at the left hand604

side, concatenates and adjusts the assigner to605

a text, e.g., “Jessie comes home by car”, and606

parses the text back to a term in Froglingo, e.g.,607

Jessie (verB comes) home ((preP by) car). As608

a result, the following conversation would be newly609

meaningful to the NLP process: “Did Jessie come610

home by car?”, “Yes, Jessie drove home”. Given611

the text "Jessie came home by car" is a sample the612

NLP process learns, the text "Jessie drove home"613

is a prediction of the NLP process.614

Learning through text can also be applied to615

types. When we have already defined thing as616

2This operator is similar to the select operation in the
SQL language for the relational data model and is applicable
to all binary operators including arithmetical, boolean, and
transitive ones introduced in Section 4 and 5. See more in (Xu
et al., 2010)

3When Froglingo is in O mode, it would try to retrieve
data $y from database to see if it meets the condition: $y {=
+ Boston and $y {− Somerville.

a type and word as the type for an identifier from 617

E, regardless of already in the database or not, 618

we can further define: word (bE be) thing := 619

word isA thing. The template above allows the 620

prediction: "Tiger is an animal" after learning "An- 621

imal is a thing", "Cat is an animal", and "Tiger is a 622

cat". 623

Breaking complex sentences into simple sen- 624

tences is another symptom of learning, reflect- 625

ing the Step 2 and 3 of the learning algo- 626

rithm given in Section 6.1. For example, the 627

database has templates: person (verB wear) hat 628

and person (verB walk) ((preP on) street). 629

When the texts "Joe wears a hat" and "Joe 630

walks on a street" have already be learned 631

and constructed with the facts in the database 632

with Joe (verB wore) $x : [$x isA hat] 633

and Joe (verB walked) ((preP on) ($x : 634

[$x isA street]), the text "Joe with a hat walked 635

on a street" will be parsed and mapped to the two 636

templates above when an additional template for 637

the prepositional phrase "with a hat" that modifies 638

a person. Recognizing the last text is a prediction. 639

7 The parser 640

The difference between EP’s bottom-up approach 641

and programming language’s top-down approach 642

is similarly applied between a formal grammar and 643

a collection of parsing rules in Froglingo expres- 644

sions discussed in Section 6. A formal grammar 645

always starts with a root non-terminal, serving as 646

a variable in programming language, that is aimed 647

to represent all possible sentences in a language, 648

e.g., the root symbol s in S → NP V P , where 649

s depends on NP and V P to further break down 650

each sentence to a machine readable form. How- 651

ever, this top-down approach is difficult and has 652

not yet produced a grammar to closely represent 653

the grammatical phenomena of natural language 654

(Barton et al., 1987). 655

Collecting parsing rules from sample text is a 656

button-up approach. A parsing rule can include 657

variables for phrases acting as nouns, such as the 658

types location and person. Additionally there 659

are needs to have built-in operators introducing 660

various clauses including infinitive and gerund 661

phrases as well as noun clauses (Xu, 2022). A rule 662

may include individual verbs, such as verB walk, 663

verB drive, and bE is. However, a rule doesn’t 664

include a variable or a type representing a category 665

of verbs and there is not a single rule (variable) to 666
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represent all possible sentences.667

Even with the flexibility of the bottom-up ap-668

proach, can we still end up with a difficulty not669

being able to represent certain grammatical struc-670

tures by collecting parsing rules from sample text?671

The answer is no. First, let’s mathematically re-672

place all variables and types with their instances673

in a parsing rule, e.g., replace person with Jessie,674

Joe, ..., Zack in person (verB drive) home675

and we end up with multiple parsing rules676

Jessie (verB drive) home,677

Joe (verB drive) home, ...,678

Zack (verB drive) home. Assuming only a finite679

number of objects is our concern in representing680

the world knowledge, we still end up with a finite681

number of parsing rules if we replace the variables682

and the types with their instances in all collected683

parsing rules. Therefore, the rules without types684

and variables would be still effective and most criti-685

cally precise in parsing text. We say such a parsing686

is precise because for each sentence: 1) if it is687

unique in meaning regardless of its context, we688

give its unique grammatical structure as it is; 2)689

if it is ambiguous in syntax, such as "Joe saw the690

girl with a binoculars", we can give its syntacti-691

cal structure based on what the speaker intended,692

i.e., referencing the Froglingo database for its true693

meaning before deciding its syntactical structure;694

3) if it is ambiguous in semantics, such as "Joe got695

what he wanted" that is unique in syntax but could696

mean many things in meaning, we can still search697

the database for the context: who "Joe" is, What698

object Joe wanted and got, and if "got" is a "took",699

"received", or "purchased"; and 4) if it is ambigu-700

ous in pragmatics, such as "put the coffee on the701

table" while there are two tables next to each other702

as people often purposely or unconsciously say,703

we have to raise a question for clarification after a704

search on the database concludes the ambiguity.705

Can we express the utterance that are not context706

free such as cross-serial dependencies in Swiss Ger-707

man (Shieber, 1985)? We don’t attempt to develop708

a parsing rule in Froglingo to represent arbitrary709

layers of the cross-serial dependencies, in a contrast710

to a context sensitive grammar. But we can develop711

a finite number of layers of the dependencies, e.g.,712

the 3rd or 4th, which is an approximation to the713

context sensitive grammar but should be practically714

sufficient.715

Now, let’s come back to the reality: we still716

need variables and types in parsing rules. Can we717

adequately manage those variables and types to718

precisely parse utterance? The answer is yes. If a 719

variable or type originally defined in a rule has un- 720

expected instances, e.g., person (verB wear) hat 721

where we like hat to be red only, we can redefine it 722

as person (verB wear) $h : [($h isA hat) and 723

($h color == adJ red)]. If there are some ex- 724

tremely difficult utterance to be syntactically bro- 725

ken down, we can always roll back individual in- 726

stances instead of variables and types, although the 727

effort appears to be tedious. 728

8 Related work 729

Data mining technologies acquire machine read- 730

able knowledge from text. Statistical based NLPs 731

acquire vector-based (machine readable) knowl- 732

edge from text, which is not human-readable and 733

may not be quite accurate. In this paper, we pro- 734

pose a symbolic learning approach in Froglingo to 735

more accurately acquire knowledge from text and 736

represent it in both machine- and human-readable 737

Froglingo expressions. 738

Statistical based NLPs learn from various text 739

indiscriminately available in the society including 740

harmful materials. Therefore, it is hard to control to 741

not generate unpredictable and harmful materials. 742

A symbolic approach, on the other hand, has a full 743

control on what should be generated. 744

9 Conclusion 745

The main contribution of this paper is: the bottom- 746

up approach of finitely collecting parsing rules 747

through sample text converges to a parser that can 748

be as reliable as a human being. 749

There is an open question: Is a collection of pars- 750

ing rules, with variable and types, PAC learnable 751

while we only concluded that the parser will work 752

correctly in parsing utterance? So far, we know 753

that an EP data model is PAC learnable and the 754

bottom-up parsing rules correctly map utterance 755

to EP terms. When a finite set of sample utter- 756

ance make an effect of more meaningful new ut- 757

terances through learning, does the corresponding 758

finite set of parsing rules make an effect of more 759

meaningful new parsing rules? The answer should 760

be yes because the new meaningful utterances must 761

be parsed by the given finite parsing rules. This 762

conclusion is consistent with the notation "undeter- 763

mined", denoted as the symbol "*" designated as a 764

variable, as part of boolean functions that were con- 765

cluded PAC learnable in (Valiant, 1984). A more 766

thorough work is needed to confirm the conclusion. 767
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10 Limitations768

Unlike a statistical machine learning approach, the769

symbolic approach to the bottom-up parsing rules770

needs manual development, at least supervising if a771

statistical machine learning can help automatically772

collect parsing rules.773

The symbolic approach to the bottom-up parsing774

rules cannot directly be applied to the statistical775

machine learning technologies, though a mapping776

between the two may be developed. The latter777

uses similarities on geometric measures such as778

distance or cosine function among objects that are779

embedded to a Euclidean space to represent their780

relationships. The former uses transitive relations781

among the symbolic objects to calculate their rela-782

tionships.783
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A Supplementary data983

A separate file is attached in the Data Section,984

where additional examples are given to demonstrate985

a user interface that accepts both Froglingo expres-986

sions and natural language utterance. We focus987

on L mode using 4 sentences, including the first 3988

from the famous folktale "Jack and Bean Stalk", to989

demonstrate how developers (users) interact with990

the Froglingo-based NLP system using both NL991

and Froglingo expressions to construct a database992

representing knowledge. The fourth example gives993

the processing of constructing the factorial function994

using NL as an instruction. While natural language995

understanding and code generation are not new,996

presenting a symbolic approach here is aimed to997

demonstrate a sense of feasibility in implementing998

such a system with a precision we expect.999

The file contains a table capturing the discussion.1000

It is in PDF format wrapped in ZIP in order to be1001

able to upload.1002
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