
Published as a conference paper at ICLR 2026

SEEING BUT NOT BELIEVING: PROBING THE DISCON-
NECT BETWEEN VISUAL ATTENTION AND ANSWER
CORRECTNESS IN VLMS

Zhining Liu1, Ziyi Chen1, Hui Liu2, Chen Luo2, Xianfeng Tang2, Suhang Wang2, Joy Zeng2,
Zhenwei Dai2, Zhan Shi2, Tianxin Wei1, Hanqing Lu2, Benoit Dumoulin2, Hanghang Tong1

1University of Illinois Urbana-Champaign, 2Amazon
liu326@illinois.edu

ABSTRACT

Vision-Language Models (VLMs) achieve strong results on multimodal tasks such
as visual question answering, yet they can still fail even when the correct visual
evidence is present. In this work, we systematically investigate whether these
failures arise from not perceiving the evidence or from not leveraging it effectively.
By examining layer-wise attention dynamics, we find that shallow layers focus
primarily on text, while deeper layers sparsely but reliably attend to localized
evidence regions. Surprisingly, VLMs often perceive the visual evidence when
outputting incorrect answers, a phenomenon we term “seeing but not believing”
that widely exists in major VLM families. Building on this, we introduce an
inference-time intervention that highlights deep-layer evidence regions through
selective attention-based masking. It requires no training and consistently improves
accuracy across multiple families, including LLaVA, Qwen, Gemma, and InternVL.
These results show that VLMs encode reliable evidence internally but under-
utilize it, making such signals explicit can bridge the gap between perception and
reasoning, advancing the diagnostic understanding and reliability of VLMs.

1 INTRODUCTION

Vision-Language Models (VLMs) (GeminiTeam et al., 2023; Achiam et al., 2023; Grattafiori et al.,
2024; Bai et al., 2025) have recently achieved remarkable progress across a wide spectrum of
multimodal tasks that require reasoning over both images and text. Among these tasks, Visual
Question Answering (VQA) has been a central task for evaluating VLMs’ ability to integrate and
reason over visual and linguistic information (Kim et al., 2025; Zhang et al., 2024).

Despite these advances, recent studies have highlighted a persistent and puzzling gap between the
availability of visual evidence in an image and the correctness of VLM answers (Wang et al., 2024;
Kamoi et al., 2024). Specifically, models often overlook, ignore, or underutilize the crucial visual
information, leading to errors even when the correct evidence is present in the image. This raises
a fundamental question: Do VLMs fail in those cases because they cannot perceive the visual
information, or because they fail to effectively leverage it in reasoning and generation?

Prior works have begun to probe this disconnect. Tong et al. (2024) showed that multimodal
LLMs/VLMs sometimes ignore critical visual details, treating vision as secondary to language. More
recent analysis goes further, suggesting that VLMs can be misled by different questioning methods
and give incorrect answers to some questions even though it can understand the visual content (Liu
et al., 2025; Zhang et al., 2025). These findings raise an intriguing possibility: the problem may not
lie solely in “blindness” to images, but rather in what happens after the model has already seen them.
Notably, existing studies often attribute this issue to the model’s overall lower attention to image
tokens compared to text tokens (Liu et al., 2025; Chen et al., 2025), with few studies explore this
phenomenon through the lens of the model’s internal mechanisms.

In this work, we take a systematic step toward unpacking following intriguing questions for un-
derstanding VLMs’ visual evidence utilization: (i) How do models balance and transition between
textual and visual information across layers? (ii) Which layers are most critical for grounding answers
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in the correct evidence? (iii) Can we design interventions to help models actually use what they see?
Our analysis reveals several interesting findings:

• Layer-wise transition. Shallow layers are text-focused, while deeper layers progressively
shift toward images. This sequential process resembles how humans first read the question,
then turn their eyes to the picture.

• Deep-layer visual grounding. Deep layers do not scatter their attention broadly; instead,
they concentrate on localized regions that correspond to key evidence, functioning like a
spotlight that cuts through irrelevant clutter.

• Seeing but not believing. Perhaps most intriguingly, deep layers often lock onto the correct
evidence even when the final answer is wrong. The model sees, yet fails to believe. This
paradox suggests that the bottleneck lies not only in perception but also in how perceived
evidence is carried forward into reasoning and generation.

These findings motivate a practical intervention: leveraging deep-layer attention as a signal for guiding
models toward more effective use of visual evidence. To this end, we propose an attention-based
visual augmentation that highlights the evidence regions attended to by the visual grounding layers,
amplifying signals that would otherwise remain buried in its internal representations. This simple
yet effective strategy requires no additional training, applies across architectures, and consistently
improves answer quality. These results suggest that VLMs already possess latent capabilities for
grounding answers in the right evidence, but require targeted elicitation to realize this potential.

In summary, our main contributions are threefold. (i) Novel Analysis. We investigate how different
attention layers in VLMs process mixed textual and visual inputs, revealing that deep-layer attention
reliably identifies the correct evidence regions even when the final answer is incorrect. (ii) Practical
Algorithm. Building on this insight, we introduce an attention-based augmentation method that
highlights the evidence regions identified by the model itself, guiding VLMs to better utilize visual
information for factual answering. (iii) Empirical Study. We conduct extensive experiments across
multiple VLMs and tasks, demonstrating that our method consistently improves answer accuracy and
validating both our analysis and the practical effectiveness of attention-based augmentation.

2 DISSECTING TEXT AND VISUAL ATTENTION DYNAMICS IN VLMS

To better understand how VLMs process and utilize visual evidence, we conduct a systematic analysis
of their internal attention behaviors. Our goal is to uncover not only whether VLMs perceive the
evidence but also why they fail to leverage it for accurate answers. To this end, we organize the
section around 4 research questions (RQs): RQ1 analyzes attention transitions between text and
image tokens across layers; RQ2 examines layer-specific roles in grounding visual evidence; RQ3
investigates whether models can attend to correct evidence when producing wrong answers; and
finally, RQ4 explores reasons for the disconnect between attention to evidence and answer correctness.

2.1 RQ1: HOW DOES ATTENTION TRANSITION BETWEEN TEXT AND VISUAL TOKENS?

Setup. Recent work has shown that VLMs, on average, assign significantly less attention to visual
tokens compared to textual ones (Chen et al., 2025). Here we take a step further by examining how
this imbalance evolves across layers. For each layer, we compute the Relative Attention per Token
(RAPT), defined as the ratio of section-average attention mass per token to the input-average value.1
This metric captures how much attention each token type receives on a per-token basis, rather than
how attention is distributed as a whole. The results, shown in Figure 1, allow us to trace how the
model shifts its focus between linguistic and visual inputs during inference.

Layer-wise Modality Attention Transition. Our analysis shows that although image tokens consis-
tently receive less attention per token than text tokens, there is a clear modality shift across depth.
Early layers focus overwhelmingly on the question text, reflecting the model’s initial parsing of
linguistic structure (the apparent crossing of curves in Figure 1 is due to differences in y-axis scaling;
text attention values remain larger in magnitude than image attention throughout). As depth increases,
however, the balance gradually shifts, with deeper layers allocating relatively more attention to image

1For example, a RAPT of 0.6 means each token in that section receives 60% of the input-average attention.
Results shown here are from the LLaVA-1.5-7B model, with similar trends across other models and datasets.
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Figure 1: Relative attention per token (RAPT)1
(y-axis) to text tokens (red) and image tokens
(blue) across model layers (x-axis). While early
layers strongly emphasize text, deeper layers pro-
gressively increase attention to images, showing
a sequential transition from linguistic parsing
to visual grounding within a single-token infer-
ence. Similar trends hold across different VLM
families, please see Appendix C for more results.

tokens. This layer-wise transition indicates that textual and visual information are not processed in
parallel, but rather sequentially, with vision playing a stronger role at later stages of inference.

2.2 RQ2: WHICH IMAGE REGIONS DO DIFFERENT LAYERS ATTEND TO?

Setup. To further unpack the role of different layers, we analyze not only how much attention is
allocated to image tokens, but also where this attention is directed. We begin with a visualized case
study to intuitively illustrate which regions of the image attract attention across layers. Figure 2
presents three images from VQA pairs and the corresponding attention distributions from different
layers. For clarity, we highlight the ground-truth evidence regions with red bounding boxes.

Figure 2: Visualization of image attention across different layers of LLaVA-1.5-7B. Red bounding
boxes denote ground-truth evidence regions. While shallow layers exhibit global weak attention,
deeper layers consistently focus on localized regions that align with the relevant evidence.

Deep-layer Visual Grounding. Our observations show that the first layer distributes attention almost
uniformly across all image patches, showing no particular focus. As shown in Fig. 1, subsequent
shallow layers (e.g., layers 6–11) allocate little attention to image tokens overall, without exhibiting
any distinct spatial patterns. Interestingly, deeper layers (e.g., layers 16–26) display sparse yet highly
concentrated attention, consistently highlighting regions aligned with ground-truth evidence2. This
suggests that deep layers function as visual grounders, filtering irrelevant content and selectively
attending to the evidence necessary for answering the question.

2.3 RQ3: DO VLMS PERCEIVE VISUAL EVIDENCE WHEN GIVING WRONG ANSWERS?

Setup. Building on our findings about the critical role of deep layers in visual perception, a natural
follow-up question arises: are VQA errors always caused by the model’s failure to perceive visual
evidence? To answer this, we conduct both qualitative and quantitative analyses. For the case
study, we examine representative VQA samples where the model produces incorrect answers. For the
dataset-level study, we leverage the VisualCOT dataset (Shao et al., 2024), which provides human-
annotated visual evidence regions, to statistically compare attention to evidence versus non-evidence
tokens across layers, conditioned on whether the model’s predictions are correct or incorrect.

2In some images, isolated non-evidence patches receive high attention, consistent with the attention sink
phenomenon (Darcet et al., 2024; Kang et al., 2025). This does not affect the overall grounding behavior, and
Section 3.2 introduces a sink-token filtering strategy to remove such noise.
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Figure 3: Qualitative examples of “seeing but not believing” with LLaVA-1.5-7B model. Each
case shows the input image (left) and the average attention map of the late 50% layers (right). Deep
layers attend to the correct evidence regions (red boxes), but the final answers are still incorrect due
to generation failures. We provide more qualitative examples in Appendix C.7.

Figure 4: Relative attention to the evidence/non-evidence image tokens (y-axis) across the layers
(x-axis) for different VLM families. Deeper layers pay much greater attention to crucial evidence
(blue lines) in the context, even when VLM responds incorrectly (dashed lines). Best viewed in color.

Case Study. Figure 3 illustrates three typical error cases, including false rejection (refusing to
answer despite evidence being present), hallucination (answering with non-existent content), and
partially correct responses. In all these examples, the deep layers of the model correctly attend to the
relevant evidence regions, yet this perception fails to translate into correct final outputs. We term this
phenomenon “seeing but not believing,” highlighting that attention to evidence does not necessarily
guarantee grounded and correct answers.

Seeing but Not Believing. To verify that this phenomenon is not limited to anecdotal cases, we
perform a larger statistical analysis using VisualCOT. As shown in Figure 4, deeper layers consistently
allocate more attention to ground-truth evidence than to non-evidence tokens. Even when the model
produces incorrect answers, its internal attention still concentrates relatively more on the correct
evidence regions, albeit with a weaker overall magnitude compared to correct predictions. This
“seeing but not believing” phenomenon indicates that while the model often perceives the right visual
cues, the subsequent reasoning and generation processes fail to effectively integrate this attended
information into the final response.

2.4 RQ4: WHY DOES “SEEING BUT NOT BELIEVING” HAPPENS?

The above findings suggest that the visual bottleneck in VLMs is not only perceptual but also
cognitive. Although deep layers focus on the correct evidence, models can still fail to translate this
perception into factual answers. In this section, we build on our observations and recent literature to
discuss two perspectives on the underlying reasons for this counter-intuitive phenomenon.

Textual Information Dominance. A growing body of work shows that VLMs frequently exhibit
a strong preference for linguistic signals, placing “blind faith in text” even when such signals
conflict with visual evidence (Ailin et al., 2025; Kang-il et al., 2024). One explanation points to the
architectural imbalance in current VLMs, where a large language model backbone is paired with a
relatively small visual encoder, reinforcing the dominance of textual patterns over visual grounding
(Shi et al., 2024; Cong et al., 2025; Shengbang et al., 2024). This textual bias has also been linked
to multimodal hallucinations: as generation unfolds, the reliance on visual inputs diminishes and
language priors increasingly dominate, producing outputs that are linguistically fluent but visually
ungrounded (Alessandro et al., 2024; Lanyun et al., 2024; Nanxing et al., 2025). Notably, the second
failure case in Figure 3 aligns with this line of evidence: the LLM backbone hallucinates a connection
between “logitech” and “nano receiver”, likely due to their frequent co-occurrence in the training
corpus, while the visual input fails to override this strong textual prior.
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Visual Context Under-utilization. Another interesting perspective to understand this phenomenon
is through studies of context under-utilization in retrieval-augmented generation (RAG), where the
image in VQA can be viewed as a form of context. Recent work has shown that LLMs often fail
to fully exploit retrieved information, generating incorrect answers even when the necessary facts
are present (Garima et al., 2024; Fei et al., 2024). This issue becomes more pronounced when
the context contains more irrelevant information (Jirui et al., 2025; Huayang et al., 2024), while
emphasizing salient evidence within the context can help models make better use of the provided
context (Chang et al., 2024; Mortaheb et al., 2025). In our case, we note that the deep-layer visual
grounding behaviors of VLMs can naturally serve as signals for evidence highlighting, guiding the
model to attend to critical visual information. This insight directly motivates our method design.

3 SIMPLE INFERENCE-TIME VISUAL EVIDENCE AUGMENTATION

Building on the above analysis, we propose an inference-time method that leverages deep-layer visual
grounding to address the “seeing but not believing” problem. Given a VQA input, VEA (Visual
Evidence Augmentation) extracts attention from visual grounding layers, applies denoising and
smoothing to form a highlighting mask, and overlays it on the original image to create an augmented
input. VEA is lightweight, requires no additional training, and its overview is shown in Fig. 5.

Figure 5: Overview of the proposed VEA framework. Best viewed in color.

3.1 VISUAL EVIDENCE ATTRIBUTION LAYER PROFILING

Notation. We summarize the key notations of Transformer-based VLMs used in this work, referring
readers to Vaswani et al. (2017) for a full exposition and Appendix A.3 for implementation details.
Given a VLM Φ, a question q, an image I, and a QA prompt τQA, the generated answer is g ←
Φ(τQA(I, q)). A decoder-only Transformer processes an input of n tokens (text and image) and
generates each new token by attending to all preceding tokens. For head h in layer ℓ, the attention is
a(ℓ,h) ∈ Rn, and the layer-level vector is a(ℓ) = 1

H

∑H
h=1 a

(ℓ,h), where H is the number of heads.
This aggregated vector summarizes how layer ℓ distributes attention across input tokens, showing
which parts of the input it considers most informative at that stage.

Layer Attention Extraction and Profiling. The first step of VEA is to identify Transformer layers
with the strongest evidence attribution capability. We use a small diagnostic subset of Visual-
COT (Shao et al., 2024), which provides bounding-box annotations of evidence regions. These
annotations are aligned with the vision encoder patch space to obtain token-level evidence la-
bels. For each layer, we extract its visual attention vector and compute the AUROC against the
ground-truth labels, measuring the attribution quality of that layer. Formally, let an image I be
divided into m patches PI = {p1, . . . ,pm}, each mapped to a visual token. A binary label vector
yI = [y1, . . . , ym]⊤ ∈ {0, 1}m is defined by setting yi = 1 if patch pi overlaps with any annotated
evidence region. Denote istart

I as the index of the first visual token in τ(I, q). The patch-level visual at-
tention vector of layer ℓ is then ā

(ℓ)
I = [a

(ℓ)
istart
I
, . . . , a

(ℓ)
istart
I +m−1] ∈ Rm. We compute AUROC(yI , ā

(ℓ)
I )

as the attribution score of layer ℓ for I. Finally, we select the top 10% of layers with the high-
est average scores3 as the set of visual-grounding layers LVG, which will be used for subsequent
inference-time evidence attribution. We note that this profiling is a one-time, model-level cost and
does not need to be repeated for each question at inference time. More details are in Appendix A.3.

3We note that the diagnostic set does not need to be large, ∼100 examples is sufficient to obtain stable results.
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3.2 INFERENCE-TIME VISUAL EVIDENCE ATTRIBUTION

Attention Extraction. At inference time, VEA leverages the VLM’s internal attention representations
to highlight the most relevant evidence regions in the image. We note that, as shown in the analysis
section, the evidence-reading layer’s visual grounding pattern appears when generating the first
answer token. Therefore, at this attention extraction step, we can perform only an efficient single-
token forward pass rather than generating the full answer. Given the set of visual-grounding layers
LVG identified in the profiling stage, we compute for each image I a patch evidence score vector
eI ∈ Rm over its patch set PI = {p1, . . . ,pm}. For layer ℓ ∈ LVG, let ā(ℓ)I = [ā

(ℓ)
1 , . . . , ā

(ℓ)
m ] ∈ Rm

denote its normalized patch-level visual attention vector. The evidence score ei for patch pi is then
defined as the average attention weight assigned by layers in LVG:

eI = [e1, e2, . . . , em]⊤, ei =
1

|LVG|
∑

ℓ∈LVG

ā
(ℓ)
i , i = 1, . . . ,m. (1)

Attention Mask Denoising. We reshape the patch evidence score vector eI ∈ Rm into a two-
dimensional grid e ∈ RH×W to obtain a 2-D visual evidence mask. However, we note that (also can
be observed in Fig. 2 and 3) the raw mask often contains spurious high-valued patches scattered in
regions unrelated to the true evidence. Those high-attention patches stem from the attention sink
phenomenon (Kang et al., 2025; Darcet et al., 2024): certain visual tokens exhibit abnormally large
activations in specific hidden-state dimensions inherited from the language backbone, which causes
them to attract disproportionate attention despite carrying little or no semantic content. Unlike genuine
evidence regions that form spatially coherent clusters tied to the query, these sink-driven patches
appear as isolated artifacts. To suppress those sink tokens, we apply an additional neighborhood-based
filtering step. Let ei,j denote the score of the patch at grid location (i, j), and let N (i, j) denote its
3× 3 neighborhood excluding (i, j). We update ei,j by comparing it against its neighbors:

e′i,j =


1

|N (i,j)|
∑

(p,q)∈N (i,j)

ep,q, if ei,j > λ · max
(p,q)∈N (i,j)

ep,q,

ei,j , otherwise,
(2)

where λ is a multiplicative threshold controlling the strictness of noise suppression. We set λ = 10 in
our experiment, i.e., a patch is regarded as noise and replaced by the local average if its score is more
than one order of magnitude larger than all of its neighbors. This denoising step yields a cleaner and
more spatially coherent evidence mask, which better highlights the true evidence regions.

3.3 ATTENTION-GUIDED VISUAL EVIDENCE HIGHLIGHTING

Highlight Mask Smoothing. While neighborhood filtering suppresses isolated outliers, the resulting
token-level mask e′ often introduces unnatural, mosaic-like artifacts when applied to the pixel-level
image, leading to sharp local fluctuations that may hinder the VLM’s understanding of image content.
To further enhance spatial coherence and ensure that contiguous evidence regions form smooth
clusters, we apply a Gaussian smoothing step. This operation distributes attention scores more evenly
within local neighborhoods, reducing noise while preserving the overall evidence structure. Formally,
let Gσ ∈ Rk×k be a Gaussian kernel with standard deviation σ. The smoothed mask ẽ is obtained by
convolving e′ with Gσ:

ẽi,j =

r∑
p=−r

r∑
q=−r

Gσ(p, q) e
′
i−p,j−q, (3)

where r = ⌊k/2⌋ and
∑

p,q Gσ(p, q) = 1. In our implementation, the effective σ is set by multiplying
a hyperparameter smooth strength σ ∈ [0, 1] with the shorter side of the image in pixels, ensuring
that smoothing naturally adapts to different resolutions. Detailed experiments and discussions are
provided in Section 4.2, validating the benefit of adaptive smoothing.

Visual Evidence Highlighting. Given the refined mask ẽ ∈ RH×W , we next guide the model
by directly emphasizing evidence regions. We blend the mask with the original RGB image I ∈
RH×W×3 so that high-attention areas are preserved and low-attention areas visually down-weighted.
This emphasizes critical evidence while reducing irrelevant content. Concretely, the augmented image
Î is constructed by attenuating low-attention regions, controlled by α ∈ [0, 1]:

Îi,j,c =
(
α+ (1− α)ẽi,j

)
Ii,j,c, (4)
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for each pixel (i, j) and channel c. Large ẽi,j (evidence) keeps pixel values close to the original,
while small ẽi,j (non-evidence) darkens the region toward α. This simple augmentation makes
evidence more salient without retraining, steering inference toward highlighted regions. We validate
the effect of different highlight strength choices in Section 4.2. This concludes the description of
VEA, we next evaluate its effectiveness across diverse VLMs and tasks.

4 EXPERIMENT RESULTS AND ANALYSIS

In this section, we conduct systematic experiments across eight VLMs from four different families
with varying sizes and on four visual evidence retrieval-based VQA tasks from diverse domains to
examine the following research questions (RQs): RQ1: How does VEA perform in improving VLM
response quality and accuracy? RQ2: To what extent do the visual evidence regions highlighted by
VEA align with the ground-truth visual evidence? RQ3: How robust is VEA under different types of
image noise perturbations? RQ4: How do different parameter choices and the inclusion or removal
of specific modules influence the performance of VEA?

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. The primary goal of our experiments is to test whether VEA and related
baselines help VLMs attend to fine-grained visual evidence for more accurate responses. For this
purpose, we adopt four evidence-based VQA datasets from the VisualCoT benchmark (Shao et al.,
2024): InfoVQA (Mathew et al., 2022), DocVQA (Mathew et al., 2021), SROIE (Huang et al., 2019),
and TextVQA (Singh et al., 2019). These tasks require models to extract localized information from
images, such as text snippets in natural scenes or documents, and provide human-annotated evidence
that allows us to directly measure both QA accuracy and the quality of visual grounding. We use
greedy decoding for deterministic outputs, reporting Exact Match and Token-level F1 as QA metrics,
and AUROC and NDCG@all as evidence attribution metrics. Please see more details in Appendix A.

Models and Baselines. We evaluate the effectiveness and generality of VEA using the most recent
series from four popular VLM families: LLaVA-Next (Liu et al., 2024), Qwen2.5VL (Bai et al., 2025),
Gemma3 (Team et al., 2025), and InternVL3.5 (Wang et al., 2025). We note that LLaVA-Next and
InternVL3.5 exhibit memory leakage when extracting attention, so we use Qwen2.5VL as a delegate
model for image augmentation. For comparison, we also include several inference-time text/image
augmentation baselines designed to enhance visual information utilization. (i) Instructioning is a
simple baseline for evaluating whether prompting alone is sufficient; it explicitly instructs the model
to attend to visual evidence. (ii) CGR (Liu et al., 2025) employs a two-step reasoning process in
which the model first extracts detailed information from the image and then generates answers from
this intermediate representation. (iii) VAR (Liu et al., 2025) uses attention scores from the final
layer to apply a binary mask that highlights salient regions. (iv) AGLA (An et al., 2025) adopts
a GradCAM-based (Selvaraju et al., 2017) approach that masks irrelevant regions and ensembles
outputs from the original and masked images to strengthen visual grounding.

4.2 RESULTS AND ANALYSIS

RQ1: VEA consistently improves VLM’s visual grounding. Table 1 reports the average per-
formance of different visual evidence augmentation methods across 8 VLMs from 4 latest model
families. We observe that all augmentation methods yield improvements over the BASE models,
confirming the effectiveness of explicitly enhancing visual grounding. Among the baselines, CGR,
VAR, and AGLA consistently outperform simple prompting (INST), with AGLA showing the strongest
gains overall. Nevertheless, our proposed VEA achieves the best results across both metrics and all
model families. Specifically, it delivers an average improvement of +5.67 points (up to +11.1) in
Exact Match and over +6.83 points (up to +17.3) in Token F1 compared to the base models, while
also achieving the lowest average rank (1.12 and 1.22) among all baselines. The gains of VEA are
especially pronounced on smaller-scale models (e.g., LLaVA-7B and Gemma-4B), suggesting that
VEA is particularly effective in compensating for the weaker visual grounding capability of smaller
VLMs, while still providing consistent benefits for larger models. These results demonstrate that VEA
provides more robust and consistent gains across diverse VLM architectures and scales, establishing
it as a strong and generalizable approach for improving visual evidence utilization.

RQ2: VEA accurately highlight visual evidence. To validate the quality of VEA evidence at-
tribution, we evaluate how well the extracted evidence aligns with human annotation. Following
Section 3.1, where we compute token-level ground-truth evidence label vectors yI ∈ {0, 1}m and
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Table 1: Main results of applying visual evidence augmentation methods to 8 VLMs from 4 latest
series of LLaVA, Qwen, Gemma, and InternVL families. Due to space limitation, we report the
averaged results on 4 visual question answering tasks. For each metric, we also report the average
rank of each method over all tested tasks and models. Detailed results can be found in Appendix C.

Metric Method LLaVA-NeXT Qwen2.5-VL Gemma3 InternVL3.5 Avg.
7B 13B 7B 32B 4B 27B 8B 14B Rank (↓)

E
xa

ct
M

at
ch BASE 38.5 49.4 73.4 69.3 56.6 69.3 79.3 79.3 5.38

INST 38.8(+0.4) 50.2(+0.7) 73.9(+0.4) 69.0(-0.3) 56.0(-0.6) 70.2(+0.8) 79.2(-0.1) 78.8(-0.5) 5.47
CGR 45.4(+7.0) 52.7(+3.3) 76.1(+2.6) 73.0(+3.7) 60.4(+3.7) 72.3(+2.9) 82.4(+3.1) 81.7(+2.4) 3.09
VAR 42.7(+4.2) 51.5(+2.1) 76.4(+3.0) 70.4(+1.1) 58.0(+1.3) 73.4(+4.1) 80.2(+0.9) 80.4(+1.1) 3.44

AGLA 46.4(+7.9) 53.4(+4.0) 77.9(+4.4) 73.8(+4.4) 60.4(+3.8) 74.2(+4.9) 82.3(+3.0) 82.3(+3.0) 2.50

VEA 49.6(+11.1) 54.1(+4.7) 78.4(+4.9) 75.8(+6.5) 61.2(+4.6) 75.3(+6.0) 83.2(+3.9) 82.9(+3.6) 1.12

To
ke

n
F1

BASE 33.3 53.8 77.7 69.8 50.5 57.7 79.6 69.4 5.53
INST 38.4(+5.1) 54.4(+0.7) 77.6(-0.1) 71.2(+1.4) 51.9(+1.4) 58.3(+0.6) 80.0(+0.4) 69.0(-0.4) 5.28
CGR 41.0(+7.7) 56.8(+3.0) 80.9(+3.2) 74.8(+5.0) 54.7(+4.2) 61.3(+3.7) 84.5(+4.9) 70.5(+1.1) 3.44
VAR 45.7(+12.4) 55.7(+2.0) 79.0(+1.3) 73.9(+4.1) 56.4(+5.9) 61.3(+3.6) 84.2(+4.6) 70.3(+0.9) 3.22

AGLA 45.1(+11.8) 58.7(+5.0) 81.9(+4.2) 75.2(+5.3) 55.9(+5.4) 61.4(+3.8) 85.2(+5.6) 70.8(+1.4) 2.31

VEA 50.6(+17.3) 59.2(+5.4) 82.1(+4.4) 76.9(+7.1) 57.8(+7.3) 62.3(+4.6) 85.8(+6.2) 71.7(+2.3) 1.22

Table 2: Comparison of visual evidence attribution accuracy (token-level AUROC and NDCG@all)
of different attribution methods. Methods denoted by two percentages are static baselines that use
fixed span of layers to compute visual token evidence scores (e.g., L50%−100% uses the late 50% of
layers as visual grounding layers). Similar to Table 1, we report the average results of 4 tasks due to
space limitation, full detailed results can be found in Appendix C.
Evidence LLaVA 7B LLaVA 13B Qwen 7B Qwen 32B Gemma 4B Gemma 27B Avg. Rank (↓)

Attribution AUROC NDCG AUROC NDCG AUROC NDCG AUROC NDCG AUROC NDCG AUROC NDCG AUROC NDCG

L0%−100% 75.9 47.2 76.3 47.2 68.5 41.7 57.0 33.0 59.5 35.5 61.8 36.4 4.33 4.42
L0%−50% 68.2 43.2 73.1 46.4 59.4 34.2 51.3 31.9 56.5 34.3 55.4 34.9 5.67 5.67
L50%−100% 78.0 54.5 76.9 50.5 79.5 58.1 67.6 43.3 65.9 43.7 68.1 43.6 2.88 2.83

VAR 70.8 45.1 72.1 44.0 75.2 54.1 65.7 39.8 51.2 33.3 58.2 36.8 4.92 4.88
AGLA 80.2 57.2 81.1 56.6 77.7 55.4 75.1 51.3 68.3 44.5 73.8 49.0 2.21 2.21

VEA 83.6 63.5 84.4 63.5 85.2 68.6 79.1 58.4 80.0 59.9 81.2 60.1 1.00 1.00

measure their alignment with visual attention vectors eI ∈ Rm using AUROC and NDCG. Table 2
compares different attribution strategies. Static baselines that aggregate attention from fixed spans
of layers show that later layers generally provide stronger visual grounding than earlier ones, as
evidenced by the higher scores of L50%−100% over L0%−50%. However, such static choices are still
suboptimal compared to adaptive approaches. Among adaptive methods, AGLA outperforms VAR,
but both are consistently outperformed by our proposed VEA, which achieves the best performance
across all model families and metrics. Overall, the absolute accuracies are relatively high (e.g.,
AUROC often exceeds 80 and NDCG surpasses 60), suggesting that the internal attention signals of
VLMs are capable of localizing visual evidence with reasonable accuracy.

Figure 6: Robustness of VEA against various types of visual perturbations.

RQ3: VEA is robust to visual noise and corruptions. In real-world applications, visual inputs
are often corrupted by noise, low resolution, or occlusion, making robustness a critical requirement
for VLMs. To validate the robustness of our method, we evaluate the effect of visual evidence
augmentation under three perturbation settings. (i) Noise Injection: additive Gaussian noise with
varying strength, where 100% corresponds to pure noise. (ii) Low Resolution: downsampling the
image by number of pixels, e.g., a 90% reduction results in 10% of the original pixels. (iii) Random
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Masking: randomly masking out x% of visual patches. We report the exact match accuracy of
LLaVA-NeXT-7B on the TextVQA dataset in Figure 6. The results show that the base model degrades
sharply, while VEA consistently improves robustness across all types and levels of perturbations. Even
under extreme conditions such as 60% noise or 30% random masking, it still delivers improvements
of +16.4 and +25.8 points, corresponding to relative gains of over 110% and 220%. These results
indicate that the evidence-driven signals elicited by VEA provide strong guidance, enabling the model
to maintain accurate reasoning even when raw visual inputs are severely degraded.

Figure 7: Parameter analysis of VEA.

Table 3: Ablation study results.

Setting Exact Match Token F1
VEA 73.4 68.1
w/o Denoise 70.9 (-2.52) 64.9 (-3.12)
w/o Profiling 71.0 (-2.42) 65.3 (-2.78)
w/o Smoothing 68.3 (-5.12) 62.8 (-5.27)

RQ4: Effect of different parameter choice. We analyze two parameters of VEA: the highlight
strength α, which controls how strongly non-evidence regions are suppressed (larger values yield
darker backgrounds), and the smooth strength σ, which determines the degree of spatial smoothing
applied to the evidence mask. To ensure consistent smoothing across images of different resolutions,
the effective kernel size is set as σ multiplied by the shorter image side. As shown in Figure 7, we
observe that: (i) our method is overall robust to a wide range of parameter choices; (ii) overly strong
highlighting removes too much visual context, while the absence of smoothing also hinders VLMs’
understanding of the image. Balancing these factors, we set both α and σ to 0.5 in all experiments.

RQ4: Ablation Study Table 3 reports the effect of removing different components from VEA. We
find that each component contributes positively to the final performance: removing the denoising step
or the profiling step results in moderate drops (about −2.5 EM and −3.0 F1), while removing the
smoothing step leads to the largest degradation (−5.1 EM and −5.3 F1). These results confirm that
denoising, profiling, and smoothing are all necessary for maximizing the effectiveness of VEA.

More Results and Analysis. Due to space limitations, we provide summarized results in the main
text to highlight key analyses and insights. Please refer to Appendix A for reproducibility details,
Appendix B for discussions on limitations and future directions in applying our findings in VLM
reasoning, and Appendix C for complete results and additional analyses, including per-model and
per-dataset QA performance, evidence attribution accuracy, and layer-wise attention dynamics, etc.

5 RELATED WORKS

Challenges in Visual Evidence Utilization. Despite significant progress on multimodal tasks such
as VQA (Singh et al., 2019; Mathew et al., 2021; Huang et al., 2019; Mathew et al., 2022), VLMs
often fail to fully leverage visual evidence. Studies report a strong tendency to rely on linguistic
priors even when they conflict with the image (Ailin et al., 2025; Kang-il et al., 2024; Shengbang
et al., 2024), leading to hallucinations and visually inconsistent outputs (Alessandro et al., 2024;
Lanyun et al., 2024; Nanxing et al., 2025; Cong et al., 2025). This issue is further amplified by
the imbalance between the language backbone and the vision encoder (Shi et al., 2024; Shengbang
et al., 2024). Similar challenges arise in retrieval augmented generation, where models often under
use retrieved evidence (Garima et al., 2024; Hexiang et al., 2024; Evgenii et al., 2024; Fei et al.,
2024). Recent efforts have started addressing this broader problem by refining the visual input
itself through model internal signals, including attention guided cropping (Zhang et al., 2025) and
mask generation (Liu et al., 2025; An et al., 2025), illustrating the potential of training free visual
enhancement for improving evidence utilization.

Attention and Interpretability in VLMs. Attention patterns offer an informative view of multimodal
processing. Prior analyses show that shallow layers focus primarily on textual tokens while deeper
layers begin to attend to localized image regions, sometimes aligning with ground truth evidence
even when predictions remain incorrect (Liu et al., 2025; Chen et al., 2025; Tong et al., 2024). These
observations motivate a wide spectrum of interpretability and intervention techniques, including
GradCAM style attribution (Selvaraju et al., 2017; An et al., 2025), masking based strategies (Liu
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et al., 2025), and inference time attention modification to mitigate hallucination (Shi et al., 2024;
Alessandro et al., 2024). More work ViCrop (Zhang et al., 2025) follows this direction by using layer
specific attention to identify a better crop that enhances perception. Our work extends this direction
by demonstrating that aggregated deep-layer attention, once denoised and smoothed, provides a
stable training-free signal for inference-time evidence highlighting, connecting analysis with practical
improvements in visual grounding.

6 CONCLUSIONS

In this work, we systematically investigated how vision-language models (VLMs) attend to textual
and visual information, and uncovered a key disconnect between visual perception and answer
correctness. Our analysis revealed three important findings: attention transitions from text to image
across layers, deep layers act as visual grounders by sparsely focusing on evidence regions, and
models often “seeing but not believing”, perceiving the right evidence but failing to use it for correct
answers. Building on these insights, we introduced VEA, an inference-time method that highlights
deep-layer evidence and consistently improves factual answering across models and benchmarks
without additional training. Our results suggest that internal attention patterns already encode reliable
visual cues, and making them explicit can help bridge perception and reasoning.

ETHICS STATEMENT

While our findings reveal potential weaknesses in VLMs’ reasoning and grounding, we focus on
diagnostic analysis and training-free interventions rather than deployment-ready systems, minimizing
risks of harmful misuse. Like other research focused on vision language models, our work has
potential social impacts, but none of which we feel must be highlighted here. All authors have
reviewed the ICLR Code of Ethics and affirm adherence to its principles throughout this work.

REPRODUCIBILITY STATEMENT

We made extensive efforts to ensure the reproducibility of our results. The experimental setup,
including datasets, evaluation metrics, and implementation of our method and baselines, is fully
described in Section 4.1 and Appendix A. Specifically, Appendix A.1 details dataset processing
and evaluation metrics, Appendix A.2 lists all models and their Hugging Face checkpoints, and
Appendix A.3 provides implementation details of VEA and baselines. Complete per-model and
per-dataset results, evidence attribution scores, and layer-wise attention dynamics are provided in
Appendix C.
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(§A) Reproducibility Details
(§A.1) Datasets and Metrics
(§A.2) Models and Baselines
(§A.3) VEA and Baselines Implementation Details

(§B) Additional Discussions
(§B.1) Usage of Artifacts and AI Assistants
(§B.2) Limitations and Potential Solutions
(§B.3) Future Directions in VLM (Agentic) Reasoning and Beyond
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(§C.8) Full Question Answering Results
(§C.9) Full Evidence Attribution Accuracy Results
(§C.10) Full Layer-wise Attention Dynamics Visualization

A REPRODUCIBILITY DETAILS

A.1 DATASETS AND METRICS

Datasets. The primary goal of our experiments is to test whether VEA and related baselines enable
VLMs to attend to and exploit fine-grained visual evidence for more accurate responses. To this
end, the datasets should evaluate both a model’s ability to extract localized information from images
during answer generation and its accuracy in grounding answers to visual evidence. We adopt four
evidence-based VQA datasets from the VisualCoT benchmark (Shao et al., 2024): InfoVQA (Mathew
et al., 2022), DocVQA (Mathew et al., 2021), SROIE (Huang et al., 2019), and TextVQA (Singh
et al., 2019). These tasks require models to identify fine-grained content, such as text snippets
in natural scenes or documents, which directly supports our objective. Importantly, VisualCoT
provides pixel-level evidence annotations in the form of bounding boxes for each VQA pair, enabling
quantitative evaluation of evidence attribution in addition to standard QA accuracy.

Metrics. We use greedy decoding for deterministic outputs. QA performance is measured by Exact
Match (EM) and Token-level F1. Let Â denote the set of predicted tokens and A the ground-truth
tokens:

EM(Â, A) = I(Â = A), F1(Â, A) =
2 · |Â ∩A|
|Â|+ |A|

.

For evidence attribution evaluation, we first align the bounding-box annotations with the vision
encoder patch space. Given an image I divided into m patches PI = {p1, . . . ,pm}, we define the
binary ground-truth evidence label vector as

yI = [y1, . . . , ym]⊤ ∈ {0, 1}m,

where yi = 1 if patch pi overlaps with any annotated evidence region and yi = 0 otherwise. With
predicted evidence scores p̂I = [p̂1, . . . , p̂m]⊤ ∈ [0, 1]m, AUROC is

AUROC(yI , p̂I) =
1

|P+||P−|
∑
i∈P+

∑
j∈P−

I(p̂i > p̂j),
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where P+ = {i | yi = 1} and P− = {j | yj = 0}. NDCG@all evaluates ranking quality:

DCG@all =

m∑
i=1

2yπ(i) − 1

log2(i+ 1)
, NDCG@all =

DCG@all

IDCG@all
,

where π(i) is the index of the i-th ranked patch according to p̂i, and IDCG@all is the DCG of the
ideal ranking. Higher EM, F1, AUROC, and NDCG@all indicate better QA performance and stronger
evidence attribution.

A.2 MODELS AND BASELINES

We evaluate the effectiveness and generality of VEA using recent models from four popular VLM
families: LLaVA-Next (Liu et al., 2024), Qwen2.5VL (Bai et al., 2025), Gemma3 (Team et al.,
2025), and InternVL3.5 (Wang et al., 2025). For reproducibility, we list all models with their
publicly available checkpoints on Hugging Face4. All experiments are conducted on a single
NVIDIA A100 GPU with 80GB memory, implemented using the transformers and PyTorch
libraries under bfloat16 mixed precision. We note that both LLaVA-Next and InternVL3.5 exhibit
memory leakage when extracting raw attention maps during inference. Specifically, when using the
configuration attn_implementation=’eager’ to obtain layer-wise attention outputs, even
the 7B/8B models in these families cause out-of-memory errors on an 80GB GPU under bfloat16
precision. To address this issue, we employ Qwen2.5VL-7B as a delegate model for VEA. This
choice is motivated by its relatively efficient inference speed and stable evidence attribution quality.
Concretely, we run VEA on Qwen2.5VL-7B to perform visual evidence attribution and generate
augmented images, which are then fed into the original models for answer generation.

For baselines, we include several inference-time augmentation methods that aim to improve visual
information utilization without additional training. INST is a prompting baseline that explicitly directs
the model to focus on visual evidence, testing whether prompting alone suffices. CGR (Liu et al.,
2025) employs a two-step reasoning process where the model first extracts detailed information from
the image and then generates answers based on this intermediate representation. VAR (Liu et al.,
2025) applies a binary mask derived from final-layer attention scores to highlight salient regions.
Finally, AGLA (An et al., 2025) adopts a GradCAM-based (Selvaraju et al., 2017) approach that
masks irrelevant regions and ensembles outputs from the original and masked images to reinforce
visual grounding.

A.3 VEA AND BASELINES IMPLEMENTATION DETAILS

Given a VLM Φ, question q, image I, and a QA prompt template τQA, we obtain the generated
answer g for the question by combining the image and question as input: g ← Φ(τQA(I, q)). We use
the following template as the base prompt for VQA:

Base prompt template τQA for image-based VQA

Directly answer the question based on the image, no explanation is needed. If the image does not contain any relevant evidence,
output “I cannot answer based on the given image." Image: {image} Question: {question}

VEA Implementation Details. We first input the image–question pair into the model with the base
prompt τQA and extract its attention maps over the input sequence. At this stage, we perform only a
single-token forward pass rather than generating the full answer, making the process more efficient
than captioning-based approaches such as CGR (Liu et al., 2025). As described in Section 3.1, we
then conduct a profiling step to identify the Transformer layers with the strongest evidence attribution

4LLaVA-1.5-7B: https://huggingface.co/llava-hf/llava-1.5-7b-hf
LLaVA-1.5-13B: https://huggingface.co/llava-hf/llava-1.5-13b-hf
LLaVA-1.6-Mistral-7B: https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
LLaVA-1.6-Vicuna-13B: https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf
Qwen2.5-VL-7B: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
Qwen2.5-VL-32B: https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
Gemma-3-4B: https://huggingface.co/google/gemma-3-4b-it
Gemma-3-27B: https://huggingface.co/google/gemma-3-27b-it
InternVL3.5-8B: https://huggingface.co/OpenGVLab/InternVL3_5-8B-HF
InternVL3.5-14B: https://huggingface.co/OpenGVLab/InternVL3_5-14B-HF
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capability. Specifically, we use 100 examples from the TextVQA dataset as a diagnostic subset,
compute the AUROC between the patch-level attention scores and ground-truth evidence labels, and
select the top 10% of layers (rounded up) with the highest average AUROC scores. Table 4 reports
the average attribution quality of all layers and the subset of selected visual-grounding layers LVG for
representative models.

Table 4: Profiling results of visual-grounding layers LVG for representative models. We report the
total number of layers, the average AUROC across all layers, and the statistics of the selected top
layers with the strongest evidence attribution capability.

Model ID Full Layers Visual Grouding Layers (LVG)
#Layers Avg. AUROC #Layers Avg. AUROC Layer IDs

llava-hf/llava-1.5-7b-hf 32 83.98 4 92.13 {14,15,17,19}
llava-hf/llava-1.5-13b-hf 40 85.96 4 92.16 {13,14,15,16}
Qwen/Qwen2.5-VL-7B-Instruct 28 80.07 3 89.09 {18,22,24}
Qwen/Qwen2.5-VL-32B-Instruct 64 73.08 7 88.18 {49,50,51,52,53,55,56}
google/gemma-3-4b-it 34 65.40 4 80.32 {17,19,21,23}
google/gemma-3-27b-it 62 68.97 7 84.70 {35,37,40,41,47,53,58}

Once the set LVG is identified, we aggregate attention signals from these layers to construct the visual
evidence attribution map. To improve robustness, we apply denoising and smoothing operations with
hyperparameters highlight strength α = 0.5 and smooth strength σ = 0.5, following the discussion
in Section 3.3 and Section 4.2. The resulting attention map is then overlaid onto the input image,
highlighting the most relevant regions. Finally, we construct an augmented prompt τVEA that explicitly
instructs the model to focus on highlighted evidence regions when generating answers.

Prompt template τVEA for VQA with VEA-augmented Images

Directly answer the question based on the image, no explanation is needed. If the image does not contain any relevant evidence,
output “I cannot answer based on the given image." Only use words from the picture, especially those in the highlighted region, to
answer the question. Image: {image} Question: {question}

Baseline Implementation Details. For baselines, we include several inference-time augmentation
methods that aim to improve visual information utilization without additional training. INST is
implemented by replacing the base QA prompt with an augmented version that explicitly instructs
the model to attend to visual evidence when answering questions:

Instructioning prompt template

Answer the question based on the image. Focus on the most relevant visual evidence in the image when generating your answer. If
the image does not contain any relevant evidence, output “I cannot answer based on the given image." Image: {image} Question:
{question}

CGR (Liu et al., 2025) follows a two-step reasoning process. In the first step, we prompt the model to
produce a detailed caption or textual extraction of the image content using the following template:

CGR captioning prompt template

Carefully read and describe all relevant details from the image, especially any visible text or objects that may help answer the
question. Provide a concise but detailed textual description of the image content. Image: {image}

The generated description is then concatenated with the original image and question, and the model
generates the final answer using the base QA prompt. VAR (Liu et al., 2025) directly uses the
final-layer attention scores to construct a binary mask that highlights salient image regions while
suppressing less relevant ones. The original method applies the raw attention distribution without
post-processing; in our implementation, we additionally apply a denoising and smoothing procedure
(using the same parameters as in VEA) to improve stability. AGLA (An et al., 2025) is implemented
using the official codebase, which is based on GradCAM (Selvaraju et al., 2017). It generates a
saliency map, masks out irrelevant regions, and ensembles the outputs from the original image and the
masked image. We adopt the default hyperparameter settings provided in the official implementation.
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B ADDITIONAL DISCUSSIONS

B.1 USAGE OF ARTIFACTS AND AI ASSISTANTS

All models and datasets used in this study are publicly available on HuggingFace, and we adhered to
their respective licenses and terms of use, limiting our work to non-commercial academic research.
These models and datasets have been reviewed by their developers/creators to minimize the inclusion
of personally identifiable information or offensive content and are widely adopted by the research
community. We used AI tools to assist with language refinement during the writing process, the paper
contains no AI-generated paragraphs. All material has been carefully reviewed to ensure accuracy
and adherence to ethical standards.

B.2 LIMITATIONS AND POTENTIAL SOLUTIONS.

While the proposed VEA framework demonstrates consistent improvements across diverse VLMs
and tasks, several limitations remain. First, our method relies on extracting attention maps from
Transformer layers, which requires access to intermediate activations during inference. This may
not be supported by proprietary or API-only VLMs. Second, although our experiments provide
strong empirical validation, attention may not always fully capture all the internal mechanisms of
evidence localization, and alternative attribution signals (e.g., gradient-based saliency or probing
features) could provide complementary insights. Third, while per-model profiling proves effective in
identifying visual-grounding layers, more efficient or automated profiling strategies could further
improve usability, especially for large-scale or real-time applications.

B.3 FUTURE DIRECTIONS IN VLM (AGENTIC) REASONING AND BEYOND.

Attention as Active Perception. We believe that the internal attention signals of VLMs hold
promising potential for broader applications in more complex multimodal reasoning scenarios.
Beyond the image highlighting strategy explored in this work, attention signals could be leveraged to
guide targeted image manipulations that facilitate reasoning in long-horizon or agentic tasks. For
example, when a reasoning step requires the model to examine fine-grained details, attention could
be used to dynamically crop or zoom into the relevant region of the image and feed it back into the
context. Such adaptive image refinement guided by the model’s own signals may allow VLMs to act
more like human observers, selectively allocating focus as reasoning unfolds.

Self-Triggered Visual Enhancement. These mechanisms may be combined with lightweight
enhancement modules, such as super-resolution or dehazing, to selectively refine local regions
of interest with minimal computational cost. This opens up the possibility of multi-stage visual
processing pipelines that are triggered only when the model itself recognizes uncertainty or insufficient
evidence. Beyond single-image reasoning, attention-based guidance could also support multi-hop
visual reasoning across multiple images or documents, where the model iteratively decides which
visual regions to revisit or enhance.

Toward Agentic Problem Solvers. We view these directions as promising opportunities for enabling
more efficient and adaptive agentic multimodal reasoning, where models can actively exploit their
own internal signals to better support complex decision-making processes. In the longer term,
embedding such self-directed evidence gathering into broader agentic frameworks could help VLMs
evolve from passive perception systems into active problem solvers that can plan, verify, and refine
their own reasoning steps.

C ADDITIONAL RESULTS AND ANALYSIS

C.1 ADDITIONAL EVALUATION ON MULTI-TURN AND MULTI-IMAGE REASONING

Beyond single-turn, single-image QA, real-world multimodal interactions often require reasoning
across dialogue turns or integrating information from multiple images. These settings introduce
additional challenges: the text context grows longer, grounding must remain consistent across turns,
and evidence must be identified across multiple visual sources. To assess the generality of VEA under
such conditions, we further evaluate it on representative multi-turn and multi-image benchmarks.
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Setup. For multi-turn reasoning, we use the Visual Dialog (VisDial) dataset (Das et al., 2017), where
each question needs to be answered using both the associated image and the cumulative dialogue
history. We integrate the historical dialog in a new “dialog” section in the input prompt template.
Following prior work, we report Token F1 and Exact Match (EM). VEA is applied using the attention
from the first decoding step of the current turn. For multi-image reasoning, we evaluate the Semantic
Correspondence task in the BLINK benchmark (Fu et al., 2024), which requires cross-image visual
grounding beyond textual descriptions. Specifically, in this task, the first image gives the reference
point, and the model is asked to identify the point from 4 possible options in the second image that is
semantically matched to the reference point in the first image. We apply VEA on the second image
and left the reference image untouched. Since the task is multiple-choice, we report Accuracy.

Multi-Turn QA. Table 5 presents the results on VisDial. VEA consistently improves both metrics
across all tested models, with particularly notable gains in Token F1. VisDial answers are free-form,
and many visually grounded improvements may not yield exact string matches. Thus, F1 provides a
more sensitive measure of grounding quality. We observe that VEA shifts model predictions toward
visually anchored content, increasing lexical overlap with ground truth even when EM remains
unchanged. This indicates that VEA helps maintain consistent evidence usage across turns and
reduces generic or image-agnostic responses.

Table 5: Multi-turn QA results on VisDial dataset.

VisDial LLaVA-1.6-7B Qwen2.5VL-7B Gemma3-4B InternVL3.5-8B
Base F1 28.5 27.5 25.0 33.2
VEA F1 44.9 (+16.4) 47.8 (+20.3) 41.2 (+16.2) 48.6 (+15.4)
Base EM 38.4 37.6 34.0 38.5
VEA EM 40.9 (+2.5) 40.5 (+2.9) 37.5 (+3.5) 41.4 (+2.9)

Multi-Image QA. Table 6 summarizes the results on the BLINK Semantic Correspondence task.
VEA again improves performance across all evaluated models. Multi-image reasoning requires iden-
tifying consistent semantic cues across distinct images. VEA enhances this process by suppressing
irrelevant visual regions and strengthening attention to patches that share meaningful correspondences
across images. Notably, even strong models such as InternVL3.5-8B benefit from VEA, demon-
strating that inference-time evidence emphasis remains complementary to advanced multimodal
architectures.

Table 6: Multi-image QA results on BLINK dataset.

BLINK LLaVA-1.6-7B Qwen2.5VL-7B Gemma3-4B InternVL3.5-8B
Base ACC 34.4 61.4 42.2 66.4
VEA ACC 45.2 (+10.8) 68.9 (+7.5) 50.9 (+8.7) 71.3 (+4.9)

These additional results show that VEA generalizes robustly to more complex multimodal settings.
Whether the model must track evidence across dialogue turns or align visual cues across multiple
images, emphasizing visual evidence consistently improves grounding quality. This highlights the
broad applicability of VEA as a lightweight inference-time enhancement for multimodal reasoning.

C.2 EVALUATION ON GLOBAL-CONTEXT REASONING BENCHMARKS

As discussed in RQ4 (Fig. 7), overly aggressive masking (e.g., α = 1) can remove too much
background, but within a practical range (α ∈ [0.25, 0.75]), VEA consistently enhances grounding
without impairing global comprehension. We also include a variant, VEA∗, that preserves both the
original and highlighted images to further strengthen global-context access. To further examine
whether VEA affects performance in scenarios where the focus is on the non-text visual elements in
global context, we additionally evaluate it on AI2D (Kembhavi et al., 2016) and MMStar (Chen et al.,
2024). These datasets emphasize scientific or conceptual reasoning over fine-grained perception.
However, we also note that their images typically consist of large, clean graphical elements where
visual evidence localization is not the primary challenge.
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Experimental Setup. AI2D focuses on diagram understanding and scientific concept reasoning,
while MMStar aggregates multimodal scientific and mathematical problems, including samples from
MMMU and MathVista. Since both benchmarks use multiple-choice questions, we report accuracy.
For VEA∗, the model receives both the original image and the VEA-highlighted image as input.
Additionally, include a variant VEA∗ that retains both the original and highlighted images to check
whether this can further strengthen access to global visual information.

Table 7: Results on global-context benchmarks (AI2D and MMStar).

Dataset Method LLaVA-1.6-7B Qwen2.5VL-7B Gemma3-4B InternVL3.5-8B

AI2D
Base 66.4 78.9 56.2 77.2
VEA 69.8 (+3.4) 81.1 (+2.2) 61.5 (+5.3) 81.8 (+4.6)
VEA∗ 70.2 (+3.8) 82.3 (+3.4) 63.3 (+7.1) 83.7 (+6.5)

MMStar
Base 36.7 48.4 32.8 53.7
VEA 40.5 (+3.8) 52.8 (+4.4) 37.5 (+4.7) 57.6 (+3.9)
VEA∗ 40.2 (+3.5) 53.3 (+4.9) 39.1 (+6.3) 58.2 (+4.5)

Results and Analysis. Table 7 summarizes the results. The improvements on AI2D and MMStar
confirm that VEA does not hinder global-context reasoning, though the magnitude of improvement
is smaller compared with datasets that rely more heavily on fine-grained visual evidence. This
aligns with the fact that these reasoning tasks emphasize logical inference rather than evidence
localization. The VEA∗ variant further boosts performance by preserving full-image information
while still highlighting evidence regions, particularly benefiting models with strong multi-image
reasoning abilities (e.g., Qwen2.5-VL, InternVL). These results support that VEA is compatible
with reasoning-centric benchmarks and that, within reasonable intervention strengths, foreground
emphasis does not disrupt global context understanding.

C.3 MULTI-ROUND SELF-VALIDATION WITH VEA

While VEA enhances visual grounding by highlighting evidence during a single inference pass, its
decision process remains static, limited by the model’s initial belief. In principle, a model could
revisit its own outputs and revise incorrect responses, guided by the same visual attention mechanism
in a cascaded fashion. Motivated by this, we explore whether equipping VEA with a self-validation
loop, where the model reflects on and potentially corrects its previous answers, can further improve
response accuracy.

Experimental Setup. We implement a variant, VEA-cascade, which adds a lightweight multi-round
self-validation process. After generating an initial answer, the model receives the VEA-highlighted
image and is asked to verify whether its own answer is correct. If the model responds affirmatively
(e.g., “I confirm this answer is correct”), we take the answer as final. Otherwise, the model is
prompted to revise the answer and regenerate the attention map for the next round. We allow up to 3
validation rounds and conduct experiments using Qwen2.5-VL-7B on four datasets.

Table 8: Performance of VEA-cascade with multi-round self-validation.

Method TextVQA DocVQA SROIE InfographicsQA
VEA EM 90.3 76.2 82.5 64.4
VEA-cascade EM 90.3 (+0.0) 76.6 (+0.4) 82.7 (+0.2) 64.4 (+0.0)
Avg. #Rounds 1.05 1.09 1.10 1.07

Results and Analysis. Table 8 summarizes the results. While VEA-cascade introduces self-reflection,
it leads to only marginal gains across all tasks, and the average number of rounds remains close to 1.
This suggests the model rarely alters its initial response, even when given the opportunity to revise.
The limited improvements from VEA-cascade reveal that current VLMs tend to reaffirm their initial
answers, with only minor evidence of genuine self-correction. The small number of rounds used
suggests the model lacks confidence calibration or uncertainty estimation necessary for productive
self-reflection. These findings align with recent studies that highlight the challenge of inducing
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effective reflection in VLMs Wei et al. (2025); Jiang et al. (2025). Nonetheless, we believe that by
integrating VEA’s attention feedback with stronger multi-step reasoning modules and more structured
reflection prompts, future work could unlock richer and more adaptive visual reasoning pipelines, as
discussed in Section B.3.

C.4 WHEN ATTENTION IS NOT RELIABLE.

VEA relies on the model’s internal attention maps to locate supporting visual evidence. While
prior analyses confirm that VLM attention often aligns well with ground-truth evidence, it remains
important to examine failure modes, particularly when attention grounding is inaccurate. We aim to
answer three questions: (1) How frequently does attention misalign with ground truth? (2) Can VEA
still improve performance in such cases? (3) What are the underlying causes of grounding failures?

Table 9: VEA performance on samples with low attention-evidence alignment (AUROC < 0.5).

Metric TextVQA DocVQA SROIE InfographicsQA
Low-AUROC Ratio (%) 1.42 3.11 7.34 5.20
Base F1 15.3 16.2 10.6 27.6
VEA F1 21.8 (+6.5) 26.4 (+10.2) 18.9 (+8.3) 35.3 (+7.7)

Results and Discussions. We identify “low-AUROC” samples where attention does not correlate
well with labeled evidence (AUROC < 0.5) with Qwen2.5VL-7B. Table 9 shows that such cases
are rare, ranging from 1.4% to 7.3% across datasets, and that VEA still improves QA performance
even on these samples. Despite poor AUROC, VEA often leads to better answers. Upon manual
inspection, we find two main causes for these “false failure” cases: (i) Incomplete annotations.
For many questions, the image contains multiple valid evidence regions, but only one is labeled in
the ground truth. When the model correctly attends to unlabeled regions, AUROC is low despite
accurate grounding. VEA remains beneficial in such scenarios, as it reinforces these valid regions.
(ii) Genuine grounding failure. In a small number of cases, the model fails to perceive any correct
visual evidence and highlights irrelevant regions. These typically stem from vague or misaligned
annotations. For example, questions referencing nonexistent elements or ambiguous phrasing. In
such cases, both the model’s attention and VEA’s highlights reflect dataset limitations rather than
model deficiencies.

C.5 DISCUSSION ON DISCREPANCIES WITH EXISTING FINDINGS

Several recent studies have reported seemingly different attention distribution trends. Upon closer
examination, we find that these discrepancies arise mainly from differences in scope and terminology
rather than fundamental disagreement. Our results are in fact consistent with the attention dynamics
described in earlier work once these distinctions are accounted for.

Specifically, Amara et al. Amara et al. (2024) do not perform a layer-wise breakdown but instead
measure the total attention mass allocated to image tokens, concluding that image tokens overall
receive more attention than text tokens. This matches our findings, as shown in our layer-averaged
analysis. Lu et al. Lu et al. (2025) report that early layers show a high visual-attention ratio with low
concentration (broad scanning), and that middle layers maintain a high ratio while increasing concen-
tration as cross-modal alignment emerges. This pattern directly corresponds to our observations: our
“early” layers also exhibit diffuse visual scanning, and our “deeper” layers (roughly 50%–75% depth)
align with their “middle” stages where focused visual grounding occurs. Similar layer trends are also
reported by Bi et al. Bi et al. (2025), supporting that our interpretation is consistent with the broader
literature.

Overall, these analyses reflect complementary perspectives rather than conflicting findings. Once
methodological framing is harmonized, the attention evolution patterns described across studies
present a coherent view of how multimodal transformers progressively shift from broad visual
exploration to localized, semantically grounded alignment.
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Table 10: Mean evidence attribution AUROC under different layer selection strategies.

Layers / Method LLaVA-7B LLaVA-13B Qwen-7B Qwen-32B Gemma-4B Gemma-27B
L0%−100% 75.9 76.3 68.5 57.0 59.5 61.8
L0%−50% 68.2 73.1 59.4 51.3 56.5 55.4
L50%−100% 78.0 76.9 79.5 67.6 65.9 68.1
L50%−75% 81.2 79.1 80.3 65.9 71.7 70.0
L75%−100% 74.8 74.7 78.7 70.4 60.8 66.3
VEA Profiling 83.6 84.4 85.2 79.1 80.0 81.2

Table 11: TextVQA Token F1 under different layer selection strategies.

Layers / Method LLaVA-7B LLaVA-13B Qwen-7B Qwen-32B Gemma-4B Gemma-27B
Base 27.8 66.8 79.5 72.1 58.2 57.6
L0%−100% 58.2 72.8 86.6 78.2 64.5 61.2
L0%−50% 38.9 71.6 80.1 71.8 59.9 56.4
L50%−100% 62.2 73.1 87.6 79.8 65.4 62.0
L50%−75% 66.7 74.1 87.5 78.8 66.9 62.1
L75%−100% 56.5 71.9 87.1 80.6 63.6 62.1
VEA Profiling 69.4 76.3 88.6 81.4 69.6 63.2

C.6 EVALUATION ON THE EFFECT OF EVIDENCE-LAYER SELECTION

VEA highlights image regions by manipulating attention at specific transformer layers. Since different
VLMs may exhibit grounding behavior at different depths, we identify high-evidence layers for each
model. This section discusses (1) what is the benefit of performing profiling for each model, and (2)
how sensitive VEA is to inaccurate or static layer choices.

Profiling helps achieve more accurate evidence identification. Table 10 reports the average
evidence attribution AUROC across four datasets (following the setup in Table 2) under different
layer selection strategies. In addition to the 3 static layer choices in Table 2, we further include two
finer-grained static ranges, L50%−75% and L75%−100%. Across six model families, the later half of
the layers (L50%−100%) generally produces stronger attribution than early layers, with L50%−75%

often being the best-performing static choice. Per-model profiling further improves robustness
and consistently achieves the highest AUROC, especially for models such as Gemma that exhibit
non-monotonic, “periodic” grounding patterns across layer depth.

Robustness to Inaccurate Selection. We further examine VEA’s sensitivity to imperfect layer
identification by testing QA performance on TextVQA with intentionally static (non-profiled) layer
choices. As shown in Table 11, VEA maintains strong gains even when the chosen layer range
deviates from the optimal one. Using middle-to-deep layers (L50%−100%) consistently yields stable
improvements, while profiling provides additional but incremental benefits. Only early-layer steering
(L0%−50%) noticeably reduces performance, confirming that early layers lack visual grounding.

These results show that model-specific evidence-layer profiling is not a strict requirement but an
enhancement. VEA remains effective even with coarse, static layer choices, confirming its robustness
to layer selection inaccuracies. Profiling, however, helps align VEA’s steering with model-specific
grounding depths and mitigates variance across architectures, particularly for models with irregular
attention-layer behavior.

C.7 MORE VISUAL EXAMPLES

Figure 8 provides additional qualitative examples with Qwen2.5VL-7B to illustrate VEA’s behavior
across diverse visual question answering scenarios. These results show that VEA consistently
enhances visual grounding and answer accuracy by guiding models to focus on semantically relevant
regions, regardless of scene type or task focus.
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Figure 8: Additional qualitative examples of VEA. For diversity, the upper half of the examples are
drawn from the MMStar dataset, which focuses on natural scenes, while the lower half are taken from
the four datasets used in the main experiments, which emphasize textual or document-centric scenes.

C.8 FULL QUESTION ANSWERING RESULTS

Table 12 reports the complete results of all methods across four VQA datasets and eight VLMs. We
observe that VEA consistently achieves the best or second-best performance in nearly all settings, often
ranking first in both Exact Match (EM) and Token F1. Compared with the base models, VEA delivers
substantial gains, particularly on datasets that require fine-grained reading comprehension such as
TextVQA and DocVQA. Among the baselines, AGLA and CGR occasionally achieve competitive
performance, but their improvements are less stable across model families and scales. In contrast,
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Table 12: Full results of applying visual evidence augmentation methods to 8 VLMs from 4 latest
series of LLaVA, Qwen, Gemma, and InternVL families. We report detailed results on four visual
question answering tasks, including both Exact Match (EM) and Token F1 scores. For each metric,
we also report the average rank of each method over all tested tasks and models. These results
complement the Table 1 in the paper and provide a comprehensive view of performance across
datasets and metrics.

Model Method TextVQA DocVQA SROIE InfographicsQA Average Rank (↓)
EM Token F1 EM Token F1 EM Token F1 EM Token F1 EM Token F1

L
L

av
aN

ex
t

7B

BASE 48.44 27.78 44.53 46.74 41.41 46.17 19.53 12.51 5.50 5.50
INST 47.84 43.95 46.71 46.49 41.00 45.35 19.82 17.98 5.25 5.25
CGR 66.50 41.03 45.89 51.21 42.85 52.39 26.54 19.52 3.00 3.50
VAR 55.16 63.65 48.61 48.15 42.75 51.56 24.10 19.51 3.50 3.50

AGLA 65.39 49.96 48.78 51.41 42.24 53.79 29.07 25.31 2.75 2.00

VEA 75.32 69.36 49.24 53.51 43.89 53.78 29.86 25.60 1.00 1.25

13B

BASE 69.53 66.76 56.25 64.43 43.75 59.86 28.12 24.05 5.25 5.75
INST 74.08 68.30 55.30 64.55 43.38 61.54 27.86 23.39 5.75 4.75
CGR 77.39 73.85 56.45 64.44 45.76 61.11 31.39 27.61 3.00 4.00
VAR 74.99 69.05 57.21 65.31 44.40 62.48 29.35 26.07 3.25 3.50

AGLA 78.06 74.40 57.12 66.17 44.44 62.61 34.01 31.74 2.25 1.75

VEA 78.40 76.25 57.06 66.21 46.34 62.65 34.50 31.63 1.50 1.25

Q
w

en
2.

5

7B

BASE 85.94 79.49 73.44 79.71 75.78 92.53 58.59 59.03 5.50 5.25
INST 85.31 80.26 75.06 80.02 75.63 91.24 59.50 58.88 5.25 5.25
CGR 88.69 86.42 73.59 79.97 80.98 93.66 60.98 63.39 3.75 3.50
VAR 87.82 81.56 75.70 80.81 78.79 91.64 63.42 61.83 3.25 4.00

AGLA 89.75 88.32 76.14 81.55 82.47 94.32 63.10 63.51 2.25 1.75

VEA 90.33 88.63 76.24 81.47 82.51 94.38 64.35 63.90 1.00 1.25

32B

BASE 81.25 72.10 73.44 74.65 68.75 81.43 53.91 51.12 5.50 6.00
INST 80.58 75.23 73.48 74.79 67.95 81.77 54.18 52.97 5.50 5.00
CGR 84.44 76.66 76.52 78.95 70.89 90.17 60.19 53.55 2.75 3.25
VAR 81.64 77.05 74.50 76.42 70.77 88.36 54.71 53.88 4.00 3.50

AGLA 84.75 77.30 75.06 80.00 74.79 89.10 60.47 54.26 2.25 2.00

VEA 86.87 81.44 77.03 80.45 76.02 91.47 63.32 54.23 1.00 1.25

G
em

m
a3

4B

BASE 78.12 58.21 58.59 54.34 54.69 66.13 35.16 23.47 5.00 5.50
INST 76.93 61.76 59.06 57.90 53.90 64.88 34.29 23.09 5.75 5.50
CGR 82.53 63.72 63.65 61.50 57.78 67.45 37.55 26.27 2.50 3.25
VAR 81.57 68.29 60.36 60.41 54.96 69.83 34.95 27.09 4.25 2.50

AGLA 83.02 67.48 64.25 60.07 57.20 70.47 37.26 25.55 2.50 3.25

VEA 83.18 69.60 64.52 63.24 58.76 71.43 38.32 27.12 1.00 1.00

27B

BASE 85.16 57.58 70.31 67.26 70.31 82.88 51.56 22.88 6.00 5.50
INST 86.24 57.49 71.80 66.68 70.67 83.72 51.98 25.17 5.00 5.50
CGR 87.08 62.10 72.69 68.33 73.45 85.51 55.88 29.38 3.75 3.25
VAR 88.86 63.18 73.26 69.12 72.47 86.54 59.06 26.25 2.50 2.50

AGLA 91.48 63.15 72.85 67.82 74.16 86.54 58.43 28.20 2.50 3.00

VEA 91.84 63.22 75.23 69.11 75.19 86.87 59.00 29.95 1.25 1.25

In
te

rn
V

L
3.

5

8B

BASE 83.59 79.41 85.94 88.50 84.38 93.40 63.28 57.20 5.00 5.50
INST 83.30 80.31 86.43 89.56 83.17 92.18 63.87 57.95 5.50 5.25
CGR 86.58 84.34 87.64 91.47 84.12 92.74 71.16 69.48 3.00 3.75
VAR 83.67 82.80 87.08 89.89 84.53 94.37 65.33 69.87 3.50 3.00

AGLA 86.21 84.78 87.44 92.47 84.30 93.69 71.27 69.95 3.00 2.25

VEA 87.57 86.47 88.42 92.57 84.66 94.23 72.12 70.07 1.00 1.25

14B

BASE 86.72 75.06 88.28 82.31 80.47 79.48 61.72 40.94 5.25 5.25
INST 86.37 75.29 87.31 81.39 79.50 78.51 62.12 40.86 5.75 5.75
CGR 89.64 76.25 89.35 83.44 82.62 80.88 65.08 41.50 3.00 3.00
VAR 87.48 77.87 90.42 82.36 80.71 79.50 62.95 41.60 3.25 3.25

AGLA 90.04 76.15 90.23 83.11 84.96 81.68 63.86 42.33 2.50 2.50

VEA 90.21 78.15 90.24 84.17 85.35 81.67 65.73 42.94 1.25 1.25

VAR benefits from leveraging attention scores but remains sensitive to noisy signals, even with
additional smoothing. Another key observation is that VEA provides consistent improvements across
all four VLM families (LLaVA, Qwen, Gemma, and InternVL). The average rank results confirm this
trend: VEA outperforms all other methods with the lowest ranks across metrics, demonstrating its
robustness and generality as an inference-time augmentation strategy.

23



Published as a conference paper at ICLR 2026

Table 13: Full results of visual evidence attribution accuracy across four VQA datasets. We report
token-level AUROC and NDCG@all for different attribution methods, including both static layer-
based baselines (e.g., L0%−100%, L0%−50%, L50%−100%) and adaptive attribution approaches (VAR,
AGLA, and VEA). For each dataset and model, we present results separately, and also include the
average rank of each method across models. These results complement Table 2 in the main paper.

Evidence LLaVA 7B LLaVA 13B Qwen 7B Qwen 32B Gemma 4B Gemma 27B Avg. Rank (↓)
Attribution AUROC NDCG AUROC NDCG AUROC NDCG AUROC NDCG AUROC NDCG AUROC NDCG AUROC NDCG

Te
xt

V
Q

A

L0%−100% 87.2 51.4 87.0 52.1 83.4 51.5 73.6 33.7 65.1 29.5 70.1 30.3 4.50 4.50
L0%−50% 79.9 45.0 84.6 51.1 73.4 34.6 65.1 31.3 62.6 28.1 61.4 28.5 5.67 5.67
L50%−100% 88.0 64.1 87.3 56.6 86.7 63.9 81.1 47.5 68.2 35.8 76.6 38.8 2.83 2.83

VAR 82.0 49.5 84.2 46.3 84.1 61.3 80.6 43.1 54.5 26.8 71.8 33.0 4.83 4.67
AGLA 90.2 68.4 90.4 66.8 86.2 61.0 87.0 58.0 72.4 36.8 81.9 43.9 2.17 2.33

VEA 92.2 76.5 92.4 75.3 90.7 74.2 89.8 63.9 88.0 63.2 88.0 55.0 1.00 1.00

D
oc

V
Q

A

L0%−100% 76.6 45.2 77.7 46.3 67.2 40.9 53.2 33.2 60.2 37.8 62.0 38.8 4.33 4.33
L0%−50% 66.5 41.5 72.5 44.8 59.8 35.5 50.5 32.8 57.2 36.5 56.4 37.2 5.67 5.67
L50%−100% 79.6 53.7 79.2 50.2 80.0 59.7 66.1 45.0 67.6 48.2 67.7 46.6 2.83 2.83

VAR 70.3 43.2 74.5 43.8 75.8 54.9 65.8 41.7 52.0 34.7 55.6 37.6 5.00 5.00
AGLA 81.7 56.3 83.0 56.0 77.8 56.8 73.8 54.0 69.5 49.2 73.7 52.7 2.17 2.17

VEA 85.2 63.1 85.7 62.9 86.0 70.4 76.5 60.8 78.7 61.8 81.9 64.8 1.00 1.00

SR
O

IE

L0%−100% 71.7 58.6 70.0 56.5 62.3 44.1 51.5 38.8 58.8 44.5 60.7 45.5 4.33 4.33
L0%−50% 63.8 54.5 67.6 56.2 53.9 40.4 44.4 37.9 54.5 43.0 53.0 43.7 5.67 5.67
L50%−100% 72.7 63.2 70.7 59.6 73.4 59.3 62.2 46.7 65.6 54.5 64.7 52.4 2.83 2.83

VAR 65.8 54.9 63.9 53.3 65.5 53.5 56.8 43.9 49.9 42.1 54.0 44.9 5.00 5.00
AGLA 75.0 65.7 75.6 65.0 71.7 57.1 68.9 53.0 67.8 55.4 70.9 58.1 2.17 2.17

VEA 78.9 72.6 79.0 71.1 80.4 68.9 74.2 59.7 80.2 69.8 78.5 68.5 1.00 1.00

In
fo

gr
ap

hV
Q

A L0%−100% 68.3 33.6 70.3 34.1 61.2 30.3 49.8 26.4 53.8 30.3 54.4 30.9 4.17 4.50
L0%−50% 62.4 31.7 67.5 33.4 50.6 26.3 45.4 25.7 52.0 29.7 50.9 30.0 5.67 5.67
L50%−100% 71.5 37.2 70.3 35.5 78.0 49.6 61.1 33.8 62.3 36.2 63.4 36.8 3.00 2.83

VAR 65.3 32.9 65.8 32.6 75.6 46.8 59.7 30.4 48.5 29.5 51.5 31.5 4.83 4.83
AGLA 73.8 38.4 75.5 38.5 75.1 46.8 70.6 40.3 63.6 36.6 68.9 41.2 2.33 2.17

VEA 77.9 42.0 80.6 44.5 83.9 60.9 75.7 49.2 73.0 45.0 76.4 52.0 1.00 1.00

C.9 FULL EVIDENCE ATTRIBUTION ACCURACY RESULTS

Table 13 reports the full token-level attribution results across four datasets and six representative
VLMs. Several consistent patterns can be observed. First, static baselines that aggregate attention
uniformly over either all layers (L0%−100%) or early layers (L0%−50%) perform poorly, indicating
that not all layers contribute equally to evidence attribution. In contrast, restricting attention to
later layers (L50%−100%) yields substantially better AUROC and NDCG scores, confirming that
deeper layers play a critical role in localizing evidence. Second, adaptive attribution methods such
as VAR and AGLA improve upon static baselines in many cases, with AGLA in particular showing
stronger ranking quality across datasets. Finally, VEA with layer profiling consistently achieves
the highest scores in both AUROC and NDCG@all across all models and tasks, leading to the best
overall ranking. These results validate that VEA more accurately identifies relevant evidence tokens
compared with both static and adaptive alternatives, and demonstrate the robustness of the proposed
approach across diverse datasets and model families.

C.10 FULL LAYER-WISE ATTENTION DYNAMICS VISUALIZATION

We also provide the completion of the layer-wise attention dynamics visualizations in Section 2.

Figure 9, as an extension of Figure 1 in Section 2.1, presents the layer-wise modality attention
transition across multiple models and datasets. Although the detailed patterns differ across model
families, the overall trend holds consistently: early layers predominantly attend to text tokens, whereas
deeper layers progressively shift their focus toward image tokens, revealing a sequential transition
from linguistic parsing to visual grounding within single-token inference.

Figure 10, complementing Figure 4 in Section 2.3, shows the relative average attention assigned to
evidence versus non-evidence image tokens across layers. Consistent with our main-text analysis,
deeper layers across all models and datasets consistently allocate higher attention to evidence regions,
even in cases where the model produces incorrect answers.
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To more directly assess the ability of different layers to locate visual evidence, Figure 11 reports
the evidence attribution accuracy (AUROC and NDCG@all) of each layer across multiple models
and datasets. In line with Figure 10 and prior discussions, deeper layers generally achieve higher
attribution accuracy. Interestingly, however, the distribution of optimal layers varies across model
families: LLaVA’s best-performing layers cluster around the middle layers, Qwen’s peak layers
concentrate near the final output layers, while Gemma exhibits a periodic pattern in which every few
layers contain a “good attribution layer.” These diverse patterns highlight the importance and benefit
of per-model profiling. We hypothesize that such differences may stem from family-specific design
choices or training strategies, though a deeper understanding of their underlying causes remains open
for future investigation.
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Figure 9: Relative attention per token (RAPT) (y-axis) to text tokens (red) and image tokens (blue)
across Transformer layers for six representative VLMs (LLaVA-7B, LLaVA-13B, Qwen2.5-VL-7B,
Qwen2.5-VL-32B, Gemma3-4B, Gemma3-27B) on four VQA datasets. Across all models and
datasets, we observe a consistent trend: early layers attend predominantly to text tokens, whereas
deeper layers gradually increase their focus on image tokens. This reveals a sequential transition
from linguistic parsing to visual grounding during single-token inference. These figures complement
Figure 1 in the main paper.
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Figure 10: Relative attention to evidence image tokens (blue) vs. non-evidence image tokens (orange)
across layers for six VLMs (LLaVA-7B/13B, Qwen2.5-VL-7B/32B, Gemma3-4B/27B) on four
VQA datasets. Across models and datasets, deeper layers consistently assign higher attention to
evidence regions, even when answers are incorrect (dashed lines). Best viewed in color. These figures
complement Figure 4 in the main paper.
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Figure 11: Layer-wise evidence attribution accuracy (AUROC and NDCG) of six VLMs (LLaVA-
7B/13B, Qwen2.5-VL-7B/32B, Gemma3-4B/27B) on four VQA datasets. Consistent with Figure 10,
deeper layers generally achieve higher attribution accuracy. While the optimal layers vary across
models, their patterns are stable across datasets, highlighting the benefit of per-model profiling.
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