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ABSTRACT

We propose Spatio-Temporal SlowFast Self-Attention net-
work for action recognition. Conventional Convolutional
Neural Networks have the advantage of capturing the local
area of the data. However, to understand a human action, it is
appropriate to consider both human and the overall context of
given scene. Therefore, we repurpose a self-attention mech-
anism from Self-Attention GAN (SAGAN) to our model
for retrieving global semantic context when making action
recognition. Using the self-attention mechanism, we propose
a module that can extract four features in video information:
spatial information, temporal information, slow action infor-
mation, and fast action information. We train and test our
network on the Atomic Visual Actions (AVA) dataset and
show significant frame-AP improvements on 28 categories.

Index Terms— Action Recognition, Self-Attention Mech-
anism, Atomic Visual Actions

1. INTRODUCTION

Deep Convolutional Neural Networks (CNN) [1] have achieved
great performances in image classification [2], object detec-
tion [3], and semantic segmentation [4]. In addition, the video
classification and action recognition [5] as well as image task
make significant progress. However, action recognition is
not easy to solve using each local features. Because, human
action has a characteristic that are related to other people or
objects. Therefore we should be able to consider not only
local features but also global features. As it passes through
CNN layers, the receptive fields are gradually expanded. And
they can capture a larger areas of context. but it’s not enough
to maintain the context of the long-term dependency. Human
action is divided into three categories: person movement,
object manipulation and person interaction. When we ob-
served the characteristics of the human action, we have to
contemplate objects or human interactions to solve the action
recognition. We solved using a self-attention mechanism
that allows us to detect long-range interactions and focus on
important regions.

We propose a novel the Spatio-Temporal SlowFast Self-
Attention Network. The proposed module induced training to
focus on the outstanding regions of spatial and temporal infor-

mation in video features. Spatial attention mechanism more
focused on objects or people that are related to each other,
and temporal attention mechanism more focused on when the
action occurs in the video clip. Also, human action includes
long-acting behavior and short-acting behavior. For example,
jogging can be long. But boxing’s fist is a short act. There-
fore, we considered features of the behavior occurring for a
short time and for a long time as different features. Finally,
we propose a network that can consider all four features that
are thought necessary for action recognition.

2. RELATED WORK

2.1. Action Recognition

Research to analyze and localize human behavior in video
data has recently been accelerated. The most commonly used
datasets are Kinetics [6], UCF-101 [7]. A dataset consists
of a person movement, human-to-human interaction, and
human-object interaction. As new data come out, under-
standing the relationships between people and the association
between people and objects has become a critical factor in
action recognition [8], and it is also important to be aware
of the situation appropriately. There were several approaches
for action recognition. They found human joints information
through human pose estimation, and there was a network for
judging human action by capturing how each joint moves
with temporal axis [9]. The other network uses more abun-
dant information by fusion of video and optical flow features
[10]. However, the recent trend is solving a action recognition
using only video clips.

2.2. Self-Attention

The Attention module [11] is designed to focus on meaning-
ful regions where networks are thought to be a significant to
target. The module can guarantee a long-term dependency
that remain a challenge on CNN.

The Attention module also have a good effect on the
image field. Self-attention module was introduced in Self-
Attention GAN (SAGAN) [12] and improved results in image
generation. We applied a self-attention module to the video
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Fig. 1. An Overall Architecture of The Spatio-Temporal SlowFast Self-Attention Network

understanding task to ensure long-range interactions and fo-
cus on important features.

3. METHOD

In this section, we introduce the overall design of our net-
work. The proposed network detect people in a given video
clip and predicts what each person is doing. Our network is
based on Faster-RCNN [3] object detection algorithm. As a
video feature extraction network, the Kinetics-400 pretrained
ResNet-I3D [8] network was used. The region proposal finds
the person’s bounding box. After performing the RoIPool
[13] using the bounding box information obtained from the
region proposal, the feature pass through the Spatio-Temporal
SlowFast Self-Attention Module for classification of (action
classes + 1) and bounding box regression.

3.1. Spatial Attention Module

The Spatial Attention Module can focus not only on RoIPool
features, but also on other contextual information such as
hands and faces to determine human action on features. The
Spatial Attention Module reconstructs the self-attention mod-
ule used in the image for video understanding. The existing
self-attention module was used to determine the relationship
between pixels in an image. But, the module can find spatially
important parts of the entire video feature.

The video features have the shape ofC×T×H×W . The
feature are transformed C × T and H ×W . The transformed
video features x ∈ R(C×T )×(H×W ) are projected into two
new feature spaces F ,G to calculate the attention map,

βj,i =
exp(sij)∑H×W

i=1 exp(sij)
, where sij = F(xi)TG(xj), (1)

where F(x) = WFx, G(x) = WGx and βj,i represents the
extent to which the model attends to the ith location when
synthesizing the jth region. We define C × T is the number
of feature channels and temporal spaces. Also, H ×W is the
number of spatial feature maps. The output of the attention
layer is o = (o1, o2, ..., oj , ..., oH×W ) ∈ R(C×T )×(H×W ),
where,

oj =

(
H×W∑
i=1

βj,ih(xi)

)
, h(xi) =Whxi. (2)

In this formulation, WF ,WG ,Wh are the learned weight pa-
rameters, which are implemented as 1×1×1 convolutions. In
addition, we further multiply the output of the attention layer
by a scale parameter and add initial input feature map,

sai = γoi + xi. (3)

3.2. Temporal Attention Module

The Temporal Attention Module concentrates on the impor-
tant areas of the temporal axis. Our network takes 32 frames
of one video clip as input. All actions have a different length
of time to represent each action. We assume that it is better
to separate slow and fast action features because the amount
of feature information is different. The Temporal Attention
Module extracts the features needed when looking at the tem-
poral axis to find human actions.

The transformed video features x ∈ R(C×T )×(H×W ) are
projected into two new feature spaces K,L to calculate the
attention map,

αj,i =
exp(tij)∑C×T

i=1 exp(tij)
, where tij = K(xi)TL(xj), (4)
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Fig. 2. The details of the Spatial SlowFast Attention Module and the Temporal SlowFast Attention Module

where K(x) = WKx, L(x) = WLx and αj,i represents
the extent to which the model attends to the ith location
when synthesizing the jth region. We define C × T is
the number of feature channels and temporal spaces. Also,
H × W is the number of spatial feature maps. The output
of the attention layer is m = (m1,m2, ...,mj , ...,mC×T ) ∈
R(C×T )×(H×W ), where,

mj =

(
C×T∑
i=1

αj,ib(xi)

)
, b(xi) =Wbxi. (5)

In this formulation, WK,WL,Wb are the learned weight pa-
rameters, which are implemented as 1×1×1 convolutions. In
addition, we further multiply the output of the attention layer
by a scale parameter and add initial input feature map,

sti = γmi + xi. (6)

3.3. SlowFast Attention Module

Human action has two characteristics: long-acting actions and
short-acting actions. Most action recognition network consid-
ered slow action and fast action as a feature. However, short-
acting behaviors will be an important region of every moment,
and long-acting behaviors may be unnecessary features at the
front and back. Therefore, we divided slow action feature and
fast action feature separately.

To extract two features that distinguish slow and fast ac-
tions, we changed the kernel size of the convolution operation
used in the Spatial Attention Module and the Temporal Atten-
tion Module. Therefore, the large size kernel is given for the
slow action, and the small size kernel is given for the fast ac-
tion.

4. EXPERIMENTS

4.1. Dataset

The AVA dataset [14] consists of 80 action classes, and each
class is largely divided into three categories: individual be-
havior, behaviors related to people, and behaviors related to
people. There are a total of 430 videos, training 235, valida-
tion 65, and test 131 videos. Each video is a 15 minute long
video clip with one annotation per second. As in the previous
evaluation, we evaluated 60 classes and used at least 25 in-
stances for validation. Frame level average precision (frame-
AP) [14] was used as the evaluation metric. The frame-AP
reports the average precision (AP) using an IoU threshold of
0.5 in center frame of video clip.

4.2. Results

We compare the Spatio-Temporal SlowFast Self-Attention
Module with the state-of-the-art approaches (Table. 1). When
solving the first action recognition problem, both RGB image
and optical flow feature were used. In contrast, since algo-
rithms for extracting more abundant features such as Graph
Convolutional Network (GCN) [19] and Attention Mecha-
nism have emerged, only RGB images have been used to
solve the action recognition. Existing networks require large
amounts of video clips and use high image resolutions. How-
ever, we used a small frames and low resolution to obtain
meaningful results.

Fig. 3 shows the comparison of frame-AP for each cat-
egory according to the use of the Spatio-Temporal SlowFast
Self-Attention Module. When using our attention module,
there are performance improvements on 44 categories and
over 1.0 frame-AP on 28 categories. We can see perfor-



Table 1. Performance and overall methods comparison with state of the art on AVA.

Model Modalities Input Size Architecture Frame mAP

SingleFrame [14] RGB (1f), Flow (5) 320× 400 R-50, FRCNN 13.7
AV A Baseline [14] RGB (40f), Flow (40) 320× 400 I3D, FRCNN, R-50 15.6
ARCN [15] RGB, Flow - S3D-G, RN 17.4
STEP [16] RGB (12f) 400× 400 I3D, STEP 18.6
A Structued Model For Action Detection [17] RGB (36f) 256× 256 I3D, GCN 22.2
Action Transformer [18] RGB (96f) 400× 400 Tx, I3D Head 25.0
Ours RGB (32f) 256× 256 I3D, SSFA, TSFA 23.0
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Table 2. Ablation of diverse components of the self-attention
module. Spatial SlowFast Attention (SSFA), Temporal Slow-
Fast Attention (TSFA), Global Max Pooling (GMP), Global
Average Pooling (GAP), Layer Norm (LN)

SSFA TSFA GMP GAP #layers #dims LN mAP

X X 1 512 18.5
X X 1 512 19.2

X X 1 512 20.8
X X X 1 2048 21.3
X X X 2 2048 21.7
X X X 2 2048 X 23.0

mance improvements in many categories that are associated
with other objects or interactions with other humans. The
reason is that the Spatio-Temporal SlowFast Self-Attention
Module is applied to the features obtained through RoIPool,
allowing network to focus more on objects or humans in the
surrounding Pooled context.

4.3. Ablation Study

As we can see from the temporal axis, if GAP is performed,
all frames are averaged regardless of the action, so there may
be a loss of information. Therefore, we assume that GMP has
achieved better frame-mAP. The results of SSFA and TSFA
represent that it is more important to focus on the object or

human associated with the action in spatial information than
to find the important frame on the temporal axis.

5. CONCLUSION

We proposed the Spatio-Temporal SlowFast Self-Attention
network which can extract important spatial information, tem-
poral information, slow action information, and fast action
information from video understanding. The four proposed
features played a major role in distinguishing difficult action
classes. Our network applied only the simple self-attention
module and achieved remarkable performances compared the
previous state-of-the-art network using less resources.
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