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ABSTRACT

We introduce a memory-driven semi-parametric approach to text-to-image gen-
eration, which is based on both parametric and non-parametric techniques. The
non-parametric component is a memory bank of image features constructed from
a training set of images. The parametric component is a generative adversarial
network. Given a new text description at inference time, the memory bank is used
to selectively retrieve image features that are provided as basic information of target
images, which enables the generator to produce realistic synthetic results. We also
incorporate the content information into the discriminator, together with semantic
features, allowing the discriminator to make a more reliable prediction. Experimen-
tal results demonstrate that the proposed memory-driven semi-parametric approach
produces more realistic images than purely parametric approaches, in terms of both
visual fidelity and text-image semantic consistency.

1 INTRODUCTION

How to effectively produce realistic images from given natural language descriptions with semantic
alignment has drawn much attention, because of its tremendous potential applications in art, design,
and video games, to name a few. Recently, with the vast development of generative adversarial
networks (Goodfellow et al., 2014; Gauthier, 2015; Mirza & Osindero, 2014) in realistic image
generation, text-to-image generation has made much progress, where the progress has been mainly
driven by parametric models — deep networks use their weights to represent all data concerning
realistic appearance (Zhang et al., 2017; 2018; Xu et al., 2018; Li et al., 2019a; Qiao et al., 2019b;
Zhu et al., 2019; Hinz et al., 2019; Cheng et al., 2020; Qiao et al., 2019a).

Although these approaches can produce realistic results on well-structured datasets, containing a
specific class of objects at the image center with fine-grained descriptions, such as birds (Wah et al.,
2011) and flowers (Nilsback & Zisserman, 2008), there is still much room to improve. Besides, they
usually fail on more complex datasets, which contain multiple objects with diverse backgrounds,
e.g., COCO (Lin et al., 2014). This is likely because, for COCO, the generation process involves a
large variety in objects (e.g., pose, shape, and location), backgrounds, and scenery settings. Thus, it
is much easier for these approaches to only produce text-semantic-matched appearances instead of
capturing difficult geometric structure. As shown in Fig. 1, current approaches are only capable of
producing required appearances semantically matching the given descriptions (e.g., white and black
stripes for zebra), but objects are unrealistic with distorted shape. Furthermore, these approaches
are in contrast to earlier works on image synthesis, which were based on non-parametric techniques
that could make use of large datasets of images at inference time (Chen et al., 2009; Hays & Efros,
2007; Isola & Liu, 2013; Zhu et al., 2015; Lalonde et al., 2007). Although parametric approaches can
enable the benefits of end-to-end training of highly expressive models, they lose a strength of earlier
non-parametric techniques, as they fail to make use of large datasets of images at inference time.

In this paper, we introduce a memory-driven semi-parametric approach to text-to-image generation,
where the approach takes the advantage of both parametric and non-parametric techniques. The
non-parametric component is a memory bank of disentangled image features constructed from a
training set of real images. The parametric component is a generative adversarial network. Given a
novel text description at inference time, the memory bank is used to selectively retrieve compatible
image features that are provided as basic information, allowing the generator to directly draw clues
of target images, and thus to produce realistic synthetic results.

Besides, to further improve the differentiation ability of the discriminator, we incorporate the content
information into it. This is because, to make a prediction, the discriminator usually relies on semantic
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Figure 1: Examples of text-to-image generation on COCO. Current approaches only generate low-
quality images with unrealistic objects. In contrast, our method can produce realistic images, in terms
of both visual appearances and geometric structure.

features, extracted from a given image using a series of convolution operators with local receptive
fields. However, when the discriminator goes deeper, less content details are preserved, including the
exact geometric structure information (Gatys et al., 2016; Johnson et al., 2016). We think that the
loss of content details is likely one of the reasons why current approaches fail to produce realistic
shapes for objects on difficult datasets, such as COCO. Thus, the adoption of content information
allows the model to exploit the capability of content details and then improve the discriminator to
make the final prediction more reliable.

Finally, an extensive experimental analysis is performed, which demonstrates that our memory-driven
semi-parametric method can generate more realistic images from natural language, compared with
purely parametric models, in terms of both visual appearances and geometric structure.

2 RELATED WORK

Text-to-image generation has made much progress because of the success of generative adversarial
networks (GANs) (Goodfellow et al., 2014) in realistic image generation. Zhang et al. (2017)
proposed a multi-stage architecture to generate realistic images progressively. Then, attention-based
methods (Xu et al., 2018; Li et al., 2019a) are proposed to further improve the results. Zhu et al.
(2019) introduced a dynamic memory module to refine image contents. Qiao et al. (2019a) proposed
text-visual co-embeddings to replace input text with corresponding visual features. Cheng et al.
(2020) introduced a rich feature generating text-to-image synthesis. Besides, extra information is
adopted on the text-to-image generation process, such as scene graphs (Johnson et al., 2018; Ashual
& Wolf, 2019) and layout (e.g., bounding boxes or segmentation masks) (Hong et al., 2018; Li et al.,
2019b; Hinz et al., 2019). However, none of the above approaches adopt non-parametric techniques
to make use of large datasets of images at inference time, neither feed content information into
the discriminator to enable a finer training feedback. Also, our method does not make use of any
additional semantic information, e.g., scene graphs and layout.

Text-guided image manipulation is related to our work, where the task also takes natural language
descriptions and real images as inputs, but it aims to modify the images using given texts to achieve
semantic consistency (Nam et al., 2018; Dong et al., 2017; Li et al., 2020). Differently from it, our
work focuses mainly on generating novel images, instead of editing some attributes of the given
images. Also, the real images in the text-guided image manipulation task behave as a condition,
where the synthetic results should reconstruct all text-irrelevant attributes from the given real images.
Differently, the real images in our work are mainly to provide the generator with additional cues of
target images, in order to ease the whole generation process.

Memory Bank. Qi et al. (2018) introduced a semi-parametric approach to realistic image generation
from semantic layouts. Li et al. (2019c) used the stored image crops to determine the appearance
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Figure 3: The architecture of our proposed method. The red box indicates the inference pipeline
that retrieves image features from a memory bank according to the a given description S, during in
training, we directly feed image features from the text-paired training image. z is a random vector
drawn from the Gaussian distribution, ACM denotes the text-image affine combination module.

of objects. Tseng et al. (2020) used a differentiable retrieval process to select mutually compatible
image patches. Li et al. (2021) studied conditional image extrapolation to synthesize new images
guided by the input structured text. Differently, instead of using a concise semantic representation (a
scene graph as input), which is less user-friendly and has limited context of general descriptions, we
use natural language descriptions as input. Also, Liang et al. (2020) designed a memory structure
to parse the textual content. Differently, our method simply uses a deep network to extract image
features, instead of involving complex image preprocessing to build a memory bank.

3 OVERVIEW
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Figure 2: The design of the memory bank to pro-
vide image features at inference time. Note that
we use the corresponding real training image to
represent image features for a better visualization.

Given a sentence S, we aim to generate a fake
image I ′ that is semantically aligned with the
given S. The proposed model is trained on a
set of paired text description and corresponding
real image features v, denoted by (S, v). This
set is also used to generate a memory bankM of
disentangled image features v for different cate-
gories, where image features are extracted from
the training image by using a pretrained VGG-
16 network (Simonyan & Zisserman, 2014) (see
Fig. 2). Each element in M is an image fea-
ture extracted from a training image, associated
with corresponding semantically-matched text
descriptions from the training datasets.

At inference time, we are given a novel text description S that was not seen during training. Then,
S is used to retrieve semantically-aligned image features from the memory bank M , based on
designed matching algorithms (more details are shown in Sec. 4.2). Next, the retrieved image
features v, together with the given text description S, are fed into the generator to synthesize the
output image (see Fig. 3). The generator utilizes the information from the image features, fuses
them with hidden features produced from the given text description S, and generate realistic images
semantically-aligned with S. The architecture and training of the network are described in Sec. 5.

To incorporate image features into the generation pipeline, we borrow from the text-guided image
manipulation literature (Li et al., 2020), and redesign the architecture to make full use of the given
image features in text-to-image generation, shown in Fig. 3.

4 MEMORY BANK

4.1 REPRESENTATION

The memory bank M is a set of image features vi extracted from training set images, and each
image features vi is associated with matched text descriptions that are provided in the dataset, e.g., in
COCO, each image has five matched text descriptions. These descriptions are used in the matching
algorithms, allowing a given text to find the most compatible image features at inference time.
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4.2 RETRIEVAL

Given a new text description, in order to effectively retrieve the most compatible image features
from the memory bank M , we have designed several matching algorithms and also explored the
effectiveness of each algorithms. A detailed comparison between different algorithms is shown in the
supplementary material.

4.2.1 SENTENCE-SENTENCE MATCHING

Here, we use image features’ associated sentences S′i as keys, to find the most compatible image
features vi for a given unseen sentence S at inference time. First, we feed both S and S′i into a
pretrained text encoder (Xu et al., 2018) to produce sentence features s ∈ RD×1 and s′i ∈ RD×1,
respectively, where D is the feature dimension. Then, for the given sentence S, we select the most
compatible image features vi in M based on a cosine similarity score:

αi =
(s)T s′i
‖s‖ ‖s′i‖

. (1)

Finally, we fetch the image features vi using the key S′i with the highest similarity score αi.

4.2.2 SENTENCE-IMAGE MATCHING

Instead of using associated sentences as keys, we can calculate the similarity between the sentence
feature s ∈ RD×1 and image features vi ∈ RD×H×W stored in M , where D is the number of
channels, H is the height, and W is the width. To directly calculate the similarity, we first average
the image features on the spatial direction to get a global image feature vGi ∈ RD×1. So, for a given
unseen S, we select the most compatible image features vi in M based on βi:

βi =
(s)T vGi
‖s‖ ‖vGi‖

. (2)

4.2.3 WORDS-WORDS MATCHING

Moreover, we can use a more fine-grained text representation (namely, word embeddings), as keys to
find the most compatible image features vi stored in M for a given unseen sentence S. At inference
time, we first feed both S and S′i into a pretrained text encoder (Xu et al., 2018) to generate word
embeddings w ∈ RN×D and w′i ∈ RN×D, respectively, where N is the number of words and D is
the feature dimension. Then, we reshape the size of both w and w′i to R(D∗N)×1. So, to find the most
compatible image features, the cosine similarity score can be defined as follows:

δi =
(w)Tw′i
‖w‖ ‖w′i‖

. (3)

However, different words in a sentence are not equally important. Thus, if we simply combine all
words from a sentence together to calculate the similarity (like above), the similarity score may
be less precise. To solve this issue, during training, we reweight each word in a sentence by its
importance. We first use convolutional layers to remap word embeddings, and then calculate the
importance λ (and λ′i) for each word in word embeddings w ∈ RN×D (and w′i ∈ RN×D), denoted
by: λ = Softmax(wwT ) and λ′i = Softmax(w′iw

′T
i ), respectively.

Each elements in λ represents the correlation between different words in a sentence. Then, λw (and
λ′iw

′
i) reweight word embeddings for each word based on its correlation with other words. So, using

this reweighted word embeddings, we can achieve a more precise similarity calculation between two
word embeddings. At inference time, after we reshape the size of both λw and λ′iw

′
i to R(D∗N)×1,

the new equation is defined as follows:

δi =
(λw)Tλ′iw

′
i

‖λw‖ ‖λ′iw′i‖
. (4)

4.2.4 WORDS-IMAGE MATCHING

Furthermore, we use the word embeddings w ∈ RN×D and image features vi ∈ RD×H×W to
directly calculate the similarity score between them. To achieve this, we first reshape the size of the
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image features to vi ∈ RD×(H∗W ). Then, a correlation matrix ci ∈ RN×(H∗W ) can be obtained
via: ci = Softmax(wvi), where each element in ci represents the correlation between each word and
each image spatial location. Then, a reweighted word embedding w̃i ∈ RN×D containing image
information can be achieved by w̃i = civ

T
i . So, to find the most compatible image features, we first

reshape the size of both w and w̃i to R(D∗N)×1, and the similarity score is defined as follows:

γi =
(w)T w̃i
‖w‖ ‖w̃i‖

. (5)

Similarly, we can also reweight word embeddings w and image features vi based on their importance
(see Sec.4.2.3) to achieve a more precise calculation.

5 GENERATIVE ADVERSARIAL NETWORKS

To generate high-quality synthetic images from natural language descriptions, we propose to in-
corporate image features v, along with the given sentence S, into the generator. To incorporate
image features into the generation pipeline, we borrow from the text-guided image manipulation
literature (Li et al., 2020), and redesign the architecture to make full use of the given image features
in text-to-image generation, shown in Fig. 3.

5.1 GENERATOR WITH IMAGE FEATURES

To avoid the identity mapping and also to make full use of image features v in the generator, we first
average v on each channel to filter potential content details (e.g., overall spatial structure) contained
in v, getting a global image feature vG, where vG only keeps basic information of the corresponding
real image I , serving as basic image priors. By doing this, the model can effectively avoid copying
and pasting from I , and greatly ensure the diversity of output results, especially on the first stage.
This is because the following stages focus more on refining basic images produced by the first stage,
according to adding more details and improving their resolution, shown in Fig. 3.

However, only feeding the global image feature vG at the beginning of the network, the model may
fail to fully utilize the cues contained in the image features v. Thus, we further incorporate the image
features v at each stage of the network. The reason to feed image features v rather than the global
feature vG at the following stages is that v contains more information about the desired output image,
such as image contents and geometric structure of objects, where these details can work as candidate
information for the main generation pipeline to select. To enable this regional selection effect, we
adopt the text-image affine combine module (ACM) (Li et al., 2020), which is able to selectively
fuse text-required image information within v into the hidden features h, where h is generated from
the given text description S. However, simply fusing image features v into the generation pipeline
may introduce constraints on producing diverse and novel synthetic results, because different image
information (e.g., objects and visual attributes) in v may be entangled, which means, for example,
if the model only wants to generate one object, the corresponding entangled parts (e.g, objects and
attributes) may be produced as well. This may cause an additional generation of text-irrelevant objects
and attributes. Thus, to avoid these drawbacks, inspired by the study (Karras et al., 2019), we use
several fully connected layers to disentangle the image features v, getting disentangled image features
vD, which allows the model to disconnect relations between different objects and also attributes. By
doing this, the model is able to prevent the constraints introduced by the image features v, and then
selectively choose text-required image information within vD, where this information is effectively
disentangled without a strong connection.

Why does the generator with image features work better? Ideally, the generator produces a
sample, e.g., an image, from a latent code, and the distribution of these samples should be indistin-
guishable from the training distribution, where the training distribution is actually drawn from the
real samples in the training dataset. Based on this, incorporating image features from real images in
training dataest into the generator allows the generator to directly draw cues of the desired distribution
that it eventually needs to generate. Besides, the global feature vG and disentangled image features
vD can provide basic information of target results in advance, and also work as candidate information,
allowing the model to selectively choose text-required information without generating it by the model
itself, and thus easing the whole generation process. To some extent, the global feature vG can be
seen as the meta-data of target images, which may contain information about what kinds of objects to
generate, e.g., zebra or bus, and vD is able to provides basic information of objects, e.g., the spatial
structure like four legs and one head for the zebra and the rectangle shape for the bus.
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5.2 DISCRIMINATOR WITH CONTENT INFORMATION
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Figure 4: The architecture of the proposed discrimi-
nator with the incorporation of content information.

To further improve the discriminator to make a
more reliable prediction, with respect to both
visual appearances and geometric structure,
we propose to incorporate the content infor-
mation into it. This is mainly because, in a
deep convolution neural network, when the
network goes deeper, the less content details
are preserved, including the exact shape of
objects (Gatys et al., 2016; Johnson et al.,
2016). We think the loss of content details
may prevent the discriminator to provide fine-
grained shape-quality-feedback to the genera-
tor, which may cause the difficulty for the generator to produce realistic geometric structure. Also,
Zhou et al. (2014) showed that the empirical receptive field of a deep convolution neural network
is much smaller than the theoretical one especially on deep layers. This means, using convolution
operators with a local receptive field only, the network may fail to capture the spatial structure of
objects when the size of objects exceeds the receptive field.

To incorporate the content details, we propose to generate a series of image content features,
{a128, a64, a32, . . . , a4}, by aggregating different image regions via applying pooling operators
on the given real or fake features. The size of these content features is from a128 ∈ RC×128×128
to a4 ∈ RC×4×4, where C represents the number of channels, and the width and the height of
the next image content features are 1/2 the previous one. Thus, the given image is pooled into
representations for different regions, from fine- (a128) to coarse-scale (a4), which is able to preserve
content information of different subregions, such as the spatial structure of objects. Then, these
features are concatenated with the corresponding hidden features on the channel-wise direction,
incorporating the content information into the discriminator.

The number of different-scale content features can be modified, which is dependent on the size of
given images. These features aggregate different image subregions by repetitively adopting fixed-size
pooling kernels with a small stride. Thus, these content features maintain a reasonable small gap
for image information. For the type of pooling operation between max and average, we perform
comparison studies to show the difference in Sec. 6.2.

Why does the discriminator with content information work better? Basically, the discriminator
in a generative adversarial network is simply a classifier (Goodfellow et al., 2014). It tries to
distinguish real data from the data created by the generator (note that in our method, we implement
the Minmax loss in the loss function, instead of the Wasserstein loss (Arjovsky et al., 2017)). Also, the
implementation of content information has shown its great effectiveness on classification (Lazebnik
et al., 2006; He et al., 2015) and semantic segmentation (Liu et al., 2015; Zhao et al., 2017). Based on
this, incorporating the content information into the discriminator is helpful, allowing the discriminator
to make a more reliable prediction on complex datasets, especially for the datasets with complex
image scenery settings, such as COCO.

5.3 TRAINING

To train the network, we follow (Li et al., 2020) and adopt adversarial training. There are three stages
in the model, and each stage has a generator network and a discriminator network. The generator
and discriminator are trained alternatively by minimizing the generator loss LG and discriminator
loss LD. Please see the supplementary material for more details about training objectives. We only
highlight some training differences compared with Li et al. (2020).

Generator objective. The objective functions to train the generator are similar as in (Li et al., 2020),
but, differently, the inputs for the generator are a pair of (S, v) and a noise z, denoted by Gi(z, S, v),
where i indicates the stage number.

Discriminator objective. To improve the convergence of our GAN-based generation model, the R1

regularization (Mescheder et al., 2018) is adopted in the discriminator:

R1(ψ) :=
γ

2
EpD(x)

[
‖5Dψ(x)‖2

]
, (6)

where ψ represents parameter values of the discriminator.
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6 EXPERIMENTS

Table 1: Quantitative comparison on CUB bird: Fréchet inception distance (FID) and R-precision
(R-psr) of StackGAN++ (Zhang et al., 2018), AttnGAN (Xu et al., 2018), ControlGAN (Li et al.,
2019a), DM-GAN (Zhu et al., 2019), DF-GAN(Tao et al., 2020), and our method. For FID, lower is
better, while for R-precision, alignment, and realism, higher is better.

Matrix StackGAN++ AttnGAN ControlGAN DM-GAN DF-GAN Ours

FID 15.30 23.98 13.92 16.09 14.81 10.49

R-psr 46.67 67.82 69.33 72.31 - 73.87

Alignment (%) - - - - 43 57

Realism (%) - - - - 31 69

Table 2: Quantitative comparison on COCO. Note that we also compare our method with OP-
GAN (Hinz et al., 2019), where OP-GAN adopts bounding box in their method.

Matrix StackGAN++ AttnGAN ControlGAN DM-GAN DF-GAN Ours OP-GAN

FID 81.59 32.32 33.58 32.64 21.42 19.47 24.70

R-prs 71.88 85.47 82.43 88.56 - 90.32 89.01

Alignment (%) - - - - 29 71 -

Realism (%) - - - - 22 78 -
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Figure 5: Qualitative results on CUB and COCO: top row is the given unseen sentences; middle row:
the image features extracted from the memory bank M (we use corresponding images to represent
the image features for a better visualization); bottom row: the synthetic results.
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Figure 6: Qualitative comparison between AttnGAN (Xu et al., 2018), DF-GAN (Tao et al., 2020),
and our method on COCO.

To verify the effectiveness of our proposed method in realistic image generation from text descriptions,
we conduct extensive experiments on the CUB bird (Wah et al., 2011) dataset and more complex
COCO (Lin et al., 2014) dataset, where COCO contains multiple objects with diverse backgrounds.
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Evaluation metrics. We adopt the Fréchet inception distance (FID) (Heusel et al., 2017) as the
primary metric to quantitatively evaluate the image quality and diversity. In our experiments, we use
30K synthetic images vs. 30K real test images to calculate the FID value. However, as FID cannot
reflect the relevance between an image and a text description, we use the R-precision (Xu et al., 2018)
to measure the correlation between a generated image and its corresponding text.

Human evaluation. To better verify the performance of our proposed method, we conducted a user
study between current state-of-the-art method DF-GAN (Tao et al., 2020) and ours on CUB and
COCO. We randomly selected 100 text descriptions from the test dataset. Then, we asked 5 workers
to compare the results after looking at the output images and given text descriptions based on two
criteria: (1) alignment: whether the synthetic image is semantically aligned with the given description,
and (2) realism: whether the synthetic image looks realistic, shown in Tables 1 and 2. Please see
supplementary material for more details about the human evaluation.

Implementation. There are three stages in the model, and each stage has a generator network and a
discriminator network. The number of stages can be modified, which depends on the resolution of
the output image. We utilize a deep neural network layer relu5 3 of a pre-trained VGG-16 to extract
image features v, which is able to filter content details in I and keep more semantic information. In the
discriminator, the number of different-scale image content features can be modified, which is related
to the size of the given image. A same-size pooling kernel with a small stride (stride = 2) is repeatedly
implemented on the image features, to maximize the preservation of the content information. For
the type of pooling operation, average pooling is adopted. For the matching algorithms, word image
matching with reweighting based on importance is adopted. The resolution of synthetic results is
256× 256. Our method and its variants are trained on a single Quadro RTX 6000 GPU, using the
Adam optimizer (Kingma & Ba, 2014) with the learning rate 0.0002. The hyperparameter λ is set
to 5. We preprocess datasets according to the method used in (Xu et al., 2018). No attention module
is implemented in the whole architecture.

6.1 COMPARISON WITH OTHER APPROACHES

Quantitative comparison. Quantitative results are shown in Tables 1 and 2. As we can see, compared
to other approaches, our method achieves better FID and R-precision scores on both datasets, and
even has a better performance than OP-GAN, where OP-GAN adopts bounding boxes. This indicates
that (1) our method can produce more realistic images from given text descriptions, in terms of image
quality and diversity, and (2) synthetic results produced by our method are more semantically aligned
with the given text descriptions. Besides, in human evaluation, our method achieves better alignment
and realism scores, compared with DF-GAN, which indicates that our results are most preferred
by workers, which further verifies the better performance of our method, with respect to semantic
alignment and image realism.
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A yellow bird has 
brown wings, and 

a yellow belly.

Figure 7: Diversity. Top row shows the fixed sen-
tence and image features, where we use the corre-
sponding images to represent image features for a
better visualization. The bottom presents diverse
synthetic images produced by only changing the
input noise z.

Qualitative comparison. In Fig. 5, we present
synthetic examples produced by our method at
256 × 256, along with the corresponding re-
trieved images that provide image features. As
we can see, our method is able to produce high-
quality results on CUB and COCO, with respect
to realistic appearances and geometric structure,
and also semantically matching the given text de-
scriptions. Besides, the synthetic results are dif-
ferent from the retrieved image features, which
indicates there is no significant copy-and-paste
problem in our method.

Diversity evaluation. To further evaluate the
diversity of our method, we fix the given text de-
scription and the corresponding retrieved image
features, and only change the given noise z to
generate output images, shown in Fig. 7. When we fix the sentence and image features and only
change the noise, our method can generate obviously different images, but they still semantically
match the given sentence and also make use information from the image features. More evaluations
are shown in the supplementary material.
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6.2 COMPONENT ANALYSIS

Table 3: Ablation studies: “Ours w/o Feature” de-
notes without feeding image features into the gen-
erator, “Ours w/o Disen.” denotes without using
the fully connected layers to disentangle image
features v, “Ours w/o Disen.*” is for mismatched
pairs, “Ours w/o Content” denotes without incor-
porating the content information into the discrimi-
nator, “Ours w/o Reg.” denotes without using the
regularization in the discriminator, “Ours w/ Max”
denotes using the maximum pooling to extract
content information, and “Ours w/ Aver” denotes
using the average pooling.

Method FID R-psr

Ours w/o Feature 22.20 84.63
Ours w/o Disen. 18.82 92.17
Ours w/o Disen.* 18.80 67.05
Ours w/o Content 20.96 88.95
Ours w/o Reg. 27.12 82.97

Ours w/ Max 26.12 83.11
Ours w/ Aver (baseline) 19.47 90.32

Effectiveness of the image features. To better
understand the effectiveness of image features
in the generator, we conduct an ablation study
shown in Table 3. Without image features, the
model “Ours w/o Feature” achieves worse quan-
titative results on both FID and R-precision com-
pared with the baseline, which verifies the effec-
tiveness of image features on high-quality image
generation. Interestingly, without image features,
even our method becomes a pure text-to-image
generation method, similar to other baselines, but
the FID of “Ours w/o Feature” is still competitive
with other baselines. This indicate that even with-
out the image features fed into our method, our
method can still generate better synthetic results,
with respect to image quality and diversity. We
think this is mainly because with the help of con-
tent information, our better discriminator is able
to make a more reliable prediction on complex
datasets, which in turn encourages the generator
to produce better synthetic images.

Effectiveness of the disentanglement. Here,
we show the effectiveness of the fully connected
layers applied on the image features v. Interestingly, from Table 3, the “model w/o Disen.” achieves
better FID and R-precision compared with the baseline. This is likely because the model may suffer
from an identity mapping problem. To verify this identity mapping problem, we conduct another
experiment, where we feed mismatched sentence and image pairs into the network without using
search algorithms, denoted “model w/o Disen.*”. As we can see, on mismatched pairs, although FID
is still low, the R-precision degrades significantly.

Effectiveness of the content information. To verify the effectiveness of the content information
adopted in the discriminator, we conduct an ablation study, shown in Table 3. As we can see, FID
and R-precision degrade when the discriminator without adopting the content information. This may
indicate that the content information can effectively strengthens the differentiation abilities of the
discriminator. Then, the improved discriminator is able to provide the generator with fine-grained
training feedback, regarding to geometric structure, thus facilitating training a better generator to
produce higher-quality synthetic results.

Comparison between different pooling types. Here, we conduct a comparison study on different
pooling types (i.e., max and average) in Table 3. As we can see, the model with the average pooling
works better than max pooling. We think that this is likely because max pooling fails to capture the
contextual information between neighboring pixels, because it only picks the maximum value among
a region of pixels, while average pooling calculates the average value between them.

Effectiveness of the regularization. We evaluate the effectiveness of the adopted regularization in
the discriminator. From Table 3, the model without the regularization has worse quantitative results,
compared with the full model. We think that this is because the regularization effectively improves
GAN convergence by preventing the generator from training on junk feedback, once the discriminator
cannot easily tell the difference between real and fake.

7 CONCLUSION

We have introduced a memory-driven semi-parametric approach to text-to-image generation, which
utilizes large datasets of images at inference time. Also, an alternative architecture is proposed for
both the generator and the discriminator. Extensive experimental results on two datasets demonstrate
the effectiveness of feeding retrieved image features into the generator and incorporating content
information into the discriminator.
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8 ETHICS STATEMENT

All datasets and baselines used in the paper are public with corresponding citations. Our research
mainly explores the interaction between different modal features, and aims to achieve an effective
transformation from one domain to the other, which might not have significant potentially harmful
insights and potential conflicts of interest and sponsorship.

9 REPRODUCIBILITY STATEMENT

To reproduce our results, we include the details of the datasets we used in our paper (see Sec. D).
In the implementation section (see Sec. 6), we show more details on our network, including how to
extract image features, and how to generate content information used in the discriminator. We also
include the values of hyperparameters, and the kinds of devices that we used to train our network.
Sec. 5.3 and Sec. B show objective functions to train our network. Also, all data and baselines used
in our paper are public with corresponding citations. We will release our code after the conference.
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A ARCHITECTURE

Here we show details about the network architectures for the components of our model.

A.1 TEXT ENCODER

The text encoder used in our method is a pretrained bidirectional LSTM (Xu et al., 2018), which is
trained together with an image encoder Inception-v3 (Szegedy et al., 2016), maximizing the cosine
similarity between text features and the corresponding image features. The text features are encoded
from a given text description using the text encoder, and the image features are extracted from the
corresponding matched image.

A.2 IMAGE ENCODER

The image encoder used in our main architecture is a VGG-16 (Simonyan & Zisserman, 2014)
network, pretrained on ImageNet (Russakovsky et al., 2015). A deep neural network layer relu5 3
is adopted to extract image features. Thus, the image features are able to contain more semantic
information than content details.

A.3 TEXT-IMAGE AFFINE COMBINATION MODULE

⊕

Conv

Conv

hidden features

Conv

⊙
W(vD)

b(vD)

vD

h
h′ 

Figure 8: The architecture of the affine combination module.

To better fuse different-modal text and image features, and also to enable a regional selection
effect, we adopt the text-image affine combination module (Li et al., 2020), shown in Fig. 8. The
affine combination module takes two inputs: (1) the hidden features h ∈ RC×H×W from the given
text description or intermediate hidden representation between two stages, where C is the number
of channels, H is the height, and W is the width of the feature map, and (2) the corresponding
disentangled image features vD ∈ RC×H×W , achieved by applying fully connected layers on the
image features.

According to applying two convolutional layers, the disentangled image features vD are converted
into trainable weights W (vD) ∈ RC×H×W and trainable biases b(vD) ∈ RC×H×W . Then, the fused
feature h′ ∈ RC×H×W is generated by

h′ = h�W (vD) + b(vD), (7)

where W and b represent the functions that convert the image features vD into weights W (vD) and
biases b(vD), and � denotes the Hadamard element-wise product.

A.4 REWEIGHTING IMAGE FEATURES BASED ON IMPORTANCE

Here, we show how to reweight image features based on its importance, mentioned in Sec. 4.2.4.
First, during the training, we use convolutional layers to remap image features, and then reshape
image features into v ∈ RD×(H∗W ). Thus, to calculate the importance λ for each spatial locations in

14



Under review as a conference paper at ICLR 2022

image features, we apply the following equation: λ = Softmax(vT v), where λ ∈ R(H∗W )×(H∗W ),
and each element in λ represents the correlation between different spatial locations. Finally, we
reweight image features based on importance by adopting vλ.

B OBJECTIVE FUNCTIONS

Here we show the complete objective functions for training our method. The discriminator and
generator in our model are trained alternatively by minimizing both the generator loss LG and the
discriminator loss LD.

B.1 GENERATOR OBJECTIVE

The generator objective for training a generator at stage i contains an unconditional adversarial loss,
a conditional adversarial loss, and a text-image matching loss LDAMSM (Xu et al., 2018).

LGi =−
1

2
Ez∼Pz,v∼Pdata [log(Di(Gi(z, S, v)))]︸ ︷︷ ︸

unconditional adversarial loss

−1

2
Ez∼Pz,v∼Pdata [log(Di(Gi(z, S, v), S))]︸ ︷︷ ︸

conditional adversarial loss

+λLDAMSM,
(8)

where Gi and Di represent the corresponding generator network and discriminator network at stage i,
respectively, S is the text description, v is the image features that are extracted from the corresponding
real image I that correctly semantically matches S, where the I is sampled from the true distribution
Pdata, z is a noise vector drawn from the Gaussian distribution Pz .

Thus, the complete objective function for training the generator networks is:

LG =

K∑
k=1

(LGi
), (9)

where K is the total number of stages in the network.

B.2 DISCRIMINATOR OBJECTIVE

The discriminator objective for training a discriminator at stage i contains an unconditional adversarial
loss and a conditional adversarial loss.

LDi
=−1

2
EIi∼Pdata [log(Di(Ii))]−

1

2
Ez∼Pz

[log(1−Di(Gi(z, S, v)))]︸ ︷︷ ︸
unconditional adversarial loss

−1

2
EIi∼Pdata [log(Di(Ii, S))]−

1

2
Ez∼Pz [log(1−Di(Gi(z, S, v), S))]︸ ︷︷ ︸

conditional adversarial loss

,
(10)

where Ii denotes the real image sampled from the true image distribution Pdata at stage i. Thus, the
complete objective function for training the discriminator networks is:

LD =

K∑
k=1

(LDi) +R1(ψ), (11)

where R1(ψ) is a regularization term described in the paper. This regularization term is derived from
zero-centered gradient penalties (Ross & Doshi-Velez, 2017) on local stability, which penalizes the
discriminator for deviating from the Nash-equilibrium. This ensures that when a GAN-based model
converges (i.e., the generator produces the true data distribution), the discriminator cannot create a
non-zero gradient orthogonal to the data manifold without suffering a loss in the GAN game.
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C EVALUATION METRICS

In this section, we show more details about the evaluation metrics used in the paper.

C.1 FRÉCHET INCEPTION DISTANCE

The Fréchet inception distance (FID) (Heusel et al., 2017) measures the Fréchet distance between
generated image features and real image features, where both features are extracted by an Inception-v3
network (Szegedy et al., 2016) pretrained on ImageNet (Russakovsky et al., 2015). Consequently,
a lower FID implies a closer distance between the synthetic image distribution and the real image
distribution.

C.2 R-PRECISION

To measure the semantic alignment between the synthetic image and the given text description, the
R-precision (Xu et al., 2018) is adopted. The R-precision is calculated by retrieving relevant text
descriptions given an image query. To measure the relevance between the text and the image, the
cosine similarity between text and image features is adopted. Thus, we compute a global image
vector and 100 candidate sentence vectors, where the 100 candidate sentence vectors contain R
number of ground-truth text descriptions that correctly describe the image, and 100−R randomly
chosen mismatched descriptions. For each image query, if a results in the top R ranked retrieval text
descriptions are relevant, then the R-precision is a/R. In the paper, we measure the top-1 R-precision
(i.e., R = 1).

D MORE EXPERIMENTS

In this section, we show additional experimental results to further evaluate and verify the performance
of our proposed method.

D.1 DATASETS

CUB bird (Wah et al., 2011) contains 8,855 training images and 2,933 test images, and each image
has 10 corresponding text descriptions. COCO (Lin et al., 2014) contains 82,783 training images and
40,504 validation images. Each image has 5 descriptions.

D.2 QUANTITATIVE COMPARISON BETWEEN DIFFERENT ALGORITHMS

Table 4: Quantitative comparison between different matching algorithms on CUB. Sent. represents
sentence, and ReW represents we reweighting word embeddings and (or) image features based on
importance. For FID, lower is better, while for R-precision, higher is better.

Matrix Sent. & Sent. Sent. & Image Word & Word Word & Word & ReW Word & Image Word & Image & ReW

FID 11.34 11.41 10.98 10.88 11.03 10.49

R-psr 69.98 68.47 71.32 72.88 71.36 73.87

Table 5: Quantitative comparison between different matching algorithms on COCO. For FID, lower
is better, while for R-precision, higher is better.

Matrix Sent. & Sent. Sent. & Image Word & Word Word & Word & ReW Word & Image Word & Image & ReW

FID 20.87 20.76 19.98 20.03 20.12 19.47

R-psr 86.76 86.34 89.02 89.23 88.98 90.32

Here, we show the quantitative comparison between different matching algorithms, shown in Tables 4
and 5. As we can see, the algorithm word image matching with reweighting based on importance
achieves the best FID and R-psr scores on CUB and COCO datasets. Therefore, the algorithm word
image matching with reweighting is adopted in our method.
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Figure 9: Human evaluation between DF-GAN and ours on CUB and COCO datasets. Of the
decisions with 5/5 majority voting, the results produced by our method are most preferred by workers
on both alignment and realism.

D.3 DETAILS OF HUMAN EVALUATION

Because the automatic metric cannot comprehensively evaluate the improvement of our proposed
method, we conducted a side-by-side human evaluation study to analyze the improvement. The study
compares synthetic images from our method and current state-of-the-art text-to-image generation
method DF-GAN (Tao et al., 2020) on both CUB and COCO, according to (1) alignment, and (2)
realism. We presented synthetic images from different methods along with the given text descriptions.
We randomly switch our method and the baseline and also anonymized them. Then, we asked workers
to choose the best images based on above two criteria. In this study, we randomly choose 100 text
descriptions sampled from the test dataset, and then assign corresponding synthetic images generated
by different methods to 5 workers to reduce variance.

D.4 QUALITATIVE RESULTS

In Fig. 10, we show more qualitative results generated by our method on the CUB bird dataset, along
with the corresponding retrieved images that provide image features. As we can see, our method
is able to produce high-quality results on CUB, semantically matching the given text descriptions.
Also, the synthetic results look obviously different from the retrieved images, but our method can
selectively choose information from the retrieved image to generate better synthetic results.

This blue bird 
has a blue 
head and a 
white belly.

This bird has 
a yellow 

head, brown 
wings, and a 
yellow belly.

A brown bird 
with a white 

belly, a brown 
head, and 

brown wings.

Retrieved Image  
Features

A small bird 
has a grey 

head, a grey 
belly, and 

green wings.

A red bird has 
a red head, a 
red belly, and 
black wings.

Synthetic  
Results

Given Sentence
A yellow bird 
has a brown 

head and 
brown wings.

This bird has 
a short beak, 
with black 

wings, and a 
white belly.

A yellow bird 
has black 

wings, and a 
yellow belly.

Figure 10: Qualitative results on CUB: top row is the given unseen sentences; middle row: the image
features extracted from the memory bank M (we use corresponding images to represent the image
features for a better visualization); bottom row: the synthetic results.

D.5 DIVERSITY

D.5.1 SSIM
We also compare the Structural Similarity Index (SSIM) score (Hore & Ziou, 2010) between the
generated images and corresponding ground-truth images to evaluate the diversity of our method.
SSIM is originally used to measure the recovery result from distorted images. In our case, higher
SSIM means synthetic and real images are more similar, which indicates that there may exist a
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Table 6: Quantitative comparison: Structural Similarity Index (SSIM) of StackGAN++ (Zhang et al.,
2018), AttnGAN (Xu et al., 2018), ControlGAN (Li et al., 2019a), DM-GAN (Zhu et al., 2019), and
our method on the CUB and COCO datasets. For SSIM, higher means synthetic and ground-truth
images are more similar, which indicates that there may exist a copy-and-paste problem and the
network has a worse diversity.

Dataset StackGAN++ AttnGAN ControlGAN DM-GAN Ours

CUB 0.2727 0.2656 0.2505 0.2196 0.2371

COCO 0.2065 0.1810 0.1599 0.1690 0.1791

copy-and-paste problem and the network has a worse diversity. Based on this, for SSIM, lower is
better, which means a better diversity.

To calculate the SSIM, for other baseline methods, we evaluate them on the test dataset by calculating
the SSIM between each synthetic and ground-truth image pairs, and then get the average of all scores;
for our method, we calculate the SSIM between the synthetic image and the image that provide image
features. As shown in Table 6, our method achieves competitive SSIM scores on both CUB and
COCO, compared with other baselines. This indicates that (1) even if our method has image features
as image priors, it can still produce diverse synthetic results that are different from the corresponding
real images, (2) there is no significant copy-and-paste problem in our method, and (3) our method
can effectively disentangle objects and attributes in the given image features, which then can work as
candidate information for the main generation pipeline to choose.

D.5.2 SEMANTIC INFORMATION EXPLORATION

A zebra is walking 
in an open grassy 

filed.
A zebra is grazing 

on green grass.
A bus is driving 
down a street.

A bus is parking on 
the side of the road.

Image Features

Synthetic Results

Given Sentence

Figure 11: Semantic information exploration. Top
row: given sentences; middle row: image features,
where we use corresponding segmentation masks
to represent the image features for a better visual-
ization; bottom row: synthetic images.

Here, we further verify whether our method suf-
fers from an copy-and-paste problem by explor-
ing whether our method can make use of se-
mantic information contained in the retrieved
image features. To verify this, instead of ex-
tracting image features from RGB images, we
use segmentation masks to provide semantic im-
age features, shown in Fig. 11. As we can see,
although there is no any content information
provided in the given segmentation masks, our
method is still able to generate realistic images,
which indicate that our method can make use
of semantic information contained in the image
features, instead of simply copying and pasting
the retrieved image features to produce output
images. Furthermore, discussed in the following
Sec. D.7, given a partially matched text and image features, our method is able to pick the semantic
information (e.g., structure of train, cat, and bus) and filter detailed content color information (e.g.,
yellow and green, brown, and yellow) to generate text-required output images, as shown in Fig. 12.

D.6 EFFECTIVENESS OF IMAGE FEATURES

Actually, when there are no image features that are fed into our method, our method becomes a
traditional text-to-image generation model, where the inputs for the model are only the natural
language descriptions and random noise. As shown in Table 7, “Ours w/o Feature” still has a
competitive performance, compared with other baselines, which means that our method can still
generate images with good quality and diversity. We think this is mainly because of the powerful
discriminator with content information, which is able to provide fine-grained training feedback to the
generator, in terms of realistic appearance and geometric structure. Note that the way to block image
features to build the model “Ours w/o Feature” is to remove image features and ACM components in
the network, and only keep the new discriminator with content information.

D.7 IMAGE GENERATION WITH PARTIAL TEXT-IMAGE MATCHING

Interestingly, when the retrieved image features have a good quality (e.g., desired objects in image
features can provide enough information), but are not perfectly aligned with the given text descriptions,
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Table 7: Quantitative comparison: Fréchet inception distance (FID) and R-precision (R-psr) of
StackGAN++ (Zhang et al., 2018), AttnGAN (Xu et al., 2018), ControlGAN (Li et al., 2019a),
DM-GAN (Zhu et al., 2019), OP-GAN (Hinz et al., 2019), and our method on the COCO dataset.
“Ours w/o Feature” denotes that our model does not have any image features and just has a similar
generation pipeline as other traditional text-to-image generation methods. For FID, lower is better,
while for R-psr, higher is better.

Matrix StackGAN++ AttnGAN ControlGAN DM-GAN OP-GAN Ours w/o Feature

FID 81.59 32.32 33.58 32.64 24.70 22.20

R-prs (%) 71.88 85.47 82.43 88.56 89.01 84.63
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Figure 12: Our method can produce realistic im-
ages even if image features partially match the
given text description. To observe this situation,
we manually feed partially matched pairs into the
network.

which means that the given text description
and corresponding retrieved image features only
partially match on the semantic meaning, our
method is still able to produce realistic images,
shown in Fig. 12. As we can see, our method
is able to generate the desired objects with re-
quired attributes, even if image features only
partially match the given text description. For
example, in the provided “train” image features,
there is a yellow and green train, but the given
description requires a red train. However, our
method is still able to generate a realistic train
with a red color. Besides, our method can even
produce a novel composition, e.g., the sign is
flying in the sky. We think that this is mainly because the generator can selectively make use of the
information provided by the image features, instead of directly copying and pasting information from
it. Also, features and attributes are disentangled in the provided image features, which enable this
independent selection without additional generation.

D.8 REGIONAL SELECTION EFFECT

Image Prior OursOriginal Text

Zebras inside a fenced 
enclosure eating grass 
and walking around.

A large vase of 
flowers behind chairs 

near a window.

A bunch of white 
flowers sit in a glass 

on the table.

A zebra is grazing on 
green grass.

Given Text

Figure 13: Effectiveness of regional selection ef-
fect. “Original Text” denotes the corresponding
description in the dataset matching the given im-
age prior, “Given Text” denotes the description fed
into the network along with the image features.

In Fig. 12, we can observe the regional selection
effect involved in the generation process. For
the train example, our full model is able to selec-
tively keep the relevant information (e.g., train)
and filter the irrelevant contents (e.g., yellow and
green color) to avoid a wrong object generation
(e.g., red color). This effect can be magnified
when the given image has multiple objects, and
the given text only partially describes it, shown
in Fig. 13. There are multiple objects (e.g., vase,
flowers, chairs, and window for the top example;
three zebras, enclosure, and grass for the bottom
one) in the given image features. However, our
method only selectively makes use of some in-
formation (e.g., shape and texture of flowers and
zebra) and generates text-required objects without keeping irrelevant contents in the image features
(e.g., chair, window, and multiple zebras).

E LIMITATIONS AND FUTURE WORK

Here, we discuss some limitations of the proposed method and also the future work. We have
observed that our method may fail to produce realistic images when the retrieved image features can
only provide limited information, e.g., the target object is too small in the corresponding real image,
or there are no desired objects in the retrieved image features. As shown in Fig. 14 left, the stop sign,
zebra, bus, and train in the corresponding image are too small, which means that the extracted image
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Figure 14: Failure cases, we use the corresponding real image to represent image features for a better
visualization. Left: the retrieved image features can only provide limited information. Right: no
desired objects exist in the retrieved image features.

features can only provide very limited information about the desired object zebra, stop sign, bus,
and train to the generation pipeline. Furthermore, when the retrieved image features have no desired
objects, shown in Fig. 14 right, our proposed method may fail to generate high-quality images as
well. No desired objects presented in the retrieved image features are mainly caused by the image
preprocessing (e.g., crop) and also the limitation of matching algorithms. In such cases, our method
is more similar to a pure text-to-image generation method, like other baselines, because the provided
image features cannot provide any useful information. To solve these problems, we suggest to build a
better memory bank with higher-quality image features, and also improve the matching algorithms to
find the most compatible image features for a given text description.

Besides, our method is a semi-parametric approach, which needs to retrieve image features from the
memory bank. So, it might slow down the inference time, compared with other purely parametric
methods. To solve this problem, we suggest to (1) run matching algorithms parallel to speed up the
whole inference time, and (2) encourage users to provide the category of the main object in their text
descriptions, and then we can use this category as a key to narrow down the retrieval regions.

F ADDITIONAL QUALITATIVE COMPARISON

Here, we show an additional qualitative comparison between the different text-to-image generation
approaches StackGAN++ (Zhang et al., 2018), AttnGAN (Xu et al., 2018), and DF-GAN (Tao et al.,
2020) with our method on the COCO dataset (Lin et al., 2014).
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Figure 15: Additional comparison results between StackGAN++, AttnGAN, DF-GAN, and Ours on
the COCO dataset.
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Figure 16: Additional comparison results between StackGAN++, AttnGAN, DF-GAN, and Ours on
the COCO dataset.
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Figure 17: Additional comparison results between StackGAN++, AttnGAN, DF-GAN, and Ours on
the COCO dataset.
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Figure 18: Additional comparison results between StackGAN++, AttnGAN, DF-GAN, and Ours on
the COCO dataset.
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